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Abstract—Phishing is a type of malicious attack that involves 
the fooling of unsuspecting victims into providing or sharing 
personal information such as names, addresses, and banking 
information, which may lead to damages to the individual such as 
identity theft and financial losses. To combat phishing attacks, 
there have been many strides toward the use of newer technologies 
instead of conventional approaches such as personnel training and 
physical security. These technologies involve a proactive approach 
towards identifying Phishing websites that utilize machine 
learning and have become more and more efficient. In this paper, 
a more proactive and online machine learning approach is 
proposed that utilize features that have been well-accepted among 
industries and academia. Within the algorithm, prioritizing of 
features will be broken up into layers, and the output of the tool 
will be a digital tag that could be included in web browsers for 
quick identification and classification. If a site is tagged, the 
website owner will have the opportunity to legitimize the website 
through a detailed informational session and will allow them to fix 
any features that may be classified as malevolent in nature.  

Keywords— phishing, social engineering, machine learning, 
Phishtank, openfish, Alexa 

I. INTRODUCTION

The impact of Phishing schemes has more than doubled in 
the recent years, and with the ongoing entanglement of the 
Internet makes this an even more challenging endeavor to 
undergo. Since 2014, phishing incidents that were reported has 
exploded by nearly 250% [1]. Phishing is essentially a subset 
of social engineering: Phishers (the ones who launch phishing 
attacks) utilize many different tricks in order to attain private 
information from users. Victims, for the most part, are wholly 
unsuspecting and may not have the same literacy in computers 
as a computer professional. The answer, though, has to be more 
than just conventional approaches such as personnel educating. 
In this regard, many other approaches have been taken in the 
recent decade.  

Notwithstanding, there are challenges that need to be 
addressed, and limitations to many of the existing algorithms 
that still need updates and more efficient implementation [2]. 
Some of those challenges involve utilizing proper scanning 
techniques, internet etiquette, and understanding Phishing from 
the standpoint of the attacker instead of the victim [3]. These 
are just some of the challenges in the computer security 
industry, whereas attackers are not focused on simple etiquette 
techniques. Attackers utilize these limitations as a vulnerability, 

and often use whatever methods available to attain their goals. 
Phishing is just one of those that involve multiple vectors and 
angles onto which to use against the victim.  

IN this paper, we propose to utilize a machine learning 
based approach to identify and classify potential phishing 
webpages. For this purpose, we compose our own dataset, and 
based on which we comprehensively evaluated various 
machine algorithms and features sets. Our study carries insights 
in combating phishing attack by leveraging machine learning 
algorithms. 

The rest of this paper is organized as follows. In Section II 
we briefly introduce background and related works to this 
study. The main approach of the study is demonstrated in 
Section III through V, and in Section VI we summarize our 
work and propose future directions.  

II. BACKGROUND AND EXISTING ALGORITHMS

Phishing, in the most common form, begins from the 
sending of an email by the attacker to multiple victims’ email 
addresses. Within the email the attacker attempts to spoof itself 
as something that would be otherwise interested and/or trusted 
by the recipient of the email. Such emails may include those 
from financial institutions, friends, or shopping websites in 
which many people frequently visit. These emails are meant to 
either illicit personal information in a reply or direct the 
recipient to click on a link that would take them to the website 
where they will then ask for them to input their private 
information [4]. Although seems intuitive, Phishing has 
somewhat become an art form and the techniques are becoming 
more and more sophisticated less identifiable. For every 
countermeasure, there almost always seems to be a 
workaround. Phishing techniques can range in the forms of link 
manipulation, filter evasion, website forgery, and covert 
redirects [5]. 

Most of the approaches towards combatting Phishing can 
be classified into two main categories: proactive and reactive. 
In proactive approaches, the algorithm is meant to find newly 
created sites and classify them as either legitimate, suspicious, 
or malicious. Reactive approaches utilize blacklisting, which 
endeavor to take on reported sites and classify them very much 
the same way. According to Varshney et. al [4] detection is the 
most effective at battling Phishing, with user training and 
security schemes being other less effective approaches. It is 
within the detection section that includes algorithms that can be 



 

considered either reactive or proactive while utilizing differing 
approaches in either direction. 
 
