
CacheLoc: Leveraging CDN Edge Servers for
User Geolocation

Mingkui Wei1[0000−0003−3606−3428], Khaled Rabieh2[0000−0003−2828−6971], and
Faisal Kaleem2[0000−0001−6780−1759]

1 Cyber Forensics Intelligent Center, Computer Science,
Sam Houston State University, Huntsville, TX

2 Computer Science and Cybersecurity,
Metropolitan State University, Saint Paul, MN

Abstract. In nowadays’ Internet, websites rely more and more on ob-
taining users’ geolocation to provide customized services. However, be-
sides Internet giants such as Google, who retains a large amount of de-
tailed user information, most websites still rely on IP addresses for user
geolocation, which is proven inaccurate and misleading by existing stud-
ies. In this paper, we propose a novel approach, namely CacheLoc, for
coarse-grained user geolocation leveraging widely-deployed content de-
livery networks (CDNs). This work is motivated by the fact that CDN
providers deploy a number of edge servers that are geographically dis-
tributed across the world. Many of these edge servers are assigned with
unique identifiers that are tied to their location, which can be easily
retrieved by inspecting HTTP responses headers served by these edge
servers. As a result, a website can infer coarse-grained user location by
asking a user to send an HTTP request to an arbitrary domain that
is known being served by a CDN, and inspecting the corresponding re-
sponses. To evaluate the usability and accuracy of the cache-based user
geolocation, we conducted practical experiments based on a commercial
VPN with over 160 endpoints distributed in 94 countries. Our experi-
ments demonstrate that cache-based geolocation can achieve at least ac-
curate country-level granularity in the regions where CDN edge servers
are densely deployed. Our work sheds light on a novel light-weight and
self-contained user geolocation solution.

Keywords: Content delivery networks; User Geolocation.

1 Introduction

Websites in today’s Internet rely more and more on obtaining users’ geolocation
to provide customized services, such as regional campaigns or promotional activ-
ities. Currently, the primary method to obtain a user’s location is based on the
user’s IP address, to which there are two major approaches. The first approach
is to directly obtain the user’s IP address, and search it against known databases
such as IP2Location [1] and Whois [2]. And the second approach is to leverage
web APIs provided by Internet giants such as Google, who maintains substantial

2 Authors Suppressed Due to Excessive Length

user information collected via multiple means (WiFi war-driving [3], for exam-
ple). Both approaches, however, have their shortages. For the former IP-based
user geolocation, the major issues lie in the lack of official ground truth to val-
idate the correctness and accuracy of existing databases. It has been found by
existing studies that for the same IP address, the distance between the locations
obtained from two different databases can be as large as 800Km [4]. The API-
based approach, one the other hand, can obtain very accurate results. However,
modern browsers have built-in mechanisms to block such APIs from operating.
For instance, Google’s geolocation API [5] will trigger a pop-up window asking
the user’s permission to explicitly allow his/her location to be shared with the
website he is visiting. As Internet users’ concern regarding their privacy is daily
increasing, more likely than not, the user is going to block such location requests
unless there are legitimate reasons to allow them.

In this paper, we propose a novel approach for user geolocation by leveraging
the popularly used content delivery networks (CDNs). The new cache-based
geolocation, namely the CacheLoc, is motivated by the fact that CDN providers
deploy a large number of edge servers geographically distributed. Many of these
edge servers are assigned with unique identifiers that are tied to their geolocation,
which can be easily retrieved from HTTP responses served by these edge servers.
By asking a client to issue a regular HTTP request to a domain that is served
by CDNs and inspect corresponding response headers, a website can infer the
location of the user who is currently visiting it. Such cache-based geolocation,
although coarse-grained, can be sufficient for purposes such as regional campaign
or advertisement. Furthermore, it can be used as a side-channel knowledge to
cross-validate the results obtained from conventional IP-based geolocations.

Compared to conventional IP-based user geolocation, the cache-based ap-
proach has the following advantages.

1. The mechanism of the cache-based geolocation is very straightforward. While
IP-based geolocation requires a website to interact with databases leveraging
web APIs, the cache-based approach can be implemented with just a few lines
of JavaScript embedded in the web document, which asks the client to issue
one regular HTTP request and retrieve one value from response headers.

2. IP-based geolocation relies on third party databases that may incur subscrip-
tion fees, while the cache-based approach is self-contained and completely
free since all that required is to ask the user to issue an HTTP request to a
public domain.

3. The correctness and accuracy of IP-based geolocation are hard to be vali-
dated because there lacks any official ground truth. Cache-based approach,
on the other hand, is based on publicly known and reliable information and
therefore bears higher reliability.

