CodeXt:
Automatic Extraction of Obfuscated Attack
Code from Memory Dump

Ryan Farley and Xinyuan Wang
George Mason University

Information Security, the 17 International Conference
ISC 2014, Hong Kong

B 1/6 EORGE
Where Innovation Is Tradition Oct. 12-14, 2014

UNIVERSITY

Problem

* Need to automate upon detection in memory

— Avoid substantial manual effort
* Automatically recover malcode

« Extract/unpack/recover attack code

— Memory dump, transient artifacts

Input Analysis Engine Output
Memory Dump D?rt\?:\trllfic Attack String
Process Context Hybrid Malicious Code
Registers Vulnerability
Execution Trace Arbitration
Log Files Obfuscation Removal
Obfuscated Code Normalized Code

UNIVERSITY

Existing Tools

* Only work with known boundaries

— Typically designed for full binaries
« e.g., PE files

— Things get nasty without given boundaries

 Or are arbitrary byte streams

* Don’t generically handle
— Malformed, Misaligned
— Obfuscated, Armored

UNIVERSITY

Solution: CodeXt

* Discovers executable code within memory dump
— Upon realtime detection

» Extracts packed or obfuscated malcode

— First to generically handle Incremental
and Shikata-ga-nai

|

Decoder3 w/ K3 Decoder3 w/ K3 ‘ Decoder3 w/ K3 Decoder3 w/ K3

A .
7| Transient code 1 Transient code 1 _
Decoder2 w/ K2
Eneoaed Layer 3 decoded Layer 3 decoded Layer 3 decoded
code, data Transient code 2
A -
Ll

Layer 2 decoded Layer 2 decoded

mESO R GN Original memory First snapshot Second snapshot Third snapshot

UNIVERSITY

m

Solution: CodeXt

e Framework built upon S2E

— Selective means QEMU vs KLEE (LLVM)
— Decision made per basic block

Run-time info
of the attack

Run-time
memory dump,

== Report ==

Recovered code
Obfuscation info
Intermediate results

Symbolic Execution | | ,,

Run-time Offline Analysis t

=,

UNIVERSITY

CodeXt Output

* Instruction Trace of executed instructions
— Grouping of fragments into chunks
— Reveals original and unpacked malcode
— Assisted by a translation trace
« Data Trace of memory writes
— Intelligent memory update clustering

— Multi-layer snapshots

 Call Trace of system calls
— With CPU context

UNIVERSITY

Problems + Challenges + Solutions

IIIIIIIIII

Handling Byte Streams

» S2E expects well structured binaries

— We wrap the binary for execution

Host to Guest

Wrapper
File Transfer ((
-l Guest OS CodeXt S2E Plugin
W S2E (Modified QEMU)e?

» S2E uses basic block granularity

— Our modified QEMU translation returns more info
— We leverage translation and execution hooks to verify

UNIVERSITY

Recognizing Code

 Avoiding the Halting Problem
— No nfinite loops —
— Caps on executed instructions Randorn bytes

 Different types: target, non-target, system
 False cognates

— Illegal first instructions
— False jumps 1nto suffix

Random bytes

* Many substrings
— Matched code fragment: ends on system call, ?

EAX within range

Dealing with Code Fragments

* Fragmentation

— Clustering into Chunks, adjacency, execution trace
* Density

— Usage: Executed/Range

— Overlay: Unique executed/Range over snapshots

 Enclosure

— Continuous executable bytes adjacent to end

S2E (g, offsety)
S2E ()% f : D>{Fragments 2> Match
S2E (E, offset,)

Defeating Obfuscation

* FPU i1nstructions, fnstenv
— Added small change to QEMU to comply

* Intra-basic block self-modification
— We know address range of each translated block
— During execution we track writes

— If any write 1s to same block we retranslate block

 Emulator detection

— Tested for a set of obscure instructions used as canaries

D1/GEORGE
10

UNIVERSITY

Results

11

Experiments

 Hidden code search

— 1KB to 100K B buffers, 40B to 80B shellcodes
— Filled with either null, live-capture, or random bytes
— Varied assistance data: EIP, EAX, both, neither

* Accuracy

— De-obfuscation, Anti-emulation detection
— Various packers mentioned in previous research

— In-shop: Junk code insertion, Ranged xor, Incremental

« Symbolic Branching

UNIVERSITY

12

Multi-Layered Encoders

xor_key1 %’g xor_key2 of xor_key1
- xor_key2 - junk inserted bytes

/

D‘ GEORG

UNIVERSITY

Incremental Encoder

Decoder3 w/ K3 Decoder3 w/ K3 Decoder3 w/ K3

Decoder3 w/ K3

Transient code 1 Transient code 1
Decoder2 w/ K2
Layer 3 decoded Layer 3 decoded

Transient code 2

Layer 2 decoded

Original memory First snapshot Second snapshot

Layer 3 decoded

Layer 2 decoded

Third snapshot

14

Symbolic Conditionals

if (x>==10)

y=func3 () ;
else if (x>=0)

y=funcl () ;
if (y==0)

z=0;

if (y==1 && z==0)
z=4;

Logical

Start

i

B1 GEORG

UNIVERSITY

Conclusion

* Emulation 1s heavy-weight, but
— Accurate and enables anti-anti-sandbox techniques
— OS independent
* Symbolic analysis engine opens avenues
— Taint propagation and analysis
— Fuller branch exploration and pruning heuristics

e CodeXt

— Accurately pipoints and models even highly
obfuscated code in adverse conditions.

UNIVERSITY

16

Current/Future Development

 Full binary (ELF/PE) support

— Modeling unmodified executables
— Without source code

» Data and code based taint analysis

— Can mark any input

 e.g., all network socket reads

— Follow not only by data, but instruction influence

UNIVERSITY

17

Thank you for your time

* Any questions?

Post-talk, please feel free to contact us
* ryanfarley@ieee.org

e xwangc@gmu.edu

P

B1 GEOR

UNIVERSITY

Q
m

18

