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ABSTRACT
Studies have shown machine learning (ML) algorithms such as Ran-
dom Forests (RF) could outperform the physical-based algorithms in
remote sensing applications. However, these ML algorithms are not
well-suited to learn from heterogeneous sources such as multiple
active and passive sensors. For example, RF can be either developed
for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO) or Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor data, but it cannot jointly learn from both these
sensors since there is a mismatch of features (variables) among the
sensors. On the other hand, domain adaptation techniques have
been developed to handle data from multiple sources or domains.
But most existing domain adaptation approaches assume that the
source and target domains are homogeneous i.e., they have the
same feature space, and the difference between domains primar-
ily arises due to the data distribution drifting. Nevertheless, many
real world applications often deal with data from heterogeneous
domains that come from completely different feature spaces. For
example, in our remote sensing application, the source domain,
namely CALIPSO, contains data of 25 attributes collected by the
active spaceborne Lidar sensor; and the target domain, namely VI-
IRS, contains another group of data of 20 attributes collected by
passive spectroradiometer sensor. CALIPSO has better represen-
tation capability and sensitivity to aerosol types and cloud phase,
while VIIRS has wide swaths and better spatial coverage but has
inherent weakness in differentiating atmospheric objects on differ-
ent vertical levels. To address this mismatch of features across the
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domains (sensors), we propose a novel deep learning based hetero-
geneous domain adaptation framework called Deep Multi-Sensor
Domain Adaptation (DMSDA) to 1) learn the domain invariant
representations from source CALIPSO and target VIIRS domains
by transferring the knowledge across these domains, and 2) better
classify the different cloud phase types in the source and target
domains. Our experiments on a collocated CALIPSO and VIIRS
sensor dataset showed that DMSDA can achieve 69% classification
accuracy in predicting the cloud phase types that is at least 23%
improvement and outperformed other ML approaches employed in
comparison.
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1 INTRODUCTION
Cloud and atmospheric aerosols are two critical components that
significantly impact Earth’s radiative energy balance, hydrolog-
ical and biological cycles, air quality and human health [4]. For
example, clouds constantly cover about two-third of Earth’s surface
and alter global energy distribution by reflecting solar radiation
and absorbing thermal emission from the surface. Satellite-based
remote sensing is the only means to monitor the global distribution
of aerosols and clouds. Thus, improvements in aerosol and cloud
observations are a major focus of NASA’s Earth Science endeavor,
and numerous satellite sensors have been developed to observe
and retrieve aerosol and cloud properties. They can be largely di-
vided into two groups: active sensors such as spaceborne Lidar (e.g.,
CALIPSO) and Radar (e.g., CloudSat) and passive sensors such as
Moderate Resolution Imaging Spectroradiometer (MODIS), VIIRS
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and Advanced Baseline Imager (ABI). Active sensors collect data
by providing their own source of energy to illuminate the objects
they observe; while passive sensors collect different sets of data
attributes by detecting natural energy (radiation) that is emitted or
reflected by the object. The advantages of active sensors, compared
to passive sensors, include their capability of resolving the vertical
location of aerosol/cloud layer; better sensitivity to aerosol type
and cloud phase; better performance during nighttime and polar
region. On the other hand, passive sensors have sensors that ob-
serve column integrated radiation and have inherent weaknesses in
differentiating atmospheric objects on different vertical levels. How-
ever, passive sensors always have wide swaths and better spatial
coverage. Classifying the pixel level cloud types is an important ap-
plication in the satellite remote sensing. By employing both active
and passive sensing data, we aim to classify 6 cloud types, which are
Clear and Clean (no cloud, no aerosol), Pure Liquid Cloud (no ice
cloud, no aerosol), Pure Ice Cloud (no liquid cloud, no aerosol), Pure
Cloud (have both ice and liquid clouds, no aerosol), Pure Aerosol
(no cloud, aerosol only), Cloud and Aerosol.

