
 rafati@ce.sharif.edu esfahani@ce.sharif.edu

:

:

 .

.

SMV.NuSMV.

SMV .

OBDD.

:

:

Cabin

Door1

Door0

Controller

:

Cabin1

Floor3

Door0 &

Door1

Floor2

Door0 &

Door1

Cabin0

Floor1

Door0 &

Door1

Floor0

Door0 &

Door1

Controller

.

(Controller):

 .

.

.:

cabin.moving.

cabin.dir.

.

.:

cabin0.movingcabin1.moving

.

.

cabin0.sent_light .

 .

C .DE

.

cabin0cabin1

. .

Fairness :

.

 .

 .:

FAIRNESS
 cabin0.moving

 .:

FAIRNESS
 cabin0.moving
FAIRNESS
 cabin1.moving

Specifications:

.

. :

:

-- All the requests from particular floor are eventually serviced
SPEC
AG (door0.call -> AF door0.open) -- true

SPEC
AG (door1.call -> AF door1.open) -- true

liveness.

.

:

-- All the requests to particular floor are eventually serviced
SPEC
AG ((cabin0.sent_light=0) -> AF door0.open) -- true

SPEC
AG ((cabin0.sent_light=1) -> AF door1.open) -- true

liveness .

:

-- The elevator never moves with its doors open
SPEC
AG (cabin0.moving -> !mycontroller.open) -- true

safety .

.

.:

:

-- All the requests from particular floor are eventually serviced
SPEC
AG (door0.call -> AF door0.open)

SPEC
AG (door1.call -> AF door1.open)

SPEC
AG (door2.call -> AF door2.open)

SPEC
AG (door3.call -> AF door3.open)

liveness .

.

:

-- All the requests to particular floor are eventually serviced
SPEC
AG ((cabin0.sent_light=0) -> AF door0.open0)

SPEC
AG ((cabin0.sent_light=1) -> AF door1.open0)

SPEC
AG ((cabin0.sent_light=2) -> AF door2.open0)

SPEC
AG ((cabin0.sent_light=3) -> AF door3.open0)

SPEC
AG ((cabin1.sent_light=0) -> AF door0.open1)

SPEC
AG ((cabin1.sent_light=1) -> AF door1.open1)

SPEC
AG ((cabin1.sent_light=2) -> AF door2.open1)

SPEC
AG ((cabin1.sent_light=3) -> AF door3.open1)

liveness .

:

-- The elevator never moves with its doors open
SPEC
AG(cabin0.moving -> !mycontroller.open0)

SPEC
AG(cabin1.moving -> !mycontroller.open1)

safety .

.

:

-- Two cabins are not scheduled to service request from one floor
SPEC
AG (!((cabin0.floor=0 & cabin0.sent_button=0) |

 (cabin0.floor!=0 & (cabin0.sent_light=0 | cabin0.sent_button=0)) |
 (cabin1.floor=0 & cabin1.sent_button=0) |
 (cabin1.floor!=0 & (cabin1.sent_light=0 | cabin1.sent_button=0)) |
 (door0.open0 & (cabin1.sent_button=0 | cabin1.sent_light=0)) |
 (door0.open1 & (cabin0.sent_button=0 | cabin0.sent_light=0)))

-> !EX(door0.open0 & door0.open1))
SPEC
AG (!((cabin0.floor=1 & cabin0.sent_button=1) |

 (cabin0.floor!=1 & (cabin0.sent_light=1 | cabin0.sent_button=1)) |
 (cabin1.floor=1 & cabin1.sent_button=1) |
 (cabin1.floor!=1 & (cabin1.sent_light=1 | cabin1.sent_button=1)) |
 (door1.open0 & (cabin1.sent_button=1 | cabin1.sent_light=1)) |
 (door1.open1 & (cabin0.sent_button=1 | cabin0.sent_light=1)))

-> !EX(door1.open0 & door1.open1))

