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Abstract—Google’s Android operating system has become one
the most popular operating system for hand-held devices. Due
to its ubiquitous use, open source nature and wide-spread
popularity, it has become the target of recent mobile malware.

In this paper, we present our efforts on effective security
inspection mechanisms for identification of malicious applications
for Android mobile applications. To achieve that, we devel-
oped a comprehensive software inspection framework. Moreover,
to identify potential software reliability flaws and to trigger
malware, we develop a transparent instrumentation system for
automating user interactions with an Android application that
does not require source code. Additionally, for run-time behavior
analysis of an application, we monitor the I/O system calls gener-
ated the by application under monitoring to the underlying Linux
kernel. As a case study, we present two Android malware samples
found in the wild to experimentally evaluate the applicability of
our proposed system for uncovering potential malicious activities.

I. INTRODUCTION

The persistent Internet connectivity of smart devices cou-

pled with their ubiquitous use and the desire of users to try

new mobile applications make it a remarkable exploitation

target [1]. Malware can easily pose as innocuous, must-

have applications, while they can easily cost losses ranging

from losing contact information to locking of the device. For

instance, mobile malware has been used to steal personal

contacts [2]. Moreover, current research indicates an increas-

ing threat of malware for mobile platforms [3] even in the

presence of anti-malware checks: Android Bouncer [4] has

been employed in Google Play market to identify malicious

applications. However, it seems that the attackers have found

ways to evade detections [5]. To make matters worse, there are

other, third-party markets that are available for downloading

Android applications that can easily purvey malicious appli-

cations [6], [7].

Another challenge is that not all applications reveal their

malicious behavior when they are installed or even run on

the device. Instead, the malicious behavior can be triggered

based on different conditions. For instance, a group of malware

can stay dormant until they are triggered by an event [8].

Some events are independent of user interactions with the

application (i.e. existence of network, etc), yet some others

are based on user input [9], [10]. However, most software

testing is performed towards checking the quality of software

or apps but recently security testing has gained popularity

and has proved its importance [11]. However, testing mobile

application is not a straight forward task due to variety of

inputs and heterogeneity of the technologies [12].

Two primary methods are being employed for mobile appli-

cation analysis: white-box approach and black-box approach.

In black-box testing only the inputs and outputs of the appli-

cation are being exercised. On the other hand, for white box

approach the source code need to be analyzed. Since the source

code of the malicious applications that we get from Google

Play is not available we cannot analyze the internal structure

of the malicious applications to figure out what they exactly

do, but we can utilize the black-box testing to define their

functionality. In addition, current software testing tools employ

randomly selected input originally introduced by the testing

tool named Fuzz [13], one of the pioneers in software testing.

Fuzz generates random input to the command line to leverage

the security vulnerabilities. Fuzz-testing is usually a form of

black-box testing that put the software being tested under the

stress of unexpected inputs and monitor the respond of the

system. A sample fuzzing tool is Android’s Monkey [14],

which due to its random inputs does not take into account

all the functionality.

In contrast, Android applications are using activity driven

graphical user interface heavily. Therefore, simply running

the application for some time, may leave many application’s

functionality dormant, they might not be enough to gather

information needed to figure out if the application is a threat

to the user or Android device. There are different execution

paths in an application and only a small number are covered

by merely starting or running the application. Since dynamic

analysis checks the executing code’s behavior, to provide

better, if not full, coverage the testing tool has to provide

Graphical User Interface (GUI) input so that more paths can

be covered.

Furthermore, Event Driven Software(EDS) testing tech-

niques are based on GUI rippers [15] or finite state machines

[16], however, adaptation is needed for Android application

testing. GUI testing by utilizing state machines to represent

GUI is discussed in [17]. The test cases generated in this

model could be used by a test automation machine. Another

approach [12] uses a tool to explore the application GUI and

reconstructs a GUI tree model by simulating real user events.

[12] builds the GUI model automatically and therefore it is a

better fit for GUI testing automation. Yet, since the test cases

derivation is based on a pre-defined exploration technique, it

may not fulfill some exploration requirements.

2013 Seventh International Conference on Software Security and Reliability Companion

978-0-7695-5030-5/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE-C.2013.35

182



In this paper, we attempt to automate interactions with

GUI in Android applications. We do so to expose hidden

and regular GUI interactions or they will start without user

interference. Since it will take a long time and much endeavor

to try to test the applications GUI manually, we will utilize an

automated approach to study the effect of user interaction on

triggering malicious behavior. However, our project does not

cover the context events since they cannot be controlled at the

application framework layer.

