
A Qualitative Study on the Implementation Design
Decisions of Developers

Jenny T. Liang
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

jtliang@cs.cmu.edu

Maryam Arab
Department of Computer Science

George Mason University
Fairfax, VA, USA

marab@gmu.edu

Minhyuk Ko
Department of Computer Science

Virginia Tech
Blacksburg, VA, USA

minhyukko@vt.edu

Amy J. Ko
Information School

University of Washington
Seattle, WA, USA

ajko@uw.edu

Thomas D. LaToza
Department of Computer Science

George Mason University
Fairfax, VA, USA

tlatoza@gmu.edu

Abstract—Decision-making is a key software engineering skill.
Developers constantly make choices throughout the software
development process, from requirements to implementation.
While prior work has studied developer decision-making, the
choices made while choosing what solution to write in code
remain understudied. In this mixed-methods study, we examine
the phenomenon where developers select one specific way to
implement a behavior in code, given many potential alternatives.
We call these decisions implementation design decisions. Our
mixed-methods study includes 46 survey responses and 14 semi-
structured interviews with professional developers about their
decision types, considerations, processes, and expertise for imple-
mentation design decisions. We find that implementation design
decisions, rather than being a natural outcome from higher
levels of design, require constant monitoring of higher level
design choices, such as requirements and architecture. We also
show that developers have a consistent general structure to their
implementation decision-making process, but no single process is
exactly the same. We discuss the implications of our findings on
research, education, and practice, including insights on teaching
developers how to make implementation design decisions.

Index Terms—implementation design decisions, software de-
sign

I. INTRODUCTION

Making decisions effectively is a crucial skill for software

engineers [1]. One reason is because making explicit and

rationalized design decisions during the design process im-

proves software design quality [2]. Developers make these

explicit decisions throughout the software design process, from

requirements and architecture to implementation. These deci-

sions in turn have downstream effects on the software, such as

influencing how easily developers comprehend a codebase [3]

or resulting in systems that are difficult to maintain [4], [5].

At higher levels of software design, developers make ex-

plicit decisions about the software architecture by prototyping

them at the whiteboard [6] or documenting them in UML

diagrams [7]. Researchers have developed an understanding

of how developers make architectural decisions [8], [9], even

Im
p

le
m

en
ta

ti
o

n
A

rc
hi

te
ct

ur
e

R
eq

ui
re

m
en

ts

Consideration: What third-party libraries can I
take dependencies on?

Decision: How should I represent my matrix data—
Python arrays, C++ arrays, or third-party libraries?

Action: Prioritizing
testability as a requirement

after learning third-party
libraries are hard to unit test

while prototyping.

Consideration: How
important is memory for my

use case?

Action: Researching what similar modules or
classes already use in their implementations.

C
la

ss
/M

o
d

ul
e

Fig. 1. An example of an implementation design decision. Developers
consider aspects of software design that are above the implementation (e.g.,
requirements, architecture, or class and modules) to make these decisions.

building several tools to aid this process [10], [11]. At the

code level, developers also make explicit decisions, such as

implementing specific design patterns [12], [13]. Yet, the

decisions that developers make while choosing what solution

to write in code remains understudied. We call these decisions

implementation design decisions.

Implementation design decisions are when developers se-

lect one specific way to implement a behavior, given many

potential alternatives. They may choose an implementation

that minimizes the time to market in place of producing high-

quality, robust software. Meanwhile, developers may choose

435

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00047

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE48619.2023.00047&domain=pdf&date_stamp=2023-07-26

to implement solutions for other reasons: system requirements

(e.g., performance), code quality (e.g., readability), or conve-

nience (e.g., ease of implementation).

Figure 1 includes an example of an implementation design

decision. A developer is considering three different ways to

represent their matrix data in a script—Python arrays, C++

arrays, or using a third-party library. If the developer wanted

to minimize runtime, they could use C++ arrays or third-party

libraries. If they wanted a simple, easy-to-read solution for

their teammates, they could opt for Python arrays.

Understanding implementation design decisions can provide

insights on what decisions result in good or bad software

designs, which could be taught to novice developers. Fur-

thermore, studying these decisions can elicit a broader set of

considerations developers are optimizing for. This could help

explain the decisions that are on its face sub-optimal but are

in fact necessary (e.g., decisions causing technical debt).

In this work, we study implementation design decisions

with a focus on the explicit decisions made by developers, as

conscious reasoning in software design improves the design

quality [2]. We address the following questions:

• RQ1: What implementation design decisions do software

developers make?

• RQ2: What considerations do software developers have

while making implementation design decisions?

• RQ3: What process do software developers follow to

make implementation design decisions?

• RQ4: Which types of developer expertise are described

in the implementation decision-making process?

To answer these questions, we designed a mixed-methods

study using surveys and interviews to understand implemen-

tation design decisions. Our study had 53 participants who

program professionally. We find that implementation design

decisions demanded careful thought. Overall, they require

constant evaluation of higher levels of design and could even

exert influence on them (see Figure 1), which corroborates

findings from prior work [14]. This is in contrast to other

work that characterizes implementation as a natural result

from higher level forms of design in a top-down fashion. For

example, Perry and Wolf described implementation as a code-

level representation satisfying requirements, architecture and

design [15]. Thus, our study supports the theory that problems

and solutions in software design co-evolve with one another—

as the solution develops, the problem space can update [8].

We also show that developers have a general structure to

their decision-making process, but each developers’ process

is unique. Finally, we provide implications in how our results

can be applied in research, education, and practice.

II. RELATED WORK

A. Implementation Design Decisions

Ralph and Tempero studied the characteristics of decisions

made while programming [14]. They elicited common themes

in these decisions, such as their considerations and the ap-

proaches taken to solve a problem. Our study examines a

similar phenomenon as Ralph and Tempero. It extends this

work by also investigating the systematic processes developers

use to make such decisions, as well as the types of expertise

they apply in making them.

Prior research has also investigated a specific outcome from

a particular subset of implementation design decisions in

depth—technical debt. These occur when developers choose

implementations that bias time to market over software qual-

ity [16]. Technical debt comes in several forms, such as ar-

chitectural, structural, documentation, test, infrastructure, and

requirements debts [4], [5]. Technical debt has many negative

downstream effects, such as reducing developer productiv-

ity [17] as well as decreasing team morale, causing delays, and

lowering code quality [18]. Technical debt can be caused for

many reasons, including planning and management (e.g., dead-

lines), development issues (e.g., not adopting good practices),

software engineering processes (e.g., a lack of documentation),

a lack of knowledge (e.g., lack of experience), human factors

(e.g., lack of commitment), organizational factors (e.g., lack

of trained professionals), external factors (e.g., pressure), and

infrastructure (e.g., unavailable infrastructure) [5], [19].

Implementation design decisions, such as ones that result in

technical debt, are concerned with decisions that developers

make when they are about to write an implementation. They

consider different ways a behavior may be implemented in

code. Thus, prior work in this space largely focuses on the

far-reaching effects of implementation design decisions, rather

than the decisions themselves.

B. Decision-Making in Software Engineering

Developers make decisions across several types of activi-

ties, such as in project planning and verification [20]. These

decisions require developers to make tradeoffs by reasoning

about future outcomes [21]. Prior work in software engineering

expertise also suggests that knowing how to effectively make

decisions is a form of expertise [1], [22], [23].