SPEC
AG (!((cabin0.floor=2 & cabin0.sent_button=2) |

 (cabin0.floor!=2 & (cabin0.sent_light=2 | cabin0.sent_button=2)) |
 (cabin1.floor=2 & cabin1.sent_button=2) |
 (cabin1.floor!=2 & (cabin1.sent_light=2 | cabin1.sent_button=2)) |
 (door2.open0 & (cabin1.sent_button=2 | cabin1.sent_light=2)) |
 (door2.open1 & (cabin0.sent_button=2 | cabin0.sent_light=2)))

-> !EX(door2.open0 & door2.open1))
SPEC
AG (!((cabin0.floor=3 & cabin0.sent_button=3) |

 (cabin0.floor!=3 & (cabin0.sent_light=3 | cabin0.sent_button=3)) |
 (cabin1.floor=3 & cabin1.sent_button=3) |
 (cabin1.floor!=3 & (cabin1.sent_light=3 | cabin1.sent_button=3)) |
 (door3.open0 & (cabin1.sent_button=3 | cabin1.sent_light=3)) |
 (door3.open1 & (cabin0.sent_button=3 | cabin0.sent_light=3)))

-> !EX(door3.open0 & door3.open1))

Safety-

 ..

:

-- The door will close if someone enters elevator
SPEC
AG ((cabin0.passenger_present & cabin0.floor=0 &

EX (door0.open0 & cabin0.passenger_present))
 -> (cabin0.door_open | door0.call | cabin0.sent_light=0))
SPEC
AG ((cabin1.passenger_present & cabin1.floor=0 &

EX (door0.open1 & cabin1.passenger_present))
 -> (cabin1.door_open | door0.call | cabin1.sent_light=0))
SPEC
AG ((cabin0.passenger_present & cabin0.floor=1 &

EX (door1.open0 & cabin0.passenger_present))

 -> (cabin0.door_open | door1.call | cabin0.sent_light=1))
SPEC
AG ((cabin1.passenger_present & cabin1.floor=1 &

EX (door1.open1 & cabin1.passenger_present))
 -> (cabin1.door_open | door1.call | cabin1.sent_light=1))
SPEC
AG ((cabin0.passenger_present & cabin0.floor=2 &

EX (door2.open0 & cabin0.passenger_present))
 -> (cabin0.door_open | door2.call | cabin0.sent_light=2))
SPEC
AG ((cabin1.passenger_present & cabin1.floor=2 &

EX (door2.open1 & cabin1.passenger_present))
 -> (cabin1.door_open | door2.call | cabin1.sent_light=2))
SPEC
AG ((cabin0.passenger_present & cabin0.floor=3 &

EX (door3.open0 & cabin0.passenger_present))
 -> (cabin0.door_open | door3.call | cabin0.sent_light=3))
SPEC
AG ((cabin1.passenger_present & cabin1.floor=3 &

EX (door3.open1 & cabin1.passenger_present))
 -> (cabin1.door_open | door3.call | cabin1.sent_light=3))

Safety.

 :

-- The elevator won't react to door_open if there's another request
SPEC
AG ((cabin0.door_open & cabin0.floor=0 & !EX (door0.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=0 & !EX (door0.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=1 & !EX (door1.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=1 & !EX (door1.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=2 & !EX (door2.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=2 & !EX (door2.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=3 & !EX (door3.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=3 & !EX (door3.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

Safety.

:

 .

 .Safety .

.

-- EXTRA CTL PROPS: Not two doors of a cabin open in the same time
SPEC
AG (! two_door_open0)

SPEC
AG (! two_door_open1)

:

.

:

2.593e+0109.468e+006

.

)(

Liveness

Liveness

Safety

Liveness,

Liveness,

Safety,

Safety,

Safety,

Safety,

Safety,

,

-- --
-- --
-- 2-Floor Elevator
--
--
-- K. Rafati and N.Esfahani
-- --
-- --

MODULE door(thefloor,mycabin)
-- Each "door" knows its (fix) floor and assigned cabin

VAR
call_light: boolean; -- whether the lift has been called or not
call_button: boolean; -- whether someone is pushing on the call

button
open: boolean; -- whether the door is open or not

DEFINE
call := call_light | call_button;
floor := thefloor;

INIT
!call & !open;