In the following, we present the details of the cache-based user geolocation
solution. The content of the rest of this paper is organized as follows. In Sec-
tion 2, we introduce necessary background knowledge that assist the reader to
understand CacheLoc. In Section 3, we present the details of the novel cache-
based user geolocation. In Section 4, we discuss the usability of CacheLoc with

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 3

preliminary experiment results. We conduct practical experiments and present
their results in Section 5 to evaluate the accuracy and granularity of CacheLoc.
Finally, we conclude our work in Section 6.

2 Background

In this section, we briefly introduce related works in user geolocation and the
necessary background knowledge for content delivery networks.

2.1 Existing Works in User Geolocation

Most browsers use IP addresses to determine a user’s location due to its sim-
plicity. For IP-based user geolocation, the webserver subscribes to the access to
geolocation IP databases, which maps ranges of IP addresses with the corre-
sponding latitudes and longitudes coordinates. The pair of coordinates provides
the sever with the location of the IP address, such as time, country, and city [6].
There are abundantly available IP geolocation databases, including ip2c.org,
GeoLite2Geo Targetly, IP2Location Lite, and GeoIP Nekudo. While using such
databases allows a server to locate a user without the need for GPS receivers or
complicated configuration switching, it suffers from plentiful of drawbacks. For
instance, IP-based geolocation is far from reliable and accurate since it only pro-
vides a rough estimate of users’ locations. For example, the literature in [7], [8]
shows that the locations obtained from different databases suffer huge accuracy
errors up to 800km in some cases. During our experiments, we also experienced
many such cases. For instance, we found one IP address was located in Hong
Kong by one database, but Australia by another. Further, IP databases come
with many operation overheads such as paid subscriptions for support, frequent
updates to guarantee better data accuracy, scalability, and management issues.

Li et. al. [4] proposed city-level IP geolocation based on network topology
community detection method to improve the accuracy of geolocation. They use
the community detection algorithm in complex networks to find the different
communities in the network topology and determine the location of the com-
munities. The geographical position of target IP is obtained according to the
communities of target IP. The experiment shows that its location accuracy ratio
is above 96%. Triukose et. al. examine IP address allocation in cellular data net-
works, with emphasis on understanding the feasibility of IP-based geolocation
techniques. The authors used two commercial IP geolocation databases, Max-
Mind [9] and IPinfoDB [10] to test the ability of the databases to determine the
ability of these databases to return host location based on IP addresses seen by
the application’s server.

API-based geolocation is a new approach that uses the browser’s HTML5
Geo-location feature along with the Maps JavaScript API [11] to detect users’
locations, all leveraged by Google’s comprehensive database about the user’s
profile. While this approach brings higher location accuracy, the location is only
shared if the user allows location sharing in a pop-up window. With more and

4 Authors Suppressed Due to Excessive Length

more Internet users begin to concern about their privacy, a user will likely deny
such request unless necessary.

2.2 Content Delivery Networks

Origin server

Cache
server

Client

Fig. 1. Content Delivery Network

Content delivery network, or CDN, is a type of web cache that has undergone
substantial growth in the recent decade [12]. It provides a scalable and cost-
effective mechanism for accelerating web document dissemination among the
Internet [13] by deploying a large number of edge servers around the globe.
These edge servers sit between HTTP clients and origin servers, which cache
static web documents served by origin servers, and use the cached copies to
serve subsequent duplicate requests. Consequently, requests sent by a user in a
certain location will always be served by the nearest CDN edge server, regardless
of the origin server location. For example, as shown in Fig. 1, users located in
the U.S. will be served by the servers in North America instead of the origin
server in Africa. As a result, users will not only experience shorter page loading
time, but the origin server will also see reduced workload in terms of the volume
of HTTP requests. Because of these advantages, CDN has been adopted by a
plethora of websites in recent years.

3 Cache Based Client Geolocation

The idea of CacheLoc is motivated by the fact that HTTP responses served
by CDN edge servers are usually appended with CDN specific information.
For some CDNs, such information reveals the location of the edge servers by
whom the request was served. For example, Listing 1.1 presents typical response
headers served by a Cloudfront’s [14] edge server, where the request was sent
via an HTTP proxy that locates in Texas, U.S.. As highlighted in line 6, the
X-Amz-Cf-Pop response header is a customized header appended by all edge

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 5

servers belong to Amazon Cloudfront, and whose value indicates the request is
served by the edge server DFW55-C1. This header value implies that the request
is served by the edge server near Dallas, TX, because it is a common practice
among many CDNs to name their edge servers with the three-letter IATA airport
codes that are close by [15], and DFW refers to the Dallas/Fort Worth Interna-
tional Airport. Furthermore, because CDNs always serve HTTP requests with
the edge servers closest to the user, we can infer that the user who issued the
request must be somewhere close to the city Dallas. In the following, we describe
how such information can be leveraged to identify users’ locations.