Our previous study [21] has shown proper use of machine learn-
ing algorithms, such as Random Forest (RF), can have better cloud
type detection accuracy than physical-based algorithms. However,
the algorithms cannot directly learn from multiple active and pas-
sive sensors. For example, RF can be either developed for CALIPSO
or VIIRS data, but it cannot jointly learn from both these sensors
since there is a mismatch of features (variables) among the sensors.
RF and other ML algorithms do not generalize to new combinations
of the learned features beyond those seen during the training pro-
cess. Moreover, manyML algorithms generally cannot do joint label
predictions if the labels are missing for one of these sensors during
training time. To address these issues, we employ deep learning
(DL) models which can automatically learn feature representations
from multiple sensors with different features / variables in an end-
to-end fashion. Our DL models will be able to predict labels for
all sensors even when the labels are absent for some sensors at
training time by transferring knowledge from one set of sensors
(e.g., CALIPSO) to other sensors (e.g., VIIRS).

Domain adaptation has been thoroughly studied in computer
vision [7] , [5] and natural language processing (NLP) applications
[3], [6]. Recently, the deep learning paradigm has become popu-
lar in domain adaptation due to its ability to learn rich, flexible,
non-linear domain-invariant representations [18], [16]. However,
few of these approaches have been adapted for remote sensing
applications. Moreover, domain adaptation techniques using deep
neural network have been mainly used to solve the distribution
drifting problem in homogeneous domains [17]. The data in the ho-
mogeneous domains usually share similar feature spaces and have
the same dimensionalities. Nevertheless, real world applications
often deal with heterogeneous domains that come from completely
different feature spaces and different dimensionalities. In our re-
mote sensing application, the two remote sensor datasets collected
by active and passive sensors respectively are heterogeneous. In
particular, CALIPSO actively collects 25 bands of sensing data, it
has better sensitivity to aerosol types and cloud phase, and the data
are fully labeled with 6 cloud types. VIIRS uses spectroradiometer
sensor to passively collect 20 bands of sensing data with no label

for cloud types; has wide swaths and better spatial coverage but
lacks the sensitivity to the cloud types.

Our contribution is to classify different cloud types for the mas-
sive unlabeled records in the passive / target domain data (VIIRS)
by learning the transferable representation of the cloud types from
the active source domain (CALIPSO). We develop an unsupervised
Deep Multi-Sensor Domain Adaptation (DMSDA) model to learn
feature representations from multiple heterogeneous sensors. Our
experiments show the effectiveness of our approach in learning the
domain invariant representation for the heterogeneous domains.

2 RELATEDWORK
Over the past few decades, a variety of aerosol and cloud remote
sensing algorithms have been developed based on the physical prin-
ciples and the radiative transfer of light scattering and absorption
within aerosol and cloud fields (see review by [2]). These physical-
based algorithms are the backbone of many widely used aerosol and
cloud property products for weather and climate studies [1],[10].
Traditionally, many of these algorithms use a lookup table (LUT)
approach, in that one must prescribe aerosol and surface properties.
The challenge is to ensure that the algorithm has the means to
select the appropriate model.

Although highly successful, it is challenging to improve these
physical-based algorithms. For example, according to [14], there is
no absolute separation between “aerosol” and “cloud”. Most, if not
all, retrieval techniques that rely on manually setting thresholds
for scene calibration, etc., may be different enough that a thresh-
old applied for one sensor may need revision for another. Thus,
physical-based algorithms are expensive.

