
Domain Shadowing: Leveraging Content Delivery Networks for
Robust Blocking-Resistant Communications

Mingkui Wei
Cybersecurity Engineering

George Mason University, Fairfax, VA, 22030

Abstract
We debut domain shadowing, a novel censorship evasion

technique leveraging content delivery networks (CDNs). Do-
main shadowing exploits the fact that CDNs allow their cus-
tomers to claim arbitrary domains as the back-end. By set-
ting the front-end of a CDN service as an allowed domain
and the back-end a blocked one, a censored user can access
resources of the blocked domain with all “indicators”, includ-
ing the connecting URL, the SNI of the TLS connection, and
the Host header of the HTTP(S) request, appear to belong
to the allowed domain. Furthermore, we demonstrate that
domain shadowing can be proliferated by domain fronting,
a censorship evasion technique popularly used a few years
ago, making it even more difficult to block. Compared with
existing censorship evasion solutions, domain shadowing is
lightweight, incurs negligible overhead, and does not require
dedicated third-party support. As a proof of concept, we im-
plemented domain shadowing as a Firefox browser extension
and demonstrated its capability in circumventing censorship
within a heavily censored country known by its strict censor-
ship policies and advanced technologies.

1 Introduction

Domain fronting (Df) is a censorship evasion technique pro-
posed in 2015 [18], which allows censored users to circum-
vent censorship by exploiting the following two facts. On
the one hand, many content delivery networks (CDNs) solely
rely on the Host header of an incoming HTTPS request to
determine the origin, even though this header is inconsistent
with the server name indication (SNI) [13] used to establish
the transport layer security (TLS) tunnel. On the other hand,
the censor can only see the SNI of an HTTPS connection but
not the Host header inside the TLS tunnel. A censored user
can circumvent censorship by sending an HTTPS request to a
CDN requesting an allowed domain, but set the Host header
to a blocked one. As long as both domains dwell on the same
CDN, the CDN will route the request to the blocked domain

according to the Host header but have the TLS connection
still appear to belong to the allowed domain. The blocking-
resistance of domain fronting derives from the significant
“collateral damage”, i.e., to disable domain fronting, the censor
needs to block users from accessing the entire CDN, resulting
in all domains on the CDN inaccessible. Because today’s
Internet relies heavily on web caches and many high-profile
websites also use CDNs to distribute their content, completely
blocking access to a particular CDN may not be a feasible
option for the censor. Because of its strong blocking-resistant
power, domain fronting has been adopted by many censorship
evasion systems since it has been proposed [24, 28, 34, 36].
In the last two years, however, many CDNs began to disable
domain fronting by enforcing the match between the SNI and
the Host header [2, 3, 38], which makes domain fronting less
effective.

In this paper, we debut domain shadowing (Ds) as a novel
censorship evasion technique. Similar to domain fronting,
domain shadowing also leverages CDNs to achieve censorship
evasion. However, domain shadowing differs from domain
fronting in that it does not manipulate the SNI and the Host
header of an HTTPS request. Instead, it exploits a legitimate
CDN feature that specifies the connection between the front-
end and the back-end domains. Specifically, we found that
most CDNs allow users to claim arbitrary domains as the
back-end of a CDN service without imposing any limitations.
To circumvent censorship, a censored user can set an allowed
domain (namely the shadow domain) as the front-end, and
a blocked domain as the back-end, of a CDN service. By
sending HTTP(S) requests to the shadow domain, the CDN
will faithfully fetch the web document from the back-end, i.e.,
the blocked domain, and “repackages” the response into a new
response with the URL, SNI, and Host header all “rebranded”
as the shadow domain, enabling the user to visit the blocked
domain “in the name of” the allowed domain.

Compared with other censorship evasion systems, domain
shadowing is lightweight and incurs negligible overhead. Be-
sides a valid CDN account, the operation of domain shadow-
ing does not require any support from a dedicated third party,

as most other systems do. The essential task for a user to
use domain shadowing is appropriately configuring the front-
end and back-end domains in his/her CDN account, which
is a one-time task and can even be automated using CDN-
provided APIs or SDKs. The only performance penalty would
be waiting for such configurations to be deployed by the CDN
when a domain is being visited for the first time, which costs
less than 20 seconds most of the time. On the other hand,
the subsequent web browsing can be even faster than directly
connecting to the origin server.

As a proof-of-concept, we implemented domain shadowing
as a Firefox extension based on Fastly’s CDN service [15],
which automates all configuration procedures using Fastly’s
web APIs and is intuitive to use by regular users. We demon-
strate that this extension enables censored users to access
blocked websites within a heavily censored country known
for its strict censorship policies and advanced techniques.

To summarize, our contributions are:

1. We exhibit domain shadowing as a novel censorship
evasion technique leveraging content delivery networks. We
analyze its potential and demonstrate that it can circumvent
most censorship techniques.

2. We demonstrate domain fronting can corroborate with
domain shadowing and proliferate its resilience. The com-
bined solution, namely the DfDs (domain fronting + domain
shadowing), can achieve even stronger blocking-resistance.

3. We implement domain shadowing as a Firefox exten-
sion and showcase its capability of circumventing censorship
in a heavily censored country. We will open-source our im-
plementation to benefit the research community.

4. We thoroughly evaluate the benefits and limitations of
domain shadowing; discuss tactics to stay ahead in the poten-
tial arm-race among the censor, the CDN, and the user; and
analyze domain shadowing’s security impacts to the CDN,
the publisher, and the user. Our work paves the way for fur-
ther development of a full-fledged censorship evasion system
based on this newly proposed technique.

The rest of the paper is structured as follows. In Section 2,
we introduce background knowledge related to domain shad-
owing, and in Section 3, we explain in detail how domain
shadowing works. In Section 4, we demonstrate our exper-
imental implementation of domain shadowing as a Firefox
browser extension, and showcase its capacity to circumvent
censorship. In Sections 5, 6, and 7, we discuss domain shad-
owing’s advantages and limitations from the perspective of
usability, censorship blocking-resistance, and security impact,
respectively. Related works are discussed and compared in
Section 8, and we finally concluded our work in Section 9.

2 Background

2.1 Internet Censorship Techniques

Censorship techniques for identifying and blocking website
browsing have been extensively studied in many research
works [1, 23, 43, 46]. In general, these techniques can be
classified into three categories: IP filtering, DNS interference,
and deep packet inspection (DPI).

IP filtering checks the IP address a user attempts to connect
to and blocks the request if the IP belongs to a blocklist.
IP filtering is low-cost, straightforward, and effective if the
prohibited website has a static IP known by the censor. In the
age of cloud computing, however, IP filtering becomes less
effective since webservers hosted on clouds may be assigned
with dynamic IPs by the cloud service provider [23, 30].

In DNS interference [25, 26], the censor intercepts and
inspects the DNS query message sent by a user. If the queried
domain is prohibited, the censor may simply refuse to respond
or respond with a fake IP [23]. However, the user can skip the
DNS query step and directly connect to the webserver’s IP
address to bypass DNS interference.

Assisted by machine learning and data mining techniques,
the deep packet inspection (DPI) [46] inspects the content of
the packets among the censored network to identify suspicious
traffic [20, 25]. However, DPI is unable to inspect encrypted
packets such as HTTPS traffic, as long as the underlying
encryption algorithm is not compromised.

Although all of the above approaches have their shortages,
effective censorship can be achieved by using them holisti-
cally. We refer readers to [23, 46] for more comprehensive
evaluations regarding country-level censorship techniques.

2.2 Content Delivery Network

Content delivery networks (CDNs) have emerged as a new
business model in the recent decade and have undergone sub-
stantial growth [27]. Technically, CDN combines the charac-
ters of both the reverse proxy [37] and the shared cache [17].
As a reverse proxy, a CDN edge server is placed in front of the
origin server and intercepts HTTP(S) requests and responses
between the client and the origin server. As a shared cache, an
edge server caches static web documents from multiple origin
servers and uses these caches to serve duplicate HTTP(S)
requests. Domain shadowing mainly exploits CDN’s first fea-
ture, and we leave detailed explanations to later sections.

2.3 The Rise and Fall of Domain Fronting

A CDN is shared by multiple domains and relies on the Host
header of an incoming request to determine the domain to
forward the request. Domain fronting is a technique proposed
by D. Fifield, et.al. in 2015 [18], which exploits a “quirky”
implementation shared by many CDNs [3] .

As explained at the beginning of Section 1, many CDNs
do not check the consistency of the SNI and the Host header

of an incoming HTTPS request, and only rely on the Host
header to forward the request. As a result, assuming the two
domains, allowed.com and blocked.com, are both hosted
on the same CDN, the user can circumvent censorship and
access the blocked domain by sending an HTTPS request to
the CDN edge server and requesting allowed.com (known as
the front domain), but set the Host header to blocked.com.