1 HTTP /1.1 200 OK

2 Content -Type: text/html; charset=UTF -8

3 ...

4 X-Cache: Miss from cloudfront

5 Via: 1.1 5d52966f37c4378fd883294634452d6b.cloudfront.net (

CloudFront)

6 X-Amz -Cf -Pop: DFW55 -C1

Listing 1.1. Typical response headers served by a Cloudfront edge server.

3.1 Mechanism of CacheLoc

In Figure 2, we present the flowchart explaining how a website can infer a user’s
geolocation leveraging CDN response headers. To facilitate the following illus-
tration, we use the term publisher to refer the owner of the website that is visited
by a user and wants to infer the user’s location. We assume the publisher owns
the domain origin.com. We also assume another domain, i.e., pilot.com, is
a domain that is served by a CDN whose edge servers append location related
headers to the responses.

User origin.com pilot.com

GET /index.html

<script>
fetch(
http://pilot.com)
...

HEAD /index.html

200 OK
…
X-Served-By: DFW

POST /
...
location=DFW

Closest CDN
edge server

Dallas, TX

Fig. 2. flowchart

6 Authors Suppressed Due to Excessive Length

As shown in Figure 2, a user visits origin.com’s default main page (i.e.,
index.html) by sending a HTTP GET request, and the webserver will respond
with the requested document once the request is received. In order to infer the
user’s location, the webserver inserts a JavaScript snippet as a part of index.html,
which requests the user to issue an HTTP request to the pilot domain pilot.com.
Because we are only interested in the response header, a HEAD request is sufficient.

After the document origin.com/index.html is received by the user’s browser,
the browser will execute the JavaScript and issue the request, which will be
served by the closest edge server and append customized header indicating its
identity. Once the response from the edge server is received at the user’s browser,
the JavaScript will inspect the response headers, retrieve the edge server iden-
tifier, and send it back to origin.com, which can be attached as the content of
a POST request, or simply appended as a query string using a GET request. The
publisher, knowing that DFW implies Dallas, can then infer the user is located in
Texas and close to the city Dallas.

We demonstrate the necessary requirements of the pilot domain in order to
implement CacheLoc in the following.

3.2 Pilot Domain Configuration

As depicted in Figure 2, origin.com takes two steps to infer the user’s geoloca-
tion: 1). it requests the user to issue an HTTP request to a pilot domain, and 2).
it inspects the response to retrieve the value of a specific response header. While
issuing the request and inspect response header can be easily done with just a
few lines of JavaScript as presented in Listing 1.2, a barrier that may prevent
the header information from being accessed lies in the same-origin policy (SOP)
set forth by most modern web browsers [16].

1 var xhr = new XMLHttpRequest ();

2 var url = ’https :// pilot.com/’;

3 xhr.open(’HEAD ’, url);

4 xhr.send()

5 xhr.onreadystatechange = function () {

6 if(xhr.readyState == 4) {

7 var p = xhr.getResponseHeader(’X-Served -By ’);

8 }

Listing 1.2. Typical response headers served by a Cloudfront edge server.

In specific, the same-origin policy is a critical security mechanism that is
implemented on all modern web browsers, which restricts the interaction between
a resource request issued from one origin and the actual resources reside on
another origin, where the origin is composed of the three parts: scheme, the
host, and the port number. Two origins are not considered identical unless all
three parts match. With strict SOP being enforced, the web browser does not
allow JavaScripts in one origin to access resources, including sending requests to
or reading responses from, another origin. However, because cross-origin resource
referencing is prevalent in today’s Internet, SOP is loosened by the cross origin

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 7

resource sharing (CORS) policy, which allows scripts from one origin to access
resources from another origin under certain circumstances.

Particularly, for one origin to access resources from another origin, the latter
origin must allow the resource sharing by explicitly appending a set of CORS
response headers [17]. For example, assume the JavaScript in Listing 1.2 is in-
cluded in origin.com/index.html and is parsed by a user’s web browser. Prior
to sending the actual HEAD request, the browser will first send a OPTIONS request
to pilot.com (known as the pre-flight request) as shown in Listing 1.3, and check
the response headers. The subsequent HEAD request will be sent only if the header
Access-Control-Allow-Origin exists in the response and either origin.com

or the wildcard symbol * presents as the value. Otherwise, the browser will not
sent the HEAD request at all because pilot.com does not allow origin.com to
access its resources.

1 OPTIONS /index.html

2 Access -Control -Request -Method: GET

3 Origin: https :// example.com

4 ...

Listing 1.3. Typical response headers served by a Cloudfront edge server.

