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Abstract

This paper describes a Bayesian method for constructing a super-resolved surface model
by combining information from a set of images of the given surface. We develop the theory
and algorithms in detail for the 2-D reconstruction problem, appropriate for the case where all
images are taken from roughly the same direction and under similar lighting conditions. We
show the results of this 2-D reconstruction on Viking Martian data. These results show dramatic
improvements in both spatial and gray-scale resolution. The Bayesian approach uses a neighbor
correlation model as well as pixel data from the image set. Some extensions of this method are
discussed, including 3-D surface reconstruction and the resolution of diffraction blurred images.
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1 Introduction

Consider the problem of how to extract as much information as possible from a set of images, all
of the same scene, and of capturing this information in the form of a surface model at maximal
resolution. This problem is important in many applications where maximal resolution is paramount.
In this paper we focus on space-based remote imaging.

Surface reconstruction from an image set is an example of an inverse problem: if we knew exactly
the shape and emittance of the surface, the illumination conditions, the camera angle, etc., we could
predict what the camera would observe (the pixels) to within the measurement accuracy. This is the
rendering problem addressed by computer graphics. We have the inverse problem: we are given
the observed images (pixels) and must use this information to find the most probable surface that
could have generated these images. Bayes’s theorem provides a formal solution to inverse problems,
which we apply here to the surface reconstruction problem.

Because the reconstructed surface can only be determined to within a certain maximum spatial
resolution, we represent surfaces by a discrete uniform grid with the surface properties given at each
grid point. For the case of a planetary surface, these surface properties could include illumination,
albedo, slope, emittance at different wavelengths, etc. We will describe in detail a model using
only surface emittance, and then describe how to extend this model. These properties characterize
the grid point and describe how it could influence the image pixels once the camera parameters are
known. This surface grid is a reconstruction and isnot what was actually observed. For this reason
we call the surface grid elementsmixels (for model pixels) to distinguish them frompixels which
are theobserved values. Unfortunately, in much of the vision literature, the word pixel is used
interchangeably to refer to both inferred and observed values.

We are able to get super-resolved reconstructions from image sets because each pixel of each
image is a new sample of some patch on the observed surface. Two images generated withexactly
the same alignment between the camera and the surface, the same illumination conditions, etc.,
record the same information to within the measurement error of the camera, resulting in no net
gain of information. With slightly differing alignments, however, the observed pixel values will
be different, because the camera is observing slightly different patches on the surface. By relating
these differences to locations on the surface, it is possible to reconstruct a model grid at a finer
resolution than the observation pixilation. This technique for combining overlapping information is
closely related to deconvolution (e.g. radar imaging) and computed tomography (e.g. CAT scan),
and is explained in more detail in section 3. In particular, this information combining technique goes
beyond the Nyquist limit for a single observed image. Fig. 1 shows schematically why subpixel
resolution is possible.

We start by considering “flat” surface reconstruction. This is the best that can be achieved when
the images are taken from essentially the same camera position and sun angle, but with slightly
different registrations. This occurs with Landsat images, for example, where each location on Earth
is imaged from essentially the same position in space. The reconstruction gives the “emittance”
of the surface, which is a combination of the effects of surface albedo, illumination conditions and
ground slope. We develop this theory in detail in section 2, and show its application to Viking Orbiter
data of Mars. This theory includes the use of prior knowledge in the form of neighbor correlations.
In section 5, we outline how to extend this approach to a 3-D surface reconstruction, where images
from different directions allow us to separate variations in pixel values due to albedo from those due
to ground slope.

2 2-D Surface Reconstruction

Our approach is based on Bayesian probability theory. We use a likelihood function, defined to be
the probability of the observed data given a model of how the data were generated. This model of
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Figure 1: Because several sampling grids are used, offset randomly with respect to each other,
resolution beyond the Nyquist limit of any one frame is possible.

the observation process is normally parameterized with respect to any variables that affect the pro-
cess. For the current problem, these observational parameters include surface illumination, surface
albedo, camera orientation, camera characteristics, optical distortions, and any data preprocessing.
Computational considerations may require that some of these parameters be simplified or omitted,
but doing so always entails some loss of precision.

