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Abstract—Most existing studies for information dissemination
in the online social network are based on variations of the
classical epidemic model. In such a model, nodes recursively
infect, or share information to, their neighboring nodes with a
certain probability. The higher degree a node has, the more likely
it gets infected by its neighbors. Although widely accepted, we
found there are certain discrepancies between existing epidemic
models and social interactions in reality. Firstly, the real-world
social network is actually a dual-layered network, where a person
shares information online to her online friends, and also offline
to her real-life friends. More importantly, since a computer
do not automatically share information, a computer exposed to
information will not effectively receive it (i.e., getting infected
and starting to infect others) unless its user receives it. Secondly,
contrary to the epidemic model, the more friends a person has,
the less likely she is going to effectively receive a certain piece
of message (just imagine how easily a message can be flushed
and ignored by a human user because of overwhelming newer
information). In other words, in social networks, the infection rate
of a node may not be positively correlated with its degree. Based on
these observations, we develop the social-physical interdependent
(SPI) model to capture and analyze the unique characters of social
networks. Our study provides new observations, and sheds light
on a new direction for the study of information dissemination in
social networks.

I. INTRODUCTION

Online Social Networks (OSNs), such as Facebook and
Twitter, have undergone phenomenal growth in the recent
decade. According to Statistia [1], Facebook has reached 2.2
billion active users worldwide in 2018. Due to the far-reaching
and borderless characteristics, the OSNs have overtaken con-
ventional media such as televisions and newspapers, becoming
the predominant carrier of information dissemination.

Along with the popularity of OSNs was the surge of
studies on characterizing how information propagates in such
networks. In this regard, existing research on studying in-
formation dissemination in OSNs is mainly based on the
classical epidemic model [2], which was originally developed
to characterize how a virus spreads among a group of people
and has them infected. In the classic epidemic model, each
person is modeled as a node, and an edge exists between
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them if they have a physical contact (an edge between the
two nodes) that allow the virus to spread. To begin with, it is
assumed that a set of nodes are infected with the virus, after
then the virus begins to spread and infect more nodes based
on existing edges. The objective of these studies is usually to
characterize the speed and scale of such an infection.

Intuitively, this epidemic model is suitable to model in-
formation dissemination in OSNs. In particular, a piece of
information is analogous to the virus, and the spreading of
the virus is similar to how the information is being “shared”
between users among the OSN. For years, the approach to
model OSNs with different variations of the classic epidemic
models is well adopted in the research community, and many
works have been carried out based on such an assumption.

Nevertheless, we argue that this well-accepted epidemic
model is inadequate to provide a good approximation of the
behavior of social interactions in the real world, and we
summarize the discrepancies in the following.

Firstly, a real social network is a dual-layered network with
heterogeneous characteristics and priorities:
1) Although the online social network is convenient and far-
reaching, it is impractical to assume that a human user shares
information merely with her online friends.

In fact, a person would share social content with both
her online friends, and (offline) friends in her real life.
Meanwhile, the two networks induced by online and offline
social interactions exhibit different properties. Compared to
the offline network, a person usually has more online contacts
(which indicates a higher degree in OSNs), as well as more
frequent activities. For instance, a Facebook user can easily
have hundreds of online friends, check new feeds much more
frequently than she encounter and talk with a real-life friend.
2) It is also worth noticing that this dual-layered network dif-
fers from traditional interdependent networks [3] in that nodes
in the two network have different priorities. Assume the online
network is composed of smart devices (such as smart phones
or computers) and the offline network is composed of human
users who own corresponding devices. A piece of information
that reaches a smart phone will not be automatically forwarded
unless the human decides to. In other words, nodes in the
offline network dominate those in the online network, whereas
in traditional interdependent network it is assumed that nodes



in both networks proactively share the information and affect
each other equally.