 

 
Figure 1. A Phishing Scenario [4] 

 
There are several tools that utilize differing techniques, 

however the focus will be on Machine Learning, and some 
other techniques such as filtering which include two main 
directions: visual filtering and internal filtering. In 2012, 
Maurer et al. [6] went down the road of identification and 
classification through the testing of four visual detectors that 
included colors, layouts, color histograms, and color space 
division in order to differentiate between legitimate and 
suspicious websites. On the internal side, in 2015 Kumar et al. 
[7] proposed the CANTINA, which is a filter that mainly 
focuses on the structure and contents of the HTML, CSS, and 
JavaScript within a page and identifies markers that may seem 
malicious. This tool also takes into consideration of the URL 
and uses web design standards as another filtering tool within 
CANTINA. Works on this level had also been done in 2009, 
when Suriya et al. [8] identified a multi-faceted approach into 
the identification and classification of sites utilizing script 
checking and a tool named CODE SCRIPT that checks the 
validity of the website while tracking through a suspect email. 
Even earlier, in 2007, Fette et al. [9] looked at targeting emails 
from questionable sources and identifying through the use of 
the WHOIS database [10]. 

In the recent years, however, with the advent and 
popularity of machine learning, anti-phishing techniques have 
gone from user education and filtering techniques and moved 
on to a more sophisticated way of targeting Phishing websites 
while still branched in a form of filtering. Miyamoto et al. [11] 
began down the heuristic approach through the creation of a 
tool known as PhishCage, which is essentially an emulated 
version of the larger internet, in order to take a heuristic 
approach onto URL filtering. In 2015, Fang et al. [12] devised 
another heuristic approach onto filtering that added features of 
Phishing websites and utilized machine learning to analyze and 
filter through. The approach included a blacklisting method as 

an output from a visual filtering tool (RAY SCAN through 
spatial filtering). 

Soon after, the need for efficiency in processing larger 
datasets lead to the breakthrough of designing tools that can 
iterate through features that were analyzed from datasets from 
popular locations such as Alexa, phishtank.com, and 
openfish.com [13] [14] [15] [16]. It is with this analysis in 
which the tools such as Fresh-Phish [1] and Phisher [15] utilize 
in order to filter through and classify through the identification 
of these features. Marchal et. al [15] created Phisher that 
included 5 separate modules that each conducted a step in the 
classification system: A webpage scraper, feature extractor, 
classifier, key-terms extractor, and target identifier. Fresh-
Phish dives in deeper and creates a system that breaks into five 
feature categories: URL based, DNS based, External Statistics, 
HTML, and JavaScript based [1]. The next approach features a 
classification off of a large set of 212 features [17].  

In 2017, Weiss et al. [18] devised an approach that featured 
Heterogenous Transfer Learning called Canonical Correlation 
Analysis. This method utilized a different and mutually 
exclusive data set for both the training and testing dataset from 
a baseline dataset. In order to break down the feature set, the 
Chi-Square measure was utilized to help identify relevance to 
the dataset and feature space.  Once the feature space was 
aligned, they were able to utilize 11 algorithms, four of which 
were basic machine learning, and were not able to differentiate 
an advantage from tradition machine learning versus 
homogenous or heterogenous transfer learning.  

In other works, while still utilizing machine learning, 
authors worked towards identifying different methods of data 
mining and varying sources of datasets. One method involved 
the use of financial industry webserver logs [19]. From the logs, 
URL’s were extracted and brought into the system to compare 
and blacklist while utilizing a manual verification technique. 
Another method introduced SEAHOUND [20], which utilized 
semantic analysis centered around Natural Language 
processing. In 2016, Li et al. [16] used the global massive 
domain name registration to identify a dataset that can be 
filtered almost autonomously.  
 

III. MACHINE LEARNING  

In order to identify the proper algorithm in machine 
learning techniques, it is important to understand the overall 
goal of the end model. There are multiple algorithms for 
multitudes of uses and approaches in research, both supervised 
and unsupervised. These algorithms can be used for predictions, 
personal assisting, development, automation, and many other 
processes that can be made more accurate or efficient. In this 
case, since we are attempting to identify and classify phishing 
sites as such, we will utilize supervised classification 
algorithms. For testing and research purposes there were a 
partially supervised algorithms utilized. The research, however, 
was centered around the accuracy of the supervised classifiers.  