Machine Learning (ML) and Artificial Intelligence (AI) tech-
niques may overcome the challenges facing physical-based algo-
rithms. Since ML algorithms are written to autonomously find
information (e.g., patterns of spectral, spatial, and/or time series),
they can learn hidden signatures of different types of objects. ML
algorithms are portable and can be easily applied to active and/or
passive sensor measurements. [21] introduced two Random Forest
(RF) machine learning models for cloud mask and cloud thermo-
dynamic phase detection using spectral observations from Visible
Infrared Imaging Radiometer Suite (VIIRS) on board Suomi National
Polar-orbiting Partnership (SNPP). [24] developed a deterministic
self-organizing map (SOM) approach and applied it on satellite data
based cloud type classification. Deep learning [11] is also a promis-
ing technique, already having revolutionized many fields such as
computer vision [8], natural language processing [15], and is in-
creasingly being used in remote sensing applications [23]. Those
approaches can learn representations of multiple variables in a
single domain.

Domain Adaptation has been widely used in learning domain
invariant representation from source and target domains. In unsu-
pervised domain adaptation with unlabeled target domain, Several
approaches have been developed to minimize the feature distribu-
tion difference between the source domain and target domain. DCC
[20] and DAN [13] have used Maximum Mean Discrepancy (MMD)
loss training the deep neural network and learn a representation
that is both discriminative and domain invariant. [17] introduced
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Figure 1: Network Architecture of Deep Multi-Sensor Domain Adaptation with Domain Mapping and Correlation Alignment.
Deep Domain Mapping is used to map the target domain into the feature space of source domain. The trained model uses
several multilayer perceptron (MLP) layers to learn the shared representative features between the source and target domain.
A correlation layer is added to the end of network. In correlation layer, different colors represent different cloud types (labels)
that the model aims to classify.

a correlation alignment based method in the homogeneous do-
main adaptation in computer vision. Its architecture is based on
CNN with a classification layer, and a correlation layer is used to
minimize the difference in the second-order statistics between the
source and target domains. [19] introduced an adversarial learn-
ing based domain adaptation method that combines adversarial
learning with discriminative feature learning. It specifically learns
a discriminative mapping of target images to the source feature
space by simultaneously fooling a domain discriminator in distin-
guishing the encoded target images from source images. The state
of art approaches are mostly applicable to solve the homogeneous
domain adaptation in image classification, in which the source and
target domains are both two dimensional data and share similar
feature space. To our knowledge, few of the deep domain adaptation
approaches have been used in the remote sensing application or in
the heterogeneous domains [22], especially with the heterogeneous
nature of datasets collected by active and passive sensors.

3 DEEP MULTIPLE-SENSOR DOMAIN
ADAPTATION (DMSDA)

The remote satellite sensing data raises more challenges as the data
captured by passive sensor and active Lidar are high dimensional,
globally covered and heterogeneous in nature. In this paper, we pro-
pose a Deep Multi-Sensor Domain Adaptation approach (DMSDA)
and apply it to classify the heterogeneous remote satellite cloud and
aerosol types. Our approach introduces a heterogeneous domain
matching to map the target domain into the feature space of source
domain, and uses sharedmultilayer perceptron (MLP) layers to train
the shared representative features between the source and target
domain. At last, it adds a correlation layer to the end of the shared
layers, inspired by the idea of correlation alignment introduced in
[17]. By incorporating the correlation loss and classification loss
in training the domain adaptation network, we find the network

can maximize the classification accuracy on the target domain by
minimizing the difference in the second-order statistics between
the source and target domains. Figure 1 demonstrates our end to
end Deep Multi-Sensor Domain Adaptation with domain mapping
and correlation alignment.

3.1 Deep Domain Mapping (DDM)
In this section, we explore the heterogeneity of our source (active)
and target (passive) remote sensing data, and introduce our Deep
Domain Mapping approach to transform the target domain into the
feature space of source domain.