Secondly, in existing epidemic models, the probability a
node gets infected is positively related to its degree. Intuitively,
the more contacts a person has, the more likely he/she gets
exposed to, and infected by the virus. However, in a social
network, especially the OSN, it is not necessarily the case.
The reason behind this is that human being only has limited
time and effort to receive and process information. Therefore,
the more information a person is exposed to, the less likely she
will effectively receive a specific information. To understand
this, simply imagine how easily a message can be flushed
and overwhelmed by all the newer feeds on the Facebook
News Feed page. Thus, from the perspective of any given
information, the correlation between a node’s infection rate
and its degree is not necessarily positive. This character is
extremely different from the assumption in epidemic models.

Based on these observations, we propose a dual-layered
social network model based on heterogeneous interdependent
network. Our model is composed by two networks, i.e.,
the OSN where nodes represent smart devices and edges
represent online friendship, and the offline social network in
which nodes represent owner of the smart devices, and edges
represent their real-life relationships, such as close friends,
colleagues or relatives. We formally formulate our model and
apply system-level simulation and real-world data to validate
our model by comparing it with classic epidemic models. We
demonstrate that our model is able to profile the trend of online
information dissemination with higher accuracy.

The remaining of this paper is organized as follows. In
Sec. II, we briefly review existing studies on the study of
information dissemination in OSN, and then introduce the
Social-Physical Interdependent (SPI) model in III. With the
proposed model, we conduct a case study with real-world data
traces in Sec. IV to validate the proposed model. Finally, this
paper is concluded in Sec. V.

II. BACKGROUND

Spreading of information/news in networks, especially
OSNs, have been extensively studied from various aspects,
e.g., estimating the structure of an OSN with sampling mea-
sures [4], identifying the most influential nodes to accelerate
the circulation of information [5], and the recurrence cycle of
popular social contents [6]. Due to the similarity between the
information propagation and virus spreading, that is, both the
information and the virus are passed from one person/node
to another through individual contacts, and change the state
of an individual (node) as they propagate along [7], [8], the
propagation process of information in social networks are
usually modeled as an epidemic process. In such processes,
an individual that has been shared with the information will
become infected immediately (in SI [9], SIS [10], SIR models)
or after a period of time (in SEIR [11] model)2. Once infected,

2In epidemics-related research, states S, I, E, R stand for susceptible,
infected, exposed, and recovered, respectively.

an individual is activated to spread the virus to anyone she
has contact with, for indefinitely long time (in SI models), or
a random period of time (in SIS, SIR, and SEIR models).

Despite the differences in individual states, the aforemen-
tioned models share a common ground, that is, the proba-
bility of an information to be picked up by an individual,
is proportionate to the number of its infected neighbors. In
reality, however, another influence brought about by the OSN
has been neglected in existing models, that is, the the so-
called information overload effect [12], [13]. As a result, the
more news/information a person is prompted through OSNs,
the less likely he/she will read a particular one among them.
In other words, the probability of a news/post being read is
reverse proportionate to the total number of news/post updates,
considering the limited amount of time and energy a person
can spend on OSNs. Observing this phenomenon, this paper
proposes a novel propagation model that can better explain the
social information dissemination processes in reality.

From the networking perspective, existing literature can be
divided into two categories: population dynamics and network
dynamics [14], with respective to how people interact to
spread a certain piece of information. The former views people
of interest as a homogeneous ensemble of individuals, in
which any person contacts another with a fixed probability
during a time interval, creating an evenly-mixed population
unconstrained by any network topology, e.g., [15]. On the
contrary, the later category study information spreading in a
network that are composed of heterogeneous (in the sense of
whom they can contact) individuals, whose contact patterns
can be captured by edges of a network/graph, hence the
name network dynamics. To this end, various properties of
information spreading have been discussed: the spreading time
of information [16], [17], influence of network topologies [16],
[18], measures to accelerate the propagation [10], and so on.
Though existing network dynamics prove to be suitable in
describing information propagation in one single network, i.e.,
either online (in OSNs), or offline (face-to-face) alone, they
fail to capture one key characteristic of realistic social interac-
tions, that is, propagation is carried out in both networks. As a
result, a new model is needed to jointly consider both online
and offline contacts, and the complex dependence between
the two, which motivates us to propose the novel SPI model
detailed in the following section.