The contributions of this study are two folds: an automated,

intelligent fuzz testing framework that automates interaction

with the application’s user interface to study different func-

tionality of the application. In addition, we introduce dynamic

analysis using system calls that are gathered throughout ap-

plication execution.

II. INSTRUMENTATION SYSTEM

The instrumentation system developed in this study serves

a major purpose: to expose the functionality of a target

application, by automatically generating events that mimic

user behavior. The main objectives of our system are:

• Fully supervise, monitor and control the target application

• Automatically detect and map GUI components in the

target application

• Automatically generate and inject GUI events

The architecture of our instrumentation system is shown in

Figure 1.

A. GUI Extraction and Mapping

To begin with, the instrumentation engine (based on An-

droid InstrumentationTestRunner) loads the target application

binary and coordinates the work of the different system com-

ponents. Once the target process is loaded, the currently active

GUI view is retrieved and passed on to the GUI traversal
to be examined. The GUI traversal visits each component of

the view, including options menu items, in preorder. When

a component is visited, the GUI traversal attempts to map it

to one of the default android GUI widgets by inspecting the

inheritance tree of the component which is accessible through

Java reflection. When the type is inferred, a set of input events

that specifically fit the component type is generated. At the

moment, components of unrecognized types are monkeyed

with using the Android SDK Monkey event generator. This

can happen if the GUI component is a direct sub-class of the

basic building block, i.e., the android.view.View class.

B. Event Preparation and Scheduling

Generated events are queued into a multi-level scheduler,

indexed by the view root, e.g., the parent activity. A global
event scheduler selects the next event to dispatch and passes it

back to the instrumentation engine. Each individual scheduler

as well as the global scheduler can follow a set of different

policies. Specifically, each scheduler can shuffle its items

either randomly or based on some generated permutation. That

gives control over the overall sequence of events to execute

when the target process switches between different activities.

In other words, it gives the view of a global sequence of events

that span multiple activities. As this is all done at runtime, our

system is also able to instrument dynamically loaded views,

e.g., dialog boxes and menus.

The global event scheduler dispatches one event at a time.

Whenever an editing event, i.e., an event that needs input from

the user, is dispatched, the instrumentation engine queries the

input fuzzer for input data. Basic fuzzing is currently imple-

mented. The fuzzer generates sequences of characters based on

the target component input type, e.g., numerical, alphanumeric,

etc, that randomly vary in length. At the moment, the bounds

of the sequence length can be tuned only before running the

target process.

C. Event Injection

Now that the data is ready, the engine injects the event

into the UI thread of the target process. Android permits

the test runner to inject events only into the target process

or else a security exception is thrown. That means events

cannot be injected if the target process does not have focus.

This is problematic as processes may request external services

or may be sent to the background, e.g., due to loading

another application or pressing the home key. The documented

workaround is to possess the INJECT EVENTS permission so

that we can inject events into any window. One caveat though

is that INJECT EVENTS is a “signature” level permission,

which would require baking our system into the Android

ROM. To overcome that, we have implemented a Hardware
(HW) event injection service that writes directly to the raw

Linux input bus. Although it needs root access, writing to

the Linux input bus goes below Android and so bypasses the

Android permission model and eliminates the need for using

the INJECT EVENTS permission.

The main idea behind the HW event injection service is

to map Android key names to their corresponding Linux

scan codes, based on the available key layouts and input

device handlers. Another advantage of this approach is that

passing the input data becomes independent of any custom

software input device that might be loaded by the target

process. Generally, all input events are passed to the HW event

injection service, while simple UI-wise events, e.g., gaining

focus, scrolling, etc, are injected directly into the target UI

thread.

D. Logging

During instrumentation, the target process is monitored and

profiled. The logger monitors all network communication,

file access and system calls, and logs them into trace files.

We utilize a combination of Linux trace and Android debug

facilities. Finally, after the target process consumes the input,

the instrumentation engine fetches its active view, and the

whole process is repeated till the test times out or is terminated

by the user.

The following section provides more in depth discussion of

how we monitor the target process and analyze the collected

logs.
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Fig. 1. Instrumentation system architecture.

