
NOTICE: This material is copyrighted, and I am required to inform you that its use is limited to permissions of the
copyright holder of each particular manuscript. Please refer to the following list, sorted chronologically, for further
information.

• Ryan J. Farley and Errin W. Fulp. Effects of Processing Delay on Function-Parallel Firewalls. IASTED: PDCN Febru-
ary 2006.

The authors have transfered copyright in the Paper, transferring to IASTED and ACTA PRESS the exclusive
right to publish, distribute, reproduce, or sell the Paper by printed, electronic or other means. the Paper
cannot be re-published, distributed or sold ther than by IASTED and ACTA PRESS without the prior written
permission of IASTED and ACTA PRESS. It is available for purchase at http://www.actapress.
com/Content_of_Proceeding.aspx?proceedingID=352

• Errin W. Fulp and Ryan J. Farley. A Function-Parallel Architecture for High-Speed Firewalls. IEEE: ICC June 2006.
c©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this mate-

rial for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

• Ruishan Zhang, Xinyuan Wang, Ryan Farley, Xiaohui Yang, and Xuxian Jiang. On the Feasibility of Launching the
Man-In-The-Middle Attacks on VoIP from Remote Attackers. ACM: ASIACCS March 2009.

Copyright c©2009 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page in print or the first screen in digital media. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Send written requests for republication to ACM Publications, Copyright & Permissions
at the address above or fax +1 (212) 869-0481 or email permissions@acm.org.
For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

• Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, Ryan Farley and Xuxian Jiang. An Empirical Investigation into the
Security of Phone Features in SIP-based VoIP Systems. ISPEC April 2009.

The copyright to the Contribution identied above is transferred to Springer-Verlag GmbH Berlin Heidelberg
(hereinafter called Springer-Verlag). The copyright transfer covers the sole right to print, publish, distribute
and sell throughout the world the said Contribution and parts thereof, including all revisions or versions
and future editions thereof and in any medium, such as in its electronic form (ofine, online), as well as to
translate, print, publish, distribute and sell the Contribution in any foreign languages and throughout the
world (for U.S. government employees: to the extent transferable). The published article is available on
Springers website www.springerlink.com.

• Ryan Farley and Xinyuan Wang. Roving Bugnet: Distributed Surveillance Threat and Mitigation. IFIP: SEC May
2009.

See the previous copyright statement (Springer-Verlag).

1



Roving Bugnet: Distributed Surveillance Threat
and Mitigation

Ryan Farley and Xinyuan Wang

Abstract Advanced mobile devices such as laptops and smartphones make conve-
nient hiding places for surveillance spyware. They commonly have a microphone
and camera built-in, are increasingly network accessible, frequently within close
proximity of their users, and almost always lack mechanisms designed to prevent
unauthorized microphone or camera access.

In order to explore surveillance intrusion and detection methods, we present a
modernized version of a microphone hijacker for Windows and Mac OS X. This
attack can be executed as soon as the target connects to the Internet from anywhere
in the world without requiring interaction from victimized users. As the attacker
compromises additional machines they are organized into a botnet so the attacker
can maintain stealthy control of the systems and launch later surveillance attacks.

We then present a mechanism to detect the threat on Windows, as well as a novel
method to deceive an attacker in order to permit traceback. As a result of the detec-
tion mechanism we address a missing segment of resource control, decreasing the
complexity of privacy concerns as exploitable devices become more pervasive.

1 Introduction

The capabilities of spyware have expanded as always-on Internet connections have
become increasingly frequent [11,30]. It’s not only data stored on the compromised
machine that is at risk. Variants of spyware that provide audio and video surveillance

Ryan Farley
George Mason University, Department of Computer Science, Fairfax, Virginia, USA, e-mail:
rfarley3@gmu.edu

Xinyuan Wang
George Mason University, Department of Computer Science, Fairfax, Virginia, USA, e-mail:
xwangc@gmu.edu

1



2 Ryan Farley and Xinyuan Wang

through peripherals such as microphones and web-cams have been around for over
ten years. This may all sound like old news, but that is deceivingly wrong.

