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Abstract—In heavily congested urban areas, the rapid growth of
population is becoming more and more of an issue. Affected cities quickly
demand solutions to areas such as quality of life, waste management,
public transportation, and accessibility to main resources. However, since
the number of impacted areas of population growth is endless, we focus on
public parking. Studies show that drivers spend a large portion of their
travel time locating vacant parking spots. For this reason, we present
MagnoPark, a crowdsourced approach to identifying unoccupied spots
accessible to the general public, who are typically free. MagnoPark is
a smartphone based sensing solution that detects empty parking spots
using internal sensors of cellphones. While a pedestrian is walking on
the sidewalk, we exploit magnetometer changes near metal objects in
identifying where cars are located. The amplitude and rate of change
shift dramatically when approaching or passing cars that are parked
beside the street, giving us a great platform towards solving the defined
problem. With empirical evaluation, we show that not only is our
solution a notable step towards economical parking management but
also significantly efficient and as accurate as traditional sensor-based
parking solutions.

I. INTRODUCTION

In large cities, a parking space is both an expensive and a hard to
find resource. On a daily basis, a large portion of vehicles on road
in urban environments constitute to those seeking a parking spot [1].
While the impact is sporadic in nature, at times heavily influenced
by the geographic location or the contextual side of its environment,
it is an obvious challenge. According to [2], finding a space to park
can take as long as 15 minutes on average in major metropolitan
areas. The cause for extraneous search is primarily developed due to:
i) drivers tend to search for spots by preference in which free on-
street parking closest to a particular destination is of ideal value, and
ii) drivers’ tendency leads them, when all ideal spots are occupied,
towards waiting and actively seeking alternative locations. This issue
of inability to know where else to park promotes misuse of driver
time, which increases traffic congestion and creates health issues due
to the emissions released by vehicles [2], [3].

Since this is certainly not a new issue, and is only increasing level
of inconvenience, dense urban areas are beginning to invest heavily
towards implementing potential solutions. Some of those include
Fastprk [3] and SENSIT [4], which are both sensor based systems for
detecting when parking spots are occupied. While they both require
hardware equipment to fully function, they integrate with public
payment and notification systems to help streamline the parking
process. Both of these solutions aim to identify vacant spots, guide
drivers towards potential locations, and increase driver satisfaction
and the overall city management. Fastprk implementation claims a
35% improvement in the time needed to park [2], while SENSIT
claims both a 64% reduction in park violations and a decrease in
space occupancy [4].

While this is a good approach for locations which generate revenue,
i.e., paid parking on popular streets, cities lack similar technology for
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free curb side parking. Investing into previously mentioned solutions
is still an option for well-funded cities. However, for those that have
a limited budget, covering all potential streets of interest can quickly
grow into financial exhaustion. Take for example a city like Chicago
or New York, where the number of crowded streets is potentially
endless, demanding a large portion of the cities budget for a complete
conversion.

Recent survey study shows that about %80 of US population
own a smartphone in 2016 [5]. This statistic motivates us to de-
velop MagnoPark; a crowdsourcing approach that utilizes on-street
pedestrians and their smartphones to identifying unoccupied on-street
parking spots. MagnoPark is a smartphone based sensing solution
that leverages the magnetometer sensor on smartphones to detect
empty parking spots. While a pedestrian is walking on the sidewalk,
we exploit the change in magnetometer sensors when approaching
or passing by vehicles that are parked on street side to detect
where vehicles are located and consequently, identifying the on-street
available parking spots. We evaluate MagnoPark on several streets in
downtown under different conditions and users with different walking
speeds. Results show that MagnoPark detects available parking spots
with more than %95 accuracy.

We summarize the main contribution of this paper as follows:

• Develop a high-accuracy classification scheme that utilizes
smartphone magnetometer sensor in detecting on-street parked
vehicles and other on-street metal objects such as light poles. To
our knowledge, this is the first project that utilizes smartphone
magnetometer sensor in detecting vehicles.

• Develop and implement MagnoPark; a low-cost high-accuracy
crowdsourcing approach for detecting on-street parking spots
using smartphones carried by on-street pedestrians.

• Evaluate MagnoPark on several streets under different conditions
and users with different walking habits and speeds.

The rest of this paper is organized as follows. Section II describes
briefly the background and the related work. We present MagnoPark
architecture in Section III. In section IV, we describe the details of
MagnoPark modules and components. Evaluation of MagnoPark is
described in Section V. Section VI concludes the paper and highlights
our future work.

II. BACKGROUND AND RELATED WORKS

A. Background

Magnetometers are very sensitive to soft and hard iron. This
sensitivity is caused by the distortion in earths magnetic field.
Magnetometers sense the change in earth’s magnetic field that is
caused by a metallic object. The reason for this distortion is that
the magnetic field flows more easily in the ferromagnetic materials
than air. This effect causes earth’s magnetic field lines to be bent
quite a bit in the presence of any metal object including vehicles [6].
Figure 1 (top) shows earth’s magnetic field that are almost parallel by
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Fig. 1: Earth magnetic field distortion in the presence of a vehicle
(top figure) and variations in Magnetometer readings corresponding
to magnetic field distortion (bottom figure).

vertical lines in which the presence of a vehicle causes these parallel
lines to be bent and distorted.

