
Claim What You Need: A Text-Mining Approach

on Android Permission Request Authorization

Mingkui Wei

North Carolina State University

Raleigh, NC, 27606

Xi Gong

Cisco Systems. Inc

Research Triangle Park, NC, 27709

Wenye Wang

North Carolina State University

Raleigh, NC, 27606

Abstract—Android is one of the most popular mobile operating
systems nowadays, whose popularity, however, also attracts
even more crafty developers to develop malicious softwares, or
malwares, to exploit illegitimate means for profit. As a basic
countermeasure, Android enforces the permission request scheme,
in which an application (App) is required to present to the
user the system resources (permissions) it will access, and ask
user’s approval before installation. However, this approach has
been proven ineffective as it delegates the whole responsibility of
decision-making to the user, who usually lacks the professional
knowledge to comprehend the interpretation of a permission.
Alternatively, many current researches focus on identifying po-
tential malwares based on attributes of individual Apps, such
as inspecting their source code, which, unfortunately, fall in
another extreme which tend to make the decision for the user.
Nevertheless, from the user’s perspective, a satisfactory solution
should be an approach which assists users to make the decision
of the App installation on their own, by providing them with lucid
reasons and requiring minimum professional knowledge. Based
on the observation that the description of an App is the most
direct interface to communicate its functionality to the user, in
this paper we are motivated to explore the relationship between
the description and the requested permissions of an App, and
further build a model to predict proper permissions based on
its description. Our evaluation with Apps collected from the
Google Play Market shows that our prediction can achieve as
high as 87% accuracy. In this regard, provide a user has full
understanding of the description of an App, our model can act
as an effective reminder to the user if the App tries to stealthily
request permissions that are inconsistent with its description,
which is a major character commonly exploited by malwares.

I. INTRODUCTION

Android system is by now one of the most popular operating

systems on smartphones and mobile devices, as its open

source nature provides great convenience for mobile appli-

cation development. Meanwhile, the rapid growth of various

applications (Apps) on Android system also attracts attackers

to develop malicious softwares (malwares) and exploit illegiti-

mate benefits. For instance, typical behaviors of a smartphone

malware can be probing the user’s privacy such as photos

or even bank accounts, or sending text message to subscribe

services run by the crafty authors for monetary purposes.

As the basic means to thwart such misbehavior, Android

enforces a simple permission request strategy, in which system

resources, such as photo gallery or SD card content, are

mapped into multiple permissions, and before an App is to

be installed, it must first present to the user all permissions it

is going to request, and ask the user’s approval. However, this

approach has long been criticized and shown very ineffective

in the real world [6]. This is because this approach delegates

the responsibility to decide whether to install an App solely to

the user, who usually lacks necessary professional knowledge

to comprehend the interpretation of a permission [8]. Even for

competent users, they tend to overlook this process after being

asked the similar questions for multiple times [7].

To find alternative countermeasures without intensively rely

on the user’s reaction, many researchers put their effort on

studying how to identify a potential malware based on an

App’s individual attributes. The primary directions include

inspecting source code to identify potential mobile malwares

[5], [12] and studying permission requests patterns of a batch

of Apps and matching it to individual App [9], [10]. These

approaches, however, fall into another extreme, which tend to

make the decision for the user, i.e., by telling the user whether

this App is a malware or not. Essentially, these approaches left

user even more uninformed, because the reasons that an App

is regarded as a malware (e.g., suspicious code or statistically

inconsistent) are made even more complicated.

As a matter of fact, from the perspective of human being,

i.e., the user, it is difficult to tell if an App is a malware

or not without considering the user’s intention. For instance,

an App could request as many permissions as it wants, as

long as the user is aware of and acknowledges this request, it

shall not be regarded as malicious to this user. On the other

hand, an App can request just one permission and still be

think as malicious, if the user does not know or approve it.

Therefore, we believe in the regard of App installation and

malware identification, the user’s interaction is indispensable,

and the satisfactory solution should be the approach which

neither let users to make the decision alone, nor make the

decision for users, but assist users to make the decision on

their own, by providing lucid reasons while requiring as less

professional knowledge as possible.

