% Solve the system (4.37) by using Multivariate Newtons Method. % Find the receiver position (x, y, z) near earth and time correction d. %As a check, % (x, y, z) = (-41.77271,-16.78919,6370.0596) % d = -3.201566 ?10^-3 seconds. c= 299792.458; % speed of light km/sec %%% simultaneous satellite positions in km A1= 15600; B1= 7540; C1= 20140; A2 = 18760; B2= 2750; C2=18610; A3 = 17610; B3 = 14630; C3= 13480; A4= 19170; B4=610; C4=18390; %%% time intervals in seconds t1= 0.07074; t2= 0.07220; t3= 0.07690; t4= 0.07242; % initial vector u= [0;0;6370;0]; x(1)=u(1); y(1)=u(2); z(1)=u(3); d(1)=u(4); % iteration for i=1: 10 x(i)= u(1); y(i)= u(2) ; z(i)= u(3); d(i)= u(4); % functions of (x,y,z,d), from (4.73) f1= ( x(i)-A1).^2 + (y(i)-B1).^2 + (z(i)-C1).^2 - (c*(t1 - d(i))).^2; f2= ( x(i)-A2).^2 + (y(i)-B2).^2 + (z(i)-C2).^2 - (c*(t2 - d(i))).^2; f3= ( x(i)-A3).^2 + (y(i)-B3).^2 + (z(i)-C3).^2 - (c*(t3 - d(i))).^2; f4= ( x(i)-A4).^2 + (y(i)-B4).^2 + (z(i)-C4).^2 - (c*(t4 - d(i))).^2; F = [f1;f2;f3;f4]; % Jacobian Matrix df1x= (2*(x(i)-A1)); df1y= (2*(y(i)-B1)); df1z= (2*(z(i)-C1)); df1t= (2*c^2*(t1-d(i))); df2x=2*(x(i)-A2); df2y=2*(y(i)-B2); df2z=2*(z(i)-C2); df2t=2*c^2*(t2-d(i)); df3x=2*(x(i)-A3); df3y=2*(y(i)-B3); df3z=2*(z(i)-C3); df3t=2*c^2*(t3-d(i)); df4x=2*(x(i)-A4); df4y=2*(y(i)-B4); df4z=2*(z(i)-C4); df4t=2*c^2*(t4-d(i)); DF = [df1x, df1y, df1z, df1t; df2x, df2y df2z df2t;df3x df3y df3z df3t;df4x df4y df4z df4t]; % new u(x,y,z,d) vector V = DF\(-F); u = u+V; end u