We have made several such simplifications in the work described in this section. The first is that
we model the “surface” as a plane lacking curvature and local relief — i.e., as a grid only of emittance
values. Thus, the value of each mixel is simply a scalar — its emittance. The second is the substitution
of a simple transformation (affine or quadratic) for the projective observation geometry and for any
optical and electronic distortions of the camera system. A third lies in using a preprocessing step
to deal with telemetry noise. For Mars images, we ignore ambient light contribution from a diffuse
background and atmospheric attenuation, as they are negligible in the data sets we use.

In our approach, we begin by constructing a likelihood function that gives the probability of
each pixel value, given the imaged surface and observation conditions. We take the likelihood of the
entire image to be just the product of likelihoods of each pixel. This means we are assuming that
the measurement error of a pixel is conditionally independent of the value of its neighbors. This
conditional independence assumption is symbolically represented as:

P
�
all pixel valuesj observation params, mixels

�

=
Y

p

P
�
(pixel(p)= Φp j observation params, mixels

�
: (1)

Here, pixel(p) is a location of a pixel on some image in the image set, andΦp is an observed energy
value1. What we read off the camera is the radiant energy received by each pixel[9]. Note the split
of parameters into two sets: observation parameters and mixels. We will explain the significance of
this split below.

We assume that the probability of an observed pixel value is normally distributed, so that the
likelihood of each pixel is given approximately by:

P
�
pixel(p)= Φp j observed params, surface model

�
� N [Φp j Φ̂p; �]∆Φp: (2)

HereN [x j�; �] is the standard normal (or Gaussian) distribution ofx given a mean� and standard
deviation�. The∆Φp term is the observed minimum gray-scale difference. The standard deviation�

1This is not physically correct, as the camera outputs joules. However, one can multiply the fluxΦ by the exposure time
and the pixel size to obtain joules Q. We will stick to flux values to keep Eqn.(1) camera independent.
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of the observed pixels from their expected values is assumed to be the same for all pixels in an image.
This deviation results from measurement error (especially quantization error2) and model errors of
various kinds (e.g. slight mis-registration). If these many sources of error are largely independent,
the central limit theorem leads us to expect the resulting error distribution to be close to normal.
Experimental data confirm this expectation, as is discussed in section 3.2.The normal approximation
in this case assumes that� >> ∆Φp. This distribution is just the trapezoid approximation to the
integral of a normal density over the interval fromΦp to Φp + ∆Φp.

In Eqn. (2), the term̂Φp represents the expected radiant energy3value for pixelp and is a function
of the observation parameters and surface model. The parameters used in determiningΦ̂p, as used
in likelihood Eqn. (2), are:

1. Mixel Values: This is the model of the reconstructed 2-D surface represented by an “emittance”
value at each grid point (mixel);

2. Registration Parameters: These geometric parameters define how a pixel image maps onto
the reconstructed mixel grid. Here, we use affine and quadratic transformations to define a
2-D (camera) to 2-D (mixel grid) function;

3. Point Spread Function (PSF): This function defines how points on the surface (mixels)
contribute to the observed pixels through the camera optics, including any distortionsproduced
by camera readout;

4. Camera Shading: These parameters are necessary for cameras, such as a vidicon4, with a
nonuniform readout gain across the image plane. These parameters define a scaling factor that
varies depending on where on the image plane a particular pixel falls.

The contribution of these parameters toΦ̂p is shown diagrammatically in Fig. 2. Given values
for the mixels and the parameters relating mixels to pixels, it is possible to calculate the expected
value of a given pixel,̂Φp, by summing the contribution of each mixel, as weighted by the PSF. This
is explained in detail in the next section. This pixel prediction process is just the “forward” graphics
problem, shown in Fig. 2.