Furthermore, even if Access-Control-Allow-Origin exists and origin.com

is explicitly allowed, the browser still restricts origin.com that only the 7 CORS-
safelisted response headers [18] can be accessed: Cache-Control, Content-Language,
Content-Length, Content-Type, Expires, Last-Modified, and Pragma. In or-
der to access the CDN specific header, for example, the X-Served-By header,
another CORS header, i.e., Access-Control-Expose-Headers, must also exist
and explicitly specify either X-Served-By or * as the value.

Therefore, in order to successfully obtain the CDN related response header
by issuing HTTP request and reading the response, origin.com must find a pilot
domain that explicitly appends the headers Access-Control-Allow-Origin and
Access-Control-Expose-Headers, and specify origin.com or *, and X-Served-By

or * as the values, correspondingly.

The most straightforward way to obtain such a pilot domain is for the pub-
lisher to set up a dedicated domain and subscribe to CDN services, where the
pilot domain can simply be a subdomain of origin.com. For instance, the pub-
lisher can create the subdomain cloudfront.origin.com and subscribed it to
Cloudfront’s service. Because this domain is entirely controlled by the publisher,
the two CORS headers can be directly inserted into response headers by con-
figuring the webserver. Because origin.com is only interested in the response
headers, the pilot domain does not need to be substantiated with any real con-
tent. For example, a completely blank HTML page will suffice the purpose. Be-
cause many CDNs offers free tier services based on limited traffic amount or cost
(for example, Cloudflare offers free tier service, Fastly provide $50 worth credit
for new customers, and Cloudfront set the first 50GB traffic free of charge), a
HEAD request only incurs minimal traffic and negligible cost at best.

8 Authors Suppressed Due to Excessive Length

Another approach to find a suitable pilot domain is to scan the Internet
and attempt to find an independent domain that subscribed to a specific CDN
service, and also includes the two headers Access-Control-Allow-Origin and
Access-Control-Expose-Headers and the desired value (which should be *,
because the specific value origin.com and X-Served-By is unlikely to be set
by an independent third-party domain). This task could be laborious but not
impossible. For instance, by scanning the first 50K domains against the Majestic
Million domain list [19], we found the domain cwtv.com is subscribed to Cloud-
flare’s CDN service, and has the above two headers being present and value set to
be *. Compared with the first approach, this approach only requires a one time
task and is simpler since it eliminates the complexities to set up the subdomain
and subscribe to CDN services.

4 CacheLoc Usability

Compared with conventional IP-based user geolocation, the cache-based geolo-
cation has the advantages that 1). It incurs very low overhead. The publisher
only needs to insert a few lines of JavaScript code, while the user only needs
to issue two HTTP requests, one to the pilot domain to obtain CDN related
information and one to the publisher to inform such information. 2). It is self-
contained and does not rely on any third party service. And 3). It’s information is
obtained from CDN edge servers, which is publicly available and thus verifiable.
On the other hand, it is evident that the granularity of cache-based geolocation
is limited by the edge server’s density and distribution, and is unlikely to achieve
high accuracy. Nevertheless, we argue that such coarse-grained granularity may
be sufficient in many scenarios. For example, a political campaign or commer-
cial advertisement may target a broad region where fine-grained user location is
favorable but unnecessary. Further, this cache-based geolocation can also serve
as cross-validations to conventional IP-based geolocation to improve the results’
reliability. For instance, during our experiment, we encounter many cases where
an IP address was located in two different countries, where the cache-based ge-
olocation can then be used to narrow down the results to the correct one. We
discuss the usability and limitations of cache-based geolocation in the following.

4.1 Suitable CDN Services for CacheLoc

CDN is a relatively new business model emerged in recent decade [12], and their
distribution of services shows strong regional characters. Major CDN providers
in North America include both traditional Internet companies, including Google,
Amazon, and Akamai, and relatively new ones founded in the last decade, such
as Cloudflare and Fastly. According to an online survey [20], currently, there
are 23 CDN providers in the United States, however, not all of them are suit-
able for geolocation purposes. In order to be used for user geolocation, a CDN
must present the following two properties: its edge servers’ locations are publicly
known, and their locations are identifiable from HTTP response headers.

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 9

For the first factor, i.e., publishing edge servers’ information, different CDN
shows different tendencies. Some providers are very transparent and actively
publish detailed information regarding their CDN network. For example, Cloud-
flare publishes its up-to-date data centers’ location (also known as the point of
presence, or PoP) and the number of servers at each location [21]. On the other
hand, providers such as Akamai are relatively conservative and only provide very
brief information about their data centers’ location.