Blocking domain fronting is difficult because of the “col-
lateral damage” it brings. Specifically, in order to block a
user from accessing a blocked domain hosted on a CDN, the
censor must block all the domains on the CDN. Otherwise,
a single allowed domain can serve as the front domain and
makes all other domains on the same CDN accessible. Be-
cause CDN service is prevalent in today’s Internet, and many
valuable domains are also served by CDNs, completely block-
ing a (large) CDN is infeasible to many censors. Because of
its robustness against censorship, domain fronting has been
adopted by many censorship evasion systems, including Tor
Meek [34], Psiphon [36], Lantern [24], and Signal [28].

In the recent two years, however, many CDNs (e.g., Google
Cloud CDN and Amazon Cloudfront) became aware of do-
main fronting and began to disable it by enforcing the match
between the SNI and the Host header [2, 3], which forced
many censorship evasion systems to halt their service [38] or
steer to smaller CDNs that are less costly to block [34].

3 Domain Shadowing

3.1 Threat Model
We depict the threat model in Figure 1, which involves the
following roles and assumptions of their capabilities.

3.1.1 Roles

Censor: We assume an advanced censor who applies strict
censorship policies, and deploys state-of-the-art technologies.
We also assume the censor blocks domains based on a block-
list rather than a whitelist, i.e., a domain is accessible unless
the censor explicitly blocks it.

User: The user refers to a regular human user and the web
browser used for web browsing. As long as the context allows,
we will interchangeably use censored user and user to refer
to the user that locates within a censored area. We assume
the user is not tech-savvy but has a reasonable knowledge of
computer and Internet operations.

Publisher: The publisher is the owner of a domain. We
assume the publisher is neutral and has no particular favor to
either the censor or the user. Specifically, if the publisher’s
domain is blocked by the censor, it neither assists the censor
in actively rejecting requests from the censored area nor takes
any action to facilitate the user to circumvent the censor.

CDN: The CDN refers to a CDN provider that provides
CDN service to all the public domains. We assume that the

CDN is accessible by the censored user within the censored
area. However, the CDN itself is not censored and can access
blocked domains. One example could be the CDN deploys all
its edge servers outside of the censored area.

https://target.com

CDN Edge server

Publisher
(target.com)

https://front.com

Front-end Back-end

shadow.com target.com

Front-end Back-end

shadow.com target.com

Front-end Back-end

shadow.com target.com

https://front.comhttps://front.com

User

GET / HTTP/1.1

Host: shadow.com

...

Censored Area

Figure 1: Threat model.

3.1.2 Terminologies

Front-end, back-end, and domain binding: CDN acts as a
reverse proxy and is located between the client and the origin
server, as shown in Figure 1. In this paper, the front-end of a
CDN refers to its client-facing side, and the back-end refers
to its server-facing side. We define the domain binding as the
connection between these two domains.

Front/shadow/target domain: We define the front domain
as the domain appears in the browser’s address bar, which
is used for the DNS query and as the SNI for the TLS hand-
shake. The shadow domain is the domain present in the Host
header of the HTTP(S) request, and also the domain set as the
CDN’s front-end. The target domain is the blocked domain
that the censored user wants to access, and also the domain
set as the CDN’s back-end. Throughout this paper, we use
front.com, shadow.com, and target.com as surrogates to
represent these three domains, which do not refer to real world
websites.

We assume the front domain is allowed by the censor, and
the target domain is blocked. The property of the shadow
domain varies in different circumstances, and we provide a
detailed explanation for this in later sections.

3.1.3 Objective

The objective of the censored user is to access the target
domain without being identified and blocked by the censor.

3.2 How does CDN Resolve Domain Names
The key idea of domain shadowing is to “repackage” and
“rebrand” the response from a blocked domain into a new
response that appears to belong to an allowed domain. In

User
GoDaddy
Name Server

Fastly
Name Server
(ns1.fastly.net)

Fastly
Edge Server
(IP: 10.20.30.40)

Publisher
Origin Server
(Domain: abc.aws.com)

DNS: example.com?

global.ssl.fastly.net

DNS: global.ssl.fastly.net?

IP: 10.20.30.40

https://example.com

GET / HTTP/1.1
Host: example.com
...

https://abc.aws.com

GET / HTTP/1.1
Host: abc.aws.com
...

200 OK
...

200 OK
...

abc.aws.com/index.html
example.com/index.html

1

2

3

4

5

6

7

8

(a) DNS resolution by Fastly.

User

Cloudflare
Name Server
(dara.ns.cloudflare.com)

Cloudflare
Edge Server
(IP: 10.20.30.40)

Publisher
Origin Server
(Domain: abc.aws.com)

DNS: example.com?

IP: 10.20.30.40

https://example.com

GET / HTTP/1.1
Host: example.com
...

https://abc.aws.com

GET / HTTP/1.1
Host: abc.aws.com
...

200 OK
...

200 OK
...

abc.aws.com/index.html
example.com/index.html

1

2

3

4

5

6

(b) DNS resolution by Cloudflare.

Figure 2: Essential steps of DNS resolution by Flastly and Cloudflare, some steps are omitted for clarity reason.

order to comprehend the mechanism of domain shadowing, it
is essential first to explain how domain names are resolved
and translated when a CDN is involved.

Acting as a reverse proxy, CDN hides the back-end do-
main and presents only the front-end domain to the public.
CDNs typically take two approaches to accomplish the name
translation, which are presented in Figure 2. We make the fol-
lowing assumptions to facilitate the illustration: assume the
publisher’s origin server is hosted on Amazon Web Service
(AWS) and assigned with a canonical name abc.aws.com,
and the publisher wants to advertise the web service using the
domain example.com, which is owned by the publisher and
hosted on GoDaddy’s [19] name server.

Figure 2a presents the name translation procedure adopted
by most CDNs, and we use Fastly as a specific example in the
following explanation. To use Fastly’s service, the publisher
will first log into his/her Fastly account, and set example.com
as the front-end, and abc.aws.com as back-end. Then, the
publisher will create a new CNAME record in GoDaddy’s
name server, which resolves the domain example.com to a
fixed domain global.ssl.fastly.net. The name resolu-
tion of example.com follows the steps presented in Figure 2a.

Besides Fastly, many other CDNs also take the same
approach with slight differences. For example, Stack-
Path [39] will create a unique domain name, such as
j1s5u3d4.stackpathcdn.com, for each front-end and back-
end binding, instead of using global.ssl.fastly.net as a
universal domain for all domain bindings.

Figure 2b demonstrates Cloudflare’s [8] approach. Cloud-
flare itself hosts top-level domain (TLD) name servers that
can directly resolve top-level domains. To use Cloudflare’s
CDN service, the publisher needs to switch his/her name
server (from GoDaddy’s) to Cloudflare’s name servers. Con-
sequently, the steps 2 & 3 in Figure 2a are skipped in Fig-
ure 2b, because Cloudflare’s name server can directly resolve
the top-level domain example.com.

We remind the reader to pay particular attention to the last
four steps in the above two figures, which differ from a regular

DNS name resolution. Using Figure 2a as an example, when
the request to https://example.com arrives at a Fastly’s
edge server (step 5), the edge server will not redirect the user
to https://abc.aws.com. Instead, it will directly fetch the
document from the origin server (step 6 & 7) and use this doc-
ument to respond to the request to https://example.com
(step 8). During this process, the user only perceives that
they are communicating with example.com, while the name
translation took place only within the CDN and is completely
hidden from the outside world.

In the following subsections, we present the operations
of domain shadowing being used along, and together with
domain fronting.

3.3 Domain Shadowing (Ds)
Domain shadowing takes advantage of the fact that when the
domain binding is created, the CDN allows arbitrary domains
to be set as the back-end. As a result, a user can freely bind
a front-end domain to any back-end domain. To access a
prohibited domain within a censored area, a censored user
only needs to take the following steps.

1. The user registers a new domain, shadow.com, which is
allowed because the censor applies a blocklist rather than a
whitelist.

2. The user subscribes to a CDN service that is accessible,
but the CDN itself is not censored.

3. The user binds the shadow domain to the target domain
in the CDN service by setting the shadow domain as the
front-end and the target domain as the back-end.

4. The user creates a rule in his/her CDN account
to rewrite the Host header of incoming requests from
Host:shadow.com to Host:target.com. This is an essen-
tial step since otherwise, the origin server of target.com will
receive an unrecognized Host header and reject the request.

5. Finally, to access the target domain, the user sends a
request to https://shadow.com within the censored area.

The request will be sent to the CDN, which will rewrite
the Host header and forwards the request to target.com.
After the response is received from target.com, the CDN
will return the response to the user under the name of
https://shadow.com.

During this process, the censor will only see the user con-
nect to the CDN using HTTPS and request resources from
shadow.com, and thus will not block the traffic.

(a) Ds with Cloudflare.

(b) Ds with Fastlyz.

Figure 3: Domain shadowing using Cloudflare and Fastly.

To prove the validity of the idea, we registered
the domain domainshadowing.net, and created
accounts on both Cloudflare and Fastly. We set
www.facebook.com as the back-end to both CDNs,
and facebook.cloudflare.domainshadowing.net and
facebook.fastly.domainshadowing.net as the front-
end for Cloudflare and Fastly, respectively. With the free-tier
account, Host header rewriting is allowed by Fastly but not

but Cloudflare.
Then, we visited the two shadow domains by firstly

connecting to a rented HTTP proxy located in a heavily
censored country known by its strict censorship policies
and advanced technologies, who explicitly blocks access to
www.facebook.com. The results of visiting the two domains
are presented in Figure 3a and Figure 3b.

