% Program 8.7 Implicit Newton solver for Burgers equation % input: space interval [xl,xr], time interval [tb,te], % number of space steps M, number of time steps N % output: solution w % Example usage: w=p4_1(0,1,0,2,20,40) function w=p4_1(xl,xr,tb,te,M,N) D=1; f=@(x) .5+cos(2*pi*x); h=(xr-xl)/M; k=(te-tb)/N; m=M+1; n=N; sigma=D*k/(h*h); w(:,1)=f(xl+(0:M)*h)'; % initial conditions w1=w; for j=1:n for it=1:3 % Newton iteration DF1=diag(2*k+1+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1); DF1=DF1+diag(-sigma*ones(m-1,1),-1); DF2=diag(-6*k*w1); DF3=diag(3*k*w1.^2); DF=DF1+DF2+DF3; F=-w(:,j)+(DF1+DF2/2+DF3/3)*w1; DF(1,:)=[-3 4 -1 zeros(1,m-3)];F(1)=DF(1,:)*w1; DF(m,:)=[zeros(1,m-3) -1 4 -3];F(m)=DF(m,:)*w1; w1=w1-DF\F; end w(:,j+1)=w1; end x=xl+(0:M)*h;t=tb+(0:n)*k; mesh(x,t,w') end