III. SYSTEM MODELS

To reveal the impact of human and computer interaction
in real-world social information propagation processes, we
develop the social-physical interdependent (SPI) model that
takes both online and face-to-face (i.e., offline) propagation
measures into consideration, and captures the information
overload effect [12], [13] in human browsing habits.

A. Network Model

We consider information propagation in an interdependent
network G = (Gh, Gc). In this model, subgraph Gh(V,Eh),
referred to as the offline social network (subscript h denotes
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Fig. 1: State Transition Diagram

human), captures daily social interactions among a group
V of people, while subgraph Gc(V,Ec), referred to as the
online network (subscript c denotes computer), represents the
online social information exchanges among the same group V .
Network Gh and Gc describe the two information acquisition
measures, both of which are assumed to be connected and
undirected. They share the same set V of individuals, but with
different edge sets. Each vertex v ∈ V , is composed of a
human node vh and a computer node vc, where the former
partially controls the latter in the propagation process.

B. Propagation and State Transition

Consider a discrete time system, where time t advances
in discrete time steps {1, 2, · · · }. With respect to a piece
of information, e.g., a news, the state Xt(v) of a vertex v
at time step t is an ordered pair (xht (v), x

c
t(v)), determined

by the states of the two nodes vh and vc, in graph Gh and
Gc respectively. From the perspective of a person, or human
node vh, he/she either has not heard of the information before
(susceptible), or is already aware of the information. In the
latter case, the state of a human node vh can be further divided
into infected, which means that vh is willing to spread the
information, and recovered, which means vh is indifferent to
the information and will not participate in the propagation
any more. On the other hand, for a computer node vc that
is associated with human node vh, there is one more state,
exposed, which corresponds to the case that the information
has reached vertex v from the OSN Gc, but has not been
read by the human vh yet. This setting is reasonable, because
it is highly unlikely that a person will check or respond to
every piece of information pushed by OSN’s at every moment.
Considering that a computer node will not respond to a piece
of information by itself, the state of a computer node, xct(v), is
correlated to the state of its corresponding human node xht (v).
Therefore, each vertex v ∈ V can be in one of the following
five states at every time instant t, as shown in Fig. 1.

1) Susceptible (S, S): State (S, S) indicates that the infor-
mation has not reached vertex v from either the offline social
network Gh or the OSN Gc. In this state, vertex v will not
participate in the propagation process.

2) Known (I, S): If the information reaches a susceptible
vertex v from the offline network Gh (through a propagation
process with infection rate βh) at time t, that vertex v will
transit into the known state, (I, S), in the next time step t+1,
indicating that this person vh is aware of (i.e., being infected
by) the information and will spread it in its offline network
Gh. Transition from (S, S) to (I, S) is due to information
propagation in the offline network Gh.

3) Exposed (S,E): If the information reaches the suscep-
tible (Xt(V ) = (S, S)) vertex v first from the online network
Gc (through a propagation process with rate βc) at t, then
Xt+1(v) = (S,E), referred to as the exposed state, indicating
that the information in locally available at computer node vc,
but has not been read by human vh yet. Transition from (S, S)
to (S,E) is due to information propagation in OSN Gc. In this
state, the computer node vc will not spread the information in
Gc because it is controlled by the human node vh.

4) Infected (I, I): From the known state (I, S) (respec-
tively the exposed state (S,E)), the information can crossover
from Gh to Gc (resp. from Gc to Gh) with probability αh→c

(resp. αc→h), when a person reads the information and decides
to participate in the propagation process so that vertex v
becomes infected, i.e., Xt+1 = (I, I). In this state, both node
vc and node vh join the propagation process, in network Gc

and Gh respectively. Note that probability αh→c and αc→h

are innate properties of vertex v. Specially, the online to social
crossover probability αc→h ∝ 1

dc(v)
, where dc(v) is the degree

of vc in Gc. The intuition behind this assumption is that when
a person receives too many feeds from the online network (due
to the large number of online neighbors in Gc), the probability
that she picks up a specific news will be low.

