
PhishFry – A Proactive Approach to Classify
Phishing Sites using SCIKIT Learn

Daniel Brites and Mingkui Wei
Sam Houston State University

Huntsville, TX

Abstract—Phishing is a type of malicious attack that involves
the fooling of unsuspecting victims into providing or sharing
personal information such as names, addresses, and banking
information, which may lead to damages to the individual such as
identity theft and financial losses. To combat phishing attacks,
there have been many strides toward the use of newer technologies
instead of conventional approaches such as personnel training and
physical security. These technologies involve a proactive approach
towards identifying Phishing websites that utilize machine
learning and have become more and more efficient. In this paper,
a more proactive and online machine learning approach is
proposed that utilize features that have been well-accepted among
industries and academia. Within the algorithm, prioritizing of
features will be broken up into layers, and the output of the tool
will be a digital tag that could be included in web browsers for
quick identification and classification. If a site is tagged, the
website owner will have the opportunity to legitimize the website
through a detailed informational session and will allow them to fix
any features that may be classified as malevolent in nature.

Keywords— phishing, social engineering, machine learning,
Phishtank, openfish, Alexa

I. INTRODUCTION

The impact of Phishing schemes has more than doubled in
the recent years, and with the ongoing entanglement of the
Internet makes this an even more challenging endeavor to
undergo. Since 2014, phishing incidents that were reported has
exploded by nearly 250% [1]. Phishing is essentially a subset
of social engineering: Phishers (the ones who launch phishing
attacks) utilize many different tricks in order to attain private
information from users. Victims, for the most part, are wholly
unsuspecting and may not have the same literacy in computers
as a computer professional. The answer, though, has to be more
than just conventional approaches such as personnel educating.
In this regard, many other approaches have been taken in the
recent decade.

Notwithstanding, there are challenges that need to be
addressed, and limitations to many of the existing algorithms
that still need updates and more efficient implementation [2].
Some of those challenges involve utilizing proper scanning
techniques, internet etiquette, and understanding Phishing from
the standpoint of the attacker instead of the victim [3]. These
are just some of the challenges in the computer security
industry, whereas attackers are not focused on simple etiquette
techniques. Attackers utilize these limitations as a vulnerability,

and often use whatever methods available to attain their goals.
Phishing is just one of those that involve multiple vectors and
angles onto which to use against the victim.

IN this paper, we propose to utilize a machine learning
based approach to identify and classify potential phishing
webpages. For this purpose, we compose our own dataset, and
based on which we comprehensively evaluated various
machine algorithms and features sets. Our study carries insights
in combating phishing attack by leveraging machine learning
algorithms.

The rest of this paper is organized as follows. In Section II
we briefly introduce background and related works to this
study. The main approach of the study is demonstrated in
Section III through V, and in Section VI we summarize our
work and propose future directions.

II. BACKGROUND AND EXISTING ALGORITHMS

Phishing, in the most common form, begins from the
sending of an email by the attacker to multiple victims’ email
addresses. Within the email the attacker attempts to spoof itself
as something that would be otherwise interested and/or trusted
by the recipient of the email. Such emails may include those
from financial institutions, friends, or shopping websites in
which many people frequently visit. These emails are meant to
either illicit personal information in a reply or direct the
recipient to click on a link that would take them to the website
where they will then ask for them to input their private
information [4]. Although seems intuitive, Phishing has
somewhat become an art form and the techniques are becoming
more and more sophisticated less identifiable. For every
countermeasure, there almost always seems to be a
workaround. Phishing techniques can range in the forms of link
manipulation, filter evasion, website forgery, and covert
redirects [5].

Most of the approaches towards combatting Phishing can
be classified into two main categories: proactive and reactive.
In proactive approaches, the algorithm is meant to find newly
created sites and classify them as either legitimate, suspicious,
or malicious. Reactive approaches utilize blacklisting, which
endeavor to take on reported sites and classify them very much
the same way. According to Varshney et. al [4] detection is the
most effective at battling Phishing, with user training and
security schemes being other less effective approaches. It is
within the detection section that includes algorithms that can be

considered either reactive or proactive while utilizing differing
approaches in either direction.