3.1.1 Heterogeneous Source and Target Domain. In hetero-
geneous domain adaptation, the feature spaces between the source
and target domains are nonequivalent and the dimensions may also
generally differs [22]. In our satellite remote sensing application,
the source (active) domain data, CALIPSO, contains sensing data of
25 attributes collected by the active spaceborne Lidar sensor, shown
in Table 1; and the target (passive) domain data, VIIRS, contains
another group of sensing data of 20 attributes collected by passive
spectroradiometer sensor, shown in 2. From the attribute names
and descriptions in the Table 1 and Table 2, we can see the two
remote sensing datasets have completely different feature spaces
due to the nature of the data they collect. Figure 2 and Figure 3
show the pairwise plot for selected attributes from the source and
target domains. The pair plots show CALIPSO and VIIRS have het-
erogeneous data ranges for each band across the domains. It also
reveals the CALIPSO data has better separations for the cloud types
as the data are more evenly distributed compared to VIIRS in which
the majority data are mixed together in the distribution.

3.1.2 Deep Mapping Method. To adapt to the completely dif-
ferent feature spaces and heterogeneity of the source and target
domain, we introduce a Deep Learning based approach to learn a
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Figure 2: Pairwise relationship plot between CALIOP_Alay_Top_Altitude and CALIOP_Alay_Base_Altitude (Left);
CALIOP_Alay_Top_Altitude and CALIOP_Alay_Top_Temperature (Right) in CALIPSO (active) dataset. Different color
shows different cloud type (label).

Figure 3: Pairwise relationship plot between VIIRS_M14 and VIIRS_M15 (Left); VIIRS_M14 and VIIRS_M16 (Right) in VIIRS
(passive) dataset. Different color shows different cloud type (label).

transformer to map the target feature space into the source feature
space. It not only equalizes the number of features in source and
target domains, but also aligns the feature distribution by mapping
the target domain to source domain.

In our remote sensing dataset, the target domain (VIIRS) has
wider spatial coverage but with no label information. The Source
domain (CALIPSO) has better representation for cloud types and is
fully labeled, so mapping the target domain to source domain can
preserve the discriminating power of the source domain and can
also transfer it into the down-streaming learner.

We design a deep neural network to perform the Deep Domain
Mapping (DDM) between the source and target domain. The input

of the Deep Domain Mapping (DDM) network is the target domain
data and the output of the network is the transformed target domain
data in the source domain feature space. Because the source domain
data and target domain data are collocated remote sensing data
with the same longitude and latitude coordinates, Mean Square
Error (MSE) loss function is used to measure the error of the DDM
network. Specifically, given source domain training examples 𝐷𝑠 =

{𝑥𝑖 }, 𝑥 ∈ 𝑅𝑠𝑑𝑠 , 𝑖 = 1, ..., 𝑛𝑠 and unlabeled target data set 𝐷𝑡 =

{𝑢𝑖 }, 𝑢 ∈ 𝑅𝑡𝑑𝑡 , 𝑖 = 1, ..., 𝑛𝑡 , with 𝑑𝑠 ≠ 𝑑𝑡 and 𝑅𝑠 ≠ 𝑅𝑡 . Because the
source domain and target domain are collocated data so we have
𝑛𝑠 = 𝑛𝑡 . The Deep Domain Mapping network (DDM) is learnt to
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Table 1: Attributes/features of CALIPSO satellite sensor.