In this paper, we propose a text-mining based permission

request authorization scheme for Android applications to solve

above problem. Our motivation is based on the key observation

that the description of an App is the major and the most

direct interface to communicate its functionality to the user.

Therefore, provide the user fully understands the description

of an App, which exposes much less requirement on the

user’s capability compared with understanding the meaning

of a permission, he/she should be aware of the function and

possible resources this App will need. For example, if an App

describes itself as an email client, it is easy to know it will need

Internet access, while if an App’s description reads it is a photo

editor, then it will almost surely request to access user’s photo

gallery. Our proposed scheme mimics this human intuition

process, which identify the links between the description and

the requested permissions of an App, and alarms the user if

it finds inconsistencies, i.e., identifies permissions which are

not proper to be requested based on the description, which

provides more comprehensible information to assist the user

to make a judicious decision.

We collect a data set from Google Play, the official and

biggest Android application market, and validate our scheme

by comparing the actually requested permissions of Apps, with

the predicted permissions based on these Apps’ description by

our scheme. Our results show that, for sensitive permissions

such as send SMS messages, our prediction accuracy can be

as high as 87%, which indicates that our scheme can act as

an effective reminder to the user that the to-be-installed App

is stealthily requesting excessive permissions, which is one of

the major characters commonly find in malwares.

The remainder of this paper is organized as follows. In

Sec. II we introduce related work on identifying mobile

malwares. In Sec. III we demonstrate our model by providing

detailed description and validation. In Sec. IV we evaluate our

proposed model with data set obtained from real Android App

market, and in Sec. V we conclude our work.

II. RELATED WORK

Recently, many researchers have focused on identifying

potential malwares through studying the permission request

patterns [4]–[6], [9], [10], [12]. Enck et al. [5] develop a

system named Kirin which produces meaningful security rules

based on security analysis of Android. Then they manually

select the blacklisted patterns to represent dangerous sets

of permissions. With the help of Kirin and their rules, the

authors successfully detect applications which implements

risky functionality. Their work provides us incentives about

the potential risk brought by the combination of dangerous

permissions. As an improvement, in our research we aim to

leverage machine learning tools to find potentially dangerous

permissions automatically.

Frank et al. [9] use a data mining tool of Boolean matrix

factorization to find overlapping clusters of permissions for

both Android applications and Facebook users. Their goal is

to understand the difference of permission requests between

high-reputation and low-reputation applications. From their

study, they observe a significant difference between these two

groups of applications. Moreover, their results indicate that the

permission request pattern can be used to evaluate the quality

of applications. However, they only consider one attribute, i.e.,

the reputation, of applications to find its potential correlation

with permission pattern, which is insufficient considering an

App has various attributes. In addition, although reputation is

a critical factor, it’s not always related to security concerns.

For instance, an App with benign purpose but crashes a lot is

very likely to get negative reviews.

Peng et al. [10] aim to provide a risk ranking for Android

applications, which can help identifying malicious or risky ap-

plications more effectively. The proposed risk scoring scheme

is based on the permissions an application requests. Using

combination of permission requests as the measurement, the

authors derive a comparative risk information based on the

application communities. If some application is far from the

most benign applications (outlier in the distribution) in the

market in terms of the defined measure, its risk is probably

high. Then, they can generate a rank to help user make

decisions whether to proceed the installation. However, the

complicated model make users unlikely to understand the

reasons behind the rankings.

Another line of work is to study the system and source

code. Zhou et al. [12] focus on the repackaged applications

and implement an application similarity measurement system

called DroidMOSS to localize and detect the changes from

application-repackaging behavior. Via further manual inves-

tigation on these repackaged applications, they are able to

identify several malicious behaviors such as re-routing ad

revenues, planting back doors or malicious payloads. Their

work shows effectiveness by successfully detecting many

malicious applications. However, this approach strongly relies

on the source code of Apps, which are hard to obtain most of

the times. Moreover, comparisons among a large amount of

applications have to be conducted, which is time consuming

and may not be feasible for the fast release of new applications.