Figure 1. A Phishing Scenario [4]

There are several tools that utilize differing techniques,

however the focus will be on Machine Learning, and some
other techniques such as filtering which include two main
directions: visual filtering and internal filtering. In 2012,
Maurer et al. [6] went down the road of identification and
classification through the testing of four visual detectors that
included colors, layouts, color histograms, and color space
division in order to differentiate between legitimate and
suspicious websites. On the internal side, in 2015 Kumar et al.
[7] proposed the CANTINA, which is a filter that mainly
focuses on the structure and contents of the HTML, CSS, and
JavaScript within a page and identifies markers that may seem
malicious. This tool also takes into consideration of the URL
and uses web design standards as another filtering tool within
CANTINA. Works on this level had also been done in 2009,
when Suriya et al. [8] identified a multi-faceted approach into
the identification and classification of sites utilizing script
checking and a tool named CODE SCRIPT that checks the
validity of the website while tracking through a suspect email.
Even earlier, in 2007, Fette et al. [9] looked at targeting emails
from questionable sources and identifying through the use of
the WHOIS database [10].

In the recent years, however, with the advent and
popularity of machine learning, anti-phishing techniques have
gone from user education and filtering techniques and moved
on to a more sophisticated way of targeting Phishing websites
while still branched in a form of filtering. Miyamoto et al. [11]
began down the heuristic approach through the creation of a
tool known as PhishCage, which is essentially an emulated
version of the larger internet, in order to take a heuristic
approach onto URL filtering. In 2015, Fang et al. [12] devised
another heuristic approach onto filtering that added features of
Phishing websites and utilized machine learning to analyze and
filter through. The approach included a blacklisting method as

an output from a visual filtering tool (RAY SCAN through
spatial filtering).

Soon after, the need for efficiency in processing larger
datasets lead to the breakthrough of designing tools that can
iterate through features that were analyzed from datasets from
popular locations such as Alexa, phishtank.com, and
openfish.com [13] [14] [15] [16]. It is with this analysis in
which the tools such as Fresh-Phish [1] and Phisher [15] utilize
in order to filter through and classify through the identification
of these features. Marchal et. al [15] created Phisher that
included 5 separate modules that each conducted a step in the
classification system: A webpage scraper, feature extractor,
classifier, key-terms extractor, and target identifier. Fresh-
Phish dives in deeper and creates a system that breaks into five
feature categories: URL based, DNS based, External Statistics,
HTML, and JavaScript based [1]. The next approach features a
classification off of a large set of 212 features [17].

In 2017, Weiss et al. [18] devised an approach that featured
Heterogenous Transfer Learning called Canonical Correlation
Analysis. This method utilized a different and mutually
exclusive data set for both the training and testing dataset from
a baseline dataset. In order to break down the feature set, the
Chi-Square measure was utilized to help identify relevance to
the dataset and feature space. Once the feature space was
aligned, they were able to utilize 11 algorithms, four of which
were basic machine learning, and were not able to differentiate
an advantage from tradition machine learning versus
homogenous or heterogenous transfer learning.

In other works, while still utilizing machine learning,
authors worked towards identifying different methods of data
mining and varying sources of datasets. One method involved
the use of financial industry webserver logs [19]. From the logs,
URL’s were extracted and brought into the system to compare
and blacklist while utilizing a manual verification technique.
Another method introduced SEAHOUND [20], which utilized
semantic analysis centered around Natural Language
processing. In 2016, Li et al. [16] used the global massive
domain name registration to identify a dataset that can be
filtered almost autonomously.

III. MACHINE LEARNING

In order to identify the proper algorithm in machine
learning techniques, it is important to understand the overall
goal of the end model. There are multiple algorithms for
multitudes of uses and approaches in research, both supervised
and unsupervised. These algorithms can be used for predictions,
personal assisting, development, automation, and many other
processes that can be made more accurate or efficient. In this
case, since we are attempting to identify and classify phishing
sites as such, we will utilize supervised classification
algorithms. For testing and research purposes there were a
partially supervised algorithms utilized. The research, however,
was centered around the accuracy of the supervised classifiers.