Magnetic fields sensing has expanded vastly as many magnetic
sensors are used to detect the strength, direction and distortion of
not only earth’s magnetic field, but also fields generated by electric
currents, permanent magnets, and vehicle magnetic field disturbance.
Magnetic sensors are able to detect these changes without any
physical contact.

Many navigation control systems have an eye on this feature to
correct the magnetic deviation caused by hard iron and soft iron to
reach an accurate tracking for both under water and out of water
vehicles. Strong algorithms including Kalman filter [7] are used in
these systems to correct the distortion that is caused by any kind
of hard or soft iron objects in the earth magnetic field. In addition
for tracking purpose, portable magnetic sensor systems are designed
and developed to be used beside the roads for vehicle counting and
classification and also for speed measurements [8].

Giving these characteristics and by leveraging the smartphone mag-
netometer sensor, we observed from our experiments that smartphone
magnetometer sensor experiences significant variations in readings in
the presence or absence of a vehicle as shown in Figure 1(bottom).
Consequently, we utilize this observation in developing MagnoPark
to identify and locate available on-street parking spots to later notify
nearby drivers who are looking for parking spaces.

B. Related Work

In this section, we overview parking detection systems and sum-
marize their features. By comparing MagnoPark with these parking
detection systems, we will show our contributions of our work in this
article.

RFID technology is one of the popular ways researchers are
battling smart parking, where small instruments are installed in each
vehicle to communicate with a base station. By using this approach,
individuals can be identified by their device, and management ap-
plications can get a head count as to how many spots are vacant
or filled [9]. While this system decreases waiting times and traffic
jams, it comes with three main disadvantages. First, a system that
requires implementation in all vehicles is a rather costly solution for
both the driver and those maintaining the evolution of the proposed
technology. Second, this solution can be very error prone in dense

areas, as multi-broadcast collisions can prevent several vehicles of
entering a parking lot simultaneously. Lastly, security issues can arise
as a limited amount of preventative measures are being taken towards
protecting devices identifiers from spoofing.

Unlike RFID solutions, there are those leveraging light as a
medium for parking identification. By measuring the distance that
vehicles cover as they travel throughout a particular area, similar
solutions can be implemented. One of those can be seen in [10],
where the authors develop a LIDAR system consisting of light
sensors who tracking movement of all entered vehicles. At the end
of a travel cycle, a map is generated for a particular path, and
estimation can be made as to what spots are no longer vacant. A
similar approach is taken by [11], which while very accurate is
a rather expensive solution requiring a plethora of equipment to
configure.Other solutions, alike those outlined in [12], entail video
and image processing, scattered transmitter nodes for information
relay, ultrasonic waves and microwaves towards vehicle localization.

SFpark [13] is a parking management system, which adopts a wire-
less sensor network structure. The SFpark pilot deployment installed
11700 magnetometer sensors and 300 pole-mounted mesh nodes for
8000 parking spaces in California (for each parking space,one or
two sensors are installed.) The data from parking sensors is fed to
a wireless mesh network and will be pushed to a data warehouse.
Although this solution is very simple in finding on-street parking
spots, which will helps in reducing the traffic congestion, the cost
of this parking system is very high. Fastpark [2] is another similar
Magnetic solution allowing a Town Council to turn its town into a
smart city. Both the systems are very costly and require digging roads
to embed at least one magnetic sensor per spot.

ParkNet [14] is another similar work, a mobile on-street system
comprising vehicles which collect parking space information while
driving by. Each ParkNet vehicle should be equipped with a GPS
receiver and an ultrasonic rangefinder to determine parking spot occu-
pancy. The data is aggregated at a central server, which builds a real-
time map of parking availability and could provide this information
to clients that query the system in search of parking spots. In order to
achieve improved location accuracy, authors utilize an environmental
fingerprinting approach and use objects on the street to correct GPS
errors.

Similar to MagnoPark, current research attempts to identify new
means of tracking vehicles and preventing side effects of congested
parking in crowded cities. However, a line between accuracy and
cost is quickly expanding, in which the financial aspect dictates the
level of performance. Our research, on the other hand, is distinctively
different as MagnoPark is both accurate and considerably less costly
than current solutions.

III. MAGNOPARK ARCHITECTURE

Figure 2 shows the architecture of MagnoPark, which consists of
three main components: Pedestrian component, Cloud server com-
ponent, and Driver component. MagnoPark leverages the mobility
of pedestrians on-street sidewalks and opportunistically: i) collect
several sensor data from their smartphones, ii) process these the data
to detect parked vehicles, and then iii) assess the on-street parking
spots conditions and make it available to drivers nearby.