There are a few factors why well structured surveillance attacks are only a re-
cently growing concern and an increasingly unchecked threat reaching critical po-
tential. Primarily, consumers are realizing that a smartphone with an unlimited data
plan is almost as vulnerable as a desktop on broadband at home [19]. Also laptops,
which have long had built-in microphones and Internet accessibility, are recently
also being sold with built-in web-cams. Protection is even more of a concern in the
modern computing environment where new regulations are constantly driving up
the accountability of organizations for the loss of private data.

It is important to point out that we are not implying that surveillance spyware
will be as widespread as other malware. A microphone in every house with Internet
access is of little use to the average attacker and surveillance attacks will probably
involve specific victims known to the attacker. This does not diminish how universal
of a threat this is, after all, potentially anyone is capable of gaining an unwanted
stalker, jealous spouse, or generally becoming the target of espionage [20].

The most plausible use of surveillance spyware across a set of devices is to pro-
vide a roving bug. This is a term used for audio surveillance that follows a particular
victim regardless of which device they are using. If the attacker has compromised
a victim’s home computer, work laptop, and smartphone, then the attacker would
have a greater capacity to continuously monitor the victim.

To investigate feasible methods for surveillance threats, we have implemented
a complete remote attack and control package called the roving bugnet that ap-
proximates observed distributed control systems. The bugnet consists of a scalable
number of compromised devices called bugbots which can stream live microphone
data to a remote attacker either continuously or for a set time. To modernize older
surveillance programs, our prototype can automatically compromise a vulnerable
Windows (95–Vista) or Mac OS X laptop and stealthily seize control of its micro-
phone without any action by the victim as soon as the laptop connects to the Internet.

It appears that no existing malware defense provides a generic intrusion detection
mechanism against the bugbot attack. To resolve this we present a preliminary miti-
gation mechanism that is designed to be compatible with most Windows platforms.
It can detect a process that is actively using the microphone and allow the user to set
access controls. This mechanism includes a novel method to deceive a remote at-
tacker after detection by transparently replacing the microphone input with arbitrary
and realistic decoy audio. The process would trick the attacker into believing that
the bug is working, yet prevent any confidential information leakage and provide
time to trace the connection back to its source in order to discover the attacker.

The rest of this paper contains implementation and testing scenarios as well as
design challenges and considerations. In section 2, we discuss the design and im-
plementation of the bugnet surveillance system. A demonstration of the system is
presented in section 3. Then in section 4 we introduce the prototype detection and
defense mechanism as well as detail the experiments performed to test its effec-
tiveness. We discuss related work in section 5, and conclude in section 6 with the
implications and open work for this low-cost high-reward threat.



Roving Bugnet: Distributed Surveillance Threat and Mitigation 3

1 start data handling thread
2 open UDP server for UI
3 fill in WinAPI structures
4 WinAPI waveInOpen
5 WinAPI waveInAddBuffer
6 WinAPI waveInStart
7 while listen for control input
8 if input is stop recording
9 WinAPI waveInStop
10 cleanup and exit

(a) Control thread for main loop and receiving
user control input.

1 if using file open output file
2 if using network create socket
3 while WinAPI GetMessage
4 if MM_WIM_DATA
5 if using network
6 send data to destination
7 if using file
8 write data to file
9 WinAPI waveInAddBuffer

(b) Data handling thread for receiving mes-
sages from the sound card driver.

Fig. 1 Code overview of each waveIn recording application thread.

Fig. 2 Visualization of the
bug program control flow. 1)
Data handling thread waits for
messages. 2) Control thread
sets recording parameters
and 3) initiates recording. 4)
Sound card writes to buffers
and 5) sends a message when
each is full so that 6) the
bug can access the recorded
data. 7) Control thread stops
recording when finished.