For the second factor, different CDN providers also take different approaches.
Some providers, including Cloudflare, Cloudfront, and Fastly, append a cus-
tomized response header to identify the edge server that served the request.
In particular, Cloudflare appends the CF-RAY header, for example, CF-RAY:

572244ec8cadd266-DFW, whose last section identifies the edge server; Cloudfront
appends X-Amz-Cf-Pop header, for example, X-Amz-Cf-Pop: DFW55-C2, to indi-
cate not only the location (i.e., DFW), but also specific edge server at this location
(i.e., C2); and Fastly inserts X-Served-By header, for example, X-Served-By:
cache-dfw18677-DFW, whose last section identifies the edge server. On the other
hand, CDN providers such as Googles’ Cloud CDN only inserts a simple Via:

1.1 google header to indicate the request is served by Google, Akamai does
not have any header that reveals its edge server’s identification either.

4.2 CDN’s Data Center Locations

Based on the above discussions, in this study, we chose three CDNs to validate
the proposed cache-based user geolocation, which are Cloudflare [22], Cloudfront
[14], and Fastly [23]. In order to obtain a preliminary knowledge of the accuracy
the cache-based geolocation can achieve, our first step is to collect and analyze
information regarding each CDN, as described in the following.

Cloudflare Cloudfront Fastly

Number of PoPs* N/A 216 75
Number of countries 90 42 N/A
Number of cities 200 84 60

Table 1. Statistics from Website Description. (* one cite can have multiple PoPs.)

To begin with, we collected information regarding the data centers’ location
from each CDN’s official website, and present the result in Table 1. Comparing
the three, Cloudflare has the largest CDN network, which spans over 200 cities
in more than 90 countries. A CDN provider may place multiple PoPs in one city,
but may not necessarily differentiate them. For instance, according to the website
description, Cloudfront has 6 PoPs in Dallas, TX, and during our experiment,
we found these data centers are assigned with different names including DFW3,
DFW50, DFW52, DFW53, DFW55 (we were only able to see 5 PoP names). On the
other hand, Flastly states that it has 2 PoPs present at Dallas, but we were

10 Authors Suppressed Due to Excessive Length

only able to see the unified identifier DFW and thus unable to distinguish the two
servers.

Based on our preliminary evaluation, we suspect that the information pub-
lished on CDN providers’ website may not be up-to-date. Therefore, as the sec-
ond step, we conducted a live scan to verify existing and identify new informa-
tion. In specific, all three providers publish the range of IP addresses they owned
on their website [24–26]. We start the experiment by scanning the whole IP range
for TCP port 80. In specific, Cloudflare, Cloudfront and Flastly have 1,786,881,
1,422,793, and 222,208 unique IP addresses, respectively, among which 96,671,
140,347, and 65,969 are alive, i.e., responded to the scan. Note that these re-
sults are likely transient because CDN providers usually dynamically assign IP
addresses to edge servers due to reasons such as load balancing [27], however,
our results provide a snapshot of these CDN networks, based on which we can
conduct the following analysis.

Then, we wrote a simple python script leveraging the requests library to
send a HEAD request to each live IP address. For simplicity purposes, for each
request, we set the Host header to be a random string (e.g., Host: aaa) rather
than any valid host names. Because the host header is not recognizable by the
edge servers, whey will respond with an error page indicating the specified host
name is not accessible (500 Domain Not Found from Fastly, 409 Conflict from
Cloudflare, and 403 Forbidden from Cloudfront), which nonetheless satisfied
our purpose because even the error page still contains response header that in-
cludes edge servers’ identifier. After we received all responses, we inspect the
response headers and strip edge servers’ identifier and summarize the result in
Table 2. Specifically, we obtained a total of 283 unique edge server IDs from
Cloudfront, which is much larger than the number of PoPs stated on its website
(i.e., 216), implying the information on its website is obsolete. We also observe
Fastly presents a slight difference, i.e., 78 obtained by scanning v.s. 75 stated
on the website. We were not able to scan Cloudflare’s CDN network because
Cloudflare’s CDN network uses Anycast [28]. As a result, even though we specif-
ically send a request to a specific IP address, the request will always be routed
to and served by the closest edge server. Therefore, we can only see the single
edge server identifiers that is closest to us.

Cloudflare Cloudfront Fastly

Total IP addresses 1,786,881 1,422,793 222,208

Live IP addresses 96,671 140,347 65,969

Unique IDs N/A 283 78

Table 2. Statistics from Experiment.

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 11

4.3 Limitation

From the edge server maps of the three CDNs [21, 29, 30], it is evident that
their edge servers are densely deployed only in North America and Europe.
Therefore, we can only expect higher accuracy and finer granularity in these
regions. However, as a proof of concept, we do not aim to practically geolocate
users worldwide. Further, such a shortage can be easily addressed by leveraging
more regional CDNs. For example, Alibaba CDN, a China-based cloud service
provider, has 39 data centers deployed in major cities in China [31], which can
be used to geolocate China-based users with much higher accuracy.