We have developed MagnoPark-Ped smartphone application that
runs on pedestrian smartphones, and executes the different modules
of MagnoPark pedestrian component. Once the application starts,
it collects accelerometer, gyroscope, magnetometer, and GPS data.
Magnetometer sensor readings are the main data that is used by
MagnoPark to extract several features, as we will describe later, to
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Fig. 2: Architecture overview of the different components of
Magnopark system.

detect the on-street parked vehicles. Note that, to make MagnoPark
independent of smartphone orientation, we use the magnitude of
the magnetometer 3-axis vector readings in our calculations. GPS
data is used by MagnoPark cloud server to map the data from each
pedestrian to the corresponding street and, consequently, to map the
detected parked vehicles to the different parking spots on the street.
Accelerometer data in company with gyroscope data are used to
detect the walking status of pedestrians (e.g., walking, standing).
In addition, gyroscope and accelerometer sensors are used to track
individual pedestrian/user steps to be able to calculate her walking
speed. Since different users have different walking speeds, it is
important to consider individual user speed in order to be able to
correctly correlate the collected samples from this user to on-street
parking spots. For example, a faster pedestrian will collect fewer
numbers of samples than a slower pedestrian of the same-parked
vehicle. In addition, we use gyroscope to detect the change in user
direction, which again helps to correctly correlate the collected data to
the corresponding parking spots. For example, if the a user reverse his
direction, this will help us to avoid duplicate detections of the same
parked vehicles. With all these sensors data, we design and develop a
classification algorithm to classify and detect parked vehicles on the
street from collected data. After identifying the locations of parked
vehicles, we would be able to identify the available parking spots
along the corresponding street.

Classified data by MagnoPark-Ped application is uploaded to
MagnoPark cloud component. This particular component is respon-
sible for storing, processing, and mapping all pedestrians’ classified
data. It is responsible to correlate available on-street parking spots
to physical street locations in order to facilitate this information for
nearby drivers seeking for parking spots. It is important to note that
only parking spots information (i.e., occupied or available) along
with corresponding GPS information are sent to and stored by the
cloud component. No additional user personalized information (e.g.,
user ID) or phone information (e.g., wireless MAC address, SIM
card information) are stored in order to preserve the privacy of
participating users. In other words, data uploaded can’t be correlated
to any other stored data in the cloud and consequently no data stored

can be used to identify or to be correlated to any participating user.
The Driver component is a simple component that consists of one

module in which the driver uses to send a parking request along with
his location the to the cloud server for the nearest parking spots. In
response, the cloud server sends back a local map of nearby area
with current available parking spaces.

IV. MAGNOPARK COMPONENTS

In the following subsections, we describe each the the three
MagnoPark components in more details.

A. Pedestrian Component

In MagnoPark, pedestrian component consists of the following four
main modules that are shown in figure 3:

1) Data Collection: We developed MagnoPark-Ped android appli-
cation to collect and analyze data exerted by smartphones. The system
collects readings from accelerometer, gyroscope, magnetometer, and
GPS. In order to detect a vehicle, we resort to the variations in the
magnitude of the 3-axes magnetometer sensor as pedestrians/users
are walking on sidewalks and passing by on-street parked vehicles.
Therefore, our calculation is independent of user smartphone orien-
tation. This point makes MagnoPark more practical since there is no
specific requirement from user to hold or carry their smartphones in
special way.

In this project, the application collects magnetometer data with
frequency rate of 50Hz. This rate is high enough to detect the slightest
changes in the magnitude value. We experimented collecting magne-
tometer data with different frequency rates (i.e., 20Hz and 100Hz)
and did not find significant difference. We also use gyroscope and
accelerometer data to calculate the speed and direction of walking.
We use the walking speed to calculate the corresponding optimum
searching window size, as we will describe later, that will be used
in detecting parked vehicles and calculating their length. Walking
speed is also used to estimate the distance between consecutive
parked vehicles and, consequently, to estimate the number of available
parking spots between consecutive parked vehicles. Moreover, GPS
data is collected to upload to cloud server the latitude and longi-
tude of detected parking spots in order to map these spots to the
corresponding street spaces.

2) Walking Speed and Direction Estimation: This module con-
sists of two main sub-modules:

Distance Estimation: This module estimates the distance traversed
by pedestrian at each step. We use accelerometer and gyroscope
sensors of the user smartphone to detect and track user steps. We
utilize the changes in gyroscope sensor to activate this module once
the user starts moving. Whenever the gyroscope sensor readings
reach above a certain threshold (in our case 0.3), we infer the user
movement. Detecting the user movement triggers the application to
start capturing accelerometer, magnetometer and GPS data. Since the
user step length is, to some extent, proportional to his speed [15], we
consider two parameters mmax and mmin to represent the maximum
and minimum length of a user step in terms of number of samples:

mmax = smax/vmax ∗ fa

mmin = smin/vmin ∗ fa

where smax, and smin are the maximum and minimum length
of a user step, vmax and vmin are the maximum and minimum
walking speed of a user, and fa is the frequency of the accelerometer
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Fig. 3: The modules of Pedestrian Component of MagnoPark

samples in the smart phone [16]. After collecting mmax rows of ac-
celerometer samples, we calculate the magnitude of the accelerometer
3-axis vector of each sample, to be sure that it is independent of
the orientation of the smartphone. Next, we apply Finite Impulse
Response low pass filter to remove any noise and then followed by
a normalization step. Then, we feed the samples to Dynamic Time
Wrapping (DTW) algorithm [17]. DTW uses a predefined pattern of
a step to detect whether there is a step defined between the next
mmin and mmax samples. If a step is detected, then we shift the
next processing samples window by the number of samples of the
detect step. If not, we shift by one sample. The advantage of DTW is
that it can detect walkings steps for different walking speeds. We use
the commonly used personalized step length model [17] to estimate
the step size of the user and consequently the user walking speed1.
For more details, please refer to [16]. It is very important to estimate
user walking speed to correctly correlate the magnetometer collected
samples from each user to on-street parking spots. For example, it
is essential to differentiate between when a user stands still beside
an available parking spot and when he is walking beside a row of
available spots.