TRANS
next(open) = case
-- The door will be open at the next step if the lift has been
-- called or sent at this floor, and the cabin is to arrive.
(call | (mycabin.sent_light=floor) | (mycabin.sent_button=floor))

& mycabin.moving & (floor = mycabin.floor+mycabin.dir) :
TRUE;

-- Another possibility is when the lift is "waiting"
-- at this floor and someone calls (or sends it ?) here.
(call | (mycabin.sent_light=floor) | (mycabin.sent_button=floor))

& (!mycabin.moving) & (floor = mycabin.floor) : TRUE;
-- Otherwise, no need to open the door...
1 : FALSE;

esac
&
next(call_light) = case

open : FALSE;
call_light|call_button : TRUE;
1 : FALSE;

esac;

MODULE controller(cabin0, door0, door1)
-- The controller knows the states of all the cabins and doors

DEFINE
-- if the cabin has been called at an upper floor
callup := (door1.call & cabin0.floor<1);
-- if the cabin has been called downstairs
calldown := (door0.call & cabin0.floor>0);
-- if the cabin has been called at all
call := door0.call | door1.call;
-- if a door is open somewhere
open := door0.open | door1.open;

TRANS
next(cabin0.moving) = case
-- won't move if a door will open
next(open) : FALSE;
-- won't move if not been asked to
(!call) & (cabin0.sent_light=-1) & (cabin0.sent_button=-1) : FALSE;

-- otherwise, let's go !
1 : TRUE;

esac
&
next(cabin0.dir) = case
-- if we don't know where to go...
(!call) & (cabin0.sent_light=-1) & (cabin0.sent_button=-1) : 0;
-- if we're busy: have to go both up- and downstairs
(callup | (cabin0.sent_light>cabin0.floor) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>cabin0.floor))) & (calldown |
((cabin0.sent_light<cabin0.floor) &
(cabin0.sent_light>-1)) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>-1) &
(cabin0.sent_button<cabin0.floor))) & cabin0.dir!=0 : cabin0.dir;

-- if we just have to go upstairs
callup | (cabin0.sent_light>cabin0.floor) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>cabin0.floor)) : 1;

-- or downstairs
calldown | ((cabin0.sent_light<cabin0.floor) & (cabin0.sent_light>-1)) |
((cabin0.sent_light=-1) & (cabin0.sent_button>-1) &
(cabin0.sent_button<cabin0.floor)) : -1;

-- don't know if something else if possible, but I would not know what to
do...
1 : 0;

esac;

MODULE cabin(mycontroller)
-- the cabin knows nobody

VAR
floor: 0..1; -- where the cabin is
sent_light: -1..1; -- if the lift has been sent at some floor
sent_button: -1..1; -- if a "send" button is being pushed on
moving: boolean; -- if the cabin is moving
dir: -1..1; -- direction (down, "here" or up) of the cabin

INIT
floor=0 & !moving & dir=0 & sent_light=-1 & sent_button=-1;

TRANS
next(floor) = case
moving : floor + dir;
1 : floor;

esac
&
next(sent_light) = case
mycontroller.open & (floor=sent_light) : -1;
(sent_light!=-1) : sent_light;
1 : sent_button;

esac;

MODULE main

VAR
-- one door at each floor
door0: door(0, cabin0);
door1: door(1, cabin0);
-- only one cabin here
cabin0: cabin(mycontroller);
-- the controller
mycontroller: controller(cabin0, door0, door1);

FAIRNESS
cabin0.moving

-- All the requests from particular floor are eventually serviced
SPEC
AG (door0.call -> AF door0.open) -- true

SPEC
AG (door1.call -> AF door1.open) -- true

-- All the requests to particular floor are eventually serviced
SPEC
AG ((cabin0.sent_light=0) -> AF door0.open) -- true

SPEC
AG ((cabin0.sent_light=1) -> AF door1.open) -- true

-- The elevator never moves with its doors open
SPEC
AG(cabin0.moving -> !mycontroller.open) -- true

-- TEST
--SPEC
-- AG(cabin0.dir=0 -> !cabin0.moving) -- true
--SPEC
-- AG(!cabin0.moving -> cabin0.dir=0) -- true

