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Abstract—Deep learning algorithms, especially convolution
neural networks, have attracted huge attention in the field of
medical image analysis. A hospital could train a neural network
to detect disease based on medical images possessing. However,
the number of medical images would affect the results of training.
If medical images of all hospitals are collected together, there’s
a risk of privacy leakage. In this paper, we apply collaborative
deep learning to medical image analysis, which could help to
improve the training effect. Besides, we also exploit differential
privacy, the analytic Gaussian Mechanism, to prevent the leakage
of information about medical images. We experiment on the
Chest X-ray Images (Pneumonia) dataset. Results show that the
analytic Gaussian Mechanism can protect the privacy of medical
images effectively, while the influence on the results of training is
small. The accuracy can be improved about 19% via collaborative
deep learning and can still remain about 18% even when the
analytic Gaussian Mechanism was used.

Index Terms—collaborative deep learning, medical image anal-
ysis, differential privacy

I. INTRODUCTION

In recent years, deep learning has been used in many
fields of engineering, ranging from text processing [1], speech
recognition [2] to computer vision [3]. Especially, the Im-
ageNet competition in December 2012 successfully brought
Convolution Neural Networks (CNNs), called AlexNet, to the
public, which attracted many researchers’ attention [3]. This
is the first time that a neural network uses ReLLU as activation
function and trains a model through Graphics Processing Units
(GPUs). After that, deep convolution networks have become
a preferential choice in computer vision.

The medical image analysis community has also paid atten-
tion to these developments. According to the survey about deep
learning in medical image analysis [4], the number of papers
grew explosively since 2015. There are various networks
applied to the medical field, such as Deep Belief Networks
(DBNs) [5], Stacked Auto-Encoders (SAEs) [6], Restricted
Boltzmann Machines (RBMs) [7], Recurrent Neural Networks
(RNNs) [8] and CNNs [9]. Comparing with other methods to
analyze medical images, researchers prefer to choose CNNs
whose applications are ranging from pathology, brain, cardiac
to lung and abdomen.
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However, a hospital using deep learning in medical image
analysis probably encounters a problem with the small number
of training dataset. Tajbakhsh et al. [10] pointed out that it
might be difficult in the medical domain to require a large
amount of labeled training data because of expensive expert
annotation and the scarce diseases (e.g.,lesions). The whole
labeled medical training data gathered worldwide is relatively
less than data gathered in other fields, leaving alone the labeled
medical data gathered in merely one single hospital. Indeed,
this is a common phenomenon in the field of medical image
analysis.

Since the labeled medical dataset gathered in one hospital
might be small, which leads to less accurate outcome of the
training model, collaborative deep learning suits the situation
perfectly. In other words, the labeled medical data can be
trained in a local hospital, then the weight of local neural
network can be uploaded to a parameter server and can be
shared with other hospitals. This could improve the accuracy
of each neural network in each hospital just like the dataset is
expanded.

Furthermore, the process of sharing parameters has a poten-
tial risk of medical data leakage. Although only the parameters
of local neural network is uploaded, the original data can
be recovered according to it. Shokri et al. [11] mentioned
that a fraction of the neural-network parameters would reveal
some information about training datasets indirectly during
training process. And Aono et al. [12] introduced how a small
portion of gradients of neural network may reveal information
about local data in details. Hitaj et al. [13] mentioned that
the information of dataset could be recovered by Generative
Adversarial Network (GAN). However, privacy plays a key
role when dealing with medical data. No one wants his/her
medical data under the risk of leakage. Health Insurance
Portability and Accountability Act (HIPAA) also mandates on
privacy protection of patients’ medical records.

Aiming to protect privacy during the process of collabo-
rative deep learning, several methods have been introduced.
Shokri et al. [11] proposed a scheme named Selective Stochas-
tic Gradient Descent (SSGD) in which the participants in the
distributed system could select a few fraction of gradients to
upload, according to the parameter exchange protocol. Be-
sides, they also preserved privacy by using differential privacy,
which added the Laplace noise to the selective gradients. In
order to measure the total privacy loss, Abadi et al. [14]
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Fig. 1. Collaborative deep learning for medical image analysis with differ-
ential privacy.

proposed the moments accountant which could additively
accumulate the log of the moments of the privacy loss at each
training step.