Direction Estimation: We need to track the walking direction of
each user in order to avoid the erroneous in detecting parking spots.
For example, if a user reverses his direction, this will help us to avoid
duplicate detections of the same parked vehicles. In order to estimate
the user direction, we have to align three different coordinate systems:
smartphone coordinate system, user walking coordinate system, and
global coordinate system [16]. As the global coordination is fixed,
we align the other two systems to it. After the alignment, the highest
variation of the linear acceleration readings will be aligned with
the user walking direction. We apply Principal Component Analysis
(PCA) analysis to find out the walking direction of the user. For more
detailed description about walking and direction estimation, please
refer to [16].

3) Data Mining and Feature Extraction: In this module, our
feature extraction relies on both motion sensors and magnetometer
sensor readings. The presence of on-street parked vehicles will be
reflected in changes in the magnetometer readings. These changes as
mentioned before are due to the earth’s magnetic field distortion near
metallic objects.

Our main goal is that the selected features should be able to
differentiate between parked vehicles and no vehicles as well as to be
able to differentiate between vehicles and any other on-street metal

1We build the personalized model for each user of MagnoPark-Ped appli-
cation at the time the user runs registers with MagnoPark system for the first
time.

objects such as trash bins and light poles. In this subsection, we first
describe the important issues that we consider in our model; followed
by the steps we used to extract effective features from magnetometer
sensor readings.

User motion is an important factor in detecting parked vehicles
using the magnetometer in our system. Our experiments, as described
earlier (Figure 1 (bottom)), show that the magnitude of the raw 3-axis
magnetometer data changes significantly as the user is approaching
and passing by a parked vehicle. On the other hand, this magnitude
remains almost stable when there is no vehicle nearby the user.
Although the magnetometer magnitude has higher values when the
user is standing next to a vehicle than there in no vehicle, our systems
relies more on the relative changes in the readings rather than the
absolute values. Therefore, collection of data is only executed as the
user is in motion, which is detected as described earlier.

Walking speed is another important factor in differentiating be-
tween vehicles of different sizes, metal bars, or any other on-street
metal objects. By estimating the walking speed as described before,
we can estimate the vehicle length by correlating the amount of
change in the magnitude curve to the walking speed. Detecting
vehicle sizes and differentiating them from other metal objects is
very essential for high accuracy performance of MagnoPark.

In processing the collected sensor data, we first divide the collected
samples into sequence of non-overlapped one-second periods we refer
to as data ”epochs”. As we assumed to collect sensor readings with
frequency of 50Hz, each epoch will consists of 50 samples in which
each sample includes magnitude (

√
x2 + y2 + z2) of the raw 3-axis

magnetometer, 3-axis accelerometer, 3-axis gyroscope, GPS data, and
timestamp2. As we described earlier that our MagnoPark is mainly
based on the magnetometer sensor in detecting parked vehicles,
we limit our extracted features to the magnetometer readings. In
doing this, for each epoch we extract a set of features based only
on the magnetometer readings. One of the features we extract is
the magnitude average (Avg) in which we calculate the average
of magnetometer magnitude values of all the samples per epoch as
shown in step #1 in Figure 4. We use Avgi to refer to a magnitude
average that is corresponding to ith epoch. Although this value (and
consequently the magnetometer raw readings) highly depends on the
distance between the user and the vehicle, from experiments we found
that the variations in these values for different positions of the user on
the sidewalk is not that significant as long as the distance between
the user and the vehicle is less than three meters, which fits with
typical width of most of the street sidewalks.

In addition to the magnitude average, we calculate the minimum,

2For sensors with lower sampling frequency such as GPS, we use same
values of the sensor for some of the consecutive samples
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maximum, median, and standard deviation of the magnitude samples
of each epoch. In addition, to capture the changes in magnetometer
reading as the user approach/passing by a vehicle, we calculate the
first derivatives over the magnitude averages (Avg) of consecutive
epochs. We refer to these derivatives as FD. To calculate this feature,
we first apply low pass filter on the calculated magnitude averages in
order to reduce noise and redundancy and, then, we normalize these
average values. We refer to the normalized value of a magnitude
average Avgi as Ni as shown in step #2 in Figure 4. Since vehicle
presence is the source for variations in magnitude values, we calculate
the first derivatives of the normalized data using equation 1:

FDi =
Ni −Ni−1

ti − ti−1
(1)

where FDi is the calculate first derivative of magnitude average
corresponding to ith epoch. Since each normalized magnitude value
is corresponding to one epoch and since each epoch is corresponding
to one sec, dt = ti − ti−1 is equal to 1. Step #3 in Figure 4 shows
the calculation of FD.

In addition to the above six basic features, we use Fast Fourier
Transform (FFT) to capture and extract additional features. In doing
so, we apply Fast Fourier Transform magnetometer magnitudes of
each epoch to generate the frequency spectrum of the samples, and
then we select the first ten frequencies (FFT1 to FFT10) as another
ten features of magnetometer for each epoch. Giving that, for each
epoch of magnetometer magnitudes, we extract the sixteen features
that will be evaluated in selecting the most effective features for our
system MagnoPark.