In a maximum likelihood (ML) approach, the goal is to find the set of parameter values that
maximizes Eqn. (1)—in particular, the ML estimates of the mixels is a way of reconstructing an
unknown surface from the images. Note that finding the ML mixel values is a way of solving the
“inverse” graphics problem (i.e. finding a model from data) given the likelihood (i.e. probability
of the data given a model). When the resolution chosen for the mixel grid isoverdetermined by
the corresponding pixel values, the ML approach is reasonable. The mixels are overdetermined
by the pixels when there is no value for the mixels which can exactly predict all the pixel values.
The overdetermined situation means that the mixel grid is at a coarser spatial resolution than is
otherwise achievable. If the ML approach is tried at too fine a resolution, the mixel values are
underconstrained—i.e., there are many mixel grids that would predict the pixel values exactly, and
there is no principled way of choosing among them.

The Bayesian approach used here is similar to the ML approach, but it uses additional (prior)
knowledge in the form of expectations about correlations among neighboring mixels. This additional
knowledge in the Bayesian maximum a posterior (MAP) estimate allows any scale mixel grid. If
too coarse a mixel grid is used (i.e. the mixels are overdetermined by the pixels), then the neighbor
correlations have little effect, and the MAP estimate is essentially the same as the ML estimate.
However, if a very fine mixel grid is used (i.e. the mixels are underdetermined), then the effect of the
neighbor correlations competes with the fit to the data to give a reasonable compromise result that

2The quantization of continous emittance values into integers
3See discussion below in section 3.0 for terminology.
4A vidicon camera is an obsolete electron beam readout camera, such as used in the Viking Orbiter images shown in this

paper.
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Figure 2: Parameters Relating Pixels to Mixels

uses all the information. The optimal mixel resolution is near the borderline between overdetermined
and underdetermined, where the neighbor correlation information begins to suppress the affects of
the noise in the data. Thus the prior term acts much in the same manner as a “regularization” term
in related approaches.

3 MAP Reconstruction

Given pixel data and the parameters that specify the imaging model, we want to jointly estimate the
mixel grid values together with other auxiliary model parameters. In a Bayesian approach one seeks
a combination of all these parameters which has maximum posterior (MAP) probability, which is
the same (up to a normalization factor) as seeking a maximum joint probability:

Joint Probability = Likelihood� Prior Probability

P [Mixels, Pixels, Params] = P [PixelsjMixels, Params]� P [Mixels jParams]� P [Params];

where “Mixels” refers to the set of all mixel values, “Pixels” refers to the set of all pixels in all
images, and “Params” refers to the auxiliary observational parameters (registration parameters, PSF,
etc.) listed above.

Repeating Eqn. (2), the likelihood term is:

P [PixelsjMixels, Params] =
Y

p

N [Φp j Φ̂p; �p]∆Φp: (3)

We now specify the mean for each pixelΦ̂p to be a linear combination of the emittances from mixels
projected near the pixel location:

Φ̂p =
X

i

!ipmi: (4)

Heremi is the emittance of theith mixel and!ip is the mixel-pixel weight defined by the PSF and
registration information. For images that are not significantly diffraction blurred, the radiant energy
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at a point in the image plane is a sum of contributing emittance values (not amplitudes) from the
generating surface, as shown in equation (4).

So far, we have used thephysical terminology appropriate for describing the quantities radiating
from the mixel grid (emittance) and captured by the camera (radiant energy). While this convention
is admittedly arbitrary, (we could, for example, equip the camera model with an exposure term E(Q)
that turns radiant energy values Q to flux values�) it is more precise than the alternate computer
graphics convention of labeling a host of quantities with “intensity”, regardless of its being a light
source, a CRT raster, a planetary surface, etc. While in the present 2-D superresolution case these
distinctions may not seem useful, such precision is helpful when the model is extended to 3-D
surface reconstruction. It is in this context of anticipated extention that the terminology in this paper
is chosen.