III. SYSTEM MODEL

The model of our proposed scheme is shown by the

flowchart in Fig. 1, which comprises 3 modules, namely, the

Keyword Extraction module, the score calculation and grading

rule identification module and the Permission Authorization

module. Our model needs a training set before performing per-

mission authorization. The training set contains a set of Apps

with description and permissions information. The description

is imported to the keyword extraction module for keyword

selection. The keywords and permissions are then sent to

the score calculation and grading rule identification module,

which analyze the relationship between keyword-permission

pairs, and generate a set of rules to “grade” each pair by

giving it a value. For an new App, the score calculation and

permission authorization module will grade each permission

according to the identified rules, and based on the score to

decide whether to alarm the user that the permission may be

requested improperly.

A. Keyword Extraction

Although our goal is to explore the relationship between

the description and the permissions of an App, it is difficult,

if not impossible, to identify the link directly. This is because

although the permissions always follow fixed format and are

limited in number, the description is composed with human

language, which can not easily be comprehend by computers.

Training

set (Apps)

Keywords

Extraction

Grading rule

Identification Score

Calculation

&

Permission

Authorization

Description

Permission

New App:

Permissions &

Description

Key Words

Grading

Rule Permission vs. Description

how do they match?

(pass or alarm user)

Fig. 1. Description Example

To tackle this problem, we exploit the text-mining approach

and extract keywords from the voluminous description.

Keyword extraction is one type of machine learning [11]

which has been undergone intensive study in recent years,

and there has been many software/applications available.

In our study, we tested three candidates: AlchemyAPI [1],

a natural language processing service provided by Alche-

myAPI. Inc; Yahoo Content Analysis [3], which is provided

by Yahoo! and could detect entities/concepts, categories, and

relationships within unstructured content; and KEA [2], a key-

word/keyphrase extractor which is developed by the University

of Waikato. The comparisons are briefly listed below.

1) AlchemyAPI is more tend to pick out keywords which

are related to existing objects. It classifies the keywords

into categories (e.g., by Company or by Technology),

and find words which belong to them. As our aim is

to find words which are related to a permission, this

classification method cannot provide benefit to our study.

2) Yahoo Content Analysis derives results which are more

meaningful for our study purpose. However, because

Yahoo Content Analysis does not require training set,

its results can not be controlled and oriented to exactly

fit our purpose.

3) KEA requires training sets before perform keyword

extraction. And because of it, we can take advantage

of human wisdom to pick out the most related words

from Apps’ descriptions, and use them as the training

sets. As shown by later evaluations, KEA is able to

generate satisfactory results based on very few human-

picked text-keyword pairs.

Based on above comparison, we choose KEA as the key-

word extraction module in our framework.

B. Grading Rule Identification

The grading rule identification module is the most critical

part in our framework, which quantitatively measures the

relationship between the keywords and the permissions. This

subsection is further divided into 2 parts. In the first part, we

take a data set from Google Play, analyze the patterns between

the keywords and the permissions, and propose the grading

rules. And in the second part, we do verification based on the

data set and the derived rule.

1) Exploring keywords and permissions:

i). Obtaining the data set. The data set we used in our

study is a set of 480 Apps retrieved directly from Google Play,

under the category “top paid business”. Note that our goal is to

identify the relationship between keywords and permissions,

therefore to confine the samples within one category provides

better similarity which facilitate the identification process, and

we choose this category over others is because compared

with other categories such as “entertainment”, the functionality

(and thus permissions) of “business” is more limited and

the description is more focused, which will facilitate our

study to identify relationship between the two. Note that all

applications were taken as of May 2013, the content of Google

Play may have dramatically changed since then.