The database employed for initial testing was from the UCI 
center for Machine Learning [21]. The data set from the 
repository is titled “Phishing Websites Data Set” which 



 

includes 2456 instances to process through. The dataset applies 
a set of features that are common to phishing sites, and since 
the features will also be utilized in this research, the dataset fits 
onto the goal of detection and classification. The features, with 
their value possibilities labeled thereafter, are as follows:  

 
1. having_IP_Address  { -1,1 } 
2. URL_Length   { 1,0,-1 } 
3. Shortining_Service { 1,-1 } 
4. having_At_Symbol   { 1,-1 } 
5. double_slash_redirecting { -1,1 } 
6. Prefix_Suffix  { -1,1 } 
7. having_Sub_Domain  { -1,0,1 } 
8. SSLfinal_State  { -1,1,0 } 
9. Domain_registeration_length { -1,1 } 
10. Favicon { 1,-1 } 
11. port { 1,-1 } 
12. HTTPS_token { -1,1 } 
13. Request_URL  { 1,-1 } 
14. URL_of_Anchor { -1,0,1 } 
15. Links_in_tags { 1,-1,0 } 
16. SFH  { -1,1,0 } 
17. Submitting_to_email { -1,1 } 
18. Abnormal_URL { -1,1 } 
19. Redirect  { 0,1 } 
20. on_mouseover  { 1,-1 } 
21. RightClick  { 1,-1 } 
22. popUpWidnow  { 1,-1 } 
23. Iframe { 1,-1 } 
24. age_of_domain  { -1,1 } 
25. DNSRecord   { -1,1 } 
26. web_traffic  { -1,0,1 } 
27. Page_Rank { -1,1 } 
28. Google_Index { 1,-1 } 
29. Links_pointing_to_page { 1,0,-1 } 
30. Statistical_report { -1,1 } 

 
Explanation of features are located in the index. All of 

these features have been identified in previous works and are 
accepted within the community. 

This dataset was then fit into the following algorithms 
utilizing the SCIKIT Learn tool on Python [22]: 

 Supervised: 
o K-neighbors 
o SVC 
o Gaussian Process and Naïve Bayes 
o Decision Trees 
o Random Forests 
o AdaBoost 
o Quadratic 
o MLP 

 Semi-supervised: 
o Label Propagation 

 
Dataset optimization happened at a 25% sample rate 

splitting. All algorithms were set at the base solvers (where 
there were multiple solvers) in order to attain an initial accuracy 

in predicting utilizing the base method. The accuracy scores 
were as shown in figure 2. 
 

 
Figure 2. Base Accuracy Scores for Classifiers. 

K-neighbors was adjusted for two different weight 
adjustments: uniform and distance. Both only reached a 60% 
prediction rate so this algorithm was removed. Label 
propagation was removed temporarily as it requires more data 
for learning and more iterations for uncertain predictions. SVC, 
Random Forests, Decision Trees, MLP (Multi-Layer 
Perceptron), Gaussian NB, and Adaboost (Which is an effective 
boost onto Decision Trees) were all kept. Removed were 
Quadratic and Gaussian Process due to lack of initial prediction 
and model fitting.  

In the next round of testing, SVC was adjusted for a 
different kernel (linear) which has been identified to be more 
accurate against binary classes, rather than a multi-class dataset. 
This kernel was not efficient as its processing time increased by 
almost a minute, however it proved to be more accurate in 
predicting than before reaching a high of 92%. Figure shows 
the classifiers that will be utilized based off of their base scores 
and will be tuned for further accuracy. 
 

 
 

Figure 3. Accuracy Scores for Classifiers (2nd iteration). 