The database employed for initial testing was from the UCI
center for Machine Learning [21]. The data set from the
repository is titled “Phishing Websites Data Set” which

includes 2456 instances to process through. The dataset applies
a set of features that are common to phishing sites, and since
the features will also be utilized in this research, the dataset fits
onto the goal of detection and classification. The features, with
their value possibilities labeled thereafter, are as follows:

1. having_IP_Address { -1,1 }
2. URL_Length { 1,0,-1 }
3. Shortining_Service { 1,-1 }
4. having_At_Symbol { 1,-1 }
5. double_slash_redirecting { -1,1 }
6. Prefix_Suffix { -1,1 }
7. having_Sub_Domain { -1,0,1 }
8. SSLfinal_State { -1,1,0 }
9. Domain_registeration_length { -1,1 }
10. Favicon { 1,-1 }
11. port { 1,-1 }
12. HTTPS_token { -1,1 }
13. Request_URL { 1,-1 }
14. URL_of_Anchor { -1,0,1 }
15. Links_in_tags { 1,-1,0 }
16. SFH { -1,1,0 }
17. Submitting_to_email { -1,1 }
18. Abnormal_URL { -1,1 }
19. Redirect { 0,1 }
20. on_mouseover { 1,-1 }
21. RightClick { 1,-1 }
22. popUpWidnow { 1,-1 }
23. Iframe { 1,-1 }
24. age_of_domain { -1,1 }
25. DNSRecord { -1,1 }
26. web_traffic { -1,0,1 }
27. Page_Rank { -1,1 }
28. Google_Index { 1,-1 }
29. Links_pointing_to_page { 1,0,-1 }
30. Statistical_report { -1,1 }

Explanation of features are located in the index. All of

these features have been identified in previous works and are
accepted within the community.

This dataset was then fit into the following algorithms
utilizing the SCIKIT Learn tool on Python [22]:

 Supervised:
o K-neighbors
o SVC
o Gaussian Process and Naïve Bayes
o Decision Trees
o Random Forests
o AdaBoost
o Quadratic
o MLP

 Semi-supervised:
o Label Propagation

Dataset optimization happened at a 25% sample rate

splitting. All algorithms were set at the base solvers (where
there were multiple solvers) in order to attain an initial accuracy

in predicting utilizing the base method. The accuracy scores
were as shown in figure 2.

Figure 2. Base Accuracy Scores for Classifiers.

K-neighbors was adjusted for two different weight
adjustments: uniform and distance. Both only reached a 60%
prediction rate so this algorithm was removed. Label
propagation was removed temporarily as it requires more data
for learning and more iterations for uncertain predictions. SVC,
Random Forests, Decision Trees, MLP (Multi-Layer
Perceptron), Gaussian NB, and Adaboost (Which is an effective
boost onto Decision Trees) were all kept. Removed were
Quadratic and Gaussian Process due to lack of initial prediction
and model fitting.

In the next round of testing, SVC was adjusted for a
different kernel (linear) which has been identified to be more
accurate against binary classes, rather than a multi-class dataset.
This kernel was not efficient as its processing time increased by
almost a minute, however it proved to be more accurate in
predicting than before reaching a high of 92%. Figure shows
the classifiers that will be utilized based off of their base scores
and will be tuned for further accuracy.

Figure 3. Accuracy Scores for Classifiers (2nd iteration).

The Logistic Regression models were only ever able to get
to 93% through tuning. The MLP models through tuning
achieved an accuracy of 93.33%. Gaussian (Naïve Bayes
model) had a high score of 89%. The highest accuracy from the
classifiers on this dataset not considered to be an ensemble were
Decision Trees at 96%. The ensemble version of Decision Trees
Random Forests posted a higher accuracy at 97.03%. The
Decision Tree and subsequent Random Forest are included in

the index. To include another ensemble, Adaboost with
Decision Tree as base estimator showed an accuracy of 95.58%
after tuning, and with a Random Forest base estimator, 97.28%
proving to be the algorithms of choice. Moving forward, only
Decision Trees and the ensemble algorithms Random Forests
and Adaboost will be used.