In this paper, to solve the problems of small dataset and
privacy leakage, we propose a collaborative deep learning
method for medical image analysis with differential privacy.
The highlights of our main contributions are summarized as
follows:

o« We apply collaborative deep learning to the field of
medical image analysis to solve the problem of small
dataset in this field. And in the experiment, we assume
there exists a parameter server who has responsibility
to store and distribute sharing parameters. Considering
the computer in a hospital might be a device with low
computation power, we adopt AlexNet [3] as our neural
network in the collaborative deep learning.

o« We use differential privacy to protect the privacy of
medical images, considering the leakage caused by shar-
ing parameters. In the experiment, we add Gaussian
noise to sharing parameters, which satisfies the definition
of differential privacy. To acquire the smaller standard
deviation of Gaussian noise while the privacy cost and the
additive term are remained, we use the analysis Gaussian
Mechanism (aGM) proposed by Balle et al. [15] rather
than the classical Gaussian Mechanism (cGM) proposed
by Dwork et al. [16].

o We achieve collaborative deep learning on the Chest X-
ray Images (Pneumonia) dataset and add the analytic
Gaussian mechanism to sharing parameters. Results show
that collaborative deep learning could improve the accu-
racy about 19%. The accuracy is still as high as 17%
after Gaussian noise was added.

The rest of this paper is organized as follows. In Section II,
we briefly discuss the related work about collaborative deep
learning and differential privacy. The details of our scheme and
algorithms we used are introduced in Section III. And Section
IV describes our experimental results. Finally, we conclude
the paper in Section V.

II. PRELIMINARIES

In this section, we introduce convolutional neural networks
and the theorem of differential privacy briefly. In addition,
we also introduce former work combining differential privacy
with deep learning.

A. Convolutional Neural Networks

CNNs have a great performance in the fields of recognizing
patterns from images through feature extraction and classifica-
tion. A typical architecture of CNNs consists of four types of
layers: convolutional, activation, pooling and fully-connected
(or dense) layers.

Convolutional layers are used to detect certain local features
of input images. In this process, each neuron of a convolutional
layer is only connected to a small area of the input image.
Besides, to enable the search for a same feature throughout
the images, the weights are shared between neurons in the
convolutional layers, each set of shared weights is a kernel.
And to obtain more complex properties of the image, there
is usually the non-linear activation layer behind convolution
layers. Pooling layers are often used to subsample previous
layers by reducing the outputs of neuron clusters into a single
neuron, which may compute a max or an average. Max pooling
uses the maximum value and average pooling uses the average
value. At last, one or more fully-connected (or dense) layers
are used to produce the classification results, each of which is
followed by an activation layer.

B. Differential Privacy

Differential privacy is a definition of privacy, not an algo-
rithm, addressing the problem that the data of a population
could be used while the individual information is protected.
The mechanisms of differential privacy mainly include the
Laplace mechanism [17], the exponential mechanism [18] and
the Gaussian mechanism [19]. In our experiments, we use the
Gaussian mechanism, which perturbs each elements with the
noise drawn from the Gaussian distribution. The definition of
differential privacy is as follows:

Definition 1: (e, §)-Differential Privacy [20]. A randomized
mechanism M : D — R with domain D and range R satisfies
(¢, §)-differential privacy if for any two neighboring inputs
d,d" € D and for any subset of outputs S C R it holds
that

PriM(d) € 8] < e PriM(d') € S|+ 6 (1)

The real-valued function f : D — R would be perturbed
through additive noise with differential privacy mechanism,
and the sensitivity Sy of it is defined as supg~a | f(d) —
f(d")]|2, where ||||2 means the Ly norm of ||f(d) — f(d')]|.

Theorem 2: Gaussian Mechanism [16]. The Gaussian mech-
anism is defined as follow:

M(d) = f(d)+N(0,57-0°) )

where the N(0, SJ% - 0?) represents the Gaussian distribution
which the mean and variance is 0 and SJ% - 02, respectively.



Let 0 = /2log(1.25/0) /e, the mechanism could satisfy the
(e, §)-differential privacy for any e,6 € (0,1). Hence, the
Gaussian mechanism provide an approach to calibrate a zero
mean isotropic Gaussian perturbation Z ~ N (0, SJ% -0?) to
the Lo sensitivity of f.

C. Differential Privacy in Deep Learning

It’s the seminal work [11] that noticed the problem of
privacy in the deep learning network and applied differential
privacy to fix it. To avoid leaking the privacy, they add noise
to uploaded parameters which satisfied differential privacy
mechanism. One drawback of this scheme is that the accuracy
of network is a bit low. In order to advance the scheme,
Abadi et al. [14] come up with the moments accountant which
approve their algorithm satisfied (O(qeV/T),d) - differential

privacy with o > cqivng(l/ﬁ), where c is a constant, ¢ is the
probability of picking each example ¢ = % and N is the size
of the input dataset. In their algorithm, gradients are bounded
by clipping each gradient in Lo norm with the predefined
threshold C.