The Logistic Regression models were only ever able to get 
to 93% through tuning. The MLP models through tuning 
achieved an accuracy of 93.33%. Gaussian (Naïve Bayes 
model) had a high score of 89%. The highest accuracy from the 
classifiers on this dataset not considered to be an ensemble were 
Decision Trees at 96%. The ensemble version of Decision Trees 
Random Forests posted a higher accuracy at 97.03%. The 
Decision Tree and subsequent Random Forest are included in 



 

the index. To include another ensemble, Adaboost with 
Decision Tree as base estimator showed an accuracy of 95.58% 
after tuning, and with a Random Forest base estimator, 97.28% 
proving to be the algorithms of choice. Moving forward, only 
Decision Trees and the ensemble algorithms Random Forests 
and Adaboost will be used. 

IV. METHODOLOGY 

To continue identifying a machine learning model that 
maintains accuracy through multiple iterations, a newer dataset 
needed to be built with utilizing more URLs.  Since this tool 
also requires an efficient processing strategy, it was ideal to 
split the feature list and remove the least weighted features in 
order to provide quicker iteration and classification without loss 
on accuracy. In previous works such as the Fresh-Phish 
framework [1], a method of dataset building was built in order 
to process through URLs and provide the same type of 
information utilized in the UCI dataset. For this tool, the base 
framework was used as an outline, and then rebuilt because of 
methods being outdated and/or permissions of tools changing 
(such as Google indexing). The biggest challenges lies in that 
many of the modules producing false positives within the 
dataset. Many were due to newer user-type rules, out-of-date or 
extinct Python modules, user agreements, connection-type 
errors, request time-outs, etc. Some modules were kept intact, 
the rest were updated to provide proper classification. 
 

 
Figure 4. Feature Weights 

Once rebuilt with workarounds, a dataset with 17,381 was 
created utilizing inputs from Phistank, Openfish, Alexa Top 
Sites(ATS) and 5000Best [23] [24] [25] [26]. Just like in 
previous works utilizing these inputs, it was assumed that 
Phishtank and Openfish included URLs that were reported to 
be phishing sites, and ATS and 5000Best were benign and 
considered not-phishing. 5000Best utilizes information and 

analytics from multiple sources such as Google, ATS, and 
various other platforms for determining ranking.  

In determining feature weights, the most accurate 
performing model from the UCI dataset testing was extracted. 
The features are shown in figure 4. The most important feature 
in determining phishing was the length of the URL, while the 
least important feature was Pop-Up Window.  

V. DESIGN 

The goal of the PhishFry tool is to create an efficient multi-
layered approach for the classification of a phishing site. This 
approach includes being proactive; that is not waiting for a 
report, but to reach out and crawl the web on a regular basis 
while trying to locate phishing sites. This means that while 
many solutions are reactive in their detections, this tool is free-
standing, and will utilize the models built in order to classify 
with pre-existing large-scale web-crawlers such as that of the 
AWS Common Crawl (AWSCC) [27].  

AWSCC crawls the web and saves the data into separate 
indices that can then be utilized for research purposes. 
Recently, that have included a new functionality that includes a 
listing of just the URLs, which can then be used in other 
programs without having to crawl the entire crawl and saves 
time by allowing the tool to process the URL instead of building 
another tool to search through the crawl data. Utilizing the 
index will be important in the creation of the online version of 
the tool. 

The tool that we are proposing is sectioned into three 
layers. Each layer will be focused on a different process within 
the overall classification. The classification model for layer one 
(PhishFry1) will be the same model that was utilized in building 
the prediction model. The second layer (PhishFry2) will 
involve another stage of classification that can remove any false 
positives. The third will be final classification and includes a 
future proposal for a digital signature type of tag to suspected 
URLs.  

A. Layer One 

In this layer, the classification tool named PhishFry 1 
(PhishFry consists of two classification modules) which is built 
upon part of the final feature set. As well as utilizing features 
that were identified as either unimportant in the decision tree 
process or were not able to be built based upon various 
restrictions, such as Google user agreement violations and 
blocking of bulk requests. (Amazon also does not offer the 
Alexa information for free anymore, and thus lead us to find a 
different way of attaining the information while staying in line 
with the UCI feature set). The features in the most recent 
iteration are in Figure 4 with the added weights. Some features 
were rendered irrelevant even in this cycle due to not being 
utilized or other errors such as inaccessible or processing errors 
that allow for parsing through the website data. 