5 Experiment

In this section, we conduct empirical experiments to evaluate the usability and
accuracy of the cache-based user geolocation.

5.1 Experiment Setup

In order to evaluate the usability and accuracy of the cache-based geolocation,
the ideal approach would be issuing HTTP requests at multiple locations around
the world and verify if the correct location could be obtained. Originally, we
planned to leverage the Planet Lab [32], a research project incorporated more
than 2000 research institutions across the world, where a user can request access
to any of these nodes. However, it seemed to us the Planet Lab project had been
discontinued, as we have attempted a few times to email the support staff and
never get any reply. Therefore, we finally decided to take an alternative approach
by using VPN services. In specific, we purchased access to Express VPN [33],
a VPN provider that has 160 VPN endpoints across 94 countries, which has
the largest number of endpoints among all VPN providers that we are aware of.
Express VPN also has a Linux command-line interface that allows us to write
scripts and conduct experiments in batch.

Because we do not own a domain by ourselves, we are unable to completely
replicate the scenario described as in Figure 2. However, since our objectives
are to validate the usability and evaluate the accuracy of the cache-based user
geolocation, we design the following experiment as an alternative, which achieves
our objectives nonetheless.

In specific, we first scan against the Majestic Million domain list [19] as men-
tioned above, and find three arbitrary domains that use Cloudfront, Cloudflare,
and Fastly’s service, respectively. Then, we wrote a script, which can automat-
ically log in to each VNP endpoint, and issue three HTTP requests to each of
these three domains. Then, we collect the response from these three domains,
and extract the edge server identifier and save them into a log file.

It is noteworthy that because we do not know the exact location of any
of these VPN endpoints, but only the country (or city, for a few cases) each
endpoint is placed, in this experiment, we do not seek to pinpoint or verify

12 Authors Suppressed Due to Excessive Length

their accurate locations using cache-based geolocation. Instead, our objective is
to evaluate to what extent these 160 locations can be uniquely differentiated
using the proposed cache-based geolocation method. However, we argue that
this restricted experiment does not diminish the effectiveness of the cache-based
geolocation as a general solution for user geolocation. This is because as long as
we can uniquely differentiate these endpoints, knowing the identity and accurate
location is only a trivial and laborious task. For instance, a capable publisher can
gradually build its own database based on users’ information. Specifically, the
publisher can enable the cache-based location and still ask to access the user’s
GPS based location. Although such requests may be rejected by most users, it is
still likely to be allowed by a few users due to reasons such as carelessness or by
accident. Once the publisher obtains one accurate location, it can associate this
accurate location with the specific CDN edge server identifier, and be informed
that users with the same CDN identifier must from a place that is close to
this known accurate location. Gradually, the publisher is able to build a quite
accurate geolocation map, which can be further refined each time a user allows
his/her accurate location to be accessed.

5.2 Experiment Results and Analysis

Statistical and Geological Results During our experiment, we were able
to successfully connect to 148 endpoints among 160 that is claimed on Express
VPN’s official website [33], and collected a total of 444 HTTP responses. These
148 endpoints span in 93 countries, which covers most countries in America and
Europe, many countries in Southeast Asia, and a few countries in the Middle
East and Africa, which is consistent with the official website description. Most
endpoints were named by the country name where they locate. Figure 3 presents
the countries that were covered by Express VPN’s endpoints. Among these 93
countries, 13 countries have more than one VPN endpoints present, in which
case, these endpoints were named by the country name append with the city’s
name and a numerical index. In the following, we analyze the usability and
accuracy of cache-based geolocation from both the country level and the city
level.

Country Level Geolocaion As explained, the three CDNs that we have cho-
sen, i.e., Cloudfront, Cloudflare, and Fastly, are U.S. based CDN providers and
have their market focus in North America and Europe. Therefore, we expect the
accuracy of cache-based geolocation bears much higher accuracy in differentiat-
ing European countries. In the following description, we separately demonstrate
the results for European countries and the rest of the world.

We first present the geolocation result with a single CDN. In total, these
93 countries were served by 41 Cloudfront edge servers, 24 Fastly edge servers,
and 31 Cloudflare edge servers, respectively. Among which, 46 European coun-
tries were served by 23, 12, and 18 edge servers from Cloudfront, Fastly, and
Cloudflare, and 47 non-European countries were served by 20, 14, and 15 edge

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 13

Fig. 3. Countries where Express VPN’s endpoints present.

serves from the same three CDN providers. This implies that, for example, us-
ing Cloudfront’s edger server, we are able to at least narrow a user’s location
down to two countries on average, if the user is within Europe (i.e, 46/23/ = 2).
We present the visualized map of Cloudfront’s result in Figure 4, in where we
use different colors to identify countries being served by different edge servers.
The same result from Fastly and Cloudflare are presented in the Appendix as in
Figure 8 and Figure 7.