IV. METHODOLOGY

To continue identifying a machine learning model that
maintains accuracy through multiple iterations, a newer dataset
needed to be built with utilizing more URLs. Since this tool
also requires an efficient processing strategy, it was ideal to
split the feature list and remove the least weighted features in
order to provide quicker iteration and classification without loss
on accuracy. In previous works such as the Fresh-Phish
framework [1], a method of dataset building was built in order
to process through URLs and provide the same type of
information utilized in the UCI dataset. For this tool, the base
framework was used as an outline, and then rebuilt because of
methods being outdated and/or permissions of tools changing
(such as Google indexing). The biggest challenges lies in that
many of the modules producing false positives within the
dataset. Many were due to newer user-type rules, out-of-date or
extinct Python modules, user agreements, connection-type
errors, request time-outs, etc. Some modules were kept intact,
the rest were updated to provide proper classification.

Figure 4. Feature Weights

Once rebuilt with workarounds, a dataset with 17,381 was
created utilizing inputs from Phistank, Openfish, Alexa Top
Sites(ATS) and 5000Best [23] [24] [25] [26]. Just like in
previous works utilizing these inputs, it was assumed that
Phishtank and Openfish included URLs that were reported to
be phishing sites, and ATS and 5000Best were benign and
considered not-phishing. 5000Best utilizes information and

analytics from multiple sources such as Google, ATS, and
various other platforms for determining ranking.

In determining feature weights, the most accurate
performing model from the UCI dataset testing was extracted.
The features are shown in figure 4. The most important feature
in determining phishing was the length of the URL, while the
least important feature was Pop-Up Window.

V. DESIGN

The goal of the PhishFry tool is to create an efficient multi-
layered approach for the classification of a phishing site. This
approach includes being proactive; that is not waiting for a
report, but to reach out and crawl the web on a regular basis
while trying to locate phishing sites. This means that while
many solutions are reactive in their detections, this tool is free-
standing, and will utilize the models built in order to classify
with pre-existing large-scale web-crawlers such as that of the
AWS Common Crawl (AWSCC) [27].

AWSCC crawls the web and saves the data into separate
indices that can then be utilized for research purposes.
Recently, that have included a new functionality that includes a
listing of just the URLs, which can then be used in other
programs without having to crawl the entire crawl and saves
time by allowing the tool to process the URL instead of building
another tool to search through the crawl data. Utilizing the
index will be important in the creation of the online version of
the tool.

The tool that we are proposing is sectioned into three
layers. Each layer will be focused on a different process within
the overall classification. The classification model for layer one
(PhishFry1) will be the same model that was utilized in building
the prediction model. The second layer (PhishFry2) will
involve another stage of classification that can remove any false
positives. The third will be final classification and includes a
future proposal for a digital signature type of tag to suspected
URLs.

A. Layer One

In this layer, the classification tool named PhishFry 1
(PhishFry consists of two classification modules) which is built
upon part of the final feature set. As well as utilizing features
that were identified as either unimportant in the decision tree
process or were not able to be built based upon various
restrictions, such as Google user agreement violations and
blocking of bulk requests. (Amazon also does not offer the
Alexa information for free anymore, and thus lead us to find a
different way of attaining the information while staying in line
with the UCI feature set). The features in the most recent
iteration are in Figure 4 with the added weights. Some features
were rendered irrelevant even in this cycle due to not being
utilized or other errors such as inaccessible or processing errors
that allow for parsing through the website data.

Processing improved upon removal of the features, and
some of the features that were unimportant utilizing the UCI
model are now important in this feature set, mainly due to the
changing of the software classification. In order to mimic the
UCI set, a feature classification tool had to be built. Some
features were either not utilized anymore, or some methods in

retrieving that feature may have changed. One of the most
noticeable differences was the importance in having a pop-up
window, which increased in the new model, but was nearly
nonexistent (weight-wise) in the UCI model. Another item of
import is the MLP model increased in accuracy, which joined
the Decision Tree and Random Forest albeit still lower. The
models by accuracy are in Figure 5. The Random Forest models
are included in the appendix.

Figure 5. Models by Accuracy

This (Random Forest, based on accuracy) model will be
utilized as the first layer in the tool, which then modeled with
another part of the tool that grabs all of the URLs from the
Common Crawl URL Index and runs through the model. The
model will then predict the URLs that appear to be suspicious,
and then push them to the second layer.

