Four (4) Equations; Four (4) Unknowns
                     Taylor Expansion for Vector-Valued Functions around x0
                     Jacobian Matrix
                     Matlab Backslash "\":   ("Matrix Left Division")
                          ===> Matrix Inverses: Computational-Intensive
                          ===> Modification:
Multivariate Newton's Method ("Top-of-the-World") |
||||
---|---|---|---|---|
Iteration | x | y | z | d |
0 | 0 | 0 | 6370 | 0 |
1 | -41.773366868922 | -16.751057066684 | 6375.183134528647 | -0.003262714514 |
2 | -41.772709784019 | -16.789181734793 | 6370.061221318984 | -0.003201585666 |
3 | -41.772709570810 | -16.789194106508 | 6370.059559223537 | -0.003201565830 |
4 | -41.772709570810 | -16.789194106509 | 6370.059559223361 | -0.003201565830 |
5 | -41.772709570824 | -16.789194106523 | 6370.059559223344 | -0.003201565830 |
6 | -41.772709570995 | -16.789194106585 | 6370.059559223278 | -0.003201565830 |
7 | -41.772709570824 | -16.789194106523 | 6370.059559223344 | -0.003201565830 |
Multivariate Newton's Method (*** STRESS TEST #1: Center-of-Earth ***) |
||||
---|---|---|---|---|
Iteration | x | y | z | d |
0 | 0 | 0 | 0 | 0 |
1 | -41.746231027747 | -18.325503550146 | 6163.661863983135 | -0.00738257158 |
2 | -41.773065120405 | -16.768564803099 | 6372.831032582411 | -0.003234642722 |
3 | -41.772709633321 | -16.789190485500 | 6370.060045698348 | -0.003201571636 |
4 | -41.772709570787 | -16.789194106518 | 6370.059559223369 | -0.003201565830 |
5 | -41.772709570835 | -16.789194106526 | 6370.059559223349 | -0.003201565830 |
6 | -41.772709570806 | -16.789194106521 | 6370.059559223347 | -0.003201565830 |
7 | -41.772709570820 | -16.789194106523 | 6370.059559223348 | -0.003201565830 |
Multivariate Newton's Method (*** STRESS TEST #2: 2 * Earth's Radius ***) |
||||
---|---|---|---|---|
Iteration | x | y | z | d |
0 | 0 | 0 | 12740 | 0 |
1 | -41.742184136241 | -18.560307920714 | 6132.116734114572 | -0.00361773342 |
2 | -41.773184055048 | -16.761664097852 | 6373.758117716814 | -0.003245707268 |
3 | -41.772709681913 | -16.789187658476 | 6370.060425493047 | -0.003201576168 |
4 | -41.772709570761 | -16.789194106502 | 6370.059559223419 | -0.003201565830 |
5 | -41.772709571090 | -16.789194106612 | 6370.059559223251 | -0.003201565830 |
6 | -41.772709570764 | -16.789194106502 | 6370.059559223368 | -0.003201565830 |
7 | -41.772709570949 | -16.789194106555 | 6370.059559223320 | -0.003201565830 |
Multivariate Newton's Method (*** STRESS TEST #3: Earth-Moon Distance = 238,855 miles = 384,399.861 km ***) |
||||
---|---|---|---|---|
Iteration | x | y | z | d |
0 | 0 | 0 | 384399.861 | 0 |
1 | -73.5651091496 | 1827.8350950296 | 254188.7548370616 | -2.9608602762 |
2 | -57.1783144346 | 877.0581799044 | 126455.2667810744 | -1.4363906912 |
3 | -49.00051046443 | 402.57446420118 | 62710.07159585218 | -0.67560655592 |
4 | -44.94258837915 | 167.13009244919 | 31078.95984792500 | -0.29809656591 |
5 | -42.97397392401 | 52.90926957537 | 15733.79960864720 | -0.11495563381 |
6 | -42.098642567295 | 2.121738359980 | 8910.675899345410 | -0.033523233207 |
7 | -41.812396798289 | -14.486504644254 | 6679.417677047104 | -0.006893683290 |
8 | -41.773458093352 | -16.745764141229 | 6375.894220189388 | -0.003271201156 |
9 | -41.772709847318 | -16.789178063878 | 6370.061714494449 | -0.003201591552 |
10 | -41.772709570934 | -16.789194106554 | 6370.059559223604 | -0.003201565830 |