Requirements engineering activities can be framed as

decision-making processes at the organizational and individual

levels [24]. While deciding on requirements, software devel-

opers make decisions on which requirements to prioritize [25].

In software architecture, developers make decisions to se-

lect between candidate architectures [26], [27] and integrate

components into an existing system [20]. van Vliet et al. argue

that software architecture can be viewed as a set of design de-

cisions made by software architects [8]. Additionally, software

architecture decisions use both slow, rational and fast, intuitive

thinking and can be prone to cognitive biases [8], [9]. Zannier

et al. found which of the two thinking approaches designers

used depended on how structured the problem was [28].

Software developers also make decisions in API design.

Stylos and Myers outlined the space of design decisions for

APIs, such as design patterns to use or what fields or methods

to provide. These decisions were split across the architectural,

structural, class, and language levels [29]. In order to make

proper API design decisions, software practitioners and orga-

436

nizations have outlined several guidelines [30], [31] and online

resources [32] on how to design APIs.

Overall, prior work has largely studied developers’ decision-

making in specific development contexts or at higher levels

of design, such as requirements or architecture. Our work

diverges from this literature by studying the decisions made

while developers are about to write implementations in code.

C. Software Design Practices

Many studies have examined how software developers do

software design. Petre and van der Hoek studied the individual

practices of software designers [33], such as involving experts

from outside the team to learn domain-specific knowledge.

Practitioners have also written resources on writing code with

clean software design (e.g., [34], [35]) and architecture (e.g.,

[36], [37]) with prescriptions on how to make design decisions

effectively, such as following well-known programming prin-

ciples like SOLID. In open-source software, contributors make

design decisions on bug reports [38] and online discussions on

GitHub issues [39], [40].

For software design at higher levels of abstraction, devel-

opers are often known to perform design activities at the

whiteboard, creating visual diagrams to support the design

process [6], [41]. Software developers can informally denote

their designs using UML [7] or sketches [42]. Prior work

has also investigated the process software engineers follow

while doing early stage design work. Sharif et al. found that

while designing, developers engage in activities which overlap

with the traditional software development process, namely

requirements, analysis, design, and implementation [43].

Thus, prior research has investigated the practices develop-

ers follow to design software. Instead of studying developers’

actions, our work contrasts prior literature by studying the

decision-making and reasoning of developers.

III. STUDY DESIGN

To answer the research questions, we collected data on

software developers’ implementation design decisions from 53

study participants (Section III-A) using surveys (Section III-B)

and interviews (Section III-C). We then analyzed the data

using qualitative coding (Section III-D). The breadth of the

survey data and the depth of the interview data corroborated

our findings from multiple sources.

A. Participants

To elicit a wide range of developers’ insights on im-

plementation design decisions, we recruited developers with

diverse programming experiences. Our inclusion criteria was

developers who contributed their programming expertise to at

least one project in a professional setting.

1) Sampling strategy: We recruited participants with dif-

ferent levels of software engineering experience, technology

expertise, job titles, and engineering team sizes. The authors

then released a survey (Section III-B) on their personal social

media accounts for recruitment. Social media posts displayed

brief descriptions about implementation design decisions, the

estimated time of completion, and a survey link.

We increased sample coverage by also recruiting on Reddit.

The first author advertised the survey in a text post on 10 popu-

lar developer-centric Reddit communities. As of January 2022,

the subreddits had between 6,681 members to 291,170 mem-

bers. Reddit communities were selected by technology (e.g.,

r/reactjs, r/php), geographic location (e.g., r/developersIndia),

or role (e.g., r/dataengineering). Posts were only published

after receiving permission from the community’s moderators,

as stipulated by the institutional review board. The Reddit

recruitment posts introduced implementation design decisions,

provided an estimated time of completion, explained why the

subreddit was a good fit, and linked the study. We also relied

on snowball sampling by encouraging interview participants to

share the study to others. In the survey, participants indicated

if they wanted to participate in a follow-up interview.

In total, 60 developers agreed to participate in the study,

with 53 who met the inclusion criteria and participated in the

study. 46 participants completed the survey and 14 participants

completed an interview.

2) Demographics: We report interviewee demographics in

Table I. In our study, participants represented diverse geo-

graphic locations, including the Americas (n = 27), Africa

(n = 1), Asia (n = 7), Europe (n = 14), and Oceania (n = 3).

Multiple genders were also represented, such as man (n = 44),

woman (n = 7), and non-binary (n = 1). Participants

had job titles such as junior, senior, or principal software

engineer; Chief Technology Officer; software architect; ma-

chine learning engineer; and research engineer. Participants

reported contributing between 1 to over 1,000 projects, with a

median of 25. Participants worked in companies of varying

sizes, whose engineering organization sizes ranged from 1

to 36,000, with a median of 18. Participants reported using

a variety of technologies (e.g., Java, MongoDB, Angular, R,

Verilog, Jupyter notebooks) and working on diverse problem

domains (e.g., deployment infrastructure, IoT, static analysis

tools, financial technology, healthcare, online exams).

B. Survey

We designed a 15-minute Google Forms survey on examples

of implementation design decisions and considerations and

distributed it to developers using the sampling strategy from

Section III-A.

1) Design: In the survey, we first presented participants

with the definition and three examples of implementation

design decisions. We then asked participants to provide exam-

ples of implementation design decisions and considerations,

limiting examples to the past five days in order to reduce

memory bias. These questions had a response length minimum

of 30 characters to encourage participants to record sufficiently

detailed answers. Following best practices, we used the HCI

Guidelines for Gender Equity and Inclusivity [44] to collect

gender information. We allowed participants to select multiple

responses for questions on gender. The full survey instrument

is available in our supplemental materials [45].

437

TABLE I
OVERVIEW OF INTERVIEW PARTICIPANTS. “SOFTWARE ENGINEER” IS

ABBREVIATED AS “SWE”.

ID Job title #
projects

Org.
size Gender Location

P4
Senior Principal
Engineer 50+ 1,700 Man

United
Kingdom

P6
Chief Technol-
ogy Officer 30 16 Man Germany

P7
Scientific SWE
II

20 200 Woman
United
States

P15
Head of
Research

Dozens 12 Man Israel

P18 Principal SWE 50 1,000 Man
United
States

P22
Chief Technol-
ogy Officer 10 6 Man Philippines

P28
Data Platform
Engineer 5-6 500 Man Australia

P29 Data Engineer 15-20 12 Woman Germany

P31
Senior SWE /
Analyst 200+ 9 Man

United
States

P32 SWE 4 20,000 Woman
United
States

P34 Senior SWE 20 50 Man
United
States

P50
Technical Direc-
tor; Senior SWE

25+ 10 Man
United
Kingdom

P51
Small Business
Owner

100’s 2 Man Canada

P52 SWE 50 2 Man
United
States

2) Piloting: Following best practices for experiments with

human subjects in software engineering [46], we conducted

pilots of the survey to identify and reduce confounding factors.

We piloted drafts of the survey with four software developers

to clarify wording and updated the survey after each round

of feedback. To ensure data quality, the survey was deployed

publicly, piloted, and updated on the first 15 survey responses.