III. MONITORING AND LOGGING

In this section, we discuss in some depth how we monitor

and profile a target process to characterize its run-time behav-

ior. To this end, we first need to identify a set of events to be

used as a basis for behavior characterization.

Application framework and Linux kernel constitute the two

primary sources of events for behavior monitoring and pro-

filing of Android applications [18]. Regardless of the events’

source, the collected events must contain relevant information

useful for revealing the potential malicious behavior of a mon-

itored application. As the name suggests, profiling application

framework events revolves around monitoring and recording

application-level events such as calls made to APIs provided

by the Android Software Development Kit (SDK). On the

other hand, behavior monitoring and profiling at the Linux

kernel-level is based on the requests made by the application

under monitoring to the Linux kernel for an operating system

service. System calls are the standard interface between An-

droid applications running in Dalvik virtual machine and the

services provided by the Linux kernel.

Interception of API calls is not readily achievable and

platform modifications are required for gaining such capability.

The Android SDK comes with a debugging framework called

logcat. This framework can be used to partially observe the

behavior of a running application. However, only limited

events are dumped. For instance, we won’t get any details

on file access or network connections established by an

application. Additionally, application developers have control

over the contents to appear in logcat’s output and therefore the

logs may not be relied upon as a trusted source of information

for our purpose. In short, the logcat framework is meant to be

used as a debugging facility by application developers and it’s

not suitable for behavior analysis and detection of potential

malicious activities.

In this study we focus on a small subset of I/O system

calls for characterizing the run-time behavior of monitored

applications. The Linux kernel constitutes the lowest level

in the Android’s architecture. Consequently, all user space

requests for operating system services have to pass through the

system call interface to get executed in the hardware. Analysis

TABLE I
LIST OF MONITORED SYSTEM CALLS

OS Service Type System Calls Names
File I/O mkdir, rmdir, rename, unlink, open, read, write

Network Connection connect, bind, listen

of I/O events as manifested in system call logs provides a

reliable picture of run-time behavior of monitored applications.

We rely on the strace tool to get visibility into system calls

made by an application.

strace is a well-known Linux utility for monitoring system

calls made by user space processes. We use a port of the strace
utility compiled for ARM architecture to monitor a subset of

I/O system calls.

The interception of system calls using strace is considered

to be slow and it can incur a significant performance overhead

on the execution time of the application under instrumentation.

However, considering the usage of the proposed system as a

testing framework, the associated overhead can be considered

as negligible for the sake of improved security and reliability.

In fact, strace is a common tool in Android research and it

has been used in recent works for malware detection [19]–[21].

One way to mitigate the performance overhead issue of

strace is to limit the number of intercepted system calls.

A modern Linux kernel has over 300 system calls and by

default the strace tries to intercept and log all of them.

However, most of these system calls are irrelevant for our

purpose and do not contribute to characterization of potential

malicious behavior. The operating system services related to

network communications and File I/O operations are among

the services used most heavily by different malware families

[22]. Consequently, in our experiments we just focus on

monitoring system calls related to these two service types. This

also means no significant concern with storage requirement of

generated logs. Table I lists the name of system calls that

we are concerned about. In the following two subsections we

provide more details on monitoring and logging of File I/O
and network connection activities.
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A. Monitoring of File I/O Activities

File I/O events can provide a valuable source of information

for security inspection of android applications [21]. File I/O
activities include creation, reading, writing, and deletion of file

objects. Malicious applications make extensive use of file I/O
for various malicious activities. For instance, many malware

families include publicly available root exploits as file objects

in their packages in either plain or obfuscated form [22].

As another example, consider a malicious application which

masquerades as a legitimate app to steal users’ credentials.

The app might save the information as a file if a network

connection is not currently available for sending back the

credentials to its remote server. To avoid raising suspicion,

a malicious application could delete its files once it has

successfully used them for its malicious intents. To have an

insight into file I/O activities of applications, we log relevant

system calls made to the kernel. We also capture a full dump

of the content for read and write system calls.

For each read or write system call, an integer file descriptor

specifies the target file to be operated on. To be able to read

from or write to a file , a process first needs to use the open
system call to open the file in appropriate access mode. To

have a more human readable log summary, we map the file

descriptor argument of each read/write system call with the

corresponding file object on the file-system. To do this, we

record the mapping of file names passed as arguments to

the open system call and the file descriptors assigned by the

system call on a successful return. This way, we are able to

identify the file associated with a file descriptor used as an

argument in a subsequent read/write system call.