ii). Keyword extraction. Remind the keyword extraction

of KEA is a machine learning process, which needs to be

trained with training set. Seemingly onerous, KEA can actually

achieve satisfactory result based on very few samples. During

our experiment, we generate the training set manually, i.e., we

randomly choose an App from the data set, read its description

and pick the keywords based on our understanding, also we

limit the maximum keywords per App by 10. We gradually

increase the training set and run the keyword extraction each

time we add a new sample, and find that when the training

set is 13, KEA can generate keywords which are well related

to the corresponding description. Also note that during our

keyword choosing process, we choose the keywords that we

think mostly reflect the content of the description, we do not

compare the description to the permissions and intentionally

pick out keywords according to which.

iii). Keyword post-processing. With further inspections of

the extracted keywords, we find that there are some keywords

share the same meaning and should be combined, which gen-

erally fall in 2 scenarios. The first scenario is the same word

with different tenses or singular/plural forms. For example,

“send”, “sends” and “sent” appear as different keywords. For

this scenario, we restore all verbs to their base form, e.g., we

replace “sends” and “sent” with “send”. The second scenario

is synonym. For example, “email” and “e-mail”, or “short

message” and “text message”. These words are also combined

and replaced by one word. During our study, we do the

inspection and replacement manually, this is because we do

not have a database which provides us verb tense and synonym

information. For large volume process, a database can be built

to provide automatic keywords synthesis and replacement.

iv). Keyword-permission relationship exploration. We first

do a statistical analysis and rank both the permissions and

keywords by their appearance frequency among the 480 Apps.

For the 480 Apps, there are totally 88 different permissions are

requested, and we identified 2400 different keywords. How-

ever, we find the frequency of both, especially the keywords

decays very quickly, i.e., among the 2400 keywords, there are

1871 keywords (78%) only appear once and 2101 keywords

(88%) appear less or equal to two times.

In Fig. 2 we show the top list of the ranking of both

permissions and keywords. From the result we can observe that

although the functionality and purpose of the 480 applications

vary, there exists a statistical trend for the keywords and

the permissions. More interestingly, this trend follows our

common sense. For instance, in Fig. 2(b), we see that email

Ranking Frequency Permission name

1 349 full network access

2 300 modify or delete the contents of your USB storage/SD card

3 294 test access to protected storage test access to protected storage

4 205 view network connections

5 130 read phone status and identity

6 83 control vibration

7 81 read your contacts

8 79 prevent tablet from sleeping prevent phone from sleeping

9 72 view Wi-Fi connections

10 72 read call log

11 57 run at startup

12 55 take pictures and videos

13 53 find accounts on the device

14 51 precise location (GPS and network-based)

15 41 approximate location (network-based)

Ranking Frequency Ranking Frequency Keyword

location

download

tasks

 office

exchange

caller

photos

outlook

sync

(a) Permission ranking.

Ranking

Ranking Frequency Ranking Frequency Keyword

ownload

xchange

Ranking Frequency Keyword Ranking Frequency Keyword

1 110 email 16 17 speak

2 94 business 17 16 learn

3 74 file 18 15 share

4 66 contact 19 15 sd card

5 47 send 20 14 tasks

6 39 text 21 14 outlook

7 24 office 22 14 audio

8 24 calendar 23 13 call

9 23 sms 24 13 sales

10 23 download 25 13 sync

11 22 app 26 13 tool

12 21 notes 27 13 scan

13 19 location 28 12 it

14 18 calculator 29 12 video

15 17 phrases 30 12 dropbox

(b) Keyword ranking.

Fig. 2. Ranking of permissions and keywords of 480 applications.

ranks as the most frequently appeared keyword among these

Apps, which conforms our intuition that business-related Apps

are very likely to access email. Other than email, we also see

other keywords which fit our understanding about the scope of

“business”, such as business, contact. For the permission re-

quests shown by Fig. 2(a), we also see the same phenomenon.

Except the first few permissions such as full network access

which are almost “default” permissions requested by any type

of Apps, we see control vibration and read your contacts rank

on the top of the list, which are reasonable as a business App

may need to vibrate the phone to remind the user, and access

contacts to keep the user linked with other business partners.