Multivariate Newton's Method (*** STRESS TEST #4: Earth-Sun Distance = 92,960,000 miles = 149,604,618.24 km ***) |
||||
---|---|---|---|---|
Iteration | x | y | z | d |
0 | 0 | 0 | 149604618.24 | 0 |
1 | -9643.42968855 | 557080.26426601 | 74850372.48820066 | 893.24902974 |
5 | -640.927749755 | 34746.738450629 | 4676726.029667439 | -55.742817982 |
10 | -59.5337039432 | 1013.7200378651 | 144815.3000648108 | -1.6555134345 |
15 | -41.838768279149 | -12.956407051958 | 6884.980832217152 | -0.009347031919 |
16 | -41.774732646271 | -16.671813402899 | 6385.829238170562 | -0.003389773294 |
17 | -41.772711588080 | -16.789077063855 | 6370.075283488928 | -0.003201753495 |
18 | -41.772709570934 | -16.789194106436 | 6370.059559238973 | -0.003201565830 |
19 | -41.772709570896 | -16.789194106548 | 6370.059559223319 | -0.003201565830 |
20 | -41.772709570817 | -16.789194106513 | 6370.059559223363 | -0.003201565830 |
Quadratic Equation |
|
---|---|
\[ -82854564582.53175240818981761143 * d^2 + 15077167846.761892504574543743006 * d + 49119806.64094493963509095287271 = 0 \] |
Quadratic Solutions (2): One (1) Relevant *; One (1) Irrelevant: |
||||
---|---|---|---|---|
--- | 1 * | 2 | ||
x | -41.7727095 | -39.7478373482 | ||
y | -16.7891941065 | -134.274144361 | ||
z | 6370.05955922 | 9413.62455374 |
For Part 6, Matlab code was rewritten to allow for any number of unbunched satellites in a random grouping, as specified by $\phi$ and $\theta$ in Part 4. The following results were found for between 1 and 12 satellites:
Error vs. Number of Satellites |
||
---|---|---|
# Satellites | Relative Forward Error | Error Magnification Factor |
1 | 2.951193e+02 | 9.844119e+03 |
2 | 1.699170e+02 | 5.667820e+03 |
3 | 8.120928e-01 | 2.708850e+01 |
4 | 1.198875e-01 | 3.999018e+00 |
5 | 5.074772e-02 | 1.692762e+00 |
6 | 5.096588e-02 | 1.700039e+00 |
7 | 3.576615e-02 | 1.193030e+00 |
8 | 1.998035e-02 | 6.664728e-01 |
9 | 3.688600e-02 | 1.230385e+00 |
10 | 5.710890e-02 | 1.904948e+00 |
11 | 5.778053e-02 | 1.927351e+00 |
12 | 2.573939e-02 | 8.585736e-01 |
Based on the above results, compared with the results from Parts 4 and 5, 8 satellites unbunched result in the best possible error magnification factor. Notably, however, diminishing returns were seen after 5 or more unbunched satellites were added. That being said, error still generally decreased as more satellites were added, with 8 being particulary low in error in this case.
When working on problem 5 we stumbled on an interesting problem. We had already run into an issue in problem 4 that if we were to put a satellite directly over the north pole or close to the north pole we would have an error that could put you on mars. In problem 5 we found that as we moved our cluster down from the north pole to the horizon we continuously found a smaller error until we hit a floor of about 35 for our max error. We also discover that if you set either the phi or theta to be the same for of the satellites while leaving the other within 5% we see the error grown back to several million. We came to the conclusion that setting all of the satellites in a line (a product of keeping the phi or theta constant) that the satellites would be read as the same causing a problem with our system of equations.
********************** BELOW-THE-LINE ******************************************** **********************************************************************************