C. Interviews

We conducted 45-minute interviews via online conference

calls to gather examples of implementation design decisions

and considerations as well as developers’ decision-making

process. Interviews were recorded and transcribed. Recordings

were destroyed after transcription. Interview participants were

compensated with a $30 USD Amazon.com gift certificate.
1) Design: Topics in the interview included implementation

design decisions and considerations participants made in the

past five days, as well as written explicit programming strate-

gies on how participants made their decisions. We collected

written explicit programming strategies as a structured format

to capture developers’ processes and knowledge. An example

of an explicit programming strategy from our study is in

Figure 2; we report all collected strategies in our supplemental

materials [45].

Explicit programming strategies are “human-executable pro-

cedure[s] for accomplishing a programming task” [47]. In this

study, explicit programming strategies represent the process

software developers used to make implementation design deci-

sions. We collected them since developers can follow system-

atic processes to make some design decisions, such as selecting

between multiple software architecture alternatives [26], [27].

Additionally, developer expertise and processes can also be

externalized by developers via explicit programming strate-

gies [48], which allowed us to elicit software developers’

decision-making processes in interviews.

2) Protocol: Two authors conducted the interviews: one to

execute the protocol and one to record the participant’s explicit

programming strategy. Having a interviewer experienced in

strategy authoring to write strategies ensured strategy writing

quality, as authored strategies could be ambiguous or struggle

to generalize [48]. During the interview, we reminded par-

ticipants of the definition of implementation design decisions

in a Google Slides presentation, using similar wording and

examples from the survey. Next, we collected implementation

design decisions and considerations. Finally, for as many

design decisions that time allowed for, we extracted an explicit

programming strategy the participant used to make their deci-

sion. The interview protocol is available in our supplemental

materials [45].

To extract programming strategies, the participant explained

their decision-making process step-by-step. Interviewers trans-

lated this to an explicit programming strategy in a shared

Google Document to reduce the participant’s cognitive load

while recalling their process, as strategy authoring is cog-

nitively demanding [48]. The participant then reviewed the

strategy and provided corrections or feedback. Because au-

thored strategies may omit details that prevents the strategy

from being usable [48], the participants elaborated on edge

cases and updated their strategy accordingly to increase its

robustness. Since authored strategies’ scope may be too nar-

row [48], interviewees updated the strategy to be general

enough for a similar problem. After reviewing the strategy,

the participant edited wording and clarity so the strategy was

at a quality that could be released publicly. Following prior

work [49], we documented a brief description of the strategy;

tools, technologies, and prior knowledge necessary to use the

strategy; and the steps of the strategy. The authors updated the

strategy for consistency, but participants could edit the strategy

upon request. Participants also could add additional data (e.g.,

comments, visual media), to explain their process.

3) Piloting: Following best practices in experiments with

human subjects in software engineering [46], we piloted the

interview to identify and reduce confounding factors. The first

author ran the interview protocol on one author and three de-

velopers and updated the protocol based on their feedback. The

purpose of the pilots was two-fold: 1) to improve the clarity

of the interview protocol and 2) validate the hypothesis that

developers had systematic processes to make implementation

design decisions and further, could articulate their processes.

We found that all pilot participants could recall and articulate

438

strategies for making implementation design decisions.

Use this when: Using less common features in libraries instead of
using the popular functions
Tools/technologies: StackOverflow, Google, continuous learning
Prior knowledge: Common design patterns, popular libraries

1) Decide what the goal of the program is.
2) Begin writing the program.
3) While writing the program, search online whether other li-

braries support your use case. Use your prior knowledge or
colleagues to help guide your search.

4) Choose a library which meets your use case. This can be based
on the popularity of the library with respect to the language.

5) Look at the features of the library and test the ones that you’re
interested in on small examples. Get a feel of the library and
select a solution which achieves the desired behavior.

6) If you have code that works, show the solution to another
individual for review.

Fig. 2. An example of an explicit programming strategy from the study.
User-generated content is written in italics.

D. Analysis

To analyze the collected data, we used qualitative coding.

We open coded the data for RQ1, RQ2, and RQ3 to sum-

marize the data on various aspects of implementation design

decisions as this phenomenon is understudied. We close coded
RQ4 to situate the strategies with prior work on software

engineering expertise, which has been well-studied (e.g., [1],

[22], [23], [50], [51]).

1) Open Coding: For open coding, we followed best prac-

tices by Hammer and Berland [52], which outlines proce-

dures on interpreting coding results and reporting coding

disagreements. We treated generated codes as tabulated claims

about the data that could be investigated in future work. We

checked the reliability of the coding by resolving disagree-

ments, first by discussing any disagreements and then coming

to an agreement as a group. Finally, we interpreted coding

disagreements as coding variance and reported the content of

the disagreements.

We followed best open coding practices [53], preparing

separate documents for each coder for qualitative analysis,

taking care to remove the prompts from the responses. In these

documents, survey responses and interview responses were

stored separately and analyzed independently, as the data was

collected in different contexts. We also shuffled all the rows in

the data to remove any ordering effects. Finally, we removed

data collected from piloting.

Open coding occurred in multiple phases. In the first

phase, three authors separately reviewed the responses and

inductively generated codes for each dataset. Each response

was labeled with zero or more codes. Each code was given

a unique identifier and a brief description. To aggregate the

codes, the authors compared their separately generated codes

and identified codes with similar concepts. These codes were

merged under a single code and copied to a shared codebook.

For the remaining codes, the authors discussed instances of

disagreement and resolved them by unanimously agreeing to

add or remove the code in the shared codebook. Disagreements

were most frequently the result of differing scopes of codes,

rather than the meaning of the participants’ statements. Some

disagreements arose due to an author not coding a part of

the response another author did. In the second round, the

authors applied the shared codebook to the original data. If

there were multiple datasets to analyze for the same research

question, each dataset was coded using the aforementioned

process. Then, the resulting codebooks were merged by the

authors. The authors identified codes with similar definitions

and added them to a final codebook with a unique identifier.

The remaining unmerged codes were automatically added to

the final codebook. The authors performed a third round of

coding with the final merged codebook. For RQ3, the authors

then applied pattern coding to the final codes to group the

codes into broader categories [54]. To do this, the authors

placed each code into an initial category by unanimously

agreeing to put it in a category or create a new one. Then,

they reviewed each category and unanimously finalized its

scope and, if necessary, moved the codes between categories

to reflect the new scope.

2) Closed Coding: For closed coding, the first author

identified a codebook to code the dataset with. For RQ4, we

used Table 3 and Table 5 from Li et al. [1], which respectively

contains codes on attributes of expert developers’ decision-

making processes and their software and designs. The three

authors deductively applied the codes to the dataset. Each

instance was labeled with zero or more codes. Next, they

reconvened to discuss instances of disagreement and resolved

them by unanimously agreeing on which codes were to be

applied. In this step, disagreements arose due to the scope of

the code rather than the meaning of the statements.

3) Data: For RQ1, we analyzed 82 examples of imple-

mentation design decisions from the survey and interviews.

For RQ2, we analyzed 113 examples of considerations from

survey and interview data as well as implementation design

decisions from interviews, since participants mentioned con-

siderations in context of their decisions. For RQ3 and RQ4,

we analyzed a dataset with 99 steps from the 16 collected

strategies.

In addition to extracting action codes for RQ3, we analyzed

the programming strategies on the decision-making process as

a sequence of action codes and categories. We did this by

replacing each step of the strategy with its respective code

or category. If a step had multiple codes or categories, we

represented the step as a sequence of codes or categories in

the order they were mentioned. If a code or category occurred

consecutively, they were reduced to a single occurrence. We

include these representations of strategies in the supplemental

materials [45].