2 Roving Bugnet Design

In order to remotely monitor a target with a distributed surveillance system there
needs to be two functional components: one that accomplishes a microphone hijack-
ing, and another that maintains stealthy remote control of a compromised system.
Both the outdated trojans BackOrifice and SubSeven provide remote access and mi-
crophone recording plugins, but cannot stream live data. A modern trojan, Poison
Ivy includes live streaming, but requires the victim to be actively connected in or-
der to start and stop the microphone recording. Also, since these are all trojans, by
definition they are designed to require victim interaction to infect a vulnerable host.

In this section we will introduce an updated remote surveillance package that
can infect Internet connected hosts without victim interaction and provide persistent
management access. The attacker can instruct hosts to turn on the bug at an arbi-
trary time or at particular system conditions and record for either an indefinite or
specified duration. This roving bugnet design is presented in two layers: the proto-
type microphone surveillance program in section 2.1; and, the remote management
botnet in section 2.2. The layered approach of this design allows a single generic
cross-platform bot to employ OS specific microphone recording executables. In fact,
while this paper only details Windows XP, we have already tested the versatility of
this design by successfully implementing bugbots on Mac OS X as well.



4 Ryan Farley and Xinyuan Wang

2.1 Bugbot: Microphone Access

To develop the bugbot program we used the Microsoft Platform SDK, a free Win-
dows application programming interface (WinAPI) that can be used for multimedia
application development. Of the WinAPI functions, the waveIn set was selected
since it has greater flexibility and the widest compatibility for Windows versions
(from 95 to Vista) and existing hardware.

Figures 1 and 2 illustrate how the program is divided into two threads. It is worth
noting that Mac OS X microphone recorders use this two thread approach as well.
The primary thread, figure 1(a), acts as a control and the secondary, figure 1(b),
handles the data returned from the sound card.

In figure 1(a) the control input handled at line 7 is from an UDP server. This
allows interactive remote control such as starting and stopping a recording. It also
controls switching between using a network socket for a live data feed, writing to
a file for later retrieval, or both. Line 3 sets a data structure which contains the
recording parameters for the raw data that will be returned from the sound card
and is set by the call in line 4. Line 5 allows for a continuous stream of data by
initializing a cyclical set of buffers. Finally, the sound card is instructed to begin
and end the recording through the functions in lines 6 and 9 respectively.

When a buffer is filled by the sound card driver, a MM WIM DATA message is sent
to the bugbot process. The data handling thread, as seen in figure 1(b) loops at line
3 on a blocking function which waits for messages. MM WIM DATA messages contain
the recently filled buffer’s location in memory and the size of the data stored in the
buffer, allowing the process to access and output the data. Line 9 replenishes the
cyclical buffers initially set by line 5 of the control thread.

As an added advantage the program can detect if the network connection dies
and act appropriately. If the system call to send socket data fails, then a network
accessibility test is run. If that test fails, then the application will output to a file
until the network connection is restored. The attacker would wait for the machine to
return onto the network, and then transfer the file for local playback.

This is just one piece of the overall puzzle. While the bugbot program is fully
functional for microphone surveillance, it lacks a way to install itself on the vic-
tim’s host, start itself to begin with, and easily manage multiple nodes. To accom-
plish a complete distributed surveillance system there needs to be a remote access
framework, such as the method described in the next section.

2.2 Bugnet: Remote Control

An Internet Relay Chat (IRC) bot is a program or collection of scripts that acts on
behalf of an user client. The goals of IRC bots vary widely, such as automatically
kicking other users off or more nefarious things like spamming other IRC users. In
this paper, a free standing IRC bot is presented that monitors an IRC channel for
commands from a particular user and responds accordingly.



Roving Bugnet: Distributed Surveillance Threat and Mitigation 5

Botmaster Vulnerable System

IRC Server

Bots

IRC Botnet

1 Attacker infects host

2 Host becomes 

a bot and joins 

botnet

3 Bots log in

4 Botmaster sends 

commands to bots

5 Bots send collected data to botmaster

(a) Overview of an IRC Botnet. (b) An example of the botmaster interacting
with a bot.

Fig. 3 Botnet overview and sample control session.