Hgt(fﬂi)Hz) 3)

7 < gi(z;)/maz(1, o
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e <;gt(x¢) +N(o,a202l)> 4)

Wiyl < Wt — ngt (5)

At last, they demonstrate that they improved the quality of
the model and preserved the privacy of sharing parameters by
training a deep neural network with differential privacy under
a modest privacy budget.

ITII. OUR APPROACH

In this section, we introduce the main components of
our approach toward collaborative deep learning for medical
image analysis and privacy preserving of training dataset via
differential privacy: the dataset we used in the study, the
architecture of proposed CNN and the method of applying
differential privacy.

A. Data

In this part, we use the Chest X-Ray Images (Pneumonia)
dataset which was collected by Kermany et al. [21]. The
dataset was collected from a total of 5,856 patients and divided
into a training set and a test set. The training set contains

R
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Fig. 2. Examples of chest X-ray images in the dataset

5,232 chest X-ray images (JPEG) from children, including
3,883 characterized as depicting pneumonia (2,538 bacterial
and 1,345 viral) and 1,349 normal. The test set collected from
patients contains 624 chest X-ray images (JPEG) with 234
normal images and 390 pneumonia images (242 bacterial and
148 viral). Fig. 2 shows three kinds of chest images, bacterial
(left), viral (middle) and normal (right). Bacterial pneumonia
typically shows a focal lobar consolidation. Viral pneumonia
exhibits a more diffuse “interstitial” pattern in both lungs. But
normal chest X-ray images manifest with clear lungs without
any areas of abnormal opacification in the image.

B. Neural-Network Architecture

In this part, we introduce our neural-network architecture.
Considering the detection of pneumonia in chest X-ray images,
we decided to choose convolution neural networks which
have good performance in image classification. We adopt the
AlexNet model as the backbone of the network. And our
experiment is divided into several parts as follows:

o To verify the effect of collaborative deep learning in the
field of medical image analysis, we compare two different
scenarios one of which is sharing parameters between
those hospitals who take part in collaborative deep learn-
ing, the other is training a neural network individually
with the local dataset without sharing parameters.

o We explore the difference of accuracy between collabo-
rative deep learning on AlexNet [3] and larger-scale deep
neural networks but without sharing parameters such as
VGG-16 [22] and DenseNet-121 [23]. If the accuracy is
similar or even better, that means hospitals can get better
results without updating their hardware.

Then we introduce the architecture of the AlexNet. In fact,
we also have made some changes in the AlexNet such as
activation functions and fully connected layers.

The AlexNet contains eight layers with weights, five con-
volutional and three fully-connected layers. The output of the
last fully-connected layer is the input of a 1000-way softmax
which produces a distribution over the 1000 class labels. The
first convolutional layer uses 96 kernels of size 11 x 11 x 3 to
filter the 227 x 227 x 3 input image. The second convolutional
layer uses 256 kernels of size 5 x 5 x 48 to filter the output
of first convolutional layer. And the third convolutional layer
has 384 kernels of size 3 x 3 x 256 connected to the output of
second layer. The fourth convolutional layer has 384 kernels
of size 3 x 3 x 192. The fifth convolutional layer has 256
kernels of size 3 x 3 x 192. Finally, each fully-connected layer
has 4096 neurons.

It is known that the activation function of the AlexNet is
the ReLU function f(z) = max(0,z). Comparing with the
classical sigmoid, the use of the ReLU function has been
proven to speed up the training process for many times. But
ReLU completely suppresses negative values, which would
cause the ”dying ReLU” problem. Driven by this considera-
tion, we decide to use a variant of ReLU, the LeakyReLU.



Different from ReLU, LeakyReLU assigns a non-zero slope

(6).
f(x):{x’ x>0 ©)

else

where o denotes a manually set coefficient.

In addition, our dataset is 5,856 images belonging to 2
categories (normal and pneumonia), we change the number
of neurons of the last layer from 1,000 to 2. To satisfy
the requirement of input in the AlexNet, we extract random
224 x 224 patches from our 944 x 640 chest X-ray images.

C. Collaborative Deep Learning

As to the collaborative deep learning, it’s important to
manage the way of sharing parameters between hospitals. As
introduced by Shokri et al. [11], there exists two approaches to
upload parameters in collaborative deep learning, round robin,
random order and asynchronous. In our system, we mainly
consider the round robin exchange protocol.