-- --
-- --
-- 4-Floor Better Elevator
--
--
-- K. Rafati and N.Esfahani
-- --
-- --

MODULE door(thefloor,cabin0,cabin1)
-- Each "door" knows its (fix) floor and assigned cabin

VAR
call_light: boolean; -- whether the lift has been called or not
call_button: boolean; -- whether someone is pushing on the call

button
open0: boolean; -- whether the door0 is open or not
open1: boolean; -- whether the door1 is open or not

DEFINE
call := call_light | call_button;
floor := thefloor;
open := open0 | open1;

INIT
!call & !open0 & !open1;

TRANS
next(open0) = case
-- The door will be open at the next step if the lift has been
-- called or sent at this floor, and the cabin is to arrive.
((call & !next(open1)) | (cabin0.sent_light=floor) |

(cabin0.sent_button=floor & cabin0.sent_light=-1)) &
cabin0.moving & (floor = cabin0.floor+cabin0.dir) : TRUE;

-- Another possibility is when the lift is "waiting"
-- at this floor and someone calls (or sends it ?) here.
((call & !next(open1)) | (cabin0.sent_light=floor) |

(cabin0.sent_button=floor & cabin0.sent_light=-1)) &
!cabin0.moving & (floor = cabin0.floor) : TRUE;

-- Otherwise, no need to open the door...
1 : FALSE;

esac
&
next(open1) = case
-- The door will be open at the next step if the lift has been
-- called or sent at this floor, and the cabin is to arrive.
((call & !next(open0)) | (cabin1.sent_light=floor) |
(cabin1.sent_button=floor & cabin1.sent_light=-1)) &
cabin1.moving & (floor = cabin1.floor+cabin1.dir) : TRUE;

-- Another possibility is when the lift is "waiting"
-- at this floor and someone calls (or sends it ?) here.
((call & !next(open0)) | (cabin1.sent_light=floor) |

(cabin1.sent_button=floor & cabin1.sent_light=-1)) &
!cabin1.moving & (floor = cabin1.floor) : TRUE;

-- Otherwise, no need to open the door...
1 : FALSE;

esac
&
next(call_light) = case

next(open) : FALSE;
call_light|call_button : TRUE;
1 : FALSE;

esac;

MODULE controller(cabin0, cabin1, door0, door1, door2, door3)

-- The controller knows the states of all the cabins and doors

DEFINE
-- All the situations in which cabin0 is down the calling floor
cabin0_down := (door3.call & cabin0.floor<3) |

(door2.call & cabin0.floor<2) |
(door1.call & cabin0.floor<1) ;

down0_going := cabin0_down & cabin0.dir=-1;
down0_coming := cabin0_down & cabin0.dir=1;
down0_stay := cabin0_down & cabin0.dir=0;

-- All the situations in which cabin1 is down the calling floor
cabin1_down := (door3.call & cabin1.floor<3) |

(door2.call & cabin1.floor<2) |
(door1.call & cabin1.floor<1) ;

down1_going := cabin1_down & cabin1.dir=-1;
down1_coming := cabin1_down & cabin1.dir=1;
down1_stay := cabin1_down & cabin1.dir=0;

-- All the situations in which cabin0 is up the calling floor
cabin0_up := (door2.call & cabin0.floor>2) |

(door1.call & cabin0.floor>1) |
(door0.call & cabin0.floor>0) ;

up0_going := cabin0_up & cabin0.dir=1;
up0_coming := cabin0_up & cabin0.dir=-1;
up0_stay := cabin0_up & cabin0.dir=0;

-- All the situations in which cabin1 is up the calling floor
cabin1_up := (door2.call & cabin1.floor>2) |

(door1.call & cabin1.floor>1) |
(door0.call & cabin1.floor>0) ;

up1_going := cabin1_up & cabin1.dir=1;
up1_coming := cabin1_up & cabin1.dir=-1;
up1_stay := cabin1_up & cabin1.dir=0;

-- if the cabin has been called up
callup0 := (down0_coming & !(down1_coming & cabin1.floor>cabin0.floor)) |