Figure 3a shows an error page, which is because
we were unable to rewrite the Host header in Cloud-
flare. Therefore, the Host header stayed as Host: face-
book.cloudflare.domainshadowing.net when the re-
quest arrived at Facebook’s origin server, who did not rec-
ognize this header value and returned an error page. Never-
theless, the “Facebook © 2020” copyright mark at the bottom
of the page suggests we have successfully circumvented cen-
sorship and accessed Facebook’s server.

Figure 3b shows a more promising result, where the Face-
book login and sign-up section (only part of the page is dis-
played due to space limitation) were all successfully loaded
into the browser. The reason for the shabby layout is be-
cause many CSS style sheets were hosted on another domain
static.xx.fbcdn.net, which is also blocked and can not
be directly accessed by the browser.

3.4 Domain Fronting and Shadowing (DfDs)
Remind that domain fronting achieves censorship circumven-
tion by connecting to an allowed domain while setting the
Host header to be a prohibited one on the same CDN. By
doing this, domain fronting prevents the censor from knowing
the real front-end the user is requesting. Domain fronting’s
limitation lies in that it can only access domains that use the
same CDN on which the front domain is hosted.

On the contrary, domain shadowing achieves censorship
evasion by creating a domain binding on the CDN, and using
this binding to access a blocked domain that can be hosted
on any CDN, or even not using CDN at all. However, domain
shadowing must be operated “under the radar” of the censor,
because otherwise, it can be easily blocked by blocking access
to the shadow domain.

Interestingly, we find domain fronting and domain shadow-
ing each tackles one-half of the CDN operation, and thus can
be integrated to achieve a more robust blocking-resistance.
The scheme of corroborating domain fronting and shadowing,
namely the DfDs, is depicted in Figure 4.

To use DfDs, the user must choose a CDN that supports
domain fronting; however, it needs not to be the CDN that
hosts the target domain. Then, the user registers to this CDN
and creates a binding between the shadow domain and the
target domain. Lastly, the user selects a domain on this CDN
allowed by the censor and uses it as the front domain. Es-
sentially, in the DfDs setting, the front domain, the shadow
domain, and the target domain are three distinctive domains.

In order to access the target domain, the user will initiate an

User
CDN

edge server

Publisher
(target.com)

`

https://front.com

GET / HTTP/1.1
Host: shadow.com
...

https://target.com

GET / HTTP/1.1
Host: target.com
...

200 OK
...
//target_index_page

target.com/index.html
front.com/index.html

200 OK
...
//target_index_page

Censored

Figure 4: Domain fronting + Domain shadowing (DfDs).

HTTPS request to the front domain but set the Host header
to the shadow domain, such that the request can penetrate
censorship and reach the CDN. When the request arrives at
the CDN, the CDN forwards the request to the shadow domain
according to the Host header, follows the domain binding,
and sends the request to the target domain. On the reverse
path, the document returned from the target domain will be
repackaged into a response that appears to be replying to the
front domain, and stealthily returned to the user.

3.5 Enhanced DfDs (DfDs++)
We argue that DfDs already has strong resistance against most
censorship techniques. However, during our experiments, we
found a feature that can make DfDs even more stealthy. We
nickname it as DfDs++, i.e., the evolved version of DfDs.

In particular, we found that many CDNs do not check
the ownership of the front-end domain either. For instance,
in Fastly, it is possible to claim existing domains as the
front-end, as long as they have not been claimed by other
users. For instance, we have successfully set cmu.edu (the
domain of Carnegie Mellon University) as the front-end in
our account. The attempts to set other domains, such as ap-
ple.com or microsoft.com, were rejected with a notice that
these domains were “already taken by another customer”.
This may imply these domains have been claimed by other
users, or Fastly has blocklisted these domains from being
used. More interestingly, we found that even non-existent
domains are acceptable. For instance, we have successfully
set 5f4dcc3b5aa765d61d8327deb882cf99.com, the MD5
value of the word “password”, as the front-end in Fastly, and
connected it to www.facebook.com.

This feature implies that the user does not even need to
register a shadow domain to use DfDs++. The user can reg-
ister a CDN account and claim a random domain that has
not been claimed as the shadow domain and bind it with the
target domain. By doing this, the shadow domain only resides
within the scope of the CDN, and will not be known to the

public because it never existed.

4 Implementation

In the previous section, we have demonstrated how to use do-
main shadowing to send a single request to a blocked domain
within a censored area. However, a typical webpage nowadays
contains a number of subresources that are heavily interde-
pendent, which must be properly disentangled such that the
webpage can be properly displayed. In this section, we present
our experimental implementation of domain shadowing as a
Firefox extension based on Fastly’s service.

We begin this section by listing the major technical chal-
lenges encountered during the development, and then move
on to present the implemented system and show its capability.

4.1 Technical Challenges
4.1.1 Subresources from Multiple Domains

Nowadays, a webpage contains different types of subre-
sources, such as CSS style sheets, JavaScripts, and images,
which may be hosted on domains different from the main
document. Therefore, to properly display a web page, the
browser needs to access multiple domains that may also
be blocked. As a result, the user must create multiple do-
main bindings such that all the resources can be successfully
fetched. Depending on the specific target domain, the work-
load of this task may vary significantly. For instance, as we
have tested a few domains, a user’s Facebook front page only
contains resources from less than ten domains, while the
main page of cnn.com contains resources from more than
70 domains. However, the user does not need to register sep-
arate shadow domains for each target domain. Instead, the
user can use subdomains of a single shadow domain, e.g.,
using www.facebook.com.shadow.com as the front-end of
www.facebook.com.

The task of creating multiple domain bindings, fortunately,
can be fully automated using APIs or SDKs provided by
the CDN provider, which can be integrated into the browser
extension and reliefs the user from manual configurations.

4.1.2 CORS and CSP

A bigger hurdle that needs to be overcome is the sharing
of resources among different domains, i.e., cross-origin
resource sharing (CORS). Based on the same origin
policy (SOP) [5] enforced on modern browsers, a do-
main can use the Access-Control-Allow-Origin
(ACAO) response header to inform the browser of the
domains that can access its resources. For instance,
static.xx.fbcdn.net can allow www.facebook.com
to access its resources by including the response header
Access-Control-Allow-Origin: www.facebook.com.

However, since domain shadowing transforms these two
domains into static.xx.fbcdn.net.shadow.com and
www.facebook.com.shadow.com, the original ACAO header
value must be changed to Access-Control-Allow-Origin:
www.facebook.com.shadow.com instead. This task can be
handled by the browser extension, which can modify such
header values before the browser sees them.

Similar to the CORS issue, the Content-Security-
Policy is another response header that specifies certain do-
mains that can conduct cross-domain actions that bears se-
curity risks, such as allowing/disallowing the webpage being
framed. In order to enforce the same security policy when
domain shadowing is used, these domains must also be trans-
formed into the new domain with .shadow.com as the suffix,
which can be done by the browser extension similarly.

4.1.3 Cookie Management

Usually, cookies [4] are automatically managed by the
browser based on the domain of the visited URL. In the case of
domain shadowing, however, the browser is unable to manage
cookies correctly because of the domain name transforma-
tion. Instead, the cookie management must be handled by the
extension to set and read cross-domain cookies.

Specifically, an origin server sets cookies to a browser
by appending the Set-Cookie response header. The Set-
Cookie header contains an optional Domain field, if such field
is omitted, the cookie will be set to the host of the current
root domain; otherwise, the cookie will be set according to
the specified domain by the Domain field [10].

Assuming a Set-Cookie header is received from
a.com.shadow.com. If this header includes Domain=a.com,
the extension can directly set the cookie according to the
specified domain a.com; on the other hand, if the Domain
is unspecified, the extension must retrieve the host from the
current domain, i.e., a.com.shadow.com, remove the suffix
.shadow.com, and then set the cookie based on the original
domain. Similarly, when a request is sent, the extension will
intercept the request to a.com.shadow.com, and append the
correct cookie that belongs to a.com.

4.1.4 Limitations

In this section, we have listed a few major technical challenges
that we have encountered during our experiments. Essentially,
the root cause of all these issues is that the browser sees the
front domain or the shadow domain in the address bar, while
the web document is actually fetched from the target domain.
As demonstrated above, our main approach to address these
challenges is to let the browser extension make proper modifi-
cations before the document is processed and rendered by the
browser. These manipulations, however, may give rise to a
series of security risks, which will be discussed in Section 7.

We denote that the challenges listed here are only repre-
sentative major issues that are common across all webpage
loading, which are by no means comprehensive since the rela-
tionship among a webpage’s subresources heavily depends on
the specific implementation. We will open-source our imple-
mentation so non-typical issues can be identified and solved
by the community incrementally.