Note that, when the target of a read or write call is not

a regular file on the file-system, for instance, when named

pipes or Unix domain sockets are used for inter-process

communication, the mapping can fail. However, If required,

such file descriptors can be resolved by querying the proc
file-system.

B. Monitoring of Network Activities

The authors of most modern malware samples are finan-

cially motivated and the monetization frequently relies on

some form of communication over the Internet [23]. For

instance, a spyware needs to communicate with its remote

server to send back the information it has collected from the

infected device or a botnet needs to contact its command

and control server for downloading additional components,

configuration data or operational instructions. This signifies

the relevance of monitoring and profiling network activities of

applications for detecting potential malicious behavior.

We monitor and log all the calls made by the applications

under monitoring to connect, bind, and listen system calls. By

inspecting the arguments of a connect system call, we can

figure out the destination IP address and port number of a

connection request. An invocation of the listen system call

by an application indicates that the application has created

a network socket and is willing to accept remote connection

requests [24].

We record a summary of network connection information

into a profile for each monitored application. At the same time,

we run the tcpdump tool in background to capture and store

all the network traffic in a pcap file. This way, if required

we can use the information recorded in the network activity

profile of an application to inspect the payload of its network

traffic.

Typically the destination IP address and port number are

sufficient for uniquely identifying the outgoing packets of an

application. However, under very rare circumstances, we may

have more than one application connecting to the same IP

address and port number at the same time. In such case, the

source port number would be necessary for distinguishing

the outgoing packets of each application. The arguments of

the connect system call as provided by the strace tool do

not include the source port number. To address this issue,

once a connect system call is observed in the strace log, the

lsof utility is immediately invoked to identify the source port

number used by the process under monitoring to establish a

connection to the remote host as specified in the arguments

of the connect system call. Please note that with this method,

there is a small likelihood of missing the source port number

if the established connection is extremely short-lived. This

would be the case if a connection is instantaneously terminated

after a connect system call and therefore causing an immediate

invocation of lsof to fail to get the source port number for that

connection. However, this is not a concern in our case, as in

practice, a malicious connection would need to last for more

than this short period of time in order to be able to accomplish

its intended operation.

The source port number information of connections made

by a monitored application is also recorded into the network

activity profile.

IV. EXPERIMENTAL EVALUATION

We have designed and conducted experiments to demon-

strate the applicability of our methodology for detecting mali-

cious behavior. The goal is to apply the proposed framework

to identify malware samples that only expose their malicious

behavior on user interaction. We evaluated our system on

20 recent malware samples collected from the wild. Not

surprisignly, we found that for 17 of these samples, the

malicious behavior does not depend on user interaction. The

other three samples are all designed to capture and send out

sensitive information entered by a user.

Here we use one malware sample from each category as

use cases for the demonstration purpose. In this section, we

briefly describe the functionality of the two malware samples,

discuss the details of the experiment environment, and present

the experimental results.

A. Malware Samples

Safe Virus Scan The first application used in our experiment

is a Japanese malware called Safe Virus Scan in the native

language. It was discovered and reported by the Symantec

185



corporation in late September 2012 [25]. The malware dis-

guises itself as an antivirus application. However, stealing

contact information stored on the infected device is the only

functionality the malware is designed to perform.

Android.Fakeneflic This malware sample was also discov-

ered and reported by the Symantec corporation in October

2011 [26]. It is basically an infostealer application targeting

Netflix account information. The main component of the

malware is a login screen where the account information is

acquired and then uploaded to a remote server. Once the

malicious application has fulfilled its purpose, it will show

a dialog to the user indicating the incompatibility of the

application with the current hardware. The user will have no

choice but to proceed with application uninstallation.

B. Testbed Setup

We used one HTC Desire device running CyanogenMod

Android 4.1 ROM for running our experiments. We equipped

the device with strace and tcpdump binaries and connected

it via USB to a Linux host. Our instrumentation system was

deployed as a configurable test application, where only the

target application package name and launcher activity need to

be supplied. The Linux host was used to deploy and launch

the instrumentation system and target applications, in addition

to fetching the trace files generated by the logger.

Please note that both the test and target applications must be

signed by the same keystore. Thus, we re-signed the malware

packages with the default Android debug key before deploying

them to the device.