A botnet is a collection of bots, usually under the control of a botherder, or bot-
master, using a communication method, such as IRC, to execute actions in proxy
on the bots [23]. The overall structure resembles figure 3(a). Plausible purposes of
botnets are click-fraud, DoS attacks, and distributed processing. The general mo-
tivation of the botmaster is to acquire as many machines as desired and maintain
control for either resale or some ulterior purpose [15].

While there are many preexisting IRC bots freely available online that could be
adapted for this threat, for simplicity and greater control we developed our own from
the ground up. The Windows version is written in C, and the OS X version is written
in Perl to support both PPC and Intel platforms.

Our IRC bot has a limited set of procedures relating to controlling who can give
the bot commands, obtaining the bot’s status, and running arbitrary commands on
the infected host at specified times. Only once a password and the botmaster’s user-
name are approved can the botmaster issue commands. For additional functionality,
the IRC bot accepts any file transfers from the botmaster username using the Di-
rect Client to Client (DCC) protocol and stores them into the working directory for
later access. To facilitate self installation, when first executed the bot copies its ex-
ecutable into a hidden directory and establishes itself as a service to be started on
each boot-up.

The following subset of the commands we have implemented on the bugbot rep-
resents a suggested minimum for bot development: <password>, authenticates nick
as the botmaster if the password is correct; bot.listen, start to accept commands;
bot.stats, report system status and details; bot.die, kill self; bot.[un]install,
run the install or uninstall routine manually; and, bot.[bg.]run.[at<time>.],
execute an arbitrary command, optionally in the background or at specified time.

Deciding on an infection vector to get the bot onto the target machine would need
to vary by specific target; it should be noted however, that with a properly configured
rootkit, the bot should remain undiscoverable on the victim’s system [38].



6 Ryan Farley and Xinyuan Wang

3 Threat Demonstration

One goal of this paper is to present a viable example of a roving bugnet by means of
a prototype demonstration. In this section we show each step of the entire life cycle
of an example attack that can be adapted for other platforms. First, in section 3.1
we describe a method to remotely infect a Windows PC with an IRC bot. Second, in
section 3.2 we show how the bot gains control of the microphone by installing the
recording program and becomes the bugbot.

3.1 Infection Vector

It is possible for the attacker to use a variety of methods to get the spyware onto a
victim’s machine. Since advanced infection methods are beyond the scope of this
paper we selected Metasploit’s command line interface and the upload and execute
shellcode as the payload. In order to use a familiar exploit, a default installation of
Windows XP SP1 is exploited using the MS06 040 vulnerability module. All an
attacker needs to do at this point is specify the bot executable as the local file that
will be uploaded to the target and executed on it.

Once the bugbot is installed, it will attempt to join the botnet. At this point an
IRC server is needed where the bot is programmed to look. The bot will then log
in, join the predetermined channel, and post a message showing that it is ready to
accept commands from the botmaster and that it can control the microphone.

3.2 Controlling the Microphone

After the bot has joined the IRC channel, the botmaster can interact with it using
the commands listed in section 2.2. A basic session would resemble figure 3(b).
When the attacker wishes to gain microphone control, the bug executable needs to
be transfered to the compromised machine. For this implementation the attacker
transfers the file to the victim using IRC DCC. Alternatively, it could be included in
the original uploaded installation routine or downloaded with TFTP or FTP, both of
which are included in default installs of Windows XP and Mac OS X.

With this level of remote control on each node within the bugnet, the attacker
can now easily execute the surveillance program and activate the bug on any of the
compromised systems. At a minimum, the attacker would need to specify how long
to record as well as file storage and network transmission options. In our implemen-
tation the attacker can specify: the UDP server listening port number; how long to
record for; whether to use a file, network stream, or both; the output filename; and,
the network broadcast stream destination host IP address and port number. For run
time controls, the attacker can send commands to the bug program through its UDP
server.



Roving Bugnet: Distributed Surveillance Threat and Mitigation 7

4 Detection and Mitigation

Limiting microphone access can be done either in hardware, such as with a physical
kill switch or cover, or in software like other resource controls such as applica-
tion firewalls that monitor network access. Physical switches would be a difficult
after-market option, and unlike application firewalls which have large market ac-
ceptance there appears to be no existing generic software based protection against
microphone surveillance attacks.