IV. RESULTS

We report the results to our research questions below. Due to

space constraints, we only discuss codes we found interesting

with respect to prior work.

439

TABLE II
THE TYPES OF IMPLEMENTATION DECISIONS MADE BY SOFTWARE DEVELOPERS. CODES DISCUSSED IN DETAIL ARE UNDERLINED.

Code & Description Representative Quote

Alternatives—Deciding what high-level approaches to use to address a
particular problem.

“So we are ingesting data. One way...is using Python scripts... The other
option that we looked into was getting it via third party tools...the third
was just outsourcing it.” (P28)

Behaviors—Deciding the program specification: what parameters to set for
a program and their types, what outputs the program should give, and the
behavior of the program.

“[The API] would expect to take in the input data type, which is this union
of Xarray, Numpy, Dask, all of these supported data types...” (P7)

Data—Deciding how to manage data within software: what data should be
handled in a program, how it should be represented, and how it should be
interacted with.

“I opted to represent the tree as an ancestry string of the top slash the next,
[and] the next. And then you can use ‘like’ with a wild card and you’ll
get the subtree.” (P31)

Code constructs—Deciding which programming language constructs to use
within a program.

“Making a change to a Python program, I removed an indexing expression
(val = x[0]) and replaced it with a destructuring assignment (val,
__ = x)”. (P18)

Structure—Deciding how to organize the codebase, where files should lie,
and how code should be modularized.

“I’m going to refactor this to bring out the bits of logic that pertain to...my
bit of the business, so that I can then later have ownership of it...rather
than [having a] big monolithic system.” (P4)

Programming languages, APIs, services—Deciding the programming lan-
guages, APIs, or third-party services to use in the software system or script.

”I used Golang to handle a large amount of JSON files that would’ve taken
too long to handle in Python.” (P20)

Automation—Deciding whether to implement a technology solution from
scratch.

“I could have manually typed in the new kinds of records that I wanted in
production...but instead I encoded that all in a formalized runnable script.”
(P32)

Reuse—Deciding whether code should be reused and to what extent it
should be general enough to be extended to different scenarios.

“Merge two C# applications (FTP and SFTP server) into one, in order to
reuse file tree state, user authentication, and so on.” (P45)

Updates—Deciding whether to update the software or not.
“Do I tell them I can’t fix the problem or do I go in and tempt small
solutions, just to get it to function for a few days...or do I completely
write my own fix?” (P51)

Prior work (e.g., [15], [55]) characterizes implementation

as naturally arising from higher levels of design. In contrast,

we found that implementation design decisions involved a

constant top-down and bottom-up dialogue between imple-

mentation and higher levels of design, such as requirements

and architecture. This supports the view that problems and

software implementations co-evolve with one another [8].

Consider Figure 1 as an example. When a developer decides

whether their matrix-based data should be represented using

native Python arrays, C++ arrays, or a third party library

(e.g., Numpy), they may consider the architecture by thinking

about what languages or third-party libraries are compatible

with their system. They may also consider non-functional

requirements (e.g., memory or performance) or look to how

other similar modules address this problem. Finally, they may

even change the priority of certain requirements, such as

testability, after realizing the difficulty of prototyping unit tests

with a third party library.

A. What implementation design decisions do software devel-
opers make? (RQ1)

Participants described 8 different types of implementation

design decisions (see Table II). Each code appeared more than

once in our data. All codes appeared in all datasets.

a) Behaviors: Participants decided on how the software

should behave, such as its inputs, outputs, and what should

occur during execution. This was an informal version of the re-

quirements elicitation, analysis, and validation processes [56],

[57]. These decisions often required a change in requirements,

which corroborates the viewpoint that decisions about the so-

lution may change requirements [8]. For instance, participants

decided on entire method specifications when requirements

were under-specified and made changes to the program be-

havior to handle certain requirements:

� “But, I decided to record each line of the CSV file as a record
with a header record...So on that header record, I record who
gave me the file and when it was given to me. I could reproduce
the CSV file from what I’m storing.” (P31)

b) Code constructs: Consistent with prior work [14], par-

ticipants debated which programming constructs to use (e.g.,

loop constructs, ternary operators, pointers). These decisions

were the lowest level decisions made. Even at this level,

participants still considered requirements (e.g., performance):

� [Sometimes] I would rather go for efficiency or performance
[but when]..I am working with other developers, I’m more leaning
to having the code more readable... Instead of functional program-
ming mapreduce I go for loop, so that the other developers can
understand the code itself. .” (P22)

c) Updates: Participants deliberated whether to make

specific code changes (e.g., fixing a defect), as it could

have unwanted effects. They modeled potential outcomes—

a decision-making attribute of developers [1]. These decisions

at times required considering the software architecture, such

as while deciding whether to update dependencies:

� The library that we use...didn’t compile anymore... We have two
[options]. One is to say, ‘Okay, we freeze the library version...’
and then we postpone the solution of the problem. Or we look at
the problem and fix it immediately...” (P6)

440

TABLE III
SOFTWARE DEVELOPERS’ CONSIDERATIONS FOR IMPLEMENTATION DECISIONS. CODES DISCUSSED IN DETAIL ARE UNDERLINED.

Code & Description Representative Quote

Community Support—How well-supported by a developer community a
technology is.

“I wanted to use PHP 8.1, but there is still no general support...” (P54)

Features—The features a technology contains.
“Open source C# MailKit was selected over builtin SmtpClient to...allow
flexible email body manipulation.” (P37)

Popularity—The number of users that use the technology or library.
“[Laravel SPATIE Media Library] being very well understood by the rest
of the Laravel developer community.” (P52)

Reliability—How reliable and correct the software is. “Correctness [with] concurrent updates and...mutable objects.” (P44)

Security—How secure software is; robustness of software to adversarial
attacks.

“Each decision had tradeoffs...[in] security (the latter being exposing,
possibly private, brands.)” (P24)

Maintainability—How easily maintenance actions (e.g., fixing defects,
updating components) can be performed on software.

“Over-engineering a system that may...add cognitive overhead to any
maintenance.” (P39)

Testability—How easily software can be tested (e.g., unit tests). “Testability (functional is almost always easier to test).” (P27)

Extensibility—How easily the code can be extended to accommodate
changes (e.g., new features).

“So how the structure and application itself is laid out so that it’s not going
to be a pain to work with, as we expand it.” (P50)

Performance—Performance aspects of the code (e.g., runtime, memory). “The function call is expensive in certain...circumstances.” (P18)

Reproducibility—Whether code is able to reproduce the same output, given
the same input.

“Does the code do it in an idempotent way? So...the same input would do
the same output regardless of how many times you do it.” (P22)

Requirements—The requirements of the software; customer needs.
“After the first implementation, a new requirement came so structuring for
reuse [was] useful. ” (P15)

Future Requirements—Requirements or customer needs that may or may
not occur in the future.

“Will there be a need to run the pipeline in parallel some day (like on
Spark or Dask)?” (P27)

Skills—The current skills of the team or of the developer.
“We also chose PHP because...more developers familiar with the PHP
framework than with Python frameworks.” (P56)

Budget—Amount of resources (e.g., time, money) available to implement
the software project.