The observation from Fig. 2 naturally leads to these further

questions: what is the keyword frequency pattern for a certain

permission? Does it follow the same trend? To this end, we

further analyze the dataset in the following manner. We first

select one permission from the list, and retrieve all Apps

which have requested this permission. Then, we gather all the

keywords of the set of Apps instead of the 480 Apps and re-

rank the keywords. In Fig. 3 we present one of the results

for the permission read your contacts, a popular permission

which is requested by 81 Apps.

Ranking Frequency Keyword Ranking Frequency Keyword

1 38 contact 16 6 caller

2 27 email 17 5 photos

3 19 text 18 5 outlook

4 19 business 19 5 sync

5 18 sms 20 5 secure

6 18 file 21 4 card

7 17 send 22 4 events

8 10 notes 23 4 usb

9 10 call 24 4 scan

10 9 calendar 25 4 invoice

11 8 location 26 4 gps

12 7 download 27 4 battery

13 7 tasks 28 4 box

14 6 office 29 4 sending

15 6 exchange 30 3 text message

Fig. 3. Keywords frequency for read your contacts.

Compare Fig. 3 with Fig. 2(b), the difference can be easily

identified. For example, for the 480 Apps, keyword email

ranks the first and appears 110 times, while for the 81 Apps

requested read your contacts, the most frequently appeared

keyword is contact, and email has been degraded to the second

place. Reversely, the keyword contact only ranks at the 4th

position in Fig. 2(b). Beside the keyword ranking position

change, which is obvious, we also observe the change on their

relative frequencies. For instance, the ratio of the frequency of

email and contact in Fig. 2(b) is 110/66 = 1.67, which has

been dramatically reduced to 27/38 = 0.71 as shown in Fig. 3.

Based on these observations, we can make the conclusion that

there exists a relationship between permissions and keywords,

and therefore it is possible to predict the permissions an App

is going to request based on the keywords extracted from

its descriptions. For instance, if an application contains the

keywords contact, email, text, business and sms, it is highly

likely that this application will request the permission read

your contacts, or in other words, it is legitimate for this

application to request this permission, because it reveals this

implication to the user. On the contrary, if an application

contains nothing but secure, then the probability or the legality

of this application to have read your contact is low, and if this

permission is ever requested, the App may probability abuse

this permission, and the user should be alarmed.

Inspired by this observation, we propose to grade a permis-

sion based on keywords as follows. For each permission, we

first collect all Apps which requested it. We rank the keywords

of this set of Apps according to their frequency, such as shown

in Fig. 3. We then assign a weight to each keyword as the

ratio of its frequency to all keywords, i.e., a value with the

keyword’s frequency as the numerator, and the summation of

frequency of all keywords as the denominator. Then for a

new-coming App which requests this particular permission,

we extract the keyword from its description, and then grade

it by adding the weight of all keywords that appeared in

its description. This approach, although straightforward, can

effectively differentiate and predict the permissions requested

by an App based on its description, shown by the verification

provided in the following part.

2) Verification of the Grading Rule: To verify the validity

of the grading rules, we conducted the following experiment.

1) Choose a permission

2) Extract keywords from the Apps which requested this

(a) Full Network Access (b) Precise Location (c) Read Your Contacts

Fig. 4. Score distribution for Apps with and without a certain permission.

permission, and rank them according to their frequency.

3) Assign weight to each keywords identified in step 2.

4) For each of the 480 Apps, calculate its score based on

the weight of the keywords in step 3, no matter whether

it requested this permission or not.

5) Separate the 480 Apps into two control groups based

on whether they have requested this permission, and

identify the distribution of the score for both groups.

The reasoning behind this experiment is as follows. If a

permission does not have any relationship to certain keywords,

i.e., the frequency of these keywords does not depend on

whether this permission is requested, then for Apps which

requested this permission and for those who did not, the score

distribution should be similar. However, the results of this

experiment shows clear distinctions between the two control

groups, which veto this assumption and indicates the existence

of such relationship. In Fig. 4 we provide the results for 3

permissions rank at different place shown in Fig. 2(a).