There are particular reasons why monitoring microphone access should be a low
burden to the user. First, unlike network access requests or prompts for privilege
escalation the average low-tech user is capable of understanding the purpose of the
microphone and when it should be turned on or off. Second, the frequency of micro-
phone access requests should be much lower than other resources making it easier to
track which applications should be permitted. This also prevents illegitimate access
requests from hiding in a cluster of legitimate requests.

In this section we present a preliminary detection and mitigation mechanism for
threats similar to bugbot. Our application can can detect if a Windows process is
actively using the microphone and allow the user to set access controls similar to
antivirus suites and application firewalls based on API call monitoring. This type
of specification based intrusion detection [16] is accomplished by injecting target
processes with a custom dynamic-linked library (DLL) that sets wrappers, known
as hooks, for Windows API (WinAPI) calls.

When the monitored process calls a hooked function the injected DLL’s version
of the function is used instead. This then provides the DLL with transparent access
to all arguments and the ability to return arbitrary values. For this paper, we used
a free Microsoft Research package titled Detours [14] that provides tools and a
simplified API for coding wrapper DLLs.

In section 4.1 we detail how to completely deny suspect processes. While this
provides a solution that protects the true audio, it reduces the chances of tracing
the source of the attack. In section 4.2 we present a solution to this problem by
demonstrating how the victim can deceive the attacker by providing a decoy sound.
The final product is tested section 4.3 where we present several scenarios and results.

4.1 Deploying the Protection Mechanism

As described in section 2.1, this demonstration uses the waveIn WinAPI and details
are in terms of those functions. It should be noted that if other WinAPI functions
are used, the same concept could be executed but with different functions detoured.
In the bug program there are two pertinent function calls that are candidates for
hooking into. A detour of waveInOpen would interfere with passing initialization
data to the sound card driver, but a more direct way to intervene would be to hook
into waveInStart. Once the DLL has detoured the bug’s call it has the option to
prevent the bug process from calling the true waveInStart function and return a



8 Ryan Farley and Xinyuan Wang

failure value instead. This is an optimal place to insert an allow-or-deny behavior
since a denied bug would simply fail to reach a state capable of gathering data.

Automating the decision of whether a process should be trusted or untrusted is a
difficult problem. A simple and reliable technique, as we have implemented, is for
the monitoring DLL to prompt the user to approve microphone requests on a case
to case basis. It is safe to assume that while allow or deny decisions for frequently
requested resources such as outbound network access can easily confuse untrained
users, most know when they are or are not using their microphone. However, since
a denied bug would be obvious to the attacker, a more effective response may be
through misinformation, as we present in the next section.

4.2 Deception by Decoy Audio

In cases where it is necessary to have an audit trail, or there is a desire to fully
trace an attack, it is advisable to create as much time between detecting an intrusion
and the remote attacker leaving the system. One way is to deceive the attacker by
feeding the bug application crafted data. This method maintains viability even if a
future surveillance program uses a yet undiscovered covert channel for exporting
the data. This decoy sound should be believable and unpredictable so as to remain
undiscovered in the hopes of buying enough time to permit a better trace to the
source of the attack. For example, randomized keyboard clacking or indiscernible
background mumble would be good candidates.

While the complete traceback of the remote attacker is still an open research
problem, this technique is a building block toward such a goal. With properly crafted
decoy audio, such as timed silence between predictable sounds, it is possible to in-
troduce distinguishable elements into the transmitted data stream. Similar traceback
methods have been used for other applications [33]. This could even hold in the
case of compression or encryption, as recent research [25, 36] has illustrated strong
correlations between such streams and their original content.