“Because we were on a tight deadline...I decided to just process [the data]
all on my local machine...and then upload it.” (P57)

Reusing Resources—Reusing existing resources (e.g., code, practices). “What parts of the code will they reuse?” (P32)

Difficulty—How much effort completing the implementation will be. “The implementation difficulty comes into [these decisions].” (P28)

Readability—How easily code syntax is read by a developer. “Generics in code may be harder to comprehend for some...”(P42)

Code Cleanliness—The quality of the implementation’s code; how easy it
is to onboard other developers and make updates.

“Try not to make ravioli code where we have too many modules that do
little things.” (P42)

Simplicity–The length or complexity of the implementation.
“I did this to keep my pull request shorter and closer to the original code.
Less to read means faster code review.” (P18)

Consistency—Being consistent with the code style of the programming
language or code base.

“So, not only is it existing code that’s already there. I don’t want to be the
person to introduce something different.” (P34)

System Fit—How well the implementation fits in with an existing code
base or system.

“Where to set up the event subscription... [In] a React component or outside
of the React/Redux content...” (P24)

Data—How data in the system will be managed or handled.
“This is a trade-off of having less-fresh data, with being more robust in
the event the 3rd party is unavailable.” (P31)

Impacts—The impacts that the implementation may cause.
“I want to be very safe when making potentially-impactful changes in
production environments.” (P59)

Users—Thinking about collaborators who will be working in the code base;
the usability of the software for end-users.

“It’s trying to make the code...understandable for the other developers for
maintenance purposes and if they need to upgrade the code...” (P22)

Documentation—Writing documentation for the implementation. “So that’s a significant documentation...cost.” (P50)

B. What considerations do software developers have while
making implementation design decisions? (RQ2)

Participants described 25 distinct considerations while mak-

ing implementation design decisions. We report them in

Table III. Each code appeared more than once—17 codes

appeared in all datasets, 7 codes appeared in two datasets,

and 1 code appeared in one dataset.

a) Community support: Participants reported that com-

munity support for third-party libraries was a factor. This

ensured that dependencies were well-maintained for software

quality. Having community support enables the production of

educational resources for the tool, such as on YouTube [58] as

well as StackOverflow and blog posts [59]. Participants said

this reduced onboarding costs:

� And there are instructional videos on YouTube and whatnot
[that] can already teach people how to do [use the tool] without
the rest of the development team having to do anything.” (P52)

b) Future requirements: Similar to the management

phase in requirements engineering [56], [57] participants noted

441

requirements could change. Understanding future requirements

ensured the software was useful in the long term. Estimating

them depended on prior experience and domain knowledge:
� ...I’m making an assumption about what might come down the
pipe in the future. [It] depends on kind of my experience in that
field, and my work that I’ve done with past clients to think that
my future clients might be similar enough to them.” (P51)

c) Consistency: Similar to prior work [14], consistency

of the code style in the codebase or following program-

ming language convention was a consideration. This reduced

confusion between teammates and cognitive overhead for

individuals working across multiple contexts. This occurred

both at the application- and module-levels:

� I have 200 or so web applications and having consis-
tency...makes it easy for me to switch between them without having
to re-remember a whole different framework.” (P31)

� So some places [a stock] is called a stock, some places
it’s called security...I will try to keep that pattern, even if it’s
something I don’t necessarily agree with.” (P34)

d) System fit: Participants considered how easily the

implementation could be integrated with existing code, such

as synergy with specific technologies. This is an attribute

of expert developers’ software and designs [1]. System fit

required knowledge of the system’s architecture:
� Choosing between django-q and celery was difficult- one is
closely coupled with django environment and the other has long
history/reliability.” (P55)

C. What process do software developers follow to make im-
plementation design decisions? (RQ3)

We describe the types of actions developers take while

making implementation design decisions (Sections IV-C1). We

then report the sequence of actions that developers follow in

their decision-making process (Section IV-C2).

1) Actions: Participants described 15 types of actions in

their strategies. We grouped these into 7 categories: defin-

ing the problem space; ideating, evaluating, prototyping,

implementing, and verifying potential solutions; and updat-

ing knowledge. Many of these actions overlapped with the

traditional software development process, similar to prior

work [43]. Furthermore, participants’ actions were often a

dialogue between the implementation and requirements. The

full list of the actions in implementation design decisions are

in Table IV. All codes occur in the data at least twice.

a) Updating requirements: Study participants described

times when requirements changed after they were defined.

This occurred after learning from proof-of-concepts, reacting

to changes in the situation, or analyzing the requirements’

viability. Unlike in requirements engineering [56], [57], re-

quirements also changed during implementation. In these

cases, updating requirements was how participants dealt with

unforseen circumstances during implementation, such as time

constraints. Participants even developed heuristics to do so:
� If you are under time constraints, restrict the scope of your
implementation and don’t let perfect be the enemy of good.” (P50)

b) Evaluating: Participants evaluated potential alterna-

tives for pros and cons, where they compared them against a

list of considerations, especially non-functional requirements.

Some participants wrote lists or drew matricies, while others

developed checklists from their expertise:

� Decide what you think is a pro/con of a given solution for your
use case.

• Security concerns, an insecure package is never acceptable...
• The popularity of the package is critical for evaluating

lifetime reliability and long term support.
• Level of skill required to use the package, poorly designed

apis will be difficult to extend if needs change, and compli-
cated for junior developers to work with.

• Clean, consistent and clear are the ideal interfaces.
• Consider the cost to replace the package if licensing, support

or project direction dramatically change...” (P50)

c) Proof-of-concept: Study participants reported creating

proof-of-concepts, which is also important in requirements

elicitation [56], [57]. This quickly determined whether a

potential solution was viable. Participants varied in which

solutions they chose to prototype—some chose to prototype

only the best candidate solution, while others prototyped

all potential solutions. Prototyping was also an information

gathering mechanism to brainstorm potential solutions:
� Look at the features of the library and test the ones that you’re
interested in on small examples. Get a feel of the library...” (P6)

Participants developed a proof-of-concept to update require-

ments. This was one way they considered a higher level of

design during implementation design decisions:
� Ask the people who you interviewed to try your function and
provide feedback on any of the parameters.” (P7)

d) Researching: Participants researched the problem

space, as identified in prior work [14]. This was the second

most reported action. This action was often used to elicit

requirements. Participants worked with stakeholders (e.g.,

project managers) and accessed websites for knowledge shar-

ing in software engineering, such as StackOverflow [59] and

Reddit [60]. They reviewed similar projects and used empirical

methods to understand the problem and generate requirements:
� [Using] tools to go through Git history...to find potential
problems...” (P4)

2) Processes: Just as how software designers follow in-

dividualized processes [43], we found that strategies about

developers’ decision-making processes were unique: there

were no repeated sequences of action codes or categories in

the strategies. One source of dissimilarity were action codes

and categories that were repeated in strategies. Table IV shows

the occurrences of repeated action categories in the strategies.

All action categories were repeated except ideating actions.

Implementing and defining problem space actions were most

repeated in participants’ strategies. Yet, there were common-

alities in the structure, namely when certain types of actions

occur. This is shown in Table V, which reports the median

position of each action category across all action sequences.

D. Which types of developer expertise are described in the
implementation design decision-making process? (RQ4)

Table VI shows the types of developer expertise in study

participants’ decision-making process. We found that decision-

making expertise was most commonly cited in strategies.