4) Data Classification: In this subsection we describe the training
and testing of the classifier MagnoPark uses in detecting on-street
parked vehicles. As we describe in the next section, we used a group
of users to walk around large number of streets to collect both i)
the readings of their smartphones sensors, and ii) the ground truth
data about parked vehicles. We split the collected data in to two
sets; training data and testing data. We used 80% of the collected
data and the corresponding extracted features as the training set to
build the classification model, while the remaining 20% is used as
a testing data to evaluate our developed classifier3. In training the
classification model, we use several data mining tools such as Weka
and Microsoft Excel SQL Data Mining tools combined with Decision
Tree and Naive Bayes algorithms to extract the most effective features
that have the highest effect on our detection. The outcome of data
mining using the training data set showed that the there are two
prominent features among the sixteen extracted features in which are
critical in our classification model as follows:

I) FFT2 - Among the first ten extracted FFT parameters by apply-
ing Fast Fourier Transform (FFT) on the magnetometer magnitudes
in each epoch, the second value of these FFT values, which we refer
to by FFT2, is above a certain threshold value (fft− threshold)
when the user is passing by vehicles. From our experiments, we found
that the value of this threshold is 2.24

II) First Derivatives of Magnitude Averages (FD) - The second and
very effective feature in our classification model is the first derivate
that is calculated over the magnitude averages of consecutive epochs.

Using these two main features, we build our classifier model to
classify whether these features of each epoch is corresponding to a

3We used another independent set of users to collect a new data set to
evaluate our MagnoPark as we describe in Performance Evaluation section

Fig. 4: MagnoPark classification process for detecting on-street
parked vehicles.

presence of a parked vehicle. Steps #4-#8 of Figure 4 shows the steps
of the classification and are summarized in the following main steps:

1) Steps #4 - Specify the searching window size (x): Based on
the calculated pedestrian walking speed as described earlier, we
specify a window for our classifier. This window size is related
to the length of a data set that is correlated to the presence of
a regular vehicle when the user is passing by. For example, if
the user walks with a rate of 0.5 meter per seconds beside a
3-meter length vehicle, the user needs 6 seconds to pass the
vehicle completely. Therefore, in this case, the window size is
set to be 6. With the normal walking rate, which is equal to 1
meter per seconds, the same length will take 3 seconds, which
corresponds to a window of size 3. We refer to the searching
window size as x, which should be approximated to multiple
of epochs. Note that this window size changes with the change
in the user walking speed.

2) Step #5 - Calculate Parameter Search Wini: Based on the
calculated value of x in the previous step, we calculate the
variations of FD values for overlapping windows of the data
set as follows:
for i = 0 to n
Search Wini = FDi+x − FDi

in which n is the total number of epochs. From experiments,
this parameter has small values (e.g., less than 1). Once the user
approach the vehicle boundary, this parameter starts to have
consecutive large positive values comparing to the previous
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data.
3) Step #6: In this step as shown in figure 4, we check if there is

a significant jump in the value of Search Wini compared
to Search Wini−1. As described, large positive values of
this parameter indicates approaching a vehicle and that the
last large positive value marks the beginning of the vehicle.
Therefore, we use this parameter as a ”detection boundary” of
the vehicle in which the classification algorithm starts to check
the consecutive FD and FFT2 values (in the next step) after
hitting the last large value in the detection boundary.

4) Step #7: After the model detects the last large positive in the
detection boundary, we check the values of consecutive FDs
and FFT2 values. If the value of FD is positive and the value
of FFT2 is greater than 2.24, we label this epoch with vehicle
presence (C). Otherwise, we mark it as no vehicle (nc).

5) Step #8: Advance and repeat by going to step 6.
As shown, our classifications model combine both the two features

FFT2 and FD in a binary classification to classify whether a vehicle
is presence (C) or no vehicle (nc) for each epoch. Then, a parked
vehicle is detected if three or more consecutive epochs are labeled
with vehicle presence (C). Otherwise, no vehicle is detected.

B. Cloud Server Component
In MagnoPark, once the classifier classifies an on-street parked

vehicle, the pedestrian component uploads this information with the
corresponding GPS and timestamp to the cloud server. Note that that
to minimize the number of uploads to save power, the pedestrian
component could upload the detected parked vehicles once the user
reached to the end of the current street segment. The typical scenario
of a pedestrian is that he gets off the street sidewalk once he reaches
its end, cross to the next segment, and then gets on the sidewalk of
the next street segment. We use the accelerometer sensor to detect
transitions of stepping off and on of the street sidewalk.

One of the main responsibilities of cloud server component is to
match the traversed path to the street map of the area that could be
extracted from Google Maps. In order to determine which street the
pedestrian is walking on, we use Map Matching approach that is used
to detect the street using smartphone sensors data. For this purpose,
the street will consist of series of points in which each point consists
of a time-stamp latitude-longitude pair of the detected parked vehicle.
Work in [18] presents a new map matching algorithm based on the
Hidden Markov Model (HMM) which map the user path to the Map.
Combining the detected parking spot and Map Matching approach,
the process of mapping each street location coordinates with a list of
available parking spots is performed on the cloud server. This data
will be updated when any changes is pushed to the server by other
pedestrians.