4.2 Domain Shadowing Automation
We implemented DfDs as a Firefox extension based on
Fastly’s CDN service. The extension automates procedures,
including setting the front and back-end and creating the Host
header rewriting rule. This extension hides the complex tasks
from the user: all that is required from the user is for them to
register for a Fastly account, obtain the API authentication
key and enter it into the extension.

4.2.1 Fastly’s Web APIs

Fastly provides comprehensive APIs [14] that can be used
by its customer to create new and configure existing services.
To use the web API, the user will send HTTP(S) requests to
Fastly’s entry point https://api.fastly.com, where the
POST, PUT and GET methods are used to create, modify, and
retrieve information of a specific configuration. Each request
must contain a Fastly-Key request header, which is a 32-
character token to identify and authenticate the user.

4.2.2 Automation of Domain Shadowing

Figure 5: Accessing Facebook using DfDs.

After enabled, the extension will intercept every request
issued by the browser, inspect the domain of the URL, and
create a new binding using the API if a domain is being visited
for the first time. The extension also keeps local storage of
the domains that have been configured such that repeating
requests will not trigger new bindings being created. Then,
the extension will modify the Host header (to shadow.com),

and redirect the request to either the front domain (if using
DfDs) or the shadow domain (if using Ds only).

As a case study, we selected www.forbes.com, a reputable
business news media, as the front domain, which uses Fastly’s
service and is accessible from the experimented country. We
use our registered domain domainshadowing.net as the
shadow domain and set www.facebook.com as the target do-
main. Figure 5 demonstrates the result of visiting the target
domain within the censored country. The figure shows that
the web page and all sub-resources have been appropriately
loaded by the browser. The cookies were also correctly han-
dled as the website has been successfully logged in. Note that
the address bar of the browser displays the front domain, i.e.,
www.forbes.com, instead of the target domain.

In the following three sections, we thoroughly discuss do-
main shadowing’s advantages and limitations. Our discus-
sion will focus on three aspects: usability, the convenient
level for an ordinary user to use domain shadowing; blocking-
resistance, domain shadowing’s strength in resisting existing
and future censorship techniques; and security impacts, the
security impact brought to the user, the CDN provider, and the
publisher, and possible approaches to minimize such impacts.

5 Usability

5.1 Possible Choice of CDN Providers
We choose six CDNs and discuss their possibility to be used
for domain shadowing. These CDNs include: Google Cloud
CDN, AWS Cloudfront, Microsoft Azure CDN, Fastly, Cloud-
flare, and StackPath (formally know as MaxCDN). We chose
these six CDNs because the first three are the most represen-
tative cloud service providers where CDN is provided as one
among many other services on their cloud platform, while
the last three are well-known CDN providers that take a con-
siderable share in North America’s CDN market [32]. This
shortlist is arguably insufficient and may be biased; however,
we denote that our main focus is to propose the idea of do-
main shadowing and demonstrate its viability. Furthermore,
because of their significant market share, we believe they are
reasonably representative of all other CDN services.

5.2 Technical Barrier
By and large, successfully deploying domain shadowing re-
quires the user to be able to install the browser extension
and properly configure the CDN. While extension installation
is intuitive, the complexity of CDN configuration varies. In
the following of this section, we discuss the technical barri-
ers exposed to the user by using the six CDNs for domain
shadowing.

Essentially, the operation of domain shadowing relies on
three tasks: setting the front-end domain, setting the back-end

Set front-end Set back-end Host rewriting

Cloud CDN 3(fixed IP) 3 3
Cloudfront 3(fixed subdomain) 3 3(default)
Azure CDN 3(fixed subdomain) 3 3(default)
Cloudflare 3 3 7(limited)
Fastly 3 3 3
StackPath 3 3 3

Table 1: CDN support of configuration automation.

domain, and rewriting the Host header. In Table 1, we survey
and present if a CDN supports API or SDK configuration of
these three tasks. If a task can be finished using API or SDK
rather than manually, it can be accomplished by the browser
extension and thus relieved from the user.

As shown in the table, all six CDNs provide API for such
configuration, while Google Cloud CDN and AWS Cloudfront
also provide SDK to further ease the task.

Setting front-end. We found that all three dedicated CDN
providers allow the user to directly set the front-end, but
the three cloud service providers act differently. Specifically,
Cloudfront and Azure CDN will assign a front-end to a user-
configured back-end, which is a subdomain of the provider’s
root domain and cannot be freely modified by the user, e.g.,
Azure CDN assigns facebook.azureedge.net where the
user can only rename the first section, and Cloudfront as-
signs a1jfp0jyfnb0xd.cloudfront.net where user can-
not change any section of the domain. On the other hand,
Google Cloud CDN directly generates an IP address to the
user-configured back-end. In such cases, the user does not
need to register a shadow domain, and can directly use the
CDN-assigned domain as the shadow domain instead.

Setting back-end. All six CDNs allow the user to freely set
any domain as the back-end domain.

Rewriting Host header. Cloudflare limits the Host rewrit-
ing function to enterprise-tier users only, making it an infeasi-
ble option for domain shadowing. All other five CDNs allow
Host rewriting. Furthermore, when a back-end domain is con-
figured by the user, Cloudfront and Azure will directly set the
Host header to be the back-end domain by default.

Bootstrapping effort. As discussed above, except for Cloud-
flare, domain shadowing can be automated on all other five
CDNs. However, before API/SDK can be used for such au-
tomation, the user must first log into the CDN account, allow
API/SKD operations, and create user credentials, which can
impose certain technical difficulties to an ordinary user. Such
tasks, on the other hand, are standardized and thus can be
well-documented for the user’s reference.

5.3 Accessibility and Cost

In Table 2, we list a few examples to compare the cost of
using CDNs and running an HTTP proxy hosted using Virtual
Private Services (VPS), which is another popular censorship
evasion solution. We divide Table 2 into two parts. In the

Provider CDN Cost VM-proxy Cost (US Easts region) Payment
Google - Ranging $0.08 - $0.20 per GB for the first 10 TB, de-

pending on the origin server’s location.
- $300 free credit newly registered account.

- VM hosting: $0.075462 per hour, 2 vCPU nd 8 GB memory.
- Network traffic: $0.12 per GB for 0 - 1 TB (excluding China
and Australia)

Card, PayPal.

AWS - Ranging $0.085 - $0.17 per GB for the first 10TB, de-
pending on the origin server’s location.
- 50GB free per month for the first year.

- VM hosting: $0.0047 per hour, 2 vCPU and 0.5 GB memory.
- Network traffic: First 1 GB free per month, $0.09 per GB for 1
GB - 10 TB.

Card.

Microsoft - Ranging $0.081 - $0.233 per GB for first the 10 TB,
depending on the origin server’s location.

- VM hosting: $0.0021 per hour, 1 vCPU and 0.5 GB memory.
- Network traffic: First 5 GB free per month, $0.085 per GB for
5GB - 1 TB.

Card.

Fastly - Free developer account without explicit data usage limit.
- Ranging $0.12 - $0.28 per GB for first 10TB, $50 minimal
per month. $50 credit newly registered account.

Not available. Card.

Stackpath - $10 per month for up to 1TB. Not available. Card, PayPal.

BelugaCDN - $5 for first 200GB, $0.0008 per GB overage. Not available. Card, Google Pay.
KeyCDN - $0.04 - $0.11 per GB for up to 10 TB. Not available. Card, PayPal.
CDNSun - $0.04 - $0.159 per GB. Not available. Card, PayPal, Wire Trans-

fer.
Accu Web
Hosting

Not available. - VM hosting: $5 per month, 1 vCPU and 1 GM memory.
- Network traffic: first 150 GB free, $2 per 50 GB overage.

Card, PayPal.

DreamHost Not available. - VM hosting: $15 per month, 1 GB memory, vCPU unspecified.
- Network traffic: unlimited.

Card.

Hostinger Not available. - VM hosting: $9.95 per month, 1 vCPU, 1 GM memory.
- Network traffic: 1 TB.

Card, PayPal, Google Pay,
Digital currency.

Table 2: Cost comparison of using CDN vs. using virtual hosting.

top part, i.e., the top 5 rows, we compare the more reputable
service providers.

As shown in the top part of Table 2, besides StackPath
that charges a fixed monthly fee, the other four CDNs charge
based on data usage, and the price of which varies depending
on the location of the origin server. Generally, servers located
in North America and Europe have the lowest charge, and
Asia has the highest, and the cost of domain shadowing will
be close to the lower boundary since many of the censored
websites, such as Facebook and Twitter, are based in North
America.

On the other hand, the cost of the VPS approach comprises
two parts: the cost to rent the service, and the cost to send and
receive data. The VPS renting charge varies depending on the
hardware configuration and we only demonstrate the price of
the lowest configuration in Table 2.