442

TABLE IV
SOFTWARE DEVELOPERS’ ACTIONS IN MAKING IMPLEMENTATION DECISIONS. CODES DISCUSSED IN DETAIL ARE UNDERLINED. THE NUMBER OF TIMES

AN ACTION CATEGORY IS REPEATED WITHIN THE SAME STRATEGY IN OUR DATA IS DENOTED WITH ×.

Code & Description Representative Quote

Defining Problem Space (×8)

Providing Context—Explaining context about the problem the developer is
facing (e.g., refactoring).

“Write an initial program...If you have another program that requires a
similar behavior, consider whether you want to refactor the code.” (P15)

Defining Requirements—Defining the requirements of the solution, consid-
ering user needs, business needs, and organization needs.

“...Figure out what use cases [your end users] would want for this function.
Ask your end users to provide examples of inputs...” (P7)

Updating Requirements—Updating the requirements of the solution after
they are initially defined.

“If you find new requirements from your proof-of-concept, go to step 1.”
(P52)

Ideating (×0)

Brainstorming—Brainstorming potential solutions that could solve the
problem.

“Think about the problem for a set period of time and write down more
than one idea on how to implement a solution...” (P7)

Assessing (×4)

Evaluating—Evaluating the developer’s current situation; considering the
pros and cons for each solution.

“List out all the options that you have into a document and their pros and
cons.” (P29)

Estimating—Estimating the potential costs associated with implementation.
“Determine whether the requirements are realistic given the resources you
have available.” (P34)

Prototyping (×1)

Proof-of-Concept—Building a proof-of-concept for a potential solution. “Test each option in the development environment...” (P29)

Implementing (×15)

Choosing—Choosing a solution to implement. “Select the option which meets your requirements...” (P18)

Planning—Planning the steps needed to implement the solution.
“List out the tasks that need to be done based on the requirements of the
problem/client and the technology stack available.” (P51)

Implementing—Implementing a particular solution. “Build an implementation from the proof of concept.” (P52)

Updating Implementation—Trying a new implementation or updating an
existing one based on previous implementation attempts.

“If there is a problem with the solution that’s implemented, go to step 1
with what you learned by implementing the solution.” (P29)

Deploying—Releasing the solution to the public.
“Implement your solution...and deploy it into a development environment.”
(P28)

Verifying (×1)

Reviewing—Having others review and provide feedback to the solution.
“Have others review your implementation proposal (over coffee can help).”
(P28)

Testing—Testing the implementation for functionality and potential defects.
“Test your implementation until you find most of the bugs you can and
your teams agree to release to prod.” (P52)

Updating Knowledge (×4)

Researching—Learning more about the problem or potential solutions. “Search online whether other libraries support your use case.” (P6)

Expertise relating to deeply understanding the vision of the

project (e.g., knowledgeable about customers and business)

was most frequently referenced. Expertise on

evaluating the pros and cons of a solution (e.g.,

makes tradeoffs) was also mentioned. Participants also

frequently described forms of technical expertise (e.g.,

knowledgeable about tools and building materials).

Expertise that was less commonly cited in strategies

largely related to aspects of the software and designs (e.g.,

attentive to details). Expertise about teammates or the com-

pany (e.g., knowledgeable about the people and organization)

and responding to changing problem contexts (e.g.,

updates their mental models) were also less referenced.

V. THREATS TO VALIDITY

1) Internal validity: Strategy content may have been influ-

enced by the study authors since they were initially recorded

by them. To address this, the authors asked participants to

review and confirm the strategy multiple times to ensure the

strategy was accurate and written as the participants wished.

Participants could also directly make changes to the strategy

upon request.

The authors could have confirmation biases that developer

actions must follow normative theories of the software de-

velopment life cycle, which could influence the generation of

action codes. We reduced this threat by achieving consensus on

each code applied in our qualitative analysis. Future studies

using other methods, such as contextual inquiries of imple-

mentation design decision-making, could address this bias.

Additionally, memory bias could have introduced inaccura-

cies in participants’ recall on past decisions, considerations,

and strategies. We reduced this bias by asking participants to

recount decisions, considerations, and actions that occurred in

the past five days in both the survey and interview.

443

TABLE V
MEDIAN POSITION OF ACTIONS IN PARTICIPANTS’ STRATEGIES AND

PERCENT OF STRATEGIES CONTAINING ACTIONS.

Action Median Position % Strategies w/
Action

Providing Context 1.5 12.5%

Researching 2 75.0%

Defining Requirements 2 81.3%

Brainstorming 3 62.5%

Estimating 3 25.0%

Evaluating 4 81.3%

Choosing 5 81.3%

Planning 6 25.0%

Proof-of-Concept 6.5 31.3%

Updating Requirements 7 43.8%

Implementing 7 68.8%

Reviewing 8 43.8%

Testing 9 31.3%

Updating Implementation 9 18.8%

Deploying 10.5 12.5%

TABLE VI
FREQUENCY OF DEVELOPER EXPERTISE FROM LI ET AL. [1] IN

PARTICIPANTS’ STRATEGIES.

Expertise (quoted from Li et al. [1]) Count

Decision Making

Knowledgeable about customers and business 56

Sees the forest and the trees 45

Knowledgeable about tools and building materials 39

Knowledgeable about their technical domain 38

Knowledgeable about engineering processes 31

Models states and outcomes 24

Handles complexity 24

Knowledgeable about people and the organization 13

Updates their mental models 8

Software & Designs

Carefully constructed 26

Fitted 11

Evolving 10

Attentive to details 9

Anticipates needs 5

Creative 5

Long-termed 2

Elegant 2

Participants could have been primed in the implementation

design decisions they reported from the survey and interview

examples. We reduced this threat by providing a short, diverse

set of examples to show the breadth of the phenomenon.

Study participants may have misunderstood the wording of

the questions. To reduce this threat, we piloted the survey and

interview with software developers and study team members

and asked for feedback on clarity. We also performed pilots

on the first 15 survey responses for data quality.

2) External validity: Any small-scale empirical study has

generalizability issues [61]. To address this, we sampled

Reddit users across a diverse set of subreddits. Our sample rep-

resents diverse geographic regions, engineering organization

sizes, roles, and amounts of relevant experience. Additionally,

we also collected the data on decisions and considerations

using two methods, which we used to corroborate results.

Empirical studies can also suffer from selection bias. The

subreddits we recruited from may be homogeneous due having

to common interests, so some programming expertise was

not represented in our study (e.g., game development). Our

survey also limited representation to regions where English is

a primary language due to the survey being written in English.

We addressed this threat by ensuring the survey was as short

as possible, accurately advertising the survey’s length, and

providing incentives for participating in the interview.

One common issue for programming strategies is that

they may not generalize due to defects or having a narrow

scope [48]. To address this concern, we asked participants to

test and fix their strategy and verify whether their strategy

was generalized. The study authors were familiar with writing

high-quality and generalized strategies.

3) Construct validity: Since the participants’ decisions,

considerations, and strategies were self-reported, there could

be inconsistencies in what participants report doing versus

what they actually did. They may have forgotten to explicitly

mention actions or misremembered the process they used.

VI. DISCUSSION & FUTURE WORK

Our findings overlap some with prior work (e.g., [1], [14],

[33], [62], [63]). In this section, we discuss them in relation

to implementation design decisions. This produces several

implications, which we elaborate on.