B. Layer Two

In this layer, some of the more process-heavy features were
chosen to be in this layer to remove processing times, while also
increasing accuracy. The processing quips happened when
having to use Selenium (a browser emulation module for
Python) in order to access specific traits of a webpage through
emulation, while also utilizing workarounds (Google has come
down on entities whom utilize automated software that make
requests in bulk as a violation of user agreements) to attain
other information that either Google removed altogether, or
privacy and request permission changed. Selenium allows us to
process a page through simulation, which allowed us to utilize
other resources to gather that information. Those features are:

1. Google Index – Indexing in a website shows its
popularity and whether Google has indexed this page.

2. iFrame – Used for cross site scripting, iFrame tag in
HTML can be useful but also malicious depending on
its use.

3. Google Search – Returns the results from searching
the page. If Google can’t find anything, it’s suspicious.

4. Phishing site search – Checks the existing databases to
see if the URL was already reported.

Once data has been retained for the suspicious site, the
features get added to the index, and then run through the
secondary prediction based off of the new data. If the site gets
tagged again, it moves to Layer Three.

C. Layer Three

In this final layer of the tool proposal, the model has
already been utilized to predict on whether the site is considered
to be phishing or not and will be utilized mainly as a tagging
layer. The tag will be a digital signature that is embedded into
the site, which will then flag the site as phishing. Once the tag
is applied, the owner of the page will have a process to follow
that will get the tag removed. The flagging can be built into
browsers and can either block the site altogether or warn the
visitor of the issues involved with visiting the site. The tagging
helps browsers keep unnecessary software from their code,
while also warning the end-user of its malicious nature.

Figure 6. Feature Weights for Latest Dataset

If the tag cannot be mutually agreed upon, then this layer
can be transformed into a feeder tool, which feeds the data into
repositories such as Phishtank and Openfish in order to assist in
preventing phishing and for future development.

VI. FUTURE WORK AND RECOMMENDATIONS

We consider this tool to be in the research stage, and there
is still a lot of work to be done, which includes increasing
effectiveness of initial classifier to include newer phishing
technologies and features, utilizing more classification models
and tuning for a higher accuracy, and adding the digital
signature tag or funnel to the end of the tool. The overall
intention of the design is an intelligent learning system that can
maneuver and update itself while providing a service that can
protect end-users from the plight of phishing attempts. Work
can also be done to add the work done by Li et al. [16] that
involves utilizing URLs for the mechanism through newly
registered domains which can also have a positive effect on
overall processing times and reduce equipment.

In continuation to the work done by Fresh-Phish, this
added design increases the overall accuracy of determining
whether a site is a phishing one or not and adds other important
mechanisms that will assist in the creation of a more proactive
approach. The layer deployment is important because of

processing times and we were able to maintain a high degree of
accuracy while eliminating features that may have been over
utilized in previous iterations.

In this research, we found the Random Forests and Multi-
Layer Perceptron models were the most accurate which
identifies the power of ensemble versions of machine learning
algorithms and may indeed help us increase accuracy with more
combinations of algorithms in the near future.

References

[1] H. Shirazi, K. Haefner and I. Ray, "Fresh-Phish: A
Framework for Auto-Detection of Phishing Websites,"
in 2017 IEEE International Conference on Information
Reuse and Integration, Fort Collins, USA, 2017.

[2] I. W. Jr., "Website Forgery: Understanding Phishing
Attacks & Nontechnical Countermeasures," in 2015
IEEE 2nd International Conference on Cyber Security
and Cloud Computing, 2015.

[3] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason,
J. A. Halderman and M. Bailey, "Security Challenges in
an Increasingly Tangled Web," in 2017 International
World Wide Web Conference Committee, Perth,
Australia, 2017.

[4] G. Varshney, M. Misra and P. K. Atrey, "A survey and
classification of web phishing detection schemes,"
Security and Communications Networks, pp. 6266-
6284, 26 October 2016.

[5] R. A. Halaseh and J. Alqatawna, "Analyzing
CyberCrimes Strategies: The Case of Phishing Attack,"
in Cybersecurity and Cyberforensics Conference, 2016.