To accomplish the deception method transparently, the Detours DLL should in-
ject the crafted audio by replacing filled buffers, that the sound card returns, before
the bug can read them. As illustrated in figure 4, if the DLL hooks into the WinAPI
GetMessage call (1), then it could intercept (1*) the message from sound card driver
(5) indicating a filled buffer. Inside of this message is a pointer to the buffer and the
size of the data stored in the buffer. If the DLL also detoured the waveInOpen call
(2), then it would know the format of the raw data in the buffer in order to match
the decoy audio with it. This avoids deciphering the bug application’s internal data
structures and formats for storing the data. At this point the DLL could swap (5*)
the buffer for an equal length snip from the decoy audio.



Roving Bugnet: Distributed Surveillance Threat and Mitigation 9

Bug Program

Data Handling 

Thread

Control Thread Sound Card Driver

Recording Buffer

4

6

1 5

2,3

7

Data Handling 

Thread

Control Thread Sound Card Driver

Recording Buffer

4

6

2,3

7

Injected 

Detours DLL

5*

2*,3*

1

5Bug Program

1*

Fig. 4 Visualization of the bug program control flow using the deception method. Numbers refer
to same steps as figure 2. 1*, 2*, and 3* are 1, 2, and 3 after DLL interception. 5*) After the DLL
receives a “full buffer” message, it replaces the recording buffer with decoy audio and then passes
the message to the data handling thread.

4.3 Test Scenarios

In order to observe the viability of injected DLLs that monitor processes for mi-
crophone requests we implemented the defense as a single DLL. When the monitor
catches a request it prompts the user to either allow, deny, or deceive, by means of
decoy audio, the process in question. In order to establish a reliable testing environ-
ment we ran two instances of the bugbot program, one to represent the untrusted
bugbot process and the other to represent an arbitrary trusted processes.

We initially examined baseline tests with the bugbot and trusted application run-
ning separately. When either was not monitored, or monitored but allowed by the
user, it had access to the true audio. When either was monitored and denied, or
deceived, then neither could access the microphone’s audio.

In the next tests we concurrently executed monitored instances of the applications
to demonstrate that a monitor in deception mode would not interfere with legitimate
recordings. We ran two sets of tests, in one the bugbot attempted to record before
the trusted application initialized the microphone and in the other the bugbot at-
tempted to record after. In both cases, when the user chose to deceive the bugbot our
mitigation technique transparently replaced the audio from the microphone with a
specified recording loop. As a result, the attacker heard the decoy sound while the
trusted application continued using the true microphone input.

5 Related Works

Malware detection has been an area of active research, and there are many meth-
ods proposed to detect or mitigate malware [7–9,12,13,27,32,35]. StackGuard [6],
StackGhost [10], RAD [4] and Windows vaccination [21] prevent stack based over-



10 Ryan Farley and Xinyuan Wang

flow by protecting the return address from being modified by the malware. However,
they are not effective against other attack vectors such as heap based overflow [5].

Another method, packet vaccine [34], seeks to detect malware exploit packets by
randomizing address-like stings in the packet payloads. Similar to other random-
ization based approaches [1, 2, 17, 18, 24], which protect applications and systems
via randomizing the instruction set or address layout, packet vaccine will cause the
vulnerable applications to crash when they are exploited by malware.

Taint analysis aims to detect illegal information flow by tracking the taint, and it
has been widely used for analyzing malware [3,22,26,28,29,31,37]. As pointed out
by Saxena et al. [26], taint tracking usually incurs high performance overhead. This
makes it difficult to be used for detecting malware in real-time.

To the best of our knowledge, no existing malware defense approach has been
shown to be effective in detecting the bugbot we have presented.

6 Conclusion

Remote surveillance is a significantly invasive threat, arguably even more so than
identity theft. As it stands now, most vulnerable devices do not have the protection
necessary to distinctly address microphone or camera hijacks. As a growing number
of mobile devices with exploitable operation systems gain more reliable Internet
access, this long standing problem is reaching a critical potential.

The risk of surveillance attacks is increased on systems shared with untrusted
users. Since multiple users can open the microphone simultaneously, regardless of
who is physically at the system, any user of a system can be compromised even
if just one user of that system is not protected. Imagine a spouse that exploits this
weakness on purpose to spy on his or her partner through a shared computer. This
leads to questioning how to properly handle the lack of control over shared resources
as more people adopt true multi-user environments.