We first look at Fig. 4(a), which displays the score distri-

bution for Apps with or without the permission full network

access. From this figure we see that the distinction between

the two group is not significant. Although the Apps with

the permission tend to have higher score, the trend of the

two group are similar. This figure actually shows a weak

link between the permission full network access and the

keywords, and the reason is because full network access is

almost an “default” permission, meaning the network access is

too generic a function for most Apps to be explicitly expressed

in their description.

We then look at Fig. 4(b), which shows the score distribution

for precise location. In this figure, the distinction between the

two group begin to appear. In particular, for the Apps without

this permission, the score follows a normal-like distribution

with zero mean, and about 65% of the Apps have score

less than 0.02. However, for those with this permission, the

majority of them clustered between 0.02 and 0.06. The reason

of this distribution is because precise location is not as popular

as full network access, therefore Apps who requested it are

likely to have GPS location functions and advertise them in

their descriptions. However, because GPS function is not an

imperative necessity for business Apps, this permission only

ranks 14 in the permission list, and the distinction between

the two groups are still not very significant.

At last we look at Fig. 4(c), which shows the score distribu-

tion for read your contracts, one of the mostly requested per-

missions and is also tightly related to the “business” category.

In this figure we are able to observe a clear distinction between

the two groups. The score distribution of the Apps without the

permission almost keeps unchanged from previous two figures,

but the distribution of those with this permission gathers at a

much higher value and clearly distinguish themselves.

All three figures endorsed our grading rule. The first figure

show a counterexample that if the link between a permission

and keywords are weak, then the scores of Apps with and

without this permission are tend to be similar. While the last

2 figures clearly shows that the more relevant the permission

and the keyword, the more significant the distinction between

the two groups.

C. Score Calculation and Permission Authorization

This module makes the final judgment on whether it is

proper for an application to request a certain permission, and

the flexible part lies in the setting of the threshold, i.e., the

score beyond which the App will be regarded as benign.

Intuitively, we can set the threshold wherever the two group

intersect (which are chosen as the threshold in our evaluation

in Sec. IV), for instance, 0.05 shown in Fig. 4(c). Particularly,

if an App requests read your contact but gets a score less than

0.05, we think this permission request is improper and notify

the user. But this threshold can also be adjusted to fit different

purpose. For instance, a value higher than 0.05 indicates a

more strict policy, which indicates a benign App are more

likely to be regarded as a potential malware.

IV. EVALUATION

A. Metrics

To evaluate our scheme, we define two metrics, Prediction

Confidence and False Positive Rate, to depict the difference

between the permissions actually requested by Apps and pre-

dicted by our model. Prediction Confidence aims to compute

the rate our prediction is consistent with the actual permission

request. We only measures the false positive rate is because

Permission Name Confidence Dev of Conf False Positive Dev of FP

send SMS messages 0.8708334 0.055381922 0.09583307 0.039236188
read your contacts 0.7937467 0.033374069 0.1583337 0.038367978

directly call phone numbers 0.7645767 0.048662075 0.19791667 0.049695528
precise location 0.6687466 0.064632198 0.2708304 0.061627182

full network access 0.4965796 0.055806821 0.0854135 0.011675425
modify USB/SD storage 0.6083297 0.06458 0.022403112 0.012542182

TABLE I
EVALUATION RESULTS

for malware detection, we concern more on whether our model

can help user to identify potential malwares. Therefore, the

false positive error, i.e., we allow a permission but it is not

requested by the App, bears higher risk.