(down0_coming & (down1_stay | up1_stay)) |
(down0_stay & (up1_going | down1_going));

callup1 := (down1_coming & !(down0_coming & cabin0.floor>=cabin1.floor)) |
(down1_coming & (down0_stay | up0_stay)) |
(down1_stay & (up0_going | down0_going));

-- if the cabin has been called down
calldown0 := (up0_coming & !(up1_coming & cabin1.floor<cabin0.floor)) |

(up0_coming & (down1_stay | up1_stay)) |
(up0_stay & (up1_going | down1_going));

calldown1 := (up1_coming & !(up0_coming & cabin0.floor<=cabin1.floor)) |
(up1_coming & (down0_stay | up0_stay)) |
(up1_stay & (up0_going | down0_going));

-- if the cabin has been called at all
call0 := callup0 | calldown0;
call1 := callup1 | calldown1;
-- if a door is open somewhere
open := door0.open | door1.open | door2.open | door3.open;
open0 := door0.open0 | door1.open0 | door2.open0 | door3.open0;
open1 := door0.open1 | door1.open1 | door2.open1 | door3.open1;

TRANS
next(cabin0.moving) = case
-- won't move if a door will open
next(open0) : FALSE;
-- won't move if not been asked to
(!call0) & (cabin0.sent_light=-1) & (cabin0.sent_button=-1) : FALSE;
-- otherwise, let's go !
1 : TRUE;

esac
&
next(cabin0.dir) = case
-- if we don't know where to go...

(!call0) & (cabin0.sent_light=-1) & (cabin0.sent_button=-1) : 0;
-- if we're busy: have to go both up- and downstairs
(callup0 | (cabin0.sent_light>cabin0.floor) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>cabin0.floor))) & (calldown0 |
((cabin0.sent_light<cabin0.floor) &
(cabin0.sent_light>-1)) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>-1) &
(cabin0.sent_button<cabin0.floor))) & cabin0.dir!=0 : cabin0.dir;

-- if we just have to go upstairs
callup0 | (cabin0.sent_light>cabin0.floor) | ((cabin0.sent_light=-1) &
(cabin0.sent_button>cabin0.floor)) : 1;

-- or downstairs
calldown0 | ((cabin0.sent_light<cabin0.floor) & (cabin0.sent_light>-1)) |
((cabin0.sent_light=-1) & (cabin0.sent_button>-1) &
(cabin0.sent_button<cabin0.floor)) : -1;

-- don't know if something else if possible, but I would not know what to
do...
1 : 0;

esac
&
next(cabin1.moving) = case
-- won't move if a door will open
next(open1) : FALSE;
-- won't move if not been asked to
(!call1) & (cabin1.sent_light=-1) & (cabin1.sent_button=-1) : FALSE;
-- otherwise, let's go !
1 : TRUE;

esac
&
next(cabin1.dir) = case
-- if we don't know where to go...
(!call1) & (cabin1.sent_light=-1) & (cabin1.sent_button=-1) : 0;
-- if we're busy: have to go both up- and downstairs
(callup1 | (cabin1.sent_light>cabin1.floor) | ((cabin1.sent_light=-1) &
(cabin1.sent_button>cabin1.floor))) & (calldown1 |
((cabin1.sent_light<cabin1.floor) &
(cabin1.sent_light>-1)) | ((cabin1.sent_light=-1) &
(cabin1.sent_button>-1) &
(cabin1.sent_button<cabin1.floor))) & cabin1.dir!=0 : cabin1.dir;

-- if we just have to go upstairs
callup1 | (cabin1.sent_light>cabin1.floor) | ((cabin1.sent_light=-1) &
(cabin1.sent_button>cabin1.floor)) : 1;

-- or downstairs
calldown1 | ((cabin1.sent_light<cabin1.floor) & (cabin1.sent_light>-1)) |
((cabin1.sent_light=-1) & (cabin1.sent_button>-1) &
(cabin1.sent_button<cabin1.floor)) : -1;