5) Recovered (R,R): As time goes, the information be-
comes stale, such that it will be deleted or forgotten after a
lifetime τ . In this case, the state of a vertex v will become
(R,R) (referred to as recovered), indicating that this person
vh is indifferent to the information, and will retreat from the
propagation process in both online and offline networks.

The proposed SPI model differs from existing epidemic
information propagation models in the following three aspects:
firstly, both online and offline social interactions are captured,
such that the underlying network of information propagation
processes is formulated as an interdependent network, where
actions and states of both human and computer are clearly
defined; secondly, information overload effect is taken into
consideration, and its impact is incorporated into the model
as the crossover infection probability α; lastly but not least,
each social content (information) is assumed to have a lifetime,
which follows from the news cycle observation [17].

IV. CASE STUDY: TRACES, SIMULATION AND DISCUSSION

With the proposed SPI model and the online-offline state
transition assumption, we carry out a case study in which
we develop a simulation platform based on a practical social
network, compare simulation results with traces obtained from
a real-world information propagation processes, and validate
the suitableness of the proposed model on capturing such
processes in practice.

A. Datasets and Traces

Since our model is to track the evolution of information
dissemination in social networks, the simulation was run based
on a practical topological social network, and the simulation
result is then compared with a real data set that reflects the
evolution trend of a selected online topic.



Because of user privacy concerns, despite the popularity
of information dissemination studies in social networks, it is
rarely available a comprehensive data set that contains both the
network topology and the information dissemination character.
For instance, graph for Facebook user connectivity is generally
available in the research community [19], however, it is hard
to find a data set that depicts how a piece of information is
shared among users in the same network. Consequently, we
combine several datasets to generate a synthetic data trace (i.e.,
the ground-truth) to facilitate our simulation and validation.

Specifically, we run our simulation based on the topological
graph of one social network, and then compare the simulation
result with a real-world information dissemination case that is
not obtained from the same social network. Because of this
discrepancy, we do not seek for an exact match; rather, we
compare the trend between the simulation result and the real-
world example. It is worth noticing that, albeit the discrepancy,
our simulation result fits the real-world example very well,
which confirms the validity of our newly developed model.

The following is a brief description of datasets (See corre-
sponding references for details) utilized in our simulation.

1) The topological graph: The social network topology
is obtained from [20], which depicts a fairly large social
network with 75,879 nodes and 508,837 edges. More detailed
parameters of this network are provided in Table I.

2) The“Special Olympic” dataset: Real-world example of
information dissemination is made available by the Meme-
tracker [21]. The Memetracker is an online tracker that tracks
quotes and phrases that appear most frequently over time
across its entire online news spectrum. To be more specific, we
choose the “Special Olympic” dataset that was used in [22],
and briefly explain in the following.

On March 20th 2009, President Obama joked about his
bowling skills, saying “It was like a Special Olympics, or
something” on The Tonight Show with Jay Leno [2]. Consid-
ered offending to certain populations, this news got popular
in the next following days. The evolution of the number of
mentions of this topic in the online environment is captured
by the Memetracker.

3) Human activity pattern: To accurately study information
dissemination in social networks, it is essential to consider
human activities on a daily basis due to the news cycle
[17] in comparable time span. For example, people are more
active and likely to share information during the daytime.
Thus, we integrate the factor of human behavior into our
simulation, whose pattern is obtained from [23], and plotted as
the solid green line in all the figures in Sec. IV-C. Generally,
following this model, human activity reaches the peak at
around 15:00pm, and the valley at 5:00am.

B. Simulation Setup

The simulation platform is written in Java. Particularly, we
developed two topological networks to represent the device-
to-device OSN Gc, and the person-to-person offline social
network Gh. Both networks share the same set of nodes V
with a one-to-one mapping, e.g., vh → vc (while one person

TABLE I: Statistic property of simulated social network.