Processing improved upon removal of the features, and 
some of the features that were unimportant utilizing the UCI 
model are now important in this feature set, mainly due to the 
changing of the software classification. In order to mimic the 
UCI set, a feature classification tool had to be built. Some 
features were either not utilized anymore, or some methods in 



 

retrieving that feature may have changed.  One of the most 
noticeable differences was the importance in having a pop-up 
window, which increased in the new model, but was nearly 
nonexistent (weight-wise) in the UCI model.  Another item of 
import is the MLP model increased in accuracy, which joined 
the Decision Tree and Random Forest albeit still lower. The 
models by accuracy are in Figure 5. The Random Forest models 
are included in the appendix.  
 

 
Figure 5. Models by Accuracy 

This (Random Forest, based on accuracy) model will be 
utilized as the first layer in the tool, which then modeled with 
another part of the tool that grabs all of the URLs from the 
Common Crawl URL Index and runs through the model. The 
model will then predict the URLs that appear to be suspicious, 
and then push them to the second layer.  

B. Layer Two 

In this layer, some of the more process-heavy features were 
chosen to be in this layer to remove processing times, while also 
increasing accuracy. The processing quips happened when 
having to use Selenium (a browser emulation module for 
Python) in order to access specific traits of a webpage through 
emulation, while also utilizing workarounds (Google has come 
down on entities whom utilize automated software that make 
requests in bulk as a violation of user agreements) to attain 
other information that either Google removed altogether, or 
privacy and request permission changed. Selenium allows us to 
process a page through simulation, which allowed us to utilize 
other resources to gather that information. Those features are: 
 

1. Google Index – Indexing in a website shows its 
popularity and whether Google has indexed this page. 

2. iFrame – Used for cross site scripting, iFrame tag in 
HTML can be useful but also malicious depending on 
its use.  

3. Google Search – Returns the results from searching 
the page. If Google can’t find anything, it’s suspicious.  

4. Phishing site search – Checks the existing databases to 
see if the URL was already reported. 

Once data has been retained for the suspicious site, the 
features get added to the index, and then run through the 
secondary prediction based off of the new data. If the site gets 
tagged again, it moves to Layer Three.  

C. Layer Three 

In this final layer of the tool proposal, the model has 
already been utilized to predict on whether the site is considered 
to be phishing or not and will be utilized mainly as a tagging 
layer.  The tag will be a digital signature that is embedded into 
the site, which will then flag the site as phishing. Once the tag 
is applied, the owner of the page will have a process to follow 
that will get the tag removed. The flagging can be built into 
browsers and can either block the site altogether or warn the 
visitor of the issues involved with visiting the site. The tagging 
helps browsers keep unnecessary software from their code, 
while also warning the end-user of its malicious nature. 

 
Figure 6. Feature Weights for Latest Dataset 

If the tag cannot be mutually agreed upon, then this layer 
can be transformed into a feeder tool, which feeds the data into 
repositories such as Phishtank and Openfish in order to assist in 
preventing phishing and for future development.  

VI. FUTURE WORK AND RECOMMENDATIONS 

We consider this tool to be in the research stage, and there 
is still a lot of work to be done, which includes increasing 
effectiveness of initial classifier to include newer phishing 
technologies and features, utilizing more classification models 
and tuning for a higher accuracy, and adding the digital 
signature tag or funnel to the end of the tool. The overall 
intention of the design is an intelligent learning system that can 
maneuver and update itself while providing a service that can 
protect end-users from the plight of phishing attempts. Work 
can also be done to add the work done by Li et al. [16] that 
involves utilizing URLs for the mechanism through newly 
registered domains which can also have a positive effect on 
overall processing times and reduce equipment.  

In continuation to the work done by Fresh-Phish, this 
added design increases the overall accuracy of determining 
whether a site is a phishing one or not and adds other important 
mechanisms that will assist in the creation of a more proactive 
approach. The layer deployment is important because of 



 

processing times and we were able to maintain a high degree of 
accuracy while eliminating features that may have been over 
utilized in previous iterations.  

In this research, we found the Random Forests and Multi-
Layer Perceptron models were the most accurate which 
identifies the power of ensemble versions of machine learning 
algorithms and may indeed help us increase accuracy with more 
combinations of algorithms in the near future.  
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