-- don't know if something else if possible, but I would not know what to
do...
1 : 0;

esac
&
next(cabin0.sent_light) = case
(open0 & cabin0.floor=cabin0.sent_light) : -1;
(cabin0.sent_light!=-1) : cabin0.sent_light;
1 : cabin0.sent_button;

esac
&
next(cabin1.sent_light) = case
(open1 & cabin1.floor=cabin1.sent_light) : -1;
(cabin1.sent_light!=-1) : cabin1.sent_light;
1 : cabin1.sent_button;

esac;

MODULE cabin(mycontroller)
-- the cabin knows nobody

VAR
floor: 0..3; -- where the cabin is
sent_light: -1..3; -- if the lift has been sent at some floor
sent_button: -1..3; -- if a "send" button is being pushed on
moving: boolean; -- if the cabin is moving
dir: -1..1; -- direction (down, "here" or up) of the cabin

DEFINE
-- Door open button can be constructed using existing variables
door_open := (sent_button=floor);
-- Same for passenger present
passenger_present := (sent_button!=-1 | sent_light!=-1);

INIT
floor=0 & !moving & dir=0 & sent_light=-1 & sent_button=-1;

TRANS
next(floor) = case
moving : floor + dir;
1 : floor;

esac;

MODULE main

VAR
-- two door at each floor
door0: door(0, cabin0, cabin1);
door1: door(1, cabin0, cabin1);
door2: door(2, cabin0, cabin1);
door3: door(3, cabin0, cabin1);
-- two cabins here
cabin0: cabin(mycontroller);
cabin1: cabin(mycontroller);
-- the controller
mycontroller: controller(cabin0, cabin1, door0, door1, door2, door3);

DEFINE
two_door_open0 := (door0.open0 & (door1.open0 | door2.open0 | door3.open0))
|

(door1.open0 & (door2.open0 | door3.open0)) |
(door2.open0 & door3.open0);

two_door_open1 := (door0.open1 & (door1.open1 | door2.open1 | door3.open1))
|

(door1.open1 & (door2.open1 | door3.open1)) |
(door2.open1 & door3.open1);

FAIRNESS
cabin0.moving

FAIRNESS
cabin1.moving

-- All the requests from particular floor are eventually serviced
SPEC
AG (door0.call -> AF door0.open)

SPEC
AG (door1.call -> AF door1.open)

SPEC
AG (door2.call -> AF door2.open)

SPEC
AG (door3.call -> AF door3.open)

-- All the requests to particular floor are eventually serviced

SPEC
AG ((cabin0.sent_light=0) -> AF door0.open0)

SPEC
AG ((cabin0.sent_light=1) -> AF door1.open0)

SPEC
AG ((cabin0.sent_light=2) -> AF door2.open0)

SPEC
AG ((cabin0.sent_light=3) -> AF door3.open0)

SPEC
AG ((cabin1.sent_light=0) -> AF door0.open1)

SPEC
AG ((cabin1.sent_light=1) -> AF door1.open1)

SPEC
AG ((cabin1.sent_light=2) -> AF door2.open1)

SPEC
AG ((cabin1.sent_light=3) -> AF door3.open1)

-- The elevator never moves with its doors open
SPEC
AG(cabin0.moving -> !mycontroller.open0)

SPEC
AG(cabin1.moving -> !mycontroller.open1)

-- Two cabins are not scheduled to service request from one floor
SPEC
AG (! ((cabin0.floor=0 & cabin0.sent_button=0) |

(cabin0.floor!=0 & (cabin0.sent_light=0 | cabin0.sent_button=0)) |
(cabin1.floor=0 & cabin1.sent_button=0) |
(cabin1.floor!=0 & (cabin1.sent_light=0 | cabin1.sent_button=0)) |
(door0.open0 & (cabin1.sent_button=0 | cabin1.sent_light=0)) |
(door0.open1 & (cabin0.sent_button=0 | cabin0.sent_light=0)))

-> !EX(door0.open0 & door0.open1))
SPEC
AG (! ((cabin0.floor=1 & cabin0.sent_button=1) |