Social Network Dataset Statistics
Number of Nodes 75,879
Number of Edges 508,837

Average Clustering Coefficient 0.1378
Diameter (longest shortest path) 14

90% Effective Diameter 5

can own more than one smart devices, we abstract all devices
as one node, without loss of generality). Edges of the online
network Gc follow the OSN described in Sec. IV-A. For the
offline network Gh, edges are randomly generated to create a
sparsely-connected network with an average degree of six.

A person and a smart device behave differently during the
procedure of information dissemination. In particular, when a
person vh receives a piece of information, she has a certain
probability to share the information both online (i.e., βc) and
offline (i.e., βh). On the other hand, when a smart device vc
receives the information, it does not share it to other nodes
immediately. Instead, it will first try to “inform” its owner vh.
And the probability that the owner vh is successfully informed
(i.e., αc→h) is set to be negatively related with the degree of
the device node dc(v). If successfully informed, the person vh
will then decide whether to share this information; otherwise,
the device returns to the “susceptible” state. It is also assumed
that if a person has been exposed to this information and
decided not to share, both the human node vh and the device
node vc will never share this information in the future, i.e.,
they become immune to this information, and transit to the
“recovered” (R,R) state. Finally, each piece of information
is assumed to have a lifetime (i.e., τ ), since most information
will not last long in social networks.

At the beginning of the simulation, we assume a small set
of person and/or computers are in “infected” state. To evaluate
the evolution of the propagation process, we record the number
of information shares in the online network Gc only, because
as mentioned above, the Memetracker only tracks the number
of mentions of a topic in online social networks.

C. Simulation Result and Discussion

As explained above, since the Special Olympic dataset is
not obtained from the simulated social network, it is very
unlikely that our simulation result can quantitatively match this
example. Consequently, we represent and compare normalized
results in the following figures. Specifically, the number of
shares for both our simulation results and the Special Olympic
dataset are normalized to be ranging between 0 and 1. Also,
since we do not know how long after the event when the
Memetracker started the tracking, the x-axis should be con-
sidered as relative time instead of absolute time.

During our simulation, we adjust the parameters mentioned
in the previous subsection, and run multiple simulations, in
order to find a best fit between the simulation result and the
Special Olympic dataset. The same approach is taken for both
the SPI model and the epidemic model. Due to the page limit,
we only present the best results that we were able to obtain.
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Fig. 2: Simulation result with 7600 computer nodes (10% of total
population) initially infected.

We adopt the following simulation parameter setting: βh
and βc are both set to 0.65, αc→h is set to be 1

dc(v)
while

αh→c is set to be 1, and τ is set to be 48 hours.

D. Simulation Results for the SPI Model

We first present the simulation result of the SPI model.
In this simulation, it is assumed that 7,600 (10%) computer

nodes are initially exposed to this information. Simulation
result is plotted in Fig. 2a. The tiny crosses in various color
shows samples in multiple simulation runs, whose average is
calculated and plotted in blue. The Special Olympic dataset
is plotted in the same figure with a dashed red line. Human
activity pattern is plotted in the background with solid green
line. It is assumed that for the first 24 hours after the informa-
tion is released, people keep higher-than-average interests on
this topic, so we set the activity pattern to be lower-saturated
at 60% during this time, which is also reflected in Fig. 2a.

Since it is unknown when the Memetracker started to track
the event after it happened, we shift the simulation result and
the Special Olympic dataset horizontally in x-axis, to fit the
peaks and valleys of these plots according to the depicted
human activity pattern. For example, the main peak of both
the simulated data and the Special Olympic data are fitted to
be 15:00pm (Note that the x-axis is relative time).

From Fig. 2a, we first observe a ”slow-start” phase during
the first 24 hours, where people gradually get to know this
topic, and begin to share it to their online and offline friends.
After a few hours cooling down (where time x ∈ (18, 25)),
the plot experience the second hike and reaches its overall
maximum after about 32 hours from the beginning. Note this
peak is accompanied with the highest human activity level.
After then, although the human activity remains high for
another few hours, the topic begins to show its age, and the
number of mentions drops dramatically to a local minimum
at x = 48. Then it gets a second peak for a short period
(x ∈ (50, 60), with peak at x = 53), and drops again. We
can also observe the third and fourth waves, which diminish
quickly. After about 96 hours, or 4 days, this information has
been largely phased out.