We are also aware that other than these reputable CDN
and VPS service providers, there are also many smaller scale
and less expensive options. In the bottom part of Table 2, i.e.,
the lower 6 rows, we compare the cost of using such smaller
scale service providers. Note that we were unable to conduct
a comprehensive comparison because there are many such
service providers on the Internet. Instead, we searched the
term “affordable VPS” and “affordable CDN” on Google, and
randomly selected three of each type from the first returned
page. We also denote that, for the three CDN providers, we
did not actually subscribe to their service and verify they
can be used for domain shadowing, mainly because they do
not offer free accounts and require up-front payment to use
their service (e.g., KeyCDN requires the user pay a minimum
amount of $50 to start using their service). However, we did
check their API documentation to ensure that all the actions
necessary for domain shadowing are supported through APIs.

In Figure 6, we visualized Table 2 and plotted the cost of
using these CDNs and VPSs. We set the data usage in the
figure to be 500 GB per month, which we believe is more than
enough for regular Internet users. From this figure, we can
observe that the cost of using domain shadowing is generally
comparable to that of using VPS.

Another barrier the user may encounter is the potential pay-
ment issue: the user in the censored country may not have a
valid western credit card to pay for a CDN service. To this end,
we also investigated the payment method accepted by all the
CDN and VPS service providers and listed them in the last col-
umn in Table 2. As shown by the table, all three smaller scale
CDNs accept either PayPal or Google Pay, giving the user the
option to pay the service with foreign currencies other than
U.S. dollars. Google, Amazon, and Microsoft, on the other
hand, provide services in many countries across the world
and accept different currencies by themselves. Furthermore,
it is also noteworthy that because domain shadowing does not
require the target domain and the shadow domain to be on
the same CDN, the user can freely choose any CDN, such as
local or regional ones that the user can easily subscribe to, as
long as it is accessible by the user and is not being censored.

5.4 Performance

Compared with directly visiting a website, domain shadowing
added two more steps into the procedure, which are: when a
domain is being visited for the first time, the user must create
a new domain binding at the CDN; after such binding has
been created, the browser will fetch a document from a CDN’s
edge server instead of from the origin server.

The time spent to create the domain binding varies among
CDN providers. During our experiment, we found that ded-

Figure 6: Monthly cost comparison of using CDN and Virtual
hosting for web browsing.

icated CDN providers, such as Fastly and StackPath, take a
shorter time (less than 10 seconds) to deploy newly created
binding, while Cloud service providers take longer (over 10
seconds but merely exceed 20 seconds). This may be the re-
sult of the complicated dependencies among different cloud
services on the cloud platform. For instance, the user must
also configure a load balancer on Google Cloud to cooperate
with the Cloud CDN service. This being considered, domain
shadowing is better suited for users with relatively steady
browsing habits, i.e., the user frequently visits the same web-
sites instead of always browsing new ones.

On the other hand, the time spent to fetch web documents
from the CDN could be even shorter than the time spent
fetching documents directly from the origin server, because
in the former case, the user will connect to a close-by edge
server, and then obtain the document via CDN’s high-speed
infrastructure. In order to validate our hypothesis, we compare
domain shadowing’s performance with other censorship cir-
cumvention tools, as well as directly fetching from the origin
server.

Our experiment includes two common and representative
censorship circumvention tools/techniques: Psiphone [36],
which is a popular free VPN service; and a TinyProxy [40],
a lightweight HTTP proxy application, which runs on an
Ubuntu instance hosted on AWS EC2. We configured Psi-
phone to connect to the “best performance” endpoint, and
created two instances (t3a.nano with 2 vCPU and 0.5 GB
memory, and t3a.2xlarge with 8 vCPU and 32 GB memory)
on the AWS’s datacenter region that is closest to us, to test the
impact of different hardware. We did not include Tor because
censorship circumvention is not its main purpose.

In the experiment, we evaluated the delay of fetching the
document tools.ietf.org/html/rfc2616 directly, using
domain shadowing based on the five CDNs, and the above-

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time in milliseconds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

directVisit
fastly
azure
google
cloudfront
stakepath
psiphon
t3a.nano
t3a.2xlarge

Figure 7: CDF of delays to fetch a web document using dif-
ferent methods.

mentioned censorship circumvention tools. We chose the RFC
2616 document without any particular reason but only because
it is a document that we access quite frequently, using which
can also achieve fairness since it is not served by any of the
5 CDN providers. The domain tools.ietf.org resolves to
three IP addresses, and during our experiment, we have made
sure all methods connect to the same IP 4.31.198.61 for
fairness. It is noteworthy that this IP address belongs to Level
3, an Internet Service Provider (ISP) that also provides CDN
services. Because we were unable to tell if the domain only
uses it as the ISP or also uses its CDN service, we are not
certain if all the methods are actually fetching the document
from the same physical server (could be from different edge
servers if Level 3 CDN are used). However, we argue this is a
typical and representative situation. Specifically, because of
the prevalent usage of web caches nowadays, it is very likely
that a target domain that the user wants to access has already
been served by some type of web caches (not necessarily a
CDN).

The experiment was conducted in our research lab located
in an uncensored country. We did not conduct the experiment
from a censored country because, first, we did not have access
to any vantage point in a censored country; second and more
importantly, even if we had such vantage points, the result
would not be more representative, because the delay of a web
request highly depends on the relative location of the user
and the web server, the infrastructure of the user and the web-
server’s ISPs, and the relationship between them. Therefore,
this experiment only demonstrates a “snapshot” of domain
shadowing’s performance relative to other methods.

Using each method, we fetched the document 200 times and
recorded the delay of each request. We disabled the caching
function for all the CDNs so each request would reach the
origin server. We also throttled the request rate to avoid over-
whelming the origin server. In Figure 7, we demonstrate the
CDF plot of the delays of each method. As shown, all the
five CDNs beat directly fetching the document, where Azure,
Fastly, and StackPath cost only less than half of the delay. The

behavior of Google Cloud CDN is a bit strange, and we reckon
this may be caused by our request being sent to two different
edge servers due to load balancing, which takes an obviously
different time to obtain the document. We can also find the
Psiphon case converges slowly, indicating the delay distri-
bution is less concentrated. Lastly, user-configured HTTP(S)
proxy still underperforms compared to domain shadowing,
even runs on powerful hardware (the t3a.2xlarge instance).

5.5 Reliability and Trustworthiness

In this paper, we view the CDN as a trusted infrastructure
rather than a third-party that actively participates in the opera-
tion, who will not intercept, inspect, and react to, users’ traffic.
However, it is noteworthy to point out that the CDN is at the
vantage point of intercepting all the users’ traffic, including
HTTPS connections. Therefore, a malicious CDN is able to
inspect and tamper with the traffic between the user and the
target domain without being identified. In the case of an un-
trusted CDN, the user can use domain shadowing as a tunnel
to evade censorship and add extra-layers to achieve privacy
and security. For instance, the user can set the back-end to
be a Tor bridge and encrypt all the traffic exchanged between
the user and the bridge, making the CDN unable to see any
plain text, which is similar to the current implementation of
Tor Meek [34].

5.6 Summary

In this section, we have discussed the usability of domain
shadowing from various perspectives. To summarize, domain
shadowing may not be a censorship evasion solution for all
censored users. The use of domain shadowing requires the
user to have reasonable knowledge of domain and CDN ac-
count registering and the capability to afford a certain amount
of charge, possibly in foreign currencies. On the other hand,
for those users who fulfill these requirements, they can enjoy
all the benefits such as being able to visit any websites with
better delay performance than many other solutions.

6 Blocking-Resistance

This section discusses domain shadowing’s blocking-
resistance from two aspects: how can it resist existing censor-
ship techniques, and how can it stay ahead of the potential
arm-race once it is publicly known.

6.1 Against Existing Censorship Techniques

6.1.1 DNS Interference

When being used alone, domain shadowing is susceptible to
DNS interference once the censor knows the shadow domain.

Therefore, domain shadowing is more suitable to be used pri-
vately by the user, such that the shadow domain stays “under
the radar” of the censor.

6.1.2 Active HTTPS Probing

In the case of an aggressive censor, however, privately using
the shadow domain may still be insufficient. For instance, a
censor may “traceback” to unknown HTTPS traffic, i.e., if the
censor sees HTTPS traffic that connects to an unknown do-
main, it may send requests to the domain by itself and inspect
the response. To resist such aggressive censors, the user can
add a simple credential to authenticate himself/herself. For
instance, the user can specify a rule at the CDN that only if a
specific custom header presents in the request, the CDN will
fetch the document from the target domain; otherwise, the
CDN will connect to an allowed domain instead, or simply
does not respond at all. The user can communicate with the
CDN by appending the header, while the censor is unable to
get the same response without such knowledge.

6.1.3 IP Blocking

Domain shadowing’s resilience against IP blocking is even
more potent than that of domain fronting. Specifically, in the
case of domain fronting, if the blocking of a particular domain
is of paramount significance to the censor, the censor can still
choose to completely block access to the specific CDN that
hosts that domain. In the case of domain shadowing, however,
in order to block access to a domain, the censor must block
access to all CDNs that allow domain shadowing, resulting
in much more significant collateral damage compared with
domain fronting.