3.1 Prior

The prior probabilitytermP [Mixels jParams] is the distinctlyBayesian contribution,and it embodies
one’s beliefsbefore seeing the data about the kinds of scenes or landscapes one might observe. The
simple prior used in this paper describes how mixel intensitiesmi relate to each other. The remaining
model parameters — the point spread function coefficients, optical angles, etc.—are highly over-
determined by the data, so we can reasonably neglect the priorsP [Params] on these parameters.

To gain insight into the appropriate prior over the mixel intensities, we analyzed Viking Orbiter
imagery. This prior can be thought of as a means of preferring a given solution when many solutions
fit the data equally. We choose a prior that makes a reconstruction more likely if its mixel values are
highly correlated with their neighbors (i.e. there is emittance continuity). A simple, probabilistic
model of continuitywould be to estimate the value of a mixelmi by a weighted sum of its neighbors:

m̂i =
X

j

�ijmj : (5)

Here, the�ij are weights: mixelmj contributes�ij to mixelmi. While this form is fairly general,
we choose to start with a particularly simple relationship where�ii = 0, �ij = �ji = 1=4 if
ji� jj = 1, and�ij = 0 otherwise. This just means that a mixel is directly correlated only with its
four cardinal neighbors. Because the neighbors are correlated withtheir neighbors, etc., this also
indirectly implies long range correlation.

Figure 3 shows the well-groundedness of the above continuity preference. First, the central peak
at 0 shows that mixels are in fact correlated with the four cardinal neighbors. The moments of this
distribution suggests that a multivariate normal form for the prior,

P [Mixels jParams] = N [mi jmi;Σij]
Y

i

dmi: (6)

is appropriate. Here, the matrixΣij collects the�ij dependencies. Themi in Eqn. (6) represents
putative “mean” values for a mixel at positioni. The model we implement only uses a constant value
mi = m, the mean value of all mixels. Possible extentions could make use of varying meansmi to
capture “trends” in an image.

Appearances may be deceptive, however. Figure 4 shows the same calculation as in Figure 3;
although the shape looks fairly Gaussian, examining the moments of the distribution reveals that
there is much more energy in the tails than is the case for a normal model. This is because individual
pixels in Earth imagery can differ substantially from their neighbors,e.g. a road traversing ground.
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Figure 3: Distribution ofm i � m̂i for a Viking Orbiter image of Mars. Horizontal axis is in 7-bit
Data Numbers.

3.2 MAP Equation

Now that we are equipped with the prior

P [Mixels jParams] = N [mi jm;Σij]
Y

i

∆dmi (7)

we combine it with our likelihood

P [PixelsjMixels, Params] =
Y

p

N [Φp j Φ̂p; �]∆Φp: (8)

Keeping in mind Eqn. (4) that
Φ̂p =

X

i

!ipmi;

we can rewrite the likelihood as
Y

p

N [Φp jmi; !ip; �]∆Φp: (9)

The MAP solutionseeks to maximize the productof Eqns. (7) and (9), i.e. the “joint” distribution.
Since they are both multivariate normal distributions, the joint is as well. Thus,

MAP = Max(N [mi jm;Σij] �
Y

p

N [Φp j Φ̂p; �])

= Max(N [mi jm;Aij]) (10)

where

Aij = Σij +
1
�2

X

p

!ip!jp: (11)

The matrixAij in Eqn. (11) is calculated by standard methods in completing the square for multi-
variate distributions[10]. The peak of the distribution in Eqn. (10) are them i that satisfy

X

i

Aij(mi �m) =
1
�2

X

p

!ip(Φp �m): (12)
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Figure 4: Distribution ofm i � m̂i for a Landsat image of Kansas. Horizontal axis is in 7-bit Data
Numbers.