(cabin0.floor!=1 & (cabin0.sent_light=1 | cabin0.sent_button=1)) |
(cabin1.floor=1 & cabin1.sent_button=1) |
(cabin1.floor!=1 & (cabin1.sent_light=1 | cabin1.sent_button=1)) |
(door1.open0 & (cabin1.sent_button=1 | cabin1.sent_light=1)) |
(door1.open1 & (cabin0.sent_button=1 | cabin0.sent_light=1)))

-> !EX(door1.open0 & door1.open1))

SPEC
AG (! ((cabin0.floor=2 & cabin0.sent_button=2) |

(cabin0.floor!=2 & (cabin0.sent_light=2 | cabin0.sent_button=2)) |
(cabin1.floor=2 & cabin1.sent_button=2) |
(cabin1.floor!=2 & (cabin1.sent_light=2 | cabin1.sent_button=2)) |
(door2.open0 & (cabin1.sent_button=2 | cabin1.sent_light=2)) |
(door2.open1 & (cabin0.sent_button=2 | cabin0.sent_light=2)))

-> !EX(door2.open0 & door2.open1))
SPEC
AG (! ((cabin0.floor=3 & cabin0.sent_button=3) |

(cabin0.floor!=3 & (cabin0.sent_light=3 | cabin0.sent_button=3)) |
(cabin1.floor=3 & cabin1.sent_button=3) |
(cabin1.floor!=3 & (cabin1.sent_light=3 | cabin1.sent_button=3)) |
(door3.open0 & (cabin1.sent_button=3 | cabin1.sent_light=3)) |
(door3.open1 & (cabin0.sent_button=3 | cabin0.sent_light=3)))

-> !EX(door3.open0 & door3.open1))

-- The door will close if someone enters elevator
SPEC
AG ((cabin0.passenger_present & cabin0.floor=0 &

EX(door0.open0 & cabin0.passenger_present))
-> (cabin0.door_open | door0.call | cabin0.sent_light=0))

SPEC
AG ((cabin1.passenger_present & cabin1.floor=0 &

EX(door0.open1 & cabin1.passenger_present))
-> (cabin1.door_open | door0.call | cabin1.sent_light=0))

SPEC
AG ((cabin0.passenger_present & cabin0.floor=1 &

EX(door1.open0 & cabin0.passenger_present))
-> (cabin0.door_open | door1.call | cabin0.sent_light=1))

SPEC
AG ((cabin1.passenger_present & cabin1.floor=1 &

EX(door1.open1 & cabin1.passenger_present))
-> (cabin1.door_open | door1.call | cabin1.sent_light=1))

SPEC
AG ((cabin0.passenger_present & cabin0.floor=2 &

EX(door2.open0 & cabin0.passenger_present))
-> (cabin0.door_open | door2.call | cabin0.sent_light=2))

SPEC
AG ((cabin1.passenger_present & cabin1.floor=2 &

EX(door2.open1 & cabin1.passenger_present))
-> (cabin1.door_open | door2.call | cabin1.sent_light=2))

SPEC
AG ((cabin0.passenger_present & cabin0.floor=3 &

EX(door3.open0 & cabin0.passenger_present))
-> (cabin0.door_open | door3.call | cabin0.sent_light=3))

SPEC
AG ((cabin1.passenger_present & cabin1.floor=3 &

EX(door3.open1 & cabin1.passenger_present))
-> (cabin1.door_open | door3.call | cabin1.sent_light=3))

-- The elevator won't react to door_open if there's another request
SPEC
AG ((cabin0.door_open & cabin0.floor=0 & !EX(door0.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=0 & !EX(door0.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=1 & !EX(door1.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=1 & !EX(door1.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=2 & !EX(door2.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=2 & !EX(door2.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

SPEC
AG ((cabin0.door_open & cabin0.floor=3 & !EX(door3.open0))

-> (mycontroller.call0 | cabin0.sent_light!=-1 | cabin0.moving))

SPEC
AG ((cabin1.door_open & cabin1.floor=3 & !EX(door3.open1))

-> (mycontroller.call1 | cabin1.sent_light!=-1 | cabin1.moving))

-- EXTRA CTL PROPS: Not two doors of a cabin open in the same time
SPEC
AG (! two_door_open0)

SPEC
AG (! two_door_open1)