Definition 1: Given an application Ai and a permission

Pj , let pi,j ∈ {0, 1} and p̂i,j ∈ {0, 1} be indicators which

respectively denote the actual and predicted result of whether

Ai requested Pj , where 1 means Ai requested Pj , and 0

means otherwise. For a permission Pj and a set of applications

A = {A1, A2, . . . , An}, we can derive the set of permission

requests P = {p1,j, p2,j , . . . , pn,j} and the set of predicted

permission requests P̂ = {p̂1,j, p̂2,j , . . . , p̂n,j}, define the

prediction confidence as:

|{(pi.j , p̂i.j)|pi,j = p̂i,j , pi.j ∈ P , p̂i,j ∈ P̂}|

|A|
(1)

Definition 2: Provided the same denotation as in Definition

1, define the false positive rate as:

|{(pi,j , p̂i,j)|pi,j = 0, p̂i,j = 1, pi,j ∈ P , p̂i,j ∈ P ′}|

|A|
(2)

B. Evaluation Setup and Summary

We choose six permissions as the subjects in our evalua-

tions. Among the chosen permissions, four are considered the

“sensitive” ones, which are send SMS messages, read your

contacts, precise location and directly call phone numbers, be-

sides which, we also select two widely requested permissions,

i.e., full network access and modify or delete the contents of

your USB storage modify or delete the contents of your SD

card, such that to allow us to observe the effectiveness of our

scheme on different permissions.

For each experiment, we randomly choose 432 out of the

480 Apps as the training set to identify the relationship pat-

tern between keywords and permissions, and apply the score

assignment on the other 48 applications. To get a more stable

result, we further introduce a cross validation mechanism, in

which we run 10 trials and in each trial the training set and

test set are randomly chosen. The results of this experiment

are shown in Table I.

From Tab. I we can find that for the permissions which are

highly related to the category, our predictions can achieve high

accuracy. Meanwhile, we also observe that their deviations

are very small, which guarantees a steady prediction. Similar

as being found in Sec. III, lower accuracy is found on less

relevant permissions. For full network access, the confidence

is close to 50%, which basically provides zero information.

V. CONCLUSION

In this paper, we conduct an empirical study on iden-

tification of improper permission request of Android Apps

by exploring the relationship between their two important

attributes, i.e., the description and the permission. Based on

text-mining and machine learning approach, we design a score-

based classification model to investigate the suitability of

permissions authorization of an App based on its description,

and evaluate the effectiveness with Apps obtained from Google

Play. As one of the efforts in studying the permission issue

of mobile applications, our approach brings an innovative

perspective to handle this problem. Our contributions not only

limit to the proposed classification model, but also lie in as the

first to take semantic analysis on literal attributes of Android

Apps and establish relationship to their permissions. In the

future, we will work on enhancing the performance of our

model in terms of improving the effectiveness of keyword

extraction, designing more comprehensive grading mechanism

and testing with larger and more diversified data sets.

REFERENCES

[1] Alchemyapi. http://www.alchemyapi.com/.
[2] Kea. http://www.nzdl.org/Kea/index.html.
[3] Yahoo content analysis. http://developer.yahoo.com/contentanalysis/.
[4] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji.

A methodology for empirical analysis of permission-based security
models and its application to android. In Proceedings of the 17th ACM

conference on Computer and communications security, pages 73–84.
ACM, 2010.

[5] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on

Computer and communications security, pages 235–245. ACM, 2009.
[6] Z. Fang, W. Han, and Y. Li. Permission based android security: Issues

and countermeasures. computers & security, 43:205–218, 2014.
[7] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.

Android permissions: User attention, comprehension, and behavior. In
Proceedings of the Eighth Symposium on Usable Privacy and Security,
page 3. ACM, 2012.

[8] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining permission request
patterns from android and facebook applications. In ICDM, pages 870–
875, 2012.

[9] M. Frank, B. Dong, A. Porter Felt, and D. Song. Mining permission
request patterns from android and facebook applications. In Data Mining
(ICDM), 2012 IEEE 12th International Conference on, pages 870–875.
IEEE, 2012.

[10] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Using probabilistic generative models for ranking risks of
android apps. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 241–252. ACM, 2012.
[11] C. Wu, M. Marchese, J. Jiang, A. Ivanyukovich, and Y. Liang. Machine

learning-based keywords extraction for scientific literature. J. UCS,
13(10):1471–1483, 2007.

[12] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party android marketplaces. In Proceedings
of the second ACM conference on Data and Application Security and

Privacy, pages 317–326. ACM, 2012.