We can thus find the maximum posterior mixel gridmi given the auxiliary parameters by simply
solving this linear equation. The method we use to actually compute the maximum posterior mixel
grid is discussed in the next section.

4 Reconstruction Algorithm

We now concern ourselves with how to solve Eqn. (12). The fundamental “catch” is thatif we knew
the true values of the various parameters (PSF, registration, etc.), we could solve Eq. (12) exactly.
However, to estimate the necessary parameters to high accuracy, we would have to know the true
mixel grid! Our way around this dilemma is to iterate between two processes: use a current estimate
of the mixel grid to (re-)estimate the parameters; use these new parameter estimates to re-calculate
a better mixel grid, and so on. To start this process, we need either a nominal mixel grid or nominal
set of parameters. Our data includes nominal values for parameters such as the camera location, the
sun angle, etc., so we choose these as starting values. We begin our bootstrap process by estimating
the registration parameters.

4.1 Registration

The registration parameters define the correspondence between points on the image plane and those
on the modeled surface. The parameters can be thought of as coefficients to a function that projects
surface points to the image plane; such a function depends on the planetary curvature, the imaging
system’s optics, and the camera’s location and orientation relative to the surface. In the case of
vidicon cameras, there is additional image distortion due to the read-out process that cannot easily
be distinguished from the above geometric effects. Thus the projection function in principle varies
for each point pair. The registration problem is to estimate the projection parameters for each image
to the mixel grid that captures all of these components of the projection function.

As stated above, the strategy to estimate registration parameters first involves constructing a first
guess at the mixel grid. To do this, we pick at random one of the pixel images and interpolate its pixel
values onto a grid at the desired mixel resolution. Using this interpolated mixel grid as a reference
image, we search for accurate relative registration parameters that map each image optimally onto the
reference grid. But the quantization in the reference grid causes pixel-sized “jumps” in registration
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values. This in turn creates a hazardous search process! To avoid these jumps, we smooth the
reference image with a Gaussian-like filter.

In theory, we could find a MAP estimate of the registration (or any other) parameters; instead,
we seek a simpler ML estimate and ignore priors on the parameters. This is because of the large
ratio of information (pixels) to the number of parameters that need be estimated. If we assume an
independent Gaussian likelihood for each pixel relative to its projected value from the reference
mixel grid, as in Eqn. (3), then finding the ML estimate of the registration parameters reduces to
finding the registration with the smallest sum of squared pixel differences from their projected values
(i.e., a minimum squared error). In other words, the optimal registration parameters for an image
gives the minimum squared error when the mixel values projected through the PSF are compared to
the corresponding pixels.

There is one difficulty: moving features of an image “off the edge” of the reference mixel grid
during registration. Clearly, image pixels not matched with anything shouldn’t contribute to the total
error; however, pushing hard-to-register features out of the picture is a false minimum! In our data
we had available a larger image that contained the entire image set as subimages, and avoided the
“edge” problem by processing the larger image as the reference.

Optimal registration parameters were determined by the Simplex algorithm [1], which searches
for a minimum of the squared error by systematically varying the registration parameters, and then
calculating the squared error for each such registration. (However, we assume that the error is a
smooth function of the registration parameters. This is the reason for the Gaussian filter referred
to above.) The algorithm stops when successive squared error values of the trial registrations are
indistinguishable. We found that unless the registration search starts relatively close to the true
registration (i.e., one has good nominal information), the search can get trapped in local minima.
There are more efficient search algorithms than the Simplex algorithm, but they are not generally
as robust. Note that standard methods for accurate relative image registration required locating
“features” common to both images and finding a global mapping for all features to their counterparts
in the other image [2]. The method described here usesall the information in both images, and this
is part of the reason for the very high (subpixel) accuracy achieved by the method described here.
However, feature based methods may be a good way of obtaining a close initial registration, when
nominal registrations are not available or too inaccurate.

The affine transformation set is the parameter space in which the registration search is executed,
and is sufficient for accurate registration provided that the principle nonlinear camera effects[3] are
not severe. When these effects interfere, we have extended to a quadratic family of transformations.

