MATH 447 (Numerical Analysis II)

MATH 447 (Numerical Analysis II)

Project 2: GPS, Conditioning, and Nonlinear Least Squares

===> Wyatt Rush, Brandon Scott, Mike Sullivan <===


"Numerical Analysis" (3rd Edition; 2018), P248-251: Reality Check 4


Four (4) Equations; Four (4) Unknowns

Part 1: Multivariate Newton's Method (Nonlinear Systems of Equations)

    ===> Newton-Taylor-Jacobi Nexus <===

                     Taylor Expansion for Vector-Valued Functions around x0

                     Jacobian Matrix

                     Matlab Backslash "\":   ("Matrix Left Division")

                          ===> Matrix Inverses: Computational-Intensive

                          ===> Modification:



Multivariate Newton's Method Code (DriverP1.pdf)

Multivariate Newton's Method Code (MultivariateNewtonP1.pdf)


Multivariate Newton's Method ("Top-of-the-World")

Iteration x y z d
0 0 0 6370 0
1 -41.773366868922 -16.751057066684 6375.183134528647 -0.003262714514
2 -41.772709784019 -16.789181734793 6370.061221318984 -0.003201585666
3 -41.772709570810 -16.789194106508 6370.059559223537 -0.003201565830
4 -41.772709570810 -16.789194106509 6370.059559223361 -0.003201565830
5 -41.772709570824 -16.789194106523 6370.059559223344 -0.003201565830
6 -41.772709570995 -16.789194106585 6370.059559223278 -0.003201565830
7 -41.772709570824 -16.789194106523 6370.059559223344 -0.003201565830

Multivariate Newton's Method (*** STRESS TEST #1: Center-of-Earth ***)

Iteration x y z d
0 0 0 0 0
1 -41.746231027747 -18.325503550146 6163.661863983135 -0.00738257158
2 -41.773065120405 -16.768564803099 6372.831032582411 -0.003234642722
3 -41.772709633321 -16.789190485500 6370.060045698348 -0.003201571636
4 -41.772709570787 -16.789194106518 6370.059559223369 -0.003201565830
5 -41.772709570835 -16.789194106526 6370.059559223349 -0.003201565830
6 -41.772709570806 -16.789194106521 6370.059559223347 -0.003201565830
7 -41.772709570820 -16.789194106523 6370.059559223348 -0.003201565830

Multivariate Newton's Method (*** STRESS TEST #2: 2 * Earth's Radius ***)

Iteration x y z d
0 0 0 12740 0
1 -41.742184136241 -18.560307920714 6132.116734114572 -0.00361773342
2 -41.773184055048 -16.761664097852 6373.758117716814 -0.003245707268
3 -41.772709681913 -16.789187658476 6370.060425493047 -0.003201576168
4 -41.772709570761 -16.789194106502 6370.059559223419 -0.003201565830
5 -41.772709571090 -16.789194106612 6370.059559223251 -0.003201565830
6 -41.772709570764 -16.789194106502 6370.059559223368 -0.003201565830
7 -41.772709570949 -16.789194106555 6370.059559223320 -0.003201565830

Multivariate Newton's Method (*** STRESS TEST #3: Earth-Moon Distance = 238,855 miles = 384,399.861 km ***)

Iteration x y z d
0 0 0 384399.861 0
1 -73.5651091496 1827.8350950296 254188.7548370616 -2.9608602762
2 -57.1783144346 877.0581799044 126455.2667810744 -1.4363906912
3 -49.00051046443 402.57446420118 62710.07159585218 -0.67560655592
4 -44.94258837915 167.13009244919 31078.95984792500 -0.29809656591
5 -42.97397392401 52.90926957537 15733.79960864720 -0.11495563381
6 -42.098642567295 2.121738359980 8910.675899345410 -0.033523233207
7 -41.812396798289 -14.486504644254 6679.417677047104 -0.006893683290
8 -41.773458093352 -16.745764141229 6375.894220189388 -0.003271201156
9 -41.772709847318 -16.789178063878 6370.061714494449 -0.003201591552
10 -41.772709570934 -16.789194106554 6370.059559223604 -0.003201565830