C. Driver Component
As we mentioned earlier, when a driver is looking for an available

parking spot, he sends a request (using his MagnoPark application for
drivers) to the cloud server accompanied with his GPS location. In
response, the cloud server sends back to the driver a list of available
parking spots that could be easily mapped on the driver device local
map. Then, the driver chooses from the available spots and gets the
directions to that parking space.

V. PERFROMANCE EVALUATION

In this section, we describe how we conducted our experiments in
order to i) collect ground truth data to build our classifier component
described in Section IV, and ii) evaluate MagnoPark performance
under different scenarios and conditions.

A. Experiment Configurations

To collect our ground truth data and to conduct our experiments,
we developed an Android application that collects the magnetometer
readings at frequency of 50 samples per second. In order to collect
the ground truth data to track and log the times in which the user
is passing by a vehicle without disturbing user walk, we developed
single tab and double tabs features in our application in which the user
tabs the phone once he begins to pass by a vehicle and double tab the
phone once he finishes passing the vehicle. Another important issue
that we considered in our experiments is to differentiate between
a vehicle and other metal objects on the street such as trash bins
or light poles. In order to do so, we added triple tap feature that
the user will use once he is passing by any of these non-vehicle
objects on the street. These collected time logs are used as the ground
truth for correlating between the collected magnetometer readings and
vehicle’s presence to train and build our classifier.

In conducting all of our experiments, we used ten graduate students
as our users of mixed genders and with different walking habits and
speeds. We asked our users to hold or carry their smartphones in
the neutral as they use to do such as holding it in hand or carrying
it in their pockets or bags. In addition, we asked our users to walk
normally without any constraints or limitations. Note that we did
not depend on smartphone camera for our ground truth data since it
will prevent users from using their phones in a normal way as they
typically do. We also asked the users to repeat their walks several
times (i.e., average of five runs). We also asked different users to
repeat the same experiment in the same place and situation with
their different walking habits and speeds.

To evaluate the device Independence accuracy of MagnoPark, we
conducted our experiments using different phones including Samsung
Galaxy 5 running Android Lollipop OS and LG Nexus 4 E960.
In addition, we conducted our experiments in different locations
including parking lots, private streets, crowded streets, and downtown
streets with shopping stores.

B. Experiment Scenarios

We evaluated MagnoPark under different scenarios and conditions.
We classify the scenarios into two main classes: a) controlled/small-
scale scenarios, and b:) realistic/large-scale scenarios as follows:

• Controlled/Small-scale Scenarios:
The objective of these scenarios to train and tune MagnoPark
classifier and evaluate the performance of MagnoPark under
specific conditions and configurations. These scenarios include:
i) No Vehicle scenario in which we evaluate the magnetometer
sensors on streets with both significant traffic of vehicles and
with no traffic at all. On either case, no vehicle is allowed to
park by the street. The objective is of this scenario to evaluate
the impact of street traffic on the performance of MagnoPark. ii)
Multiple Vehicles with Spaces in which conducted experiments
to evaluate whether MagnoPark will be able to differentiate
between consecutive parked vehicles from parked bus/truck and
detect the number of available parking spots between parked
vehicles. and iii) Mix Vehicles with Metal Objects in which we
evaluate whether MagnoPark is able to differentiate between
vehicles and other on-street metal objects such as trash bins
and light poles.

• Realistic/Large-scale Scenarios:
After we trained and tuned MagnoPark, we conducted several
experiments on down town streets with shopping stores and
significant traffic of vehicles and pedestrians at different times
using several users with different walking styles and speeds.
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Fig. 5: Changes in Magnetometer readings on campus street and
downtown street with no parked vehicles.

In these experiments, we asked different users to repeat the
same experiment on the same street and time. For each of these
experiments, only one user is asked to collect the ground truth
while the others where asked to just walk down the street.

C. Experiment Results

In this subsection, we present the results of different scenarios
described above.

1) Controlled/Small-scale Scenarios: We used the described above
No Vehicle scenario to evaluate the sensitivity of smartphone magne-
tometer sensors when there there is no parked vehicle. We conducted
set of experiments on our campus streets as well as down town streets
with shopping centers in which there is no parked vehicle on any
of these streets. Figure 5 plots the magnitude of the raw 3 axes
magnetometer data for two of these experiments corresponding to
on campus street and a downtown street. As shown, the magnitude
in any of these scenarios stays almost stable while the higher value
of the magnetometer at downtown streets is due to the on-streets
stores with their metal construction. Both plots show that on-street
vehicle traffics do not have any significant impact on the smartphone
magnetometer sensor and consequently on MagnoPark performance.
This is due to that the magnetometer readings are very dependent
to the distance between the smartphone and the vehicle and the
longer the distance, as in the case of the on-street traffic, the less
the sensitivity the magnetometer sensor.