4.2 PSF and Other Parameters

The point spread function (PSF) describes how the light energy from a point on the external surface
is distributed over the image plane. The spreading of the surface point energy is usually due to
the optical system’s diffraction and aberration pattern. Typically, the PSF diameter is significantly
smaller than the pixel dimensions, so that the images are not diffraction limited. With the scanning
electron beam detector used in a vidicon, the PSF can be extended to model the diffusereadout spot
as well. Since the PSF is a function of the imaging system, it does not depend on the particular
image. In practice, the PSF can vary across the image plane, and with time. We have not attempted to
model this variation, and work with an average PSF derived from the instrument’s bench calibration
[3].

“Shading” is the characteristic smooth variation in detector sensitivity across the image plane
in vidicon tubes, equivalent to the variation of individual cell sensitivities in array detectors. The
likelihood model must take shading into account, and can be learned from the data, given a rough
idea of the registration: since all images contain the same subregion under similar lighting and
viewing angles, any systematic differences in their appearance must be due to shading. We assume
the shading function is a second order polynomial function of pixel position, and currently search
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for coefficients which make the subregions have the most similar mean intensities.
Defects in the optical system or on the image plane generate blemishes — e.g., dust particles

and scratches — common to all images from that camera. A blemish map is used to identify suspect
pixels. Rather than interpolating the missing values as is common practice [4], we ignore these
pixels, so that the corresponding mixels may be influenced only by the other frames. Also, since
spacecraft that are many light-minutes away cannot be asked to retransmit corrupted data packets,
they do not implement a reliable transport protocol, and some pixels have incorrect values. Usually
no more than two bits are affected; our preprocessor uses this to help detect corrupted pixels. In
principle it could use it to recover the correct value, but this would make little practical difference
in our case. We simply ignore all suspected corrupt pixels, as well as missing pixels and reseaux
marks5.

4.3 Initial Composite

Once the above methods are used to find good initial estimates of the basic parameters (PSF,
registration parameters etc.), we next construct a composite mixel grid using information fromall
the pixel images. We construct the value of a composite mixel by calculating the “votes” from every
pixel that could affect it from any frame, as weighted through acompositing kernel. These “votes”
are accumulated to give a total mixel value

mi =

P
p !ipΦpP
p !ip

for each mixel, replacing the values of the reference grid. Clearly, those pixels that are nearest the
projected position of a mixel have the strongest vote for that mixel. The compositing kernel functions
algorithmically like a PSF, but needn’t be the same function. For narrow kernels, the pixel-mixel
“voting” is almost 1-to-1, but for diffuse kernels, each mixel value is the weighted combination of
information from many pixels, leading to a “blurred” composite. In fact, if a small kernel is used
that accurately models the actual PSF, and the noise content of the imagery is relatively small, this
becomes a quick method for producing a super-resolved image.

4.4 Iterative Improvement

The composite is used as a starting point in a search for the MAP estimate of Eqn. (12). We use a
standard iterative method (Jacobi’s method) to solve the matrix equation. The Jacobi method solves
an equation of the formAx = b by triangular decomposition

A = L +D + U

and updating
D � x(r) = �(L + U ) � x(r�1) + b

which, if ∆x = x(r) � x(r�1) can be rewritten

∆x = D�1(b� A � x(r�1)) (13)

This can be shown to be equivalent to the method of “substitution”, a useful fact for extensions of
the model. To implement Eqn. (13), note that

D =
1
s2 (1+

X

j

�2
ij) +

1
�2

X

p

!2
ip (14)

5These are permanent marks on the camera faceplate used for calibrating the optics in the Vidicon camera[3].
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is the denominator of Eqn. (13). Combining Eqn. (14) with Eqn. (13) for the numerator, one obtains
the following iterative mixel re-estimation formula.