Comparing our simulation result to the Special Olympic
data, we can observe that our new model matches the real-
world data very well. In particular, our model catches the
“slow-start” phase during the first 24 hours, and also catches
the second and third waves.

We also found there are some noticeable discrepancies
between the two data. For instance, the second wave of the
simulation result comes a few hours earlier (x = 53) compared
to the Special Olympic data (x = 58), and the second valley
(at x = 72) of the simulated result is deeper. Considering
the three data sets that we tested, i.e., the topological social
network, the Special Olympic data, and the human activity
pattern are not related, we denote such discrepancies are still
in a tolerable range.

By and large, the SPI model clearly follows the evolution
of the real-world data by correctly reflecting the ”slow-start”
phase, and the second and third waves.

E. Simulation Result for the Epidemic Model

For the same setup stated above, we run the simulation using
the traditional epidemic model, i.e., the infection rate of a
node is positively correlated to its degree. In order to better
compare and demonstrate, we plot four figures in Fig. 2 and
Fig. 3, with the number of initially infected nodes ranges from
7600 (10%) to 7 (0.01%). The reason we enumerate these
three scenarios is because, during our simulation, we found the
existing epidemic model does not posses a ”slow-start” phase,
especially when the initial infection rate is high. For example,
as shown in Fig. 2b, when 10% of the nodes are initially
exposed to this information, we observe the plot reaches its
peak within a very short time period (less than 5 hours). This
is because since all nodes are interconnected in the network,
and the infection rate of a node is positively related to its
degree, the spread rate of the information is exponential. The
large number of initially infected nodes provides a large base
to the exponential increase. As shown in Fig. 2b, most of the
nodes are infected during the first wave, and as a result, there
is not obvious second and third wave of infection any longer.

As we decrease the number of initially infected nodes from
Fig. 2b to Fig. 3c, the rising slope of the first peak becomes
slightly flat, but is still too steep compared to the Special



0 20 40 60 80 100 120

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
u

m
b

er
 o

f 
m

en
ti

o
n

s 
(s

h
ar

es
) Epidemic Model With 760 Initially Infected Nodes

Simulation

Memetracker

Human activity

(a) 0.01% Infected Nodes.

0 20 40 60 80 100 120

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
u

m
b

er
 o

f 
m

en
ti

o
n

s 
(s

h
ar

es
) Epidemic Model With 76 Initially Infected Nodes

Simulation

Memetracker

Human activity

(b) 0.1% Infected Nodes.

0 20 40 60 80 100 120

Time (hour)

0

0.2

0.4

0.6

0.8

1

N
u

m
b

er
 o

f 
m

en
ti

o
n

s 
(s

h
ar

es
) Epidemic Model With 7 Initially Infected Nodes

Simulation

Memetracker

Human activity

(c) 1% Infected Nodes.

Fig. 3: Classical Epidemic Model with Various Initial Infected Nodes.

Olympic data. Among the four scenarios, Fig. 3b seems to
be the best fit to the Special Olympic data. Notwithstanding,
the first wave is still too sharp to fit the example, and the
second and third waves are barely visible. Note that in Fig.
3c, we shift the Special Olympic data by 24 hours across the
x-axis and try to fit the peak of the simulated and real data.

V. CONCLUSIONS

Observing the discrepancy between existing epidemic in-
formation propagation models and real-world social interac-
tions, we propose a novel social-physical interdependent (SPI)
model to better capture the information propagation dynamics
in social networks. Specifically, we model the social network
as a dual-layered heterogeneous interdependent network, and
formulate the information overload effect into a crossover
infection action. We formally presented our model, and use
simulation as a case study to validate the proposed SPI model.
By comparing the simulation result of both our mode and
the classic epidemic mode against a real-world data trace of
information propagation, we demonstrate the validity of our
model. Our work sheds light on a new direction to study the
information dissemination in social networks.
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