Name Description
1 CALIOP_N_Clay_1km CALIOP Number of Cloud Layers 1km
2 CALIOP_N_Clay_5km CALIOP Number of Cloud Layers 5km
3 CALIOP_Liq_Fraction_1km CALIOP Cloud Layer Liquid Phase Fraction 1km
4 CALIOP_Liq_Fraction_5km CALIOP Cloud Layer Liquid Phase Fraction 5km
5 CALIOP_Ice_Fraction_1km CALIOP Cloud Layer Ice Phase Fraction 1km
6 CALIOP_Ice_Fraction_5km CALIOP Cloud Layer Ice Phase Fraction 5km
7 CALIOP_Clay_Top_Altitude CALIOP Cloud Layer Top Altitude
8 CALIOP_Clay_Base_Altitude CALIOP Cloud Layer Base Altitude
9 CALIOP_Clay_Top_Temperature CALIOP Cloud Layer Top Temperature
10 CALIOP_Clay_Base_Temperature CALIOP Cloud Layer Base Temperature
11 CALIOP_Clay_Optical_Depth_532 CALIOP Cloud Layer 532nm Optical Depth
12 CALIOP_Clay_Opacity_Flag CALIOP Cloud Layer Opacity Flag
13 CALIOP_Clay_Integrated_Attenuated_Backscatter_532 CALIOP Cloud Layer Integrated Attenuated Backscatter 532nm
14 CALIOP_Clay_Integrated_Attenuated_Backscatter_1064 CALIOP Cloud Layer Integrated Attenuated Backscatter 1064nm
15 CALIOP_Clay_Final_Lidar_Ratio_532 CALIOP Cloud Layer Lidar Ratio 532nm
16 CALIOP_Clay_Color_Ratio CALIOP Cloud Layer Color Ratio
17 CALIOP_Alay_Top_Altitude CALIOP Aerosol Layer Top Altitude
18 CALIOP_Alay_Base_Altitude CALIOP Aerosol Layer Base Altitude
19 CALIOP_Alay_Top_Temperature CALIOP Aerosol Layer Top Temperature
20 CALIOP_Alay_Base_Temperature CALIOP Aerosol Layer Base Temperature
21 CALIOP_Alay_Integrated_Attenuated_Backscatter_532 CALIOP Aerosol Layer Integrated Attenuated Backscatter 532nm
22 CALIOP_Alay_Integrated_Attenuated_Backscatter_1064 CALIOP Aerosol Layer Integrated Attenuated Backscatter 1064nm
23 CALIOP_Alay_Color_Ratio CALIOP Aerosol Layer Color Ratio
24 CALIOP_Alay_Optical_Depth_532 CALIOP Aerosol Layer 532nm Optical Depth
25 CALIOP_Alay_Aerosol_Type_Mode CALIOP Aerosol Layer Type

Table 2: Attributes/features of VIIRS satellite sensor.

Name Description
1 VIIRS_SZA viirs solar zenith angle in degree
2 VIIRS_SAA viirs solar azimuthal angle in degree
3 VIIRS_VZA viirs viewing zenith angle in degree
4 VIIRS_VAA viirs viewing azimuthal angle in degree
5 VIIRS_M1 Band wavelength range 0.402-0.422𝜇m
6 VIIRS_M2 Band wavelength range 0.436-0.454𝜇m
7 VIIRS_M3 Band wavelength range 0.478-0.488𝜇m
8 VIIRS_M4 Band wavelength range 0.545-0.565𝜇m
9 VIIRS_M5_B Band wavelength range 0.662-0.682𝜇m
10 VIIRS_M6 Band wavelength range 0.739-0.754𝜇m
11 VIIRS_M7_G Band wavelength range 0.846-0.885𝜇m
12 VIIRS_M8 Band wavelength range 1.23-1.25𝜇m
13 VIIRS_M9 Band wavelength range 1.371-1.386𝜇m
14 VIIRS_M10_R Band wavelength range 1.58-1.64𝜇m
15 VIIRS_M11 Band wavelength range 2.23-2.28𝜇m
16 VIIRS_M12 Band wavelength range 3.61-3.79𝜇m
17 VIIRS_M13 Band wavelength range 3.97-4.13𝜇m
18 VIIRS_M14 Band wavelength range 8.4-8.7𝜇m
19 VIIRS_M15 Band wavelength range 10.26-11.26𝜇m
20 VIIRS_M16 Band wavelength range 11.54-12.49𝜇m

Table 3: Attributes/features shared between CALIPSO and
VIIRS.

Name Description
1 Latitude Latitude
2 Longitude Longitude
3 Surface_Temperature Surface temperature in Kelvin
4 Surface_Emissivity Land surface emissivity
5 IGBP_SurfaceType International Geosphere–Biosphere

Programme surface classification
6 SnowIceIndex