To evaluate the sensitivity of MagnoPark to differentiate between
multiple consecutive vehicles versus large vehicles (e.g., trucks,
buses), we experimented with different configurations of Multi-
ple Vehicles with Spaces scenario. Figure Figure 6(a) shows one of
these configurations in which we have one SUV vehicle, a space
and then two consecutive vehicles. Figure 6(b) shows the logged
ground truth corresponding to this configurations and both FD and
Search Win parameters (features) described in Section IV.A, which
are corresponding to one of the experiments. A shown in Figure
6(b), the two consecutive bumps in FD curve clearly indicates that
Magnopark is able to detect consecutive parked vehicles. To better
understand how MagnoPark classifier works to detect vehicles, we
use Table I that shows the main parameters we used in our classifier
as the user passes by the SUV vehicle, the available space, and
then the first vehicle of the two consecutive vehicles. In this table,
”Detection” column represents the detected values (i.e. C (vehicle
detected and highlighted in green) or nc (no-vehicle detected))
using our classifier algorithm (Section IV.A). On the other hand,
”GT ” column represents the ground-truth values (i.e., 1 (vehicle
and highlighted in blue) or 0 (no-vehicle)). The algorithm looks for
values in ”SearchW in” column that have higher values comparing
to the previous values. These corresponding cells are highlighted in
gray color. These values could be used as indicators that the user is

(a)

(b)

Fig. 6: (a) Vehicle configuration for one of the experiments that
consists of SUV vehicle, a space, and then two consecutive vehicles.
(b) The logged ground truth corresponding to vehicles configuration
in (a) and both FD and Search Win parameters used in our
classifier (described in Section IV.A).

Fig. 7: The logged ground truth and both FD and Search Win
parameters as the user passes by a vehicle and a small truck

approaching a vehicle. To confirm that the changes in these cells’
values is due to approaching a vehicle, the algorithm examines the
corresponding values of FD parameter (i.e., the first derivative of
magnitude), which are highlighted in green under ”FD” column of
the table. While those values are positive and greater than a specific
threshold (we choose 0.1 as the threshold in this work), they are
used to indicating the presence of a vehicle as shown in ”Detection”
column. Note that, for most of the readings of this table, the searching
window size (x) has the value of 3.

We run another set of experiments to evaluate the sensitivity of
MagnoPark to consecutive vehicles versus large vehicles such as
buses, trucks, or vans. Figure 7 shows the ground truth as well as
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TABLE I: Calculated features described in Section IV.A for the
experiment when the user passes by two of the vehicles in Figure
6(a)

Avg FD Search Win FFT2 GT Detection
48.497 0.066 -0.436 2.138 0 nc
48.563 0.115 -0.908 2.154 0 nc
48.679 -0.169 -1.005 2.166 0 nc
48.510 -0.370 1.060 2.143 0 nc
48.140 -0.793 4.884 2.110 0 nc
47.347 -1.174 4.279 2.021 0 nc
46.173 0.691 -1.814 2.290 0 C
46.864 4.090 -6.191 2.463 1 C
50.954 3.105 -4.195 3.079 1 C
54.060 -1.123 0.493 3.310 1 nc
52.936 -2.101 1.741 2.662 0 nc
50.835 -1.089 0.721 2.396 0 nc
49.746 -0.631 -0.077 2.270 0 nc
49.115 -0.360 -1.254 2.206 0 nc
48.756 -0.369 -1.908 2.184 0 nc
48.387 -0.708 1.171 2.139 0 nc
47.679 -1.614 4.213 2.055 0 nc
46.065 -2.277 3.610 2.419 1 nc
43.788 0.463 0.083 2.249 1 C
44.251 2.599 -2.250 2.314 1 C
46.850 1.334 -1.283 2.507 1 C
48.183 0.545 -0.707 2.410 1 C
48.729 0.349 -0.516 2.394 0 C
49.077 0.050 0.045 2.211 0 nc
49.128 -0.162 0.227 2.220 0 nc
48.966 -0.168 0.097 2.174 0 nc

Fig. 8: Both FD and Search Win parameters as the user passes
by two vehicles and a light pole

the behavior of both FD and Search Win parameters as the user
passes by both a vehicle and a small truck separated by parking space
in one of these experiments. As shown in the figure, not only the base
length of the bumps for the truck is wider than the small vehicle, but
the base values of the first derivative of the truck is higher than the
value of the other vehicle. We plan to further study this in future
work to utilize this feature in recognizing vehicle size and type.

We conducted another set of experiments to evaluate whether
Magnopark is able to differentiate between parked vehicles and other
significant on-street metal objects such as trash bins and light poles.
Figure 8 shows the performance of Magnopark for one of these
experiments. As shown, MagnoPark detects a pole at second 57. The
corresponding detection data for the light pole is shown in Table!II.
In this table, it is shown that the pole is detected as one row only
(cells are highlighted in red). Since our interesest in this project to
detect parked vehicles, MagnoPark is tuned to discard any single or
two consecutive rows detected as a vehicle since we assume it is

TABLE II: Calculated features described in Section IV.A for the
experiment when the user passes a light pole

Avg FD Search Win FFT2 GT Detection
47.975 -0.273 -0.486 3.108 0 nc
47.701 -0.573 0.556 3.036 0 nc
47.128 -0.941 1.828 2.989 0 nc
46.187 -0.759 1.73 2.878 0 nc
45.428 -0.017 0.523 2.754 0 nc
45.411 1.887 -0.558 2.761 0 C
47.298 0.028 -0.176 3.108 0 nc
47.326 -0.06 -0.323 3.108 0 nc

related to other on-street metal objects but not vehicles. As future
work, we plan to expand on this observation to explore whether we
could locate and map on-street objects other than vehicles such as
trash bins and light poles.