C. Experimental Results

Some malware samples are activated based on events that

are independent from user interaction while some others are

only activated on user activity. The two malware samples

that we have used in our experiments represent these two

distinct activation conditions. For malware behavior analysis,

we run each malware sample in two different scenarios. In the

first run, the malware is launched and the kernel-level events

generated by the application are collected as described in

section III. In this scenario, the application is not instrumented.

We refer to this scenario as the non-UI scenario. In the second

run, we launch the instrumenting application of each malware

sample to instrument the UI of the corresponding malware

and simultaneously collect the same set of kernel-level logs

generated by the application under instrumentation. We refer

to this scenario as the UI scenario.

Based on the summary of file I/O and network activities that

we recorded for the Safe Virus Scan malware, we observed that

while the malware was pretending to be performing a genuine

virus scan, all the email addresses available in the contact data

were extracted, stored in a file on the SD card and the content

of the file was uploaded to a back-end server at the end. At

the time of this writing, the back-end server for this malware

sample was still alive and therefore the scammers behind

the malicious application could successfully harvest email

addresses from infected devices. The logs collected for the

Safe Virus Scan malware when running the application under

both scenarios were qualitatively the same. This indicates that

for this malware sample the UI events are irrelevant and the

malicious activity will be triggered independent from user

actions.

When running the experiment under the non-UI scenario

for the Android.Fakeneflic malware sample, we recorded no

evidence of malicious activities in our logs. However, when

this malware sample was instrumented by our instrumenta-

tion system, we could detect that the malware attempted to

establish a connection to a remote server when the email

and password fields in the login screen were filled by the

instrumentation system and then the Sign in button was

clicked. The back-end server for this malware was offline at

the time of this writing and therefore the malware failed to

initiate the connection for posting the stolen credentials.

To uncover malicious activities we manually inspected the

summary files generated under the two testing scenarios. Each

summary file lists all the network connections attempted by

an application and all the files being accessed on the internal

memory or the external SD card. Although, the number of

entries in a summary file is typically small enough for a

manual inspection, this approach is obviously not scalable

and the system can be improved by developing techniques

for automated detection of malicious or suspicious activities.

V. RELATED WORK

In [12] a crawler-based technique is used that stimulates

real user events on GUI randomly. They modeled a GUI tree

in which the nodes represent user interfaces and the edges

signify transition between interfaces based on the events. Their

proposed system uses the source code of the application for

testing, which is not feasible in applications that are obtained

from the Google Play. They experiment on one small size

Android application. Our system, however, does not need to

have access to the source code. Moreover, they used a testing

scheme that just cover the user events produced by GUI and

does not include the external events produced by sensors and

network.

On the other hand, the authors in [27] has developed a

blackbox, adaptive random GUI test-case generating technique

that considers both user events and environmental events.

Test cases consist of events sequence that are driven from

randomly selected events. They used event sequence distance

and Adaptive Random Testing that is not only limited to

mobile application but can be used on other event-driven

software. Our system does not use the distance factor and

tries to generate all events that mimics user GUI input. Our

system only works on android platform.

Authors in [14] have leveraged randomely generated GUI

tests and used Monkey [14] platform to execute. Monkey [14]

is another simple testing application that sends random event

sequences, however the random testing may not be so effective

in triggering of malware, that is why we did not follow the

random method and tried to activate all the possible paths that

are accessible by user input.
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A white-box approach have been developed in [28] to

analyze the program and generate test cases automatically,

they used the cloud to provide scalable fuzzing. Robotium

framework provided by Google Code website can be used

to create powerful automatic black-box test cases for testing

Android applications systems and functions .

VI. CONCLUSIONS & FUTURE WORK

We presented an automated dynamic analysis approach for

security inspection of Android applications. Motivated by the

observation that some malware samples are only activated on

user actions, we have developed an intelligent instrumentation

system to automatically interact with the UI of a target

application. While an application is running, a subset of system

calls are monitored and a behavioral profile is created. The

profile can be investigated for uncovering potential malicious

activities. To demonstrate the applicability of the proposed

system, the results of applying it on two Android malware

samples found in the wild were presented.

As a future work, we are exploring ways for improving

our instrumentation system. These include: support for more

complex interfaces such as OpenGl and gesture views and a

solution for intelligently inferring the appropriate input format

of input fields. Also to increase the likelihood of detecting

a broader range of malicious activities we would need to

consider monitoring and profiling more relevant events such

as access to telephony and short messaging services.
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