∆mi = �
s2

�2

P
p !ip(Φp � Φ̂p)� (mi � m̂i) +

P
j �ij(mj � m̂j)

s2

�2

P
p !

2
ip + 1+

P
j �

2
ij

(15)

The results of applying this iterative formula to initial composite mixel grids is shown in Figs. 4.6
12); a noticeable sharpening of the composite is demonstrated. When the mixel grid resolution is
too coarse, the mixels are overdetermined by the pixels, so the MAP mixel estimate is essentially
the same as the ML estimate. In Eqn. (15), this means that the first (data) term in the numerator
dominates the other two (mixel neighbor correlation) terms. When the mixel grid resolution is large
enough (underconstrained by the pixels), the two terms in the numerator balance each other—i.e.
the data term tries to force the mixels to exactly agree with the data, while the mixel neighbor term
tries to make all mixels look like their neighbors (“smoothing”). It is the tension between these two
effects that leads to plausible images, even when the mixels are underconstrained by the data. This
is the case where the prior term acts as a regularization term.

In Eqn. (15), all the necessary parameters (s, �, and the registration, PSF, etc. parameters that go
into!ip) are assumed known. The� parameter regulates the amount that any mixel can change, and
is there purely for purposes of numerical stability. Some of these parameters, such as the PSF, are
often well known ahead of time. Other parameters, such as the registration, can be initially estimated
from an interpolated version of a single image. Since we find a much more probable mixel grid as
a result of compositing and iteration, we can then re-estimate these parameters, and even repeat this
convergence cycle. Fortunately, this re-estimation is not needed in practice more than twice. The
reason for this is that parameters, such as the registration parameters, are typically estimated from
thousands of pixels in the interpolated initial mixel grid, and so are already very accurate.

The ratios2=�2 of mixel to pixel deviation is more difficult estimate, as the most probable value
can be many orders of magnitude different from what one estimates from a composite. We initially
intended to re-estimate these parametersduring the iterative convergence cycle from the residual
error in each new mixel grid. What we did not realize that in some cases this dynamic re-estimation
would result indiverging from the correct answer. So now when prior information is not enough to
set these parameters, we must resort to an explicit search. We take a small but hopely representative
patch of an image and seek parameters values which maximize our quality measure, the determinant
of the matrixAij.

4.5 Complexity

One may ask why an iterative method, like the one above, was chosen over an algebraic computation
of Eqn. (12). Essentially, the former method has a lower computational complexity. To keep the
comparison clear we will stick to the “just constrained” case, which is described as follows. If we
havef frames, withp pixels per frame, the number of mixelsN is set to the total number of pixels
P :

N = P = fp

It is “just constrained” because the number of dataP is equal to the number of parametersN . Letk
denote the radius of the point spread function in mixels. Then each iteration step of Eqn. (15) is of
complexityO(k2)P , whereas the complexity of an algebraic solution of Eqn. (12) isO(k4)P . As a
point of comparison, the compositing routine is of orderO(k)P , suggesting that finding an optimal
compositing routine would be a good strategy for obtaining quick (if improvable) results.

4.6 Results

Fig. 4.6 gives results for a U.S. postage stamp digitized at low resolution by a scanner, and for Viking
Orbiter images of Mars [5]. The Viking reconstruction uses a series of 24 vidicon images of Mars;
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the data are from a high spacecraft altitude, with frames of very similar sun and camera angles. From
a larger image, which also includes the edge of the polar cap, we extracted a rather underexposed
128� 128 pixel regions containing the same four prominent craters. These regions represent the
same area to within a few pixels. The images were preprocessed using the techniques described
in section 4.2. Vidicon blemishes and telemetry noise were mapped and subsequently ignored;
the shading response was modeled; image registration used only affine (as opposed to quadratic)
transforms. Restoration was done at a 1:4 mixel scale (1:16 area ratio), making the restoration
slightly overconstrained. We leave it to the reader to judge the restoration’s quality.