2) Realistic/Large-scale Scenarios: Once we evaluated the sensi-
tivity of MagnoPark, we asked one group of users to collect large data
sets of magnetometer readings as well as the ground truth data using
our application by walking on large number of streets around the
campus and at the downtown. As described earlier, users were asked
to carry their smartphone in a normal way as they usually carry it
and asked to walk as normal as they do (e.g., different walking styles
and speeds). Then we used these data to train and build our classifier
as described in Section IV.A.

Fig. 9: One of the streets with many cars and parking spots that is
used our large-scale experiments

Once we trained and tuned MagnoPark, we conducted several
experiments on large sets of streets including the one used in training
with another group of users. Note that these experiments were
conducted on different times with different traffic loads as well as
number of pedestrians. Figure 9 shows one street around the campus
of these set of streets. In these experiments, we asked different users
to collect multiple data sets corresponding to different sets of streets.
We also asked different users to repeat the same set of streets at the
same time. For each of these experiments, only one user is asked to
collect the ground truth while the others where asked to just walk
down the street normally.

To evaluate the performance of MagnoPark under these exper-
iments, we defined the following metrics: True Positive (TP) -
detecting an actual parked vehicle, True Negative (TN) - detecting
an actual available parking space, False Positive (FP) - identifying
a parked vehicle when actually there is no vehicle, False Negative
(FN) - identifying an available parking spot when actually this
spot is occupied by a vehicle, True Positive Rate (TPR) - the
proportion of occupied parking spots that are correctly identified as
such and calculated as TP/(TP+FN), True Negative Rate (TNR) - the
proportion of available parking spots that are correctly identified as
such and calculated as TN/(TN+FP), Success Rate - the accuracy of
correctly identifying parking as occupied or available and calculated
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TABLE III: Configurations of our fours experiment sets as well as
the corresponding performance metrics of MagnoPark

Test Sets Set 1 Set 2 Set 3 Set 4
# Data samples 55300 94700 45230 67503

# Parked Vehicles 56 98 48 67
# Available Parking Spots 74 172 70 95

True Positive (TP) 54 96 45 65
False Positive (FP) 2 1 3 4

False Negative (FN) 2 2 3 2
True Negative (TN) 72 171 67 91

True Positive Rate (TPR) 0.9643 0.9795 0.9375 0.9701
True Negative Rate (TNR) 0.973 0.9942 0.9571 0.9579

Success Rate 0.97 0.99 0.95 0.96
Error rate 0.03 0.01 0.05 0.04

as (TP+TN)/(TP+FN+TN+FP), while Error Rate of MagnoPark is
calculated as (1 - Success Rate).

We divided the streets into four large sets in which the numbers
of the collected data sets are 55300, 94700, 45320, and 67503
respectively. For these sets, the user calculated searching window size
(SearchW in) is either 3 or 4. In these experiments the numbers of
parked vehicles are 56, 98, 48, and 67 while the numbers of parking
spaces between these cars are 74, 172, 70, and 95 respectively. For the
first set, for example, while we have 56 vehicles, MagnoPark was able
to detect 56 vehicles in which there were no parked vehicles in two
of these detected vehicles (false positive). Similarly, while we have
72 available parking spots, MagnoPark was able to detect 74 parking
spots in which there were parked vehicles in two of these detected
spots (false negative). Table III summarizes the configurations of
these fours sets as well as the corresponding performance metrics
of MagnoPark.

From the table, we see that Magnopark achieves more than 95%
accuracy in the sets regardless of the smartphone location/orientation,
users walking styles and speeds, and sidewalk conditions. Therefore,
we believe that MagnoPark is a low-cost high-accuracy solution for
locating on-street parking spots in metropolitan areas.

VI. DISCUSSION AND FUTURE WORKS

In order to realize MagnoPark in real products, there are several
challenges that need to be addressed that we are considering in
our future work. Among of these challenges is the differentiation
between people walking on-street and off-street. As we described
earlier, as several previous works, GPS data could be utilized to detect
people activities as well as their locations. This information could be
utilized by MagnoPark-Ped application to only send data to the cloud
when the person is walking on a street with on-street parking spots.
Another challenge is the security issue in which to avoid sending
fake or false information. Through authentication and encryption
mechanisms, these issues could be guaranteed. Another challenge
is that magnetometer sensor requires calibration. Fortunately, sensors
on smartphones could rank the quality of their readings and detect
whether a calibration is needed. We could build on top of this
in which MagnoPark-Ped application would notify their user for
a calibration and could stop sending any information to the cloud
while waiting for calibration. One other important challenge is the
how to incentivize the pedestrians to use this application. From our
experiments, we found that only data from few persons on every street
would be enough to accurately detect parking spots. For streets with
free parking, an incentive like coupons from on-street shops could
be used. For streets with paid parking, users could get paid based on
the amount of data they collect. Note this approach has been utilized
in several crowdsourcing applications.

VII. CONCLUSION

In this paper, we addressed the problem of finding on street parking
spaces using the pedestrian sensor enabled cellphone. The model
proposed approach was discussed briefly. Our approach is fairly
general and does not require any prior assumption or prerequisite
for both the driver and pedestrians. We build a classification model
for our approach and under different scenarios. Finally, we evaluate
the performance of our approach under different real scenarios where
we consider different walking speeds with different users in different
places. We evaluated the performance of our approach in a numerical
study. Results show that MagnoPark in most of the scenarios is able
to achieve more than 95% accuracy.
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