To demonstrate the viability of a surveillance intrusion, we developed a modern
interpretation of a stealthy microphone hijack threat. The features of the bugnet
closely match in-the-wild exploits. It uses a botnet framework and is able to exploit
a system as soon as the target connects to the Internet.

We then investigated ways to mitigate the threat. Physical protection is an option,
such as a cover or on-off switch, but most devices do not have this built-in, leaving
software as the only answer for a vast majority of the vulnerable systems. Given
the infrequency of microphone access by the average user, adding a way to monitor
and interactively control recording access should be unobtrusive. As a solution we
developed a mitigation mechanism that can be broadly applied to detect and prevent
surveillance exploits. This methodology employs API hooks to monitor processes
and uses extensible permissions testing to provide an allow-or-deny behavior.

To facilitate forensic analysis, our bugbot mitigation technique additionally in-
volves using a decoy audio loop that consists of well crafted believable noise, such
as background keyboard clacking or indiscernible talking to retain the remote at-



Roving Bugnet: Distributed Surveillance Threat and Mitigation 11

tacker’s network connection while keeping the true audio recording confidential.
The additional time created could then be used to trace the source of the attacker’s
connection, or at minimum, gathering as much audit information as possible.

Currently most devices with network access and microphones, such as laptops
and smartphones, are vulnerable to this type of attack. Yet there is still no widely
accepted way for users to protect themselves. As awareness of this problem in-
creases, the potential threat to privacy may lead consumers and businesses to lessen
their dependence on such devices.

References

1. Barrantes, E., Ackley, D., Forrest, S., Palmer, T., Stefanovic, D., Zovi, D.: Randomized in-
struction set emulation to disrupt binary code injection attacks. In: Proc. of the 10th ACM
Conf. on Computer and Communications Security (CCS 2003), pp. 281–289. ACM (2003)

2. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach to combat
a broad range of memory error exploits. In: Proc. of the 12th USENIX Security Sym. (2003)

3. Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z., Iyer, R.K.: Defeating memory corruption attacks
via pointer taintedness detection. In: Proc. of the 2005 International Conf. on Dependable
Systems and Networks (DSN 2005). IEEE (2005)

4. Chiueh, T., Hsu, F.H.: RAD: A compile-time solution to buffer overflow attacks. In: Proc. of
the 21st International Conf. on Distributed Computing Systems (ICDCS 2001), pp. 409–417.
IEEE (2001)

5. Conover, M.: w00w00 on heap overflows (1999). http://www.w00w00.org/files/

articles/heaptut.txt

6. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q.: StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In: Proc. of the 7th USENIX Security Sym., pp. 63–78 (1998)

7. Feng, H.H., Giffin, J.T., Huang, Y., Jha, S., Lee, W., Miller, B.P.: Formalizing sensitivity in
static analysis for intrusion detection. In: Proc. of the 2004 IEEE Sym. on Security and Privacy
(S&P 2004) (2004)

8. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: Proc. of the 2003 IEEE Sym. on Security and Privacy (S&P 2003)
(2003)

9. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes.
In: Proc. of the 1996 IEEE Sym. on Security and Privacy (S&P 1996). IEEE (1996)

10. Frantzen, M., Shuey, M.: StackGhost: Hardware facilitated stack protection. In: Proc. of the
10th USENIX Security Sym., pp. 55–66 (2001)

11. Gibson, S.: Spyware was inevitable. Commun. ACM 48(8), 37–39 (2005)
12. Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.: Environment-sensitive intrusion detec-

tion. In: Proc. of the 8th International Sym. on Recent Advances in Intrusion Detection (RAID
2005) (2005)

13. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In: Proc. of the
11th Network and Distributed System Security Sym. (NDSS 2004) (2004)

14. Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In: Proc. of the 3rd
USENIX Windows NT Sym., pp. 135–143 (1999)

15. Ianelli, N., Hackworth, A.: Botnets as a vehicle for online crime. Tech. rep., CERT (2005)
16. Idika, N., Mathur, A.P.: A survey of malware detection techniques. Tech. rep., SERC (2007).