5 Extensions

In the above surface reconstruction, we gave mixels a single scalar emittance value. In some
applications, color information is available; e.g., Landsat/TM records seven spectral bands in each
exposure, and Viking Orbiter and Voyager took gray-scale pictures through various color filters.
The 2-D reconstruction described above can be used on each spectral band separately, to get super-
resolved surfaces for each band. However, this approach ignores the fact that the surface features are
often very similar across bands. A mixel having emittance values in each band could ensure even
higher resolution if mixels are correlated not only with neighbors in a given band, but across bands
as well.

In the above we combined the effect of albedo and ground effects into a single emittance value,
which is appropriate if all the images are taken from essentially the same direction under the same
illumination conditions. However, for most of Voyager and Viking data, there are many views of
the same surface taken from different directions with different illumination. The theory described
above can in principle be extended to handle this case as well. It requires the mixels to have albedo
and height values; the registration process is similar, but with more parameters. We have derived
the ML equations for the surface model assuming all of the lighting differences in the images are
due to either slope or albedo, and not to shadows or occlusions. The effects due to slope and albedo
can be distinguished because the effects of parallax vary independently of effects due to surface
albedo. Note that representing the surface emittance by a single scalar (albedo) is an approximation
that assumes Lambertian scattering. Many real surfaces are not Lambertian. Using bi-directional
reflectance parameters, including a specular reflectance component, would give a more accurate
surface model. The priors on the surface may involve properties such as continuity, smoothness, and
texture. Additionally, we would need to model effects such as atmospheric attenuation, clouds, and
the camera “hot-spot” for Earth observation data.

6 Relation to Other Work

The research reported in this paper was mainly motivated by attempts to integrate information from
Landsat images taken on different passes. The difficulty here is that such images did not exactly
overlay each other, so pixel-to-pixel comparison is not possible. A standard approach to this problem
is “rubber-sheeting”, which attempts to fit one image grid to another (reference) grid by resampling
the first image onto the reference grid. Reference grid points are mapped, through an appropriate
transform, onto the new image, and new grid elements are computed by taking an area weighted
average of the overlain image pixels. The resulting resampled grid is perfectly aligned with the
reference grid. The technique is extensively used to rectify and rotate Landsat and similar images to
fit the geographical survey grid.

From the Bayesian perspective, the rubber-sheeting approach makes little sense, because the new
averaged “pixels” are neither actual observations nor a surface model. Worse, the averaging process
destroys information—it is impossible to recover the original image from the rubber-sheeted image.
This information loss makes pixel-by-pixel comparison very dubious. The super-resolved surface
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modeling described in this paper does allow the integration and comparison of information from
many images through the accumulated super-resolution surface model.

A related approach to the Bayesian 3-D surface reconstruction described above is called “Shape
from Shading” [6]. This approach integrates observed surface intensity gradients from a single
image to give a 3-D elevation model of the generating surface. It assumes a constant albedo, known
illumination conditions, and surface continuity. Shape from shading can be extended to multiple
images [7], and the result is greater detail in the elevation map because each grid point contains
information from multiple images. However, the constant albedo assumption is a strong limitation
on the ability to extract information from multiple images.

A Bayesian approach very similar to ours is described in [8]. This approach does surface
reconstruction using images from different viewpoints, and a neighbor correlation prior with a
Gaussian noise model. The surface is represented by planar patches joined to form a curved surface.
Unlike our work, these authors assume smooth large scale surfaces that can be represented by large
parameterized “surface patches” . Because these patches are estimated from many pixels from many
images, the parameters that describe them are accurately determined, and so the overall surface
is accurately estimated. In our approach we achieve super-resolution, and there is no aggregation
of surface mixels into large scale patches. Although our goals and assumptions are significantly
different we use the same basic Bayesian approach.

A related area of study is in combining images from video [11]. Here, the registration of images
passes from the discrete to the continuous, and thus the techniques of “optical flow” are used.
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