Multivariate Newton's Method (*** STRESS TEST #4: Earth-Sun Distance = 92,960,000 miles = 149,604,618.24 km ***)

Iteration x y z d
0 0 0 149604618.24 0
1 -9643.42968855 557080.26426601 74850372.48820066 893.24902974
5 -640.927749755 34746.738450629 4676726.029667439 -55.742817982
10 -59.5337039432 1013.7200378651 144815.3000648108 -1.6555134345
15 -41.838768279149 -12.956407051958 6884.980832217152 -0.009347031919
16 -41.774732646271 -16.671813402899 6385.829238170562 -0.003389773294
17 -41.772711588080 -16.789077063855 6370.075283488928 -0.003201753495
18 -41.772709570934 -16.789194106436 6370.059559238973 -0.003201565830
19 -41.772709570896 -16.789194106548 6370.059559223319 -0.003201565830
20 -41.772709570817 -16.789194106513 6370.059559223363 -0.003201565830

Part 2/3: Matlab "rref" ("Reduced Row Echelon Form" (Gauss-Jordan Elimination))



Gauss-Jordan Reduced Row Echelon Form Method Code (GaussJordanRREF.pdf)


Quadratic Equation

\[ -82854564582.53175240818981761143 * d^2 + 15077167846.761892504574543743006 * d + 49119806.64094493963509095287271 = 0 \]

Quadratic Solutions (2): One (1) Relevant *; One (1) Irrelevant:

--- 1 * 2
x -41.7727095 -39.7478373482
y -16.7891941065 -134.274144361
z 6370.05955922 9413.62455374

Part 4: Satellite Positions in Spherical Coordinates

EMF Code (DriverEMFP4.m)

EMF Code (ErrorMagnificationFactorP4.m)

EMF Calculations (outputP401.txt)

Project 2

Part 5: Satellite Positions in Spherical Coordinates (Tightly Grouped Set of Satellites)

EMF Code (DriverEMFP5.m)

EMF Calculations (outputP500.txt)

Project 2

Part 6: Reduction in GPS Error and Condition Number by Adding Satellites

 For Part 6, Matlab code was rewritten to allow for any number of unbunched satellites in a random grouping, as specified by $\phi$ and $\theta$ in Part 4. The following results were found for between 1 and 12 satellites:


Error vs. Number of Satellites

# Satellites Relative Forward Error Error Magnification Factor
1 2.951193e+02 9.844119e+03
2 1.699170e+02 5.667820e+03
3 8.120928e-01 2.708850e+01
4 1.198875e-01 3.999018e+00
5 5.074772e-02 1.692762e+00
6 5.096588e-02 1.700039e+00
7 3.576615e-02 1.193030e+00
8 1.998035e-02 6.664728e-01
9 3.688600e-02 1.230385e+00
10 5.710890e-02 1.904948e+00
11 5.778053e-02 1.927351e+00
12 2.573939e-02 8.585736e-01

 Based on the above results, compared with the results from Parts 4 and 5, 8 satellites unbunched result in the best possible error magnification factor. Notably, however, diminishing returns were seen after 5 or more unbunched satellites were added. That being said, error still generally decreased as more satellites were added, with 8 being particulary low in error in this case.

Part 7: Improvement of Error Magnification Factor Moving Toward Horizon

When working on problem 5 we stumbled on an interesting problem. We had already run into an issue in problem 4 that if we were to put a satellite directly over the north pole or close to the north pole we would have an error that could put you on mars. In problem 5 we found that as we moved our cluster down from the north pole to the horizon we continuously found a smaller error until we hit a floor of about 35 for our max error. We also discover that if you set either the phi or theta to be the same for of the satellites while leaving the other within 5% we see the error grown back to several million. We came to the conclusion that setting all of the satellites in a line (a product of keeping the phi or theta constant) that the satellites would be read as the same causing a problem with our system of equations.

********************** BELOW-THE-LINE ******************************************** **********************************************************************************