Observing these figures, we are able to find edge server deployment does
present strong regional characters. Take Figure 7 as an example, we can observe
that the few adjacent countries in middle Europe including Austria, Slovenia,
Croatia, Serbia, and Slovakia are all served by one edge server (i.e., all colored
with the same Grey color). Furthermore, by comparing the maps between dif-
ferent CDNs, we notice different CDN’s have different edge server deployment
strategies. For instance, in Fastly’s edge server map, we can see while Austria
and Slovakia are still served by the same edge server, Solvenia was instead served
by the edge server that also serves Italy. And Croatia and Serbia were served
by another different edge server. This implies that a finer granularity of user ge-
olocation can be achieved by leveraging multiple CDNs, similar to user location
using cellular towers with triangulation [34].

In specific, by holistically considering these 3 CDNs, the 93 countries now
see 57 different Cloudfront-Cloudflare-Fastly edge server combinations, a higher
resolution than any of the three single CDNs. For the 46 European countries,
they can now be separated into 35 categories, a 25% increase in accuracy, i.e.,
a European user can now be narrowed down into an average 1.3 countries. For
the 47 non-European countries, they can be separated into 23 categories. We
present the new geolocation map leveraging all 3 CDNs in Figure 5. Comparing

14 Authors Suppressed Due to Excessive Length

with Figure 7, 4, and 8, it is obvious that higher accuracy has been achieved, as
less adjacent countries shares the same color.

Fig. 4. European countries served by different Cloudfront’s edge servers.

State and City Level Geolocation Next, we present the result to identify
states and cities in the U.S.. Totally, Express VPN has 27 endpoints locates
within the United States, which were distributed among 13 cities that belong to
10 states (excluding Washington, D.C.). Metropolitan cities such as Los Angeles
have more than one endpoint. Shown in Figure 6 is the result when all 3 CDNs
are leveraged to geolocate the states where these endpoints are located. Because
these states are geographically sparse, we found any one of the 3 CDNs alone
is capable of uniquely identify these states. Among these ten states, Florida
State has two endpoints located in Tampa and Miami. California State has two
endpoints located in Los Angeles and San Francisco. All these cities can also be
uniquely identified by either one of these 3 CDNs.

Sub-city Level Geolocation Finally, we evaluate the accuracy of cache-
based geolocation within the sub-city level. In particular, within the U.S., five
metropolitan cities have more than one endpoints, which are: Los Angeles that
has seven endpoints, Dallas, Miami, New York, and Washington, D.C., each has
two endpoints. According to our experiment result, Cloudflare has the lowest res-
olution in identifying sub-city level locations, for example, all seven endpoints in
Los Angeles were served by the edge server LAX, while Cloudfront has the highest
resolution on the other hand, which alone can identify five endpoints located in

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 15

Fig. 5. European countries served by leveraging 3 CDNs’ edge servers.

LA. When putting together, the seven endpoints can be differentiated into six
categories, implying satisfactory resolution in high population cities. Detailed
such result is demonstrated in Table 3. For the other four cities, except the two
endpoints in New York, all other endpoints can be uniquely identified when three
CDNs being utilized.

Endpoints’ Name Cloudfront Fastly Cloudflare

Los Angeles LAX3-C1 BUR LAX

Los Angeles-1 LAX3-C3 LAX LAX

Los Angeles-2 LAX3-C4 BUR LAX

Los Angeles-3 LAX3-C1 BUR LAX

Los Angeles-4 LAX50-C1 BUR LAX

Los Angeles-5 LAX3-C3 BUR LAX

Santa Monica LAX3-C2 LAX LAX

Table 3. 7 VPN endpoints in Los Angeles served by 3 CDN edge serves.

5.3 Discussion and Future Works

As demonstrated by the experiments, the cache-based user geolocation is able to
achieve at least country-level granularity in the regions where CDN servers are
densely deployed. Due to our limited resource, we were not able to evaluate at
smaller granularity, however, based on the results we have obtained, it is evident

16 Authors Suppressed Due to Excessive Length

Fig. 6. U.S. states identified by leveraging 3 CDNs.

that finer granularity can be achieved. In specific, the VPN we used only has
46 endpoints present in Europe, which touched only 23, 12, and 18 edge servers
belong to Cloudfront, Fastly, and Cloudflare, respectively. However, according
to their official websites, these 3 CDNs posses 59, 13, and 47 total edge servers in
Europe correspondingly. Therefore, if we were able to obtain more endpoints for
evaluation, we can achieve much finer granularity. As such, our future work will
focus on seeking more endpoints and conduct more comprehensive evaluations.