6.1.4 Deep Packet Inspection

Deep packet inspection relies on the censor being able to
inspect the content of the packets transmitted between the
user and the edge server, and it is safe to assume domain
shadowing is not susceptible to DPI unless the censor is strong
enough to break HTTPS. Note that in this paper, we assume
direct connections between the user and the CDN, and do not
consider the cases where the censor applies middleboxes to
intercept HTTPS connections [11].

6.2 Potential Moves by the CDN
It is likely that once being publicly known, domain shadowing
will face the same fate as domain fronting, i.e., the CDN
provider may receive pressure from the censor to disable
it. We hereby discuss possible moves taken by the CDN to
disable domain shadowing.

Essentially, domain shadowing’s success relies on the fol-
lowing three indispensable steps: setting the front-end, setting
the back-end, and rewriting the Host header. Among the three,

the CDN is unlikely to put any limitation on the front-end
besides disabling DfDs++, since the front-end is legitimately
owned by the user. In the following subsections, we will fo-
cus on discussing possible moves a CDN may take on the
back-end and the Host header.

6.2.1 Limiting the Back-end Domain

Technically, the CDN can limit the user to set an arbitrary
domain as the back-end to disable domain shadowing. Such a
move, however, comes with considerable damage to the CDN
itself for the following reasons.

First of all, CDN provides name translation services similar
to the DNS. In a DNS CNAME record, the owner of the
domain example.com can freely set this domain to be the
alias of any other domain. For instance, the owner can create
CNAME records such as:
CNAME example.com www.facebook.com,

such that a request sent to example.com will be resolved to
www.facebook.com. The name server has neither interest nor
capability to verify the relationship between the two domains.
To this end, the CDN should also follow the same logic and
allow arbitrary back-end domains.

In fact, the open back-end is an indispensable feature that
the CDN (and a DNS name server) must allow. In today’s
world wide web (WWW), it is very common for a website
to outsource part of its service to a third-party. One typi-
cal example is customer service. For instance, the website
example.com wants to outsource its customer service, such
as creating and handling service tickets, to the third-party
service provider Zendesk [50]. For this to work, Zendesk
will create a custom domain, example.zendesk.com, as the
entry point to handle example.com’s customer service re-
quest. In the meanwhile, example.com will create a sub-
domain customer-service.example.com and point it to
example.zendesk.com using a CNAME record [50]. As a
result, a customer will enjoy the customer service provided by
Zendesk while perceiving that they stay on the example.com
domain. Therefore, a CDN should allow a user to set a back-
end domain that they do not own.

An alternative option for the CDN is to verify the “legiti-
macy” of the back-end usage, which, however, is laborious
at best, because such verification may require both exam-
ple.com and zendesk.com to submit certain types of proof,
which may lower the CDN’s customers’ satisfaction and neg-
atively impact its business.

Another solution could be for the CDN to disallow “pop-
ular” websites, such as www.facebook.com, being set as the
back-end. This, however, is also problematic. For the first, the
definition of “popularity” is vague. While high-profile web-
sites such as Facebook and Twitter are undoubtedly popular,
these may not be the websites that the censored user wants
to visit. For the second, such limitation is not impossible to
bypass. For example, if the CDN only use keyword-filtering

of the back-end, the user may create a public CNAME:
CNAME fb.example.com www.facebook.com,

and set fb.example.com as the back-end instead. The CDN
is unable to find it unless it stretches further to inspect the
DNS resolution result.

6.2.2 Limiting the Host Header Rewriting

Like the previous case, the rewriting of the Host header is
also an indispensable feature to a CDN that can not be simply
disabled. Some cloud services, such as AWS S3 bucket, expect
a specific format of the Host header of the incoming request,
i.e., <bucket-id>.s3.amazonzws.com. Therefore, if a user
uses CDN to connect the domain example.com to an S3
bucket [16], the Host header must be rewritten to the proper
format such that the request can be served.

A possible move for the CDN could be to limit the Host
rewriting function available only to a certain level of users,
as adopted by Cloudflare (only available to enterprise users).
However, such a move will affect all the CDN’s existing cus-
tomers and also negatively affect its business.

6.2.3 Anomaly Detection

Another move of the CDN could be monitoring all its users’
account activity to detect “abnormal” actions, such as more
than usual API requests, or an extraordinary number of do-
main bindings. Such “anomaly detection”, however, is also
possible to circumvent. An intuitive countermeasure could
be splitting such activities among multiple CDN accounts to
bring these metrics back to “normal”.

To summarize, we denote that domain shadowing is fun-
damentally different from domain fronting. The operation of
domain fronting is based on an untightened implementation:
the CDN does not check the consistency between the SNI
and the Host header. Therefore, a CDN can easily disable
domain fronting by enforcing the match, and such action does
not bring much damage to the CDN itself. On the other hand,
domain shadowing utilized a legitimate feature of the CDN,
and any change of this feature will result in considerable nega-
tive impacts to the CDN’s business. Thus, a CDN must weigh
these factors when facing pressure from a censor.

6.3 Potential Moves by the Censor

In general, the censor can detect an evasion based on three
traces: what the user talks about (content), whom the user
talks to (destination), and how the user talks (behavior). Since
access to the CDN is allowed and HTTPS is used, the censor
is unable to infer information using the first two approaches.
The behavior-based approach, however, is not as unreliable.
We discuss possible techniques in the following subsections.

6.3.1 Website Fingerprinting

Website Fingerprinting [6, 7, 12] is a new censorship tech-
nique, which relies on inspecting the traffic pattern, such as
the number and size of packets sent/received by a user, rather
than the content, to identify suspicious activities. To generate
the fingerprint of a webpage, the censor first needs to identify
the packets that belong to a single webpage browsing activity.
This task can usually be done with common traffic analysis
techniques, such as grouping packets which belong to one
TCP session/port or a single IP address.

To evade website fingerprinting, the user can split requests
and send them to multiple shadow domains. Using Ds, the
user will need to use multiple shadow domains, for instance,
shadow1.com and shadow2.com, and let both binds to the
same target domain. To be more stealthy, these shadow do-
mains can be configured on different CDNs. Using DfDs or
DfDs++, the user only needs to find multiple front domains to
split the requests while setting the Host header of all requests
to the same shadow domain. In both cases, because these
requests are destined to different domains and even different
CDNs, it will be difficult, if not impossible, for the censor
to group packets that belong to one webpage browsing and
generate valid fingerprints.

6.3.2 Anomaly Detection

The censor may also monitor a user’s activity to detect anoma-
lies. For example, the censor may find the user communi-
cates with a CDN’s API entry point with higher-than-usual
frequency, or the user is always visiting a single (front or
shadow) domain. Such anomaly detection, however, is fragile
and mostly possible to bypass. For instance, the user may
choose to communicate with the API entry point less fre-
quently, willingly sacrificing usability to trade for stealthiness.
The user can also use domain fronting or domain shadowing
to hide the communication to the API entry point. The user
can also register multiple shadow domains, choose multiple
front domains, and even use multiple CDNs to “normalize”
the “abnormal” behavior.

6.3.3 Completely Blocking a CDN

Although unlikely, it is still possible for the censor to com-
pletely block access to a CDN if the blockage of a domain on
this CDN outweighs the benefit of allowing all other domains
on the same CDN, especially if the CDN is smaller and bears
less collateral damage. However, we argue that blocking any
particular CDN, regardless of being large or small, will not
disable domain shadowing, since the user can easily switch to
other CDNs that still allows domain shadowing. Essentially,
domain shadowing cannot be blocked unless the censor is
willing to block access to all the CDNs that allow it.

6.4 Ethical Considerations
Seemingly, domain shadowing is a “hack” on CDNs that
may be detrimental to the CDN or the publisher. In fact, the
damage, if any, is more operational than technical.

Technically, domain shadowing uses a legitimate feature
essential for CDN operation, which does not incur material
damage to the CDN other than bringing unintended traffic. In
fact, we found this fact was disclosed to major CDN providers
back in 2018 by [21]. For the publisher, using CDN to fetch a
web document from its origin server has no difference from
doing the same via a VPN endpoint or an HTTP proxy.

Operationally, however, a CDN that is knowingly support-
ing domain shadowing may face pressure from the censor,
which may negatively impact its business, similar to what has
happened to domain fronting. Moreover, since CDN inter-
cepts the HTTPS traffic between the user and the publisher,
a malicious CDN may passively spy or actively tamper such
traffic and cause damage to both the user and the publisher.
Therefore, we deem the user should be informed of this risk
prior to using domain shadowing to transmit sensitive data.

7 Security Impacts

This section discusses domain shadowing’s security impacts
to the CDN, the publisher, and the user.

7.1 The Open Front-end and Back-end
At first glance, domain shadowing uses the open back-end
to “impersonate” the target domain and modify its content
on the fly, which may negatively impact the target domain,
such as phishing or defamation. However, we emphasize the
operation of domain shadowing requires the cooperation be-
tween the browser extension and the CDN. For example, if a
user directly visits facebook.com.shadow.com without the
extension , they will likely see partially-displayed webpage
(due to CORS) and broken session handling (due to cookies
not being properly handled). Therefore, domain shadowing is
infeasible for malicious purposes such as setting a phishing
website.