Our results suggest that implementation design decisions

are shaped by higher levels of design (e.g., requirements and

architecture). Also, a developer’s decisions can directly and in-

tentionally shape these higher level concerns. Thus, interpret-

ing requirements throughout implementation is key to mak-

ing these decisions. Requirements appeared in the decisions

(e.g., behaviors), considerations (e.g., future requirements),

and actions (e.g., defining requirements) of software devel-

opers. It also was the most frequently cited form of ex-

pertise (e.g., knowledgeable about customers and business) in

strategies. This highlights the perspective that requirements

engineering is an ongoing process throughout implementa-

tion and maintenance. Depending on how much control the

developer had, they could re-interpret or completely change

444

requirements, suggesting that understanding how to update

requirements to match dynamic contexts could be a software

engineering skill. This contrasts the notion of requirements

being set prior to implementation. Rather, it supports prior

work stating that requirements can be iterated upon through

prototyping [55]–[57].

Next, we find that maintainability is a major theme in

implementation design decisions. It appeared in the de-

cisions (e.g., reuse) and considerations (e.g., extensibility,

reusing resources) as it reduced workload, cognitive load, and

technical debt. This suggests that software developers may

need to develop a sense of how to anticipate maintenance effort

and develop knowledge on how to manage and reduce debt,

such as separation of concerns and modularity.

We also find that the process to make implementation design

decisions is both an art and a science. Across different devel-

opers and problems, there were strong commonalities in the

considerations and strategy structure. However, each strategy

was unique—prior work has shown that software development

teams also follow their own individual processes for early

stage software design work [43]. This implies that making

implementation design decisions has a common structure. Yet,

it requires expert judgment developed from experience with

similar problems to know when to deviate from it for the given

use case. Furthermore, it suggests this form of design expertise

is both systematic and opportunistic, which has been observed

in prior work [28], [64]. One source of opportunism is when

similar types of actions are repeated in different parts of the

strategy. This suggests that implementation design decisions

require rounds of iteration in different stages, especially in

implementing and defining the problem space.

Finally, our results suggest that some forms of expertise are

more implicit, while others are more tacit. Explicit program-

ming strategies are a form of explicit programming knowl-

edge [47]. Participants’ strategies largely referenced decision-

making expertise, implying that it could be explicit knowledge.

Meanwhile, expertise on developing software and designs was

referenced noticeably less frequently in participants’ strategies

but instead overlapped with our enumerated considerations.

This suggests that this form of knowledge is more tacit and is

applied in the moment of programming problem-solving.

These implications affect software engineering researchers,

educators, and practitioners. We describe how our findings

apply to them and provide opportunities for future work.

A. Educators

Our findings have implications on how to teach program-

ming and software design. While teaching software engineer-

ing, educators could consider providing open-ended projects,

as suggested by Offutt and Baral [65]. This would provide

students with opportunities to make various types of im-

plementation design decisions. Further, these projects could

span for a longer duration to teach students how their deci-

sions shape software maintenance. Educators could scaffold

students’ problem-solving process by authoring their own

explicit programming strategies on how to make implemen-

tation design decisions. Educators could also use the list of

considerations from Table III as a checklist for students to

follow when evaluating candidate solutions.

B. Software Engineers

Our findings can help novice engineers to make better im-

plementation design decisions. Since iteration is an important

part of making implementation design decisions, less expe-

rienced engineers could work prototyping into their regular

practice and become accustomed to learning from small-scale

failures through prototyping. Managers or mentors could rein-

force this learning environment by encouraging this practice.

Additionally, novices could also use the list of consider-

ations as a checklist to help make decisions. More senior

engineers could extend our list of considerations by writing

their own definitions and heuristics. They could also add their

own considerations to teach less experienced team members.

C. Researchers

This work raises questions about our understanding of

software design. Previous work viewed software design as a

sociotechnical process (e.g., [41]), a set of habits (e.g., [33]),

or as high-level code structure (e.g., [15]). Our work extends

this knowledge by focusing on the cognitive process involved

in software design. We view software design as a decision-

making exercise, following prior work (e.g., [8], [14]).

There are several directions that require additional study.

Future work could study each of the the consideration codes

to discover how developers estimate them and how they

compare considerations against one another. This could help

develop automated metrics or tools to aid developers’ decision-

making. Additionally, future work could examine how experts’

decision-making processes differ than that of novices’, espe-

cially in the strategy structure and considerations. This could

help better understand the attributes that relate to effective

decision-making processes and advance understanding of soft-

ware engineering expertise.

DATA AVAILABILITY

Our supplemental materials are available on Figshare [45].

Data includes the codebooks for RQ1, RQ2, and RQ3; the

plain text, action code, and action category representations

of participants’ strategies; the survey instrument; and the

interview protocol.

ACKNOWLEDGMENTS

We thank our survey and interview participants for their

insight and Soham Pardeshi, Lilian Liang, Nimit Johri, and

Tobias Dürschmid for their feedback. We give special thanks to

Mei , an outstanding canine software engineering researcher,

for providing support and motivation throughout this study.

This work was supported by the National Science Foun-

dation under grants 1539179, 1703734, 1703304, 1836813,

1845508, 2031265, 2100296, 2122950, 2137834, 2137312,

and by unrestricted gifts from Microsoft, Adobe, and Google.

445

REFERENCES

[1] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software engineer?”
in IEEE/ACM International Conference on Software Engineering, 2015,
pp. 700–710.

[2] A. Tang, M. H. Tran, J. Han, and H. van Vliet, “Design reasoning
improves software design quality,” in International Conference on the
Quality of Software Architectures, 2008, pp. 28–42.

[3] V. Rajlich and N. Wilde, “The role of concepts in program comprehen-
sion,” in IEEE/ACM International Workshop on Program Comprehen-
sion, 2002, pp. 271–278.

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[5] R. Verdecchia, P. Kruchten, and P. Lago, “Architectural technical debt:
A grounded theory,” in European Conference on Software Architecture,
2020, pp. 202–219.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: How and why software developers use drawings,” in
SIGCHI Conference on Human Factors in Computing Systems, 2007,
pp. 557–566.

[7] M. Petre, “UML in practice,” in IEEE/ACM International Conference
on Software Engineering, 2013, pp. 722–731.

[8] H. van Vliet and A. Tang, “Decision making in software architecture,”
Journal of Systems and Software, vol. 117, pp. 638–644, 2016.

[9] A. Tang, M. Razavian, B. Paech, and T. Hesse, “Human aspects in soft-
ware architecture decision making,” in IEEE International Conference
on Software Architecture, 2017, pp. 107–116.

[10] A. Shahbazian, S. Karthik, Y. Brun, and N. Medvidovic, “eQual:
informing early design decisions,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1039–1051.

[11] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer, “Tool
support for architectural decisions,” in Working IEEE/IFIP Conference
on Software Architecture, 2007, pp. 4–4.

[12] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. Pearson,
1995.

[13] K. Beck, R. Crocker, G. Meszaros, J. O. Coplien, L. Dominick,
F. Paulisch, and J. Vlissides, “Industrial experience with design patterns,”
in IEEE International Conference on Software Engineering, 1996, pp.
103–114.

[14] P. Ralph and E. Tempero, “Characteristics of decision-making during
coding,” in International Conference on Evaluation and Assessment in
Software Engineering, 2016, pp. 1–10.

[15] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[16] W. Cunningham, “The WyCash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[17] T. Besker, A. Martini, and J. Bosch, “Software developer productivity
loss due to technical debt—a replication and extension study examining
developers’ development work,” Journal of Systems and Software, vol.
156, pp. 41–61, 2019.