6 Conclusions

In this paper, we proposed the CacheLoc as a novel user geolocation solution.
This cache-based user geolocation solution is easier, cost-free, and more reliable
compared to conventional IP-based ones. With limited resources, we conducted
multiple experiments to evaluate the usability and accuracy of CacheLoc, and our
results demonstrate the cache-based approach is feasible and effective for coarse-
grained user geolocation. We will be focusing on obtaining more resources for
more comprehensive CacheLoc evaluation for our future works.

References

1. IP2Location, “Ip2location.” https://www.ip2location.com/, 2020.
2. Whois, “Whois.” https://www.whois.net/, 2020.
3. M. J. Schwartz, “Google wardriving: How engineering trumped privacy.”

https://www.darkreading.com/risk-management/google-wardriving-how-
engineering-trumped-privacy/d/d-id/1104126, 2020.

CacheLoc: Leveraging CDN Edge Servers for User Geolocation 17

4. M. Li, X. Luo, W. Shi, and L. Chai, “City-level ip geolocation based on network
topology community detection,” in 2017 International Conference on Information
Networking (ICOIN), pp. 578–583, IEEE, 2017.

5. Google, “Geolocation api developer guide.” https://developers.google.com/maps/documentation/geolocation/intro,
2020.

6. J. Taylor, J. Devlin, and K. Curran, “Bringing location to ip addresses withip
geolocation,” Journal of Emerging Technologies in Web Intelligence, vol. 4, 08
2012.

7. I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “Ip geolocation
databases: Unreliable?,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 2, pp. 53–56, 2011.

8. Y. Shavitt and N. Zilberman, “A geolocation databases study,” IEEE Journal on
Selected Areas in Communications - JSAC, vol. 29, pp. 2044–2056, 12 2011.

9. MaxMind, “Maxmind.” https://www.maxmind.com/en/home, 2020.
10. Ipinfodb, “Ipinfodb.” https://ipinfodb.com/, 2020.
11. “Google maps platform.” https://developers.google.com/maps/documentation/javascript/geolocation.
12. Bizety, “Cdn market size in 2015 and 2019.”

https://www.bizety.com/2015/08/15/cdn-market-size-in-2015-and-2019-2/, 2020.
13. N. Loulloudes, G. Pallis, and M. D. Dikaiakos, “Information dissemination in mo-

bile cdns,” in Content delivery networks, pp. 343–366, Springer, 2008.
14. Amazon, “Amazon cloudfront.” https://www.godaddy.com/, 2020.
15. “How fastly builds pops.”
16. “Same origin policy,”
17. M. web docs, “Cross-origin resource sharing (cors).”

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS, 2020.
18. M. web docs, “Access-control-expose-headers.” https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers, 2020.
19. “The majestic million.” https://majestic.com/reports/majestic-million.
20. “United states cdn.” https://www.cdnplanet.com/geo/united-states-cdn/.
21. “The cloudflare global anycast network.” https://www.cloudflare.com/network/.
22. Cloudflare, “Cloudflare.” https://www.cloudflare.com/, 2020.
23. Fastly, “Fastly.” https://www.fastly.com/, 2020.
24. “Accessing fastly’s ip ranges.” https://docs.fastly.com/en/guides/accessing-

fastlys-ip-ranges.
25. “Locations and ip address ranges of cloudfront edge servers.”

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/LocationsOfEdgeServers.html.
26. “Cloudflare ip ranges.” https://www.cloudflare.com/ips/.
27. J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese censorship

without proxies using cached content,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 70–83, 2015.

28. “What is anycast? how does anycast work?.”
https://www.cloudflare.com/learning/cdn/glossary/anycast-network/.

29. “A new architecture for the modern internet.” https://www.fastly.com/network-
map.

30. “Amazon cloudfront key features.” https://aws.amazon.com/cloudfront/features/.
31. Alibaba, “Alibaba cloud’s global infrastructure.”

https://www.alibabacloud.com/global-locations, 2020.
32. P. Lab, “Planet lab.” https://www.planet-lab.org/, 2020.
33. E. VPN, “Express vpn.” https://www.expressvpn.com/vpn-server, 2020.
34. 4n6.com, “Cell phone triangulation.” https://4n6.com/cell-phone-triangulation/,

2020.

18 Authors Suppressed Due to Excessive Length

7 Appendix

Fig. 7. European countries served by different Cloudflare’s edge servers.

Fig. 8. European countries served by different Fastly’s edge servers.