In the round robin exchange protocol, a weight matrix and
learning rate are initialized by the global server. Then, the
global server distributes the initial weight to the first hospital
and receives the parameters uploaded by the first hospital.
After receiving parameters, the global server sends it to the
next hospital. As for all hospitals, they upload and download
parameters following a fixed order. This order is unchanged
during the entire training process.

D. Privacy Preserving

Considering the sharing parameters would leak the privacy
of training samples [11]-[13], we use differential privacy in
our scheme. To acquire the smaller o while the privacy loss
remains low, we decide to apply the Gaussian Mechanism
which add the Gaussian noise to sharing parameters. But, it
is known that adding much noise to sharing parameters would
destroy the utility of sharing parameters and influence the
accuracy of neural network. However, the small variance of
noise could not satisfy the demand for preserving privacy. This
is exactly the game between the utility and privacy-preserving.
Therefore, we prefer to find a way that achieves the balance
between utility and privacy-preserving in collaborative deep
learning system.

In order to reduce the variance of noise and improve
the classification accuracy, we adopt the aGM which could
achieve the smaller noise in the same level of privacy cost
compared with the cGM. The theorem of the analytic Gaussian
mechanism is introduced as follow:

Theorem 3: Analytic Gaussian Mechanism [15]. For any € >
0 and ¢ € [0, 1], the Gaussian mechanism M(d) = f(d) + Z
is (e, 0)-differential privacy if and only if

Sy eo Sy eo
OF 8 e [ L2F ) <
(I)<20' Sf) 6<I)< 20 Sf) =4 @

where ®() represent the CDF of the standard Gaussian

distribution ®(t) = PN(0,1) <] = \/% [t eV 2y,

Our noise scale o is calculated from specific € and §
according to Theorem 9 in [15]. The complete training pro-
cedure for a participant is described in Algorithm 1 which
explains the whole training procedure of all hospitals in the
collaborative deep learning. We assume that the local training
procedure is safe and reliable. We add the Gaussian noise
to the sharing parameters. The global server receives and
preserves the weights which will be shared to other hospitals.
Even though the global server and other hospitals get the
sharing parameters, they couldn’t know the precise values. In
this way, the privacy of hospitals could be protected and the
classification accuracy of neural network could be improved.

Algorithm 1 Collaborative Deep Learning with the analysis
Gaussian Mechanism
Input: The number of all hospitals NV, training dataset of all
hospitals D = {D; ..., Dy}, the initial weight in the global
server I/Vg0 , the standard deviation of Gaussian noise o, the
training epoch for hospital 7T;.
foric N do _
Download weight Wél_l) from the global server.
for t € T; do
Local training process with the AlexNet
if t =71, then
Add noise W = Wl(Ti') + N(0,0%1)
end if
end for
end for

Output: Upload Wéi) to the global server

IV. EXPERIMENTAL RESULTS

This section mainly focuses on the presentation and dis-
cussion of the results. At the beginning, we introduce our
experimental implementation. The experiment, about collab-
orative deep learning, was preformed under a Windows 10
system on a devices with CPU Inter(R) Core(TM) 13-7100
@ 3.90GHz, GPU NVIDIA GeForce GTX 1050, and 8 GB
of RAM. However, the experiment, about large-scale neural
network like VGG-16 and DenseNet-121, was performed on
a device with CPU Inter(R) Core(TM) i7-8750H @ 2.20GHz,
GPU NVIDIA GeForce GTX 1060. Besides, all experiments
used the PyTorch framework, coded in python and completed
with GPU.

A. The Effect of Collaborative Deep Learning

In this subsection, we measure the effect of collaborative
deep learning. In this experiment, all hospitals use the neural
network, AlexNet introduced before. We design the experi-
ment from two aspects: the accuracy of collaborative deep
learning, the performance compared with training a neural
network individually by AlexNet, VGG-16 and DenseNet-121.

To analyze the accuracy of collaborative deep learning,
we assume that there are four groups which have different
number of hospitals and training images. In this experiment,
the Groupl has 5 hospitals and each of them has 1000 training
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Fig. 3. Architecture of the neural network for the detection of pneumonia with the chest X-ray images

chest X-ray images and 624 test chest X-ray images. The
Group2 has 10 hospitals and each of them has 500 training
chest X-ray images and 624 test chest X-ray images. The
Group3 has 15 hospitals and each of them has 300 training
chest X-ray and 624 test chest X-ray images. And the Group4
has 20 hospitals and each of them has 200 training chest X-
ray and 624 test chest X-ray images. During the experiment,
we set the training epoch of a hospital as 40.
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Fig. 4. Comparison of test accuracy between four groups. The Groupl has 5
hospitals and each has 1000 training images, which is referred to as (5, 1000).
And the rest of groups are (10, 500), (15, 300), (20, 200), respectively.

