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Problem 

•  Need to automate upon detection in memory 
– Avoid substantial manual effort 

•  Automatically recover malcode 
•  Extract/unpack/recover attack code  

– Memory dump, transient artifacts 
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Existing Tools 

•  Only work with known boundaries 
– Typically designed for full binaries 

•  e.g., PE files 

– Things get nasty without given boundaries 
•  Or are arbitrary byte streams 

•  Don’t generically handle 
– Malformed, Misaligned 
– Obfuscated, Armored 
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Solution: CodeXt 

•  Discovers executable code within memory dump 
– Upon realtime detection 

•  Extracts packed or obfuscated malcode 
– First to generically handle Incremental  

and Shikata-ga-nai 
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Solution: CodeXt 

•  Framework built upon S2E 
– Selective means QEMU vs KLEE (LLVM)  
– Decision made per basic block 
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CodeXt Output 

•  Instruction Trace of executed instructions 
– Grouping of fragments into chunks 
– Reveals original and unpacked malcode 
– Assisted by a translation trace 

•  Data Trace of memory writes 
–  Intelligent memory update clustering 
– Multi-layer snapshots 

•  Call Trace of system calls 
– With CPU context   
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Problems + Challenges + Solutions 
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Handling Byte Streams 

•  S2E expects well structured binaries 
– We wrap the binary for execution 

•  S2E uses basic block granularity  
– Our modified QEMU translation returns more info 
– We leverage translation and execution hooks to verify 
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Recognizing Code 

•  Avoiding the Halting Problem 
– No infinite loops 
– Caps on executed instructions  

•  Different types: target, non-target, system 

•  False cognates  
–  Illegal first instructions 
– False jumps into suffix 

•  Many substrings 
– Matched code fragment: ends on system call,  

EAX within range 
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Dealing with Code Fragments 

•  Fragmentation 
– Clustering into Chunks, adjacency, execution trace 

•  Density 
– Usage: Executed/Range 
– Overlay: Unique executed/Range over snapshots 

•  Enclosure  
– Continuous executable bytes adjacent to end 

Random bytes

Hidden Code

Hidden Code

Random bytes

Detection 
Point

( )S2E

S2E (     , offset1)

S2E (     , offsetn)

.

...
.. Fragments Match

9 



Defeating Obfuscation 

•  FPU instructions, fnstenv 
– Added small change to QEMU to comply 

•  Intra-basic block self-modification 
– We know address range of each translated block 
– During execution we track writes 
–  If any write is to same block we retranslate block 

•  Emulator detection 
– Tested for a set of obscure instructions used as canaries 
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Results 
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Experiments 

•  Hidden code search 
– 1KB to 100KB buffers, 40B to 80B shellcodes 
– Filled with either null, live-capture, or random bytes 
– Varied assistance data: EIP, EAX, both, neither 

•  Accuracy 
– De-obfuscation, Anti-emulation detection 
– Various packers mentioned in previous research 
–  In-shop: Junk code insertion, Ranged xor, Incremental   

•  Symbolic Branching 

12 



Multi-Layered Encoders 
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Incremental Encoder 
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Symbolic Conditionals 
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...
y=0; z=1;
if (x>==10)
  y=func3();
else if (x>=0)
  y=func1();
if (y==0)
  z=0;
if (y==1 && z==0) 
  z=4;
... 
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Conclusion 

•  Emulation is heavy-weight, but 
– Accurate and enables anti-anti-sandbox techniques 
– OS independent 

•  Symbolic analysis engine opens avenues 
– Taint propagation and analysis 
– Fuller branch exploration and pruning heuristics 

•  CodeXt 
– Accurately pinpoints and models even highly 

obfuscated code in adverse conditions. 
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Current/Future Development 

•  Full binary (ELF/PE) support 
– Modeling unmodified executables 
– Without source code 

•  Data and code based taint analysis 
– Can mark any input 

•  e.g., all network socket reads 

– Follow not only by data, but instruction influence 
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Thank you for your time 
•  Any questions? 

Post-talk, please feel free to contact us 
•  ryanfarley@ieee.org 
•  xwangc@gmu.edu 
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