[18] N. Rios, R. O. Spı́nola, M. Mendonça, and C. Seaman, “The most
common causes and effects of technical debt: First results from a global
family of industrial surveys,” in ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[19] ——, “Supporting analysis of technical debt causes and effects with
cross-company probabilistic cause-effect diagrams,” in IEEE/ACM In-
ternational Conference on Technical Debt, 2019, pp. 3–12.

[20] G. Ruhe, “Software engineering decision support—a new paradigm for
learning software organizations,” in International Workshop on Learning
Software Organizations, 2002, pp. 104–113.

[21] C. Becker, D. Walker, and C. McCord, “Intertemporal choice: Decision-
making and time in software engineering,” in IEEE/ACM International
Workshop on Cooperative and Human Aspects of Software Engineering,
2017, pp. 23–29.

[22] S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” in ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 187–200.

[23] P. L. Li, A. J. Ko, and A. Begel, “What distinguishes great software
engineers?” Empirical Software Engineering, vol. 25, no. 1, pp. 322–
352, 2020.

[24] A. Aurum and C. Wohlin, “The fundamental nature of requirements
engineering activities as a decision-making process,” Information and
Software Technology, vol. 45, no. 14, pp. 945–954, 2003.

[25] P. Berander and A. Andrews, “Requirements prioritization,” in Engi-
neering and Managing Software Requirements. Springer, 2005, pp.
69–94.

[26] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making
techniques for software architecture design: A comparative survey,”
ACM Computing Surveys, vol. 43, no. 4, pp. 1–28, 2011.

[27] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley Professional, 2003.

[28] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software design-
ers,” Information and Software Technology, vol. 49, no. 6, pp. 637–653,
2007.

[29] J. Stylos and B. Myers, “Mapping the space of API design decisions,” in
IEEE Symposium on Visual Languages and Human-Centric Computing,
2007, pp. 50–60.

[30] R. Dharani, Web API Design: Crafting Interfaces that Developers Love.
Independently published, 2017.

[31] “Swift.org—API design guidelines,” 2022, retrieved December 20, 2022
from https://www.swift.org/documentation/api-design-guidelines/.

[32] “API design,” 2022, retrieved December 20, 2022 from https://
martinfowler.com/tags/API%20design.html.

[33] M. Petre and A. van der Hoek, Software Design Decoded: 66 Ways
Experts Think. MIT Press, 2016.

[34] J. Bloch, Effective Java. Addison-Wesley Professional, 2008.

[35] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship. Pearson Education, 2009.

[36] ——, Just Enough Software Architecture: A Risk-Driven Approach.
Prentice Hall, 2018.

[37] G. Fairbanks, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Marshall & Brainerd, 2018.

[38] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open
bug reports,” in iConference, 2011, pp. 106–113.

[39] J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey, “Do
developers discuss design?” in Working Conference on Mining Software
Repositories, 2014, pp. 340–343.

[40] A. Mahadi, N. A. Ernst, and K. Tongay, “Conclusion stability for natural
language based mining of design discussions,” Empirical Software
Engineering, vol. 27, no. 1, pp. 1–42, 2022.

[41] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “Supporting
informal design with interactive whiteboards,” in SIGCHI Conference on
Human Factors in Computing Systems, 2014, pp. 331–340.

[42] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 530–541.

[43] B. Sharif, N. Dragan, A. Sutton, M. L. Collard, and J. I. Maletic,
“Identifying and analyzing software design activities,” in Software
Designers in Action: A Human-Centric Look at Design Work. Chapman
and Hall/CRC, 2013, pp. 153–174.

[44] M. K. Scheuerman, K. Spiel, O. L. Haimson, F. Hamidi, and S. M.
Branham, “HCI guidelines for gender equity and inclusivity,” in UMBC
Faculty Collection, 2020.

[45] J. T. Liang, M. Arab, M. Ko, A. J. Ko, and T. D. LaToza, “Supplemental
materials to “A qualitative study on the implementation design decisions
of developers”,” 2023, available at https://doi.org/10.6084/m9.figshare.
21820140.

[46] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide
to controlled experiments of software engineering tools with human
participants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–
141, 2015.

[47] T. D. LaToza, M. Arab, D. Loksa, and A. J. Ko, “Explicit programming
strategies,” Empirical Software Engineering, vol. 25, no. 4, pp. 2416–
2449, 2020.

[48] M. Arab, T. D. LaToza, J. Liang, and A. J. Ko, “An exploratory study
of sharing strategic programming knowledge,” in SIGCHI Conference
on Human Factors in Computing Systems, 2022, pp. 1–15.

[49] M. Arab, J. Liang, Y. Yoo, A. J. Ko, and T. D. LaToza, “HowToo:
A platform for sharing, finding, and using programming strategies,” in
IEEE Symposium on Visual Languages and Human-Centric Computing,
2021, pp. 1–9.

446

[50] D. Ford, T. Zimmermann, C. Bird, and N. Nagappan, “Characterizing
software engineering work with personas based on knowledge worker
actions,” in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2017, pp. 394–403.

[51] E. K. Smith, C. Bird, and T. Zimmermann, “Beliefs, practices, and
personalities of software engineers: A survey in a large software com-
pany,” in International Workshop on Cooperative and Human Aspects
of Software Engineering, 2016, pp. 15–18.

[52] D. Hammer and L. K. Berland, “Confusing claims for data: A critique
of common practices for presenting qualitative research on learning,”
Journal of the Learning Sciences, vol. 23, no. 1, pp. 37–46, 2014.

[53] J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE
Publications, 2009.

[54] M. B. Miles and A. M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook. SAGE Publications, 1994.

[55] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[56] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering
and agile software development,” in IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
2003, pp. 308–313.

[57] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A
roadmap,” in Conference on the Future of Software Engineering, 2000,
pp. 35–46.

[58] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge using
YouTube,” in IEEE International Conference on Program Comprehen-
sion, 2015, pp. 104–114.

[59] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd docu-
mentation: Exploring the coverage and the dynamics of API discussions
on Stack Overflow,” Georgia Institute of Technology Technical Report,
vol. 11, 2012.

[60] C. D. Hardin and M. Berland, “Learning to program using online forums:
A comparison of links posted on Reddit and Stack Overflow,” in ACM
Technical Symposium on Computing Science Education, 2016, pp. 723–
723.

[61] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative Inquiry, vol. 12, no. 2, pp. 219–245, 2006.

[62] S. Balaji and M. S. Murugaiyan, “Waterfall vs. V-model vs. Agile:
A comparative study on sdlc,” International Journal of Information
Technology and Business Management, vol. 2, no. 1, pp. 26–30, 2012.

[63] M. Petre, A. van der Hoek, and D. S. Bowers, “Software design as
multiple contrasting dialogues,” in Psychology of Programming Interest
Group 30th Annual Conference, 2019.

[64] S. P. Davies, “Characterizing the program design activity: Neither
strictly top-down nor globally opportunistic,” Behaviour & Information
Technology, vol. 10, no. 3, pp. 173–190, 1991.

[65] J. Offutt and K. Baral, “Designing divergent thinking, creative problem
solving exams,” in ACM/IEEE International Conference on Software
Engineering: Software Engineering Education and Training, 2022, pp.
82–89.

447