The experimental result has been shown in Fig. 4. In Fig.
4, we found that when a hospital trains a neural network
individually with the smaller number of training images, the
classification accuracy would be lower. This phenomenon is
obvious especially in the Group3 and Group4 where the values
of test accuracy are only 0.72 and 0.66, respectively. However,
when a hospital trains a neural network via collaborative deep
learning, the values of test accuracy are all higher than training
individually and the highest accuracy can be as high as 0.92.

To explore whether collaborative deep learning with
AlexNet could achieve the similar performance of training
individually by AlexNet, VGG-16 and DenseNet-121, we
assume there’s a hospital which has 1000 training chest X-ray
images and 624 test chest X-ray images. In the first condition,
the hospital trains a neural network individually with AlexNet,
VGG-16 and DenseNet-121 without sharing parameters. In

the second condition, the hospital trains a neural network
by collaborative deep learning with AlexNet. Then we can
compare the training performance in these two conditions.
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Fig. 5. The training effect of different convolution neural networks.

From Fig. 5., we could find out that in the first condition,
the accuracy of DenseNet-121 is higher than the accuracy of
VGG-16, while the accuracy of AlexNet remains the lowest.
Although DenseNet-121 and VGG-16 have good performance
in the classification of the chest X-ray images, they also ask
for higher requirements to the hardware. However, in Fig. 5.,
it shows that a hospital possessing AlexNet could acquire a
similar or higher accuracy compared with DenseNet-121 or
VGG-16 via collaborative deep learning.

B. Preserving-Privacy Deep Learning in Medical Images

In order to protect sharing parameters, we inject Gaussian
noise to sharing parameters and make it satisfy the definition
of differential privacy. Different from the previous works [11],
[14] which adopted the Laplace Mechanism or the classical
Gaussian Mechanism, we introduce the analytic Gaussian
Mechanism in our scheme. The analytic Gaussian Mechanism
could decrease the variance of Gaussian noise while the
privacy cost remained. The process of adding the analytic
Gaussian Mechanism to sharing parameters was described in
the Algorithm 1.



Besides, we explore the relationship between the privacy
loss and the accuracy of neural network. we add various
Gaussian noise to sharing parameters in the collaborative
deep learning. It is known that the standard deviation of the
Gaussian noise is computed by the privacy cost € and the
additive term ¢. Indeed, when € or § tends to small, the
standard deviation of the Gaussian noise would become large.
There are three various Gaussian noise in our experiment
which are the large one (0.5, 10~%), the medium one (2, 107?)
and the small one (8, 107°).

TABLE I
ACCURACY FOR FOUR GROUPS WITH DIFFERENTIAL PRIVACY
(¢,9) Noise size | Groupl | Group2 | Group3 | Group4
None o = 0.000 0.92 0.90 0.88 0.85
(8,1075) | o = 0.600 0.90 0.89 0.87 0.84
(2,107%) | o =1.993 0.88 0.87 0.84 0.82
0.5, 1075) | o =7.032 0.87 0.85 0.82 0.79

Table I shows the classification accuracy when apply dif-
ferential privacy to the sharing parameters. From Table I,
we discover that adding the small Gaussian noise, such as
o = 0.600, to sharing parameters during the training process
of collaborative deep learning would not decrease test accuracy
of classification too much. And through applying differential
privacy, we could achieve the protection of privacy of medical
images. However, the large noise size, such as o = 7.0322,
would affect test accuracy obviously, especially when the
hospital possesses the small number of medical images. Al-
though adding Gaussian noise to the sharing parameters would
decrease more or less the classification accuracy, the effect
of collaborative deep learning with differential privacy is still
better than training neural network individually. So, in reality
scenario of medical image analysis, it is necessary to find an
appropriate noise level to achieve privacy preserving while the
accuracy remained.

V. CONCLUSIONS

In this paper, we apply collaborative deep learning and
differential privacy to the field of medical image analysis. We
test it based on the Chest X-Ray Images (Pneumonia) dataset.
Results show that collaborative deep learning increases the
classification accuracy effectively, especially when there are
relatively fewer training samples. After adding Gaussian noise
to sharing parameters, the decrease of accuracy is small and
affects little to the results. In the further work, we would like
to consider other methods of cryptography, such as secure
multiparty computation or homomorphic encryption.
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