Furthermore, while it is possible to use domain shadowing
to impersonate a static webpage, such impact is brought by
the Internet’s open nature and would still exist without using
CDNs. For instance, a simple CNAME record:
CNAME example.com www.facebook.com

will let a user enter example.com in the address bar but be pre-
sented with the content from www.facebook.com. To modify
the content on-the-fly, the owner of example.com can run a
proxy server instead of a web server, which relays the requests
(sent to example.com) to www.facebook.com. To this end,
there are many websites that explicitly provide this so-called
“website rehosting” service. We discuss more details of web
rehosting and related security issues later in this section.

Regarding the open front-end (which is used by DfDs++),
we are unable to see any benefit for a CDN to allow a user
to set an arbitrary domain as the front-end. Therefore, we
reckon it is an untightened implementation similar to domain
fronting. On the other hand, however, this implementation
does not incur any security impact to the CDN or the public.
Using Fastly as an example, assuming the domain a.com
does not use Fastly’s service, but a user claims a.com as
the front-end in Fastly. Because a.com’s owner controls its
name server, a regular HTTP(S) request to a.com will be
resolved to the IP address of a.com’s actual origin server
instead of a Fastly’s edge server. Therefore, under normal
cases, an HTTP(S) request with Host: a.com will not reach
Fastly’s edge server at all, and this configured front-end will
never receive any request.

7.2 Manipulation of the SOP and Cookies
Compared to the CDN and the publisher, the user is more
likely to suffer from security risks because domain shad-
owing completely disturbs the established same-origin pol-
icy. Similar security issues have been comprehensively dis-
cussed in [47], where the authors studied the website re-
hosting services and discovered many practical security is-
sues. Web rehosting services allow a user to access a do-
main by visiting the rehosting service provider’s domain.
For instance, assuming the rehosting service provider’s do-
main is rehosting.com, a user can access Facebook via vis-
iting rehosting.com?url=https://www.facebook.com.
And a malicious website, say evil.com, when being
visited by the same rehosting service, i.e., rehost-
ing.com?url=https://evil.com, will be able to access
credentials of all other sites because they all belong to the
same origin. The authors of [47] identified five attack vectors
regarding the rehosting service, and we list them below.

To facilitate the following illustration, we refer the websites
rehosting.com?url=https://example.com and rehost-
ing.com?url=https://evil.com as the victim site and ma-
licious site, respectively.

Persistent Man-in-the-Middle: where the malicious site can
register a service worker [48] in the user’s browser and use it
to intercept the traffic of the entire domain rehosting.com,
including the victim site.

Privilege Abuse: where the privileges that have been
granted to the victim site, such as accessing the user’s loca-
tion, can be accessed by the malicious site since they belong
to the same origin.

Credential Theft: where the malicious site can exploit the
auto-fill feature of the browser’s password manager to steal
the user name and password saved for the victim site.

History Theft: where the malicious site can use the local-
Storage API to access the local data stored by the victim site,
and based on which to infer the user’s browsing history.

Session Hijacking and Injection: where the malicious web-

site can access the cookies set by the victim website and
hijack the user’s session.

And finally, although not mentioned in [47], the CSRF
attacks [33] can also be a practical threat: if both websites
are transformed to be under the same origin, conventional
countermeasures such as CSRF token is no longer effective.

Domain shadowing by itself is not susceptible to any of
the above attacks, because when being used alone, two target
domains stay to be two separate domains even after being
transformed, such as static.xx.fbcdn.net.shadow.com
and facebook.com.shadow.com. Therefore, if one target
domain does not allow access from another target domain,
such restriction is still enforced by the browser for these two
shadow domains. On the other hand, since DfDs and DfDs++
transforms all target domains into a single front/shadow do-
main, they are susceptible to all of the above attacks but the
session hijacking (since the cookie is handled by the extension,
a malicious webpage cannot access cross-domain cookies).

Persistent MITM and credential theft can be prevented
by using the private browsing mode (on Firefox and Edge
[47]) since service worker and password manager are disabled.
LocalStroage is also deleted on closing the browser. However,
to the best of our knowledge, the privilege abuse and the plain
CSRF attack can not be prevented. Therefore, the user of
DfDs and DfDs++ must be informed of the potential risks
and be judicious to choose the website to visit.

A better solution that can eradicate all these security risks
and address all the technical challenges in Section 4.1 is to
“deceive” the browser. Specifically, we can let the browser
“perceive” it is communicating with the target domain, but
after a request is processed by the browser, we intercept and
redirect it to the front or shadow domainbut instead. Essen-
tially, this technique uses Ds as a tunnel rather than directly
loading the target domain “as” the shadow domain. Such func-
tions, based on our knowledge, is beyond the capability of a
browser extension, which necessitates a heavily customized
browser, and we denote this as one of our future directions.

8 Related Works

We discuss and compare other common censorship evasion
techniques in this section.

1. Proxy-based Evasion Systems. A very common censor-
ship evasion technique is running a proxy outside the cen-
sored area to relay the traffic between the censored user and
the prohibited websites. Typical examples of proxy-based
systems include virtual private network (VPN) [29, 31, 42],
Phiphon [36], Tor [35], and HTTP/HTTPS proxies [45]. Most
proxy-based systems, however, use static IPs, which can be
trivially blocked once the IP is known by the censor. The
user can also self-run a proxy server on a cloud service and
leverage the cloud service’s dynamic IP address. An obvious
downside of this approach is the user must have an always-
running instance to host the proxy, which incurs higher costs

as well as maintenance complexity, as shown in Table 2.
The use of third-party proxies also incurs trust issues. Be-

cause many proxies are privately run, their configurations are
not transparent to the user. Therefore, although the connection
between the user and the proxy is secured, the user can not
prevent the proxy from intercepting or tampering with the
data exchanged between the user and the proxy [41, 49]. On
the other hand, although the CDN can intercept users’ HTTPS
connections and is theoretically more dangerous, many CDN
services are provide by reputable cloud service providers,
such as Google, Amazon, and Microsoft, and thus we deem
CDNs are relatively more trustworthy than small proxies.

2. CDN Browser. Amir Houmansadr, et al. also studied
leveraging CDNs for censorship evasion and proposed a tool
named the CDN browser [23, 52], where the authors found if
the user knows the IP address of an edge server located outside
of the censored area, they can skip the DNS query step and
directly send HTTPS requests to this IP address, and use the
Host header to indicate the domain. Because edge servers’ IP
addresses are usually dynamic and frequently changing, block-
ing CDN browser will result in the same collateral damage as
domain fronting. However, the CDN browser’s implementa-
tion requires the user to locally host a DNS server, which is
beyond an ordinary user’s skillset. Further, it is still possible
to block CDN browser: the censor or the CDN can block an
HTTPS connections that do not have a valid domain name,
but only an IP address, as the SNI [9].

3. Protocol Tunneling. There are also several works that
propose to tunnel traffic using protocols designed for other
purposes. For instance, Sweet [51] proposes to encapsulate
HTTP traffic inside email messages, while Castle [22] and
Rook [44] attempt to use online games as a cover to tunnel se-
cret traffic. These implementations usually suffer from lower
QoS due to the overhead incurred by protocol translation.

9 Conclusion

In this paper, we proposed domain shadowing, a novel tech-
nique leveraging CDNs for censorship evasion. We demon-
strated that domain shadowing is an effective technique that
can resist most known censorship techniques, and is difficult
to disable. We implemented domain shadowing as a Firefox
extension based on Fastly’s service and demonstrated its capa-
bility. Further, we thoroughly discussed domain shadowing’s
benefits and limitations, and envisioned its future moves. Our
work paves the way for a fully-fledged censorship evasion
system based on this novel technique.

References

[1] Giuseppe Aceto and Antonio Pescapé. Internet censor-
ship detection: A survey. Computer Networks, 83:381–
421, 2015.

[2] Amazon. Enhanced domain protections for amazon
cloudfront requests. https://aws.amazon.com/blo
gs/security/enhanced-domain-protections-fo
r-amazon-cloudfront-requests/, 2020.

[3] Arstechnica. Google disables domain fronting capability
used to evade censors. https://arstechnica.com/
information-technology/2018/04/google-disa
bles-domain-fronting-capability-used-to-ev
ade-censors/, 2020.

[4] Adam Barth. Http state management mechanism. 2011.

[5] Adam Barth, Collin Jackson, and Ian Hickson. The web
origin concept. Technical report, RFC 6454, December,
2011.

[6] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A systematic approach to develop-
ing and evaluating website fingerprinting defenses. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 227–
238, 2014.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website fingerprint-
ing attacks and defenses. In Proceedings of the 2012
ACM conference on Computer and communications se-
curity, pages 605–616, 2012.

[8] Cloudflare. Cloudflare. https://www.cloudflare.c
om/, 2020.

[9] Cloudflare. Error 1003 access denied: Direct ip access
not allowed. https://support.cloudflare.com/h
c/en-us/articles/360029779472-Troubleshoot
ing-Cloudflare-1XXX-errors#error1003, 2020.

