
Where Innovation Is Tradition

CodeXt:
Automatic Extraction of Obfuscated Attack

Code from Memory Dump

Ryan Farley and Xinyuan Wang
George Mason University

Information Security, the 17th International Conference
ISC 2014, Hong Kong

Oct. 12-14, 2014

Problem

•  Need to automate upon detection in memory
– Avoid substantial manual effort

•  Automatically recover malcode
•  Extract/unpack/recover attack code

– Memory dump, transient artifacts

Static
Dynamic
Hybrid

Analysis Engine

Attack String
Malicious Code

Vulnerability
Arbitration

Obfuscation Removal
Normalized Code

Output

Human Analyst

Memory Dump
Process Context

Registers
Execution Trace

Log Files
Obfuscated Code

Input

Static
Dynamic
Hybrid

Analysis Engine

Attack String
Malicious Code

Vulnerability
Arbitration

Obfuscation Removal
Normalized Code

Output

Memory Dump
Process Context

Registers
Execution Trace

Log Files
Obfuscated Code

Input

1

Existing Tools

•  Only work with known boundaries
– Typically designed for full binaries

•  e.g., PE files

– Things get nasty without given boundaries
•  Or are arbitrary byte streams

•  Don’t generically handle
– Malformed, Misaligned
– Obfuscated, Armored

2

Solution: CodeXt

•  Discovers executable code within memory dump
– Upon realtime detection

•  Extracts packed or obfuscated malcode
– First to generically handle Incremental

and Shikata-ga-nai

3

Encoded
code, data

Decoder3 w/ K3

Encoded
code, data

Layer 3 decoded Encoded
code, data

Layer 3 decoded

Layer 2 decoded

Layer 3 decoded

Layer 2 decoded

Layer 1 decoded
Decoder2 w/ K2

Decoder1 w/ K1

Original memory First snapshot Second snapshot Third snapshot

Decoder3 w/ K3 Decoder3 w/ K3 Decoder3 w/ K3

Transient code 2

Transient code 1Transient code 1

Solution: CodeXt

•  Framework built upon S2E
– Selective means QEMU vs KLEE (LLVM)
– Decision made per basic block

Report
Recovered code
Obfuscation info
Intermediate results

Run-time info
of the attack

Run-time
memory dump

CodeXt

Run-time
analysis info

Offline AnalysisDynamic Binary
Analysis

Symbolic Execution

4

CodeXt Output

•  Instruction Trace of executed instructions
– Grouping of fragments into chunks
– Reveals original and unpacked malcode
– Assisted by a translation trace

•  Data Trace of memory writes
–  Intelligent memory update clustering
– Multi-layer snapshots

•  Call Trace of system calls
– With CPU context

5

Problems + Challenges + Solutions

6

Handling Byte Streams

•  S2E expects well structured binaries
– We wrap the binary for execution

•  S2E uses basic block granularity
– Our modified QEMU translation returns more info
– We leverage translation and execution hooks to verify

Wrapper
Info

Buffer

Guest OS

Output
CodeXt S2E Plugin

S2E (Modified QEMU)

Host to Guest

File Transfer

7

Recognizing Code

•  Avoiding the Halting Problem
– No infinite loops
– Caps on executed instructions

•  Different types: target, non-target, system

•  False cognates
–  Illegal first instructions
– False jumps into suffix

•  Many substrings
– Matched code fragment: ends on system call,

EAX within range

Hidden Code

Random bytes

Random bytes

Hidden Code

Hidden Code

Random bytes

Detection
Point

8

Dealing with Code Fragments

•  Fragmentation
– Clustering into Chunks, adjacency, execution trace

•  Density
– Usage: Executed/Range
– Overlay: Unique executed/Range over snapshots

•  Enclosure
– Continuous executable bytes adjacent to end

Random bytes

Hidden Code

Hidden Code

Random bytes

Detection
Point

()S2E

S2E (, offset1)

S2E (, offsetn)

.

...
.. Fragments Match

9

Defeating Obfuscation

•  FPU instructions, fnstenv
– Added small change to QEMU to comply

•  Intra-basic block self-modification
– We know address range of each translated block
– During execution we track writes
–  If any write is to same block we retranslate block

•  Emulator detection
– Tested for a set of obscure instructions used as canaries

10

Results

11

Experiments

•  Hidden code search
– 1KB to 100KB buffers, 40B to 80B shellcodes
– Filled with either null, live-capture, or random bytes
– Varied assistance data: EIP, EAX, both, neither

•  Accuracy
– De-obfuscation, Anti-emulation detection
– Various packers mentioned in previous research
–  In-shop: Junk code insertion, Ranged xor, Incremental

•  Symbolic Branching

12

Multi-Layered Encoders

13

xor(key2, 5, 10, xor(key1,
30, 10, xor(key1,1 0, 10,
junk(s)))) [give image to

visualize, or output]

xor(key2, 5, 10) xor(key1, 30, 10) xor(key1, 10, 10) de-junk()

xor_key1

0 5 10 15 20 25 30 35 40

junk inserted bytes

xor_key1

xor_key2
xor_key2 of xor_key1

Incremental Encoder

Encoded
code, data

Decoder3 w/ K3

Encoded
code, data

Layer 3 decoded Encoded
code, data

Layer 3 decoded

Layer 2 decoded

Layer 3 decoded

Layer 2 decoded

Layer 1 decoded
Decoder2 w/ K2

Decoder1 w/ K1

Original memory First snapshot Second snapshot Third snapshot

Decoder3 w/ K3 Decoder3 w/ K3 Decoder3 w/ K3

Transient code 2

Transient code 1Transient code 1

14

Symbolic Conditionals

Logical
Start

func1() in
Hidden Code

Frag #1

Hidden Code
Frag #2

func3() in
Hidden Code

Frag #3

...
y=0; z=1;
if (x>==10)
 y=func3();
else if (x>=0)
 y=func1();
if (y==0)
 z=0;
if (y==1 && z==0)
 z=4;
...

15

Conclusion

•  Emulation is heavy-weight, but
– Accurate and enables anti-anti-sandbox techniques
– OS independent

•  Symbolic analysis engine opens avenues
– Taint propagation and analysis
– Fuller branch exploration and pruning heuristics

•  CodeXt
– Accurately pinpoints and models even highly

obfuscated code in adverse conditions.

16

Current/Future Development

•  Full binary (ELF/PE) support
– Modeling unmodified executables
– Without source code

•  Data and code based taint analysis
– Can mark any input

•  e.g., all network socket reads

– Follow not only by data, but instruction influence

17

Thank you for your time
•  Any questions?

Post-talk, please feel free to contact us
•  ryanfarley@ieee.org
•  xwangc@gmu.edu

18

