Part 4-- Full function.
function out=f_4(theta) %indirectly provides solution to forward kinematics problem of the 2D %planar Stewart platform (with parameters given by Part 4) %knowns: platform side lengths L_1=3; L_2=3*sqrt(2); L_3=L_1; %knowns: strut lengths p_1=5; p_2=p_1; p_3=3; %knowns: important coordinates of struts %(x,y) [platform coonnection], (x_1,0) [end], (x_2,y_2) [end] %x= UNKNOWN-- must solve for this! %y= UNKNOWN-- must solve for this! x_1=5; x_2=0; y_2=6; %knowns: angle inside platform, across from L_1 gamma=pi*(1/4); %equation definitions from 1.38 A_2=L_3*cos(theta)-x_1; B_2=L_3*sin(theta); A_3=L_2*cos(theta+gamma)-x_2; B_3=L_2*sin(theta+gamma)-y_2; %D as the denominator in 1.39 D=2*(A_2*B_3-B_2*A_3); %N_1 and N_2 as shown in 1.39 N_1=B_3*(p_2^2-p_1^2-A_2^2-B_2^2)-B_2*(p_3^2-p_1^2-A_3^2-B_3^2); N_2=-1*A_3*(p_2^2-p_1^2-A_2^2-B_2^2)+A_2*(p_3^2-p_1^2-A_3^2-B_3^2); %solution is shown as 1.40 out=N_1^2+N_2^2-p_1^2*D^2;
Not enough input arguments. Error in f_4 (line 35) A_2=L_3*cos(theta)-x_1;