SERC-TR-286
17. Jun Xu, Z.K., Iyer, R.K.: Transparent runtime randomization for security. In: Proc. of the 22nd

Sym. on Reliable and Distributed Systems (SRDS 2003). IEEE (2003)



12 Ryan Farley and Xinyuan Wang

18. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with instruction-
set randomization. In: Proc. of the 10th ACM Conf. on Computer and Communications Secu-
rity (CCS 2003), pp. 272–280. ACM (2003)

19. Leavitt, N.: Mobile phones: the next frontier for hackers? IEEE Computer 38(4), 20–23
(2005). DOI 10.1109/MC.2005.134

20. McCullagh, D.: FBI taps cell phone mic as eavesdropping tool. ZDNet News (2006)
21. Nebenzahl, D., Sagiv, M., Wool, A.: Install-time vaccination of Windows executables to de-

fend against stack smashing attacks. IEEE Transactions on Dependable and Secure Computing
(TDSC) 3(1), 78–90 (2006)

22. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software. In: Proc. of the 12th Network and Distributed
System Security Sym. (NDSS 2005) (2005)

23. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to understanding
the botnet phenomenon. In: IMC ’06: Proc. of the 6th ACM SIGCOMM Conf. on Internet
Measurement (2006)

24. Sandeep Bhatkar, R.S., DuVarney, D.C.: Efficient techniques for comprehensive protection
from memory error exploits. In: Proc. of the 14th USENIX Security Sym. (2005)

25. Saponas, S.T., Lester, J., Hartung, C., Agarwal, S., Kohno, T.: Devices that tell on you: Privacy
trends in consumer ubiquitous computing. In: Proc. of the 16th USENIX Security Sym., pp.
55–70 (2007)

26. Saxena, P., Sekar, R., Puranik, V.: Efficient fine-grained binary instrumentation with appli-
cations to taint-tracking. In: Proc. of the 2008 International Sym. on Code Generation and
Optimization (CGO 2008) (2008)

27. Sekar, R., Bendre, M., Bollineni, P.: A fast automaton-based method for detecting anomalous
program behaviors. In: Proc. of the 2001 IEEE Sym. on Security and Privacy (S&P 2001)
(2001)

28. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vulnerabilities with
type qualifiers. In: Proc. of the 10th USENIX Security Sym. (2001)

29. Su, Z., Wassermann, G.: The essence of command injection attacks in web applications. In:
Proc. of the 33rd ACM Sym. on Principles of Programming Languages (POPL 2006) (2006)

30. Trilling, S., Nachenberg, C.: The future of malware. In: EICAR 1999 best paper proceedings
(1999)

31. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site scripting
prevention with dynamic data tainting and static analysis. In: Proc. of the 14th Network and
Distributed System Security Sym. (NDSS 2007) (2007)

32. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proc. of the 2001 IEEE Sym.
on Security and Privacy (S&P 2001) (2001)

33. Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer VoIP calls on the internet.
In: Proc. of the 12th ACM Conf. on Computer Communications Security (2005)

34. Wang, X., Li, Z., Xu, J., Reiter, M.K., Kil, C., Choi, J.Y.: Packet vaccine: Black-box exploit
detection and signature generation. In: Proc. of the 13th ACM Conf. on Computer and Com-
munications Security (CCS 2006). ACM (2006)

35. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: Alternative
data models. In: Proc. of the 1999 IEEE Sym. on Security and Privacy (S&P 1999), pp. 133–
145 (1999)

36. Wright, C.V., Ballard, L., Monrose, F., Masson, G.M.: Language identification of encrypted
VoIP traffic: Alejandra y Roberto or Alice and Bob? In: Proc. of the 16th USENIX Security
Sym. (2007)

37. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical approach to
defeat a wide range of attacks. In: Proc. of the 15th USENIX Security Sym. (2006)

38. Zaystev, O.: Rootkits, Spyware/Adware, Keyloggers and Backdoors: Detection and Neutral-
ization. A-List Publishing (2006)