[6] M.-E. Maurer and D. Herzner, "Using Visual Website
Similarity for Phishing Detection and Reporting," in
CHI '12, Austin, TX, 2012.

[7] B. Kumar, P. Kumar, A. Mundra and S. Kabra, "DC
Scanner: Detecting Phishing Attack," in 2015 Third
International Conference on Image Infonnation
Processing, Jaipur, 2015.

[8] R. Suriya, K. Saravanan and A. Thangavelu, "An
Integrated Approach to Detect Phishing Mail Attacks A
Case Study," in SIN '09, North Cyprus, Turkey, 2009.

[9] I. Fette, N. Sadeh and A. Tomasic, "Learning to Detect
Phishing Emails," in WWW 2007, Alberta, Canada,
2007.

[10] NTT Communications America, "WHOIS.net," 2018.
[Online]. Available: https://www.whois.net/. [Accessed
24 August 2018].

[11] D. Miyamoto, Y. Taenaka, T. Miyachi and H.
Hazeyama, "PhishCage: Reproduction of Fraudulent
Websites in the Emulated Internet," in EMUTools
Workshop, Japan, 2013.

[12] L. Fang, W. Bailing, H. Junheng, S. Yushan and W.
Yuliang, "A Proactive Discovery and Filtering Solution
on Phishing Websites," in IEEE International
Conference on Big Data, China, 2015.

[13] H. Shirazi, B. Bezawada and I. Ray, "“Kn0w Thy
Doma1n Name”: Unbiased Phishing Detection Using
Domain Name Based Features," SACMAT '18, pp. 69-
75, 13 June 2018.

[14] G. Armano, S. Marchal and N. Asokan, "Real-Time
Client-Side Phishing Prevention Add-on," in 2016 IEEE
36th International Conference on Distributed
Computing Systems, Helsinki, 2016.

[15] S. Marchal, K. Saari, N. Singh and N. Asokan, "Know
Your Phish: Novel Techniques for Detecting Phishing
Sites and their Targets," in 2016 IEEE 36th
International Conference on Distributed Computing
Systems, Helsinki, 2016.

[16] X. Li, G. Geng, Z. Yan, Y. Chen and X. Lee, "Phishing
Detection Based on Newly Registered Domains," in
2016 IEEE International Conference on Big Data (Big
Data), China, 2016.

[17] D. R. Ibrahim and A. H. Hadi, "Phishing Websites
Prediction Using Classification Techniques," in 2017
International Conference on New Trends in Computing
Sciences, 2017.

[18] K. R. Weiss and T. M. Khosgoftar, "Detection of
Phishing Webpages using Heterogeneous Transfer
Learning," in 2017 IEEE 3rd International Conference
on Collaboration and Internet Computing, Florida,
2017.

[19] J. Hu, X. Zhang, Y. Ji, H. Yan, L. Ding, J. Li and H.
Meng, "Detecting Phishing Websites Based on the
Study of the Financial Industry Webserver Logs," in
2016 3rd International Conference on Information
Science and Control Engineering, China, 2016.

[20] T. Peng, I. G. Harris and Y. Sawa, "Detecting Phishing
Attacks Using Natural Language Processing and
Machine Learning," in 2018 12th IEEE International
Conference on Semantic Computing, USA, 2018.

[21] R. M. A. Mohammad, L. McCluskey and F. Thabtah,
"Phishing Websites Data Set," UCI Machine Learning
Repository, Irvine, 2017.

[22] "scikitit learn," scikit learn developers, 2018. [Online].
Available: https://scikit-learn.org/stable/index.html.
[Accessed 2019].

[23] Amazon Corp., "Alexa Top Sites," Amazon, 2019.
[Online]. Available: https://www.alexa.com/topsites.
[Accessed 2018].

[24] OpenDNS, "Phishtank," 2019. [Online]. Available:
http://phishtank.com/. [Accessed 2018].

[25] A. Paterek, "5000Best," 2019. [Online]. Available:
http://5000best.com/websites/. [Accessed 2019].

[26] OpenPhish, "OpenPhish," 2019. [Online]. Available:
https://openphish.com/.

[27] Amazon Web Services, "Common Crawl," Amazon,
2019. [Online]. Available: http://commoncrawl.org/the-
data/get-started/.

