%%% Step 2 %%% format long c=299792.458; %speed of light % satellite positions in km S1=[15600,7540,20140]; S2=[18760,2750,18610]; S3=[17610,14630,13480]; S4=[19170,610,18390]; A1=S1(1); B1=S1(2); C1=S1(3); A2=S2(1); B2=S2(2); C2=S2(3); A3=S3(1); B3=S3(2); C3=S3(3); A4=S4(1); B4=S4(2); C4=S4(3); % time intervals in seconds t=[0.07074,0.07220,0.07690,0.07242]; t1=t(1); t2=t(2); t3=t(3); t4=t(4); % Three linear equations in the four unknowns u = [x; y; z; d]. % In matrix form, Au = b where A is a 3 x 4 matrix. A=[2*(A2-A1), 2*(B2-B1), 2*(C2-C1), 2*(c^2)*(t1-t2); 2*(A3-A1), 2*(B3-B1), 2*(C3-C1), 2*(c^2)*(t1-t3); 2*(A4-A1), 2*(B4-B1), 2*(C4-C1), 2*(c^2)*(t1-t4)]; b=[-A1^2+A2^2-B1^2+B2^2-C1^2+C2^2+c^2*t1^2-c^2*t2^2; -A1^2+A3^2-B1^2+B3^2-C1^2+C3^2+c^2*t1^2-c^2*t3^2; -A1^2+A4^2-B1^2+B4^2-C1^2+C4^2+c^2*t1^2-c^2*t4^2]; % Apply the "rref" command to the augmented matrix [A|b]. Ab=[A b]; R=rref(Ab); r14=R(1,4); r15=R(1,5); r24=R(2,4); r25=R(2,5); r34=R(3,4); r35=R(3,5); % a quadratic equation in one variable d. A = r14^2 +r24^2 +r34^2 -c^2; B = 2*A1*r14 -2*r14*r15 +2*B1*r24 -2*r24*r25 +2*C1*r34 -2*r34*r35 +2*c^2*t1; C = A1^2 +r15^2 -2*A1*r15 +B1^2 +r25^2 -2*B1*r25 +C1^2 +r35^2 -2*C1*r35 -c^2*t1^2; % quadratic formula d1 = (-B + sqrt(B^2 - 4*A*C)) / (2*A) d2 = (-B - sqrt(B^2 - 4*A*C)) / (2*A) % check u1=[-r14*d1+r15, -r24*d1+r25, -r34*d1+r35, d1] u2=[-r14*d2+r15, -r24*d2+r25, -r34*d2+r35, d2]