[10] MDN Web Docs. Set-cookie. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Se
t-Cookie, 2020.

[11] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In NDSS, 2017.

[12] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In 2012
IEEE symposium on security and privacy, pages 332–
346. IEEE, 2012.

[13] Donald Eastlake et al. Transport layer security (tls)
extensions: Extension definitions. Technical report, RFC
6066, January, 2011.

[14] Fastly. Api reference. https://developer.fastly
.com/reference/api/, 2020.

https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://www.cloudflare.com/
https://www.cloudflare.com/
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://support.cloudflare.com/hc/en-us/articles/360029779472-Troubleshooting-Cloudflare-1XXX-errors#error1003
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.fastly.com/reference/api/
https://developer.fastly.com/reference/api/

[15] Fastly. Fastly. https://www.fastly.com/, 2020.

[16] Fastly. Specifying an override host. https://docs.f
astly.com/en/guides/specifying-an-override
-host, 2020.

[17] R Fielding, Mark Nottingham, and J Reschke. Hypertext
transfer protocol (http/1.1): Caching. IETF standardiza-
tion, RFC 7234, 2014.

[18] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Proceedings on Privacy En-
hancing Technologies, 2015(2):46–64, 2015.

[19] GoDaddy. Godaddy. https://aws.amazon.com/clo
udfront/, 2020.

[20] Luigi Grimaudo, Marco Mellia, Elena Baralis, and Ram
Keralapura. Select: Self-learning classifier for internet
traffic. IEEE Transactions on Network and Service
Management, 11(2):144–157, 2014.

[21] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Haixin Duan, Tao Wan, Jian Jiang, Shuang Hao,
and Yaoqi Jia. Abusing cdns for fun and profit: Security
issues in cdns’ origin validation. In 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS),
pages 1–10. IEEE, 2018.

[22] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and
Rob Johnson. Games without frontiers: Investigating
video games as a covert channel. In 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 63–77. IEEE, 2016.

[23] John Holowczak and Amir Houmansadr. Cachebrowser:
Bypassing chinese censorship without proxies using
cached content. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 70–83, 2015.

[24] Lantern. lantern. https://lantern.io/, 2020.

[25] Christopher S Leberknight, Mung Chiang, Harold Vin-
cent Poor, and Felix Wong. A taxonomy of internet
censorship and anti-censorship. In Fifth International
Conference on Fun with Algorithms, 2010.

[26] Philip Levis. The collateral damage of internet censor-
ship by dns injection. ACM SIGCOMM CCR, 42(3),
2012.

[27] Marketsandmarkets. Content delivery network market
global forecast to 2024. https://www.marketsandma
rkets.com/Market-Reports/content-delivery-
networks-cdn-market-657.html, 2020.

[28] Mybroadband.co.za. How telegram and signal used
domain fronting to beat censors. https://mybroadb
and.co.za/news/security/259019-how-telegra
m-and-signal-used-domain-fronting-to-beat-
censors.html, 2020.

[29] Daiyuu Nobori and Yasushi Shinjo. Vpn gate: A
volunteer-organized public vpn relay system with block-
ing resistance for bypassing government censorship fire-
walls. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation NSDI 14, pages 229–
241, 2014.

[30] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun.
The akamai network: a platform for high-performance
internet applications. ACM SIGOPS Operating Systems
Review, 2010.

[31] Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed
Haddadi, and Alessandro Mei. A glance through the vpn
looking glass: Ipv6 leakage and dns hijacking in com-
mercial vpn clients. Proceedings on Privacy Enhancing
Technologies, 2015(1):77–91, 2015.

[32] CDN Planet. Content delivery networks. https://ww
w.cdnplanet.com/cdns/, 2020.

[33] PortSwigger. Cross-site request forgery (csrf). https:
//portswigger.net/web-security/csrf, 2020.

[34] Tor Project. Tor meek. https://trac.torproject.
org/projects/tor/wiki/doc/meek, 2020.

[35] Tor Project. Tor project. https://www.torproject
.org/, 2020.

[36] Psiphon. Psiphon. https://psiphon.ca/, 2020.

[37] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[38] Signal. A letter from amazon. https://signal.org
/blog/looking-back-on-the-front/, 2020.

[39] Stackpath. Stackpath maxcdn. https://www.stackp
ath.com/maxcdn/, 2020.

[40] Tinyproxy. Tinyproxy. http://tinyproxy.github
.io/, 2020.

[41] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis,
Elias Athanasopoulos, and Michalis Polychronakis. A
large-scale analysis of content modification by open http
proxies. In NDSS, 2018.

[42] Ramachandran Venkateswaran. Virtual private networks.
IEEE potentials, 20(1):11–15, 2001.

https://www.fastly.com/
https://docs.fastly.com/en/guides/specifying-an-override-host
https://docs.fastly.com/en/guides/specifying-an-override-host
https://docs.fastly.com/en/guides/specifying-an-override-host
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://lantern.io/
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://www.marketsandmarkets.com/Market-Reports/content-delivery-networks-cdn-market-657.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://mybroadband.co.za/news/security/259019-how-telegram-and-signal-used-domain-fronting-to-beat-censors.html
https://www.cdnplanet.com/cdns/
https://www.cdnplanet.com/cdns/
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/csrf
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://www.torproject.org/
https://www.torproject.org/
https://psiphon.ca/
https://signal.org/blog/looking-back-on-the-front/
https://signal.org/blog/looking-back-on-the-front/
https://www.stackpath.com/maxcdn/
https://www.stackpath.com/maxcdn/
http://tinyproxy.github.io/
http://tinyproxy.github.io/

[43] John-Paul Verkamp and Minaxi Gupta. Inferring me-
chanics of web censorship around the world. In FOCI,
2012.

[44] Paul Vines and Tadayoshi Kohno. Rook: Using video
games as a low-bandwidth censorship resistant commu-
nication platform. In Proceedings of the 14th ACM
Workshop on Privacy in the Electronic Society, pages
75–84, 2015.

[45] VPNmentor. Best proxy services of 2020. https://
www.vpnmentor.com/blog/top-proxy-services/,
2020.

[46] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V Krishnamurthy. Your state is not mine:
a closer look at evading stateful internet censorship. In
Proceedings of the 2017 ACM IMC, pages 114–127,
2017.

[47] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and
Tatsuya Mori. Melting pot of origins: Compromising
the intermediary web services that rehost websites. In
Proceedings of the Network and Distributed System Se-
curity Symposium, 2020.

[48] MDN web docs. Service worker api. https://develo
per.mozilla.org/en-US/docs/Web/API/Service
_Worker_API, 2020.

[49] Philipp Winter, Richard Kower, Martin Mulazzani,
Markus Huber, Sebastian Schrittwieser, Stefan Lind-
skog, and Edgar Weippl. Spoiled onions: Exposing
malicious tor exit relays. In International Symposium
on Privacy Enhancing Technologies Symposium, pages
304–331. Springer, 2014.

[50] zendesk. Host mapping - changing the url of your help
center. https://support.zendesk.com/hc/en-us
/articles/203664356-Host-mapping-Changing-
the-URL-of-your-Help-Center, 2020.

[51] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar,
and Nikita Borisov. Sweet: Serving the web by exploit-
ing email tunnels. arXiv preprint arXiv:1211.3191, 13,
2012.

[52] Hadi Zolfaghari and Amir Houmansadr. Practical cen-
sorship evasion leveraging content delivery networks. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1715–
1726, 2016.

https://www.vpnmentor.com/blog/top-proxy-services/
https://www.vpnmentor.com/blog/top-proxy-services/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center
https://support.zendesk.com/hc/en-us/articles/203664356-Host-mapping-Changing-the-URL-of-your-Help-Center

	Introduction
	Background
	Internet Censorship Techniques
	Content Delivery Network
	The Rise and Fall of Domain Fronting

	Domain Shadowing
	Threat Model
	Roles
	Terminologies
	Objective

	How does CDN Resolve Domain Names
	Domain Shadowing (Ds)
	Domain Fronting and Shadowing (DfDs)
	Enhanced DfDs (DfDs++)

	Implementation
	Technical Challenges
	Subresources from Multiple Domains
	CORS and CSP
	Cookie Management
	Limitations

	Domain Shadowing Automation
	Fastly's Web APIs
	Automation of Domain Shadowing

	Usability
	Possible Choice of CDN Providers
	Technical Barrier
	Accessibility and Cost
	Performance
	Reliability and Trustworthiness
	Summary

	Blocking-Resistance
	Against Existing Censorship Techniques
	DNS Interference
	Active HTTPS Probing
	IP Blocking
	Deep Packet Inspection

	Potential Moves by the CDN
	Limiting the Back-end Domain
	Limiting the Host Header Rewriting
	Anomaly Detection

	Potential Moves by the Censor
	Website Fingerprinting
	Anomaly Detection
	Completely Blocking a CDN

	Ethical Considerations

	Security Impacts
	The Open Front-end and Back-end
	Manipulation of the SOP and Cookies

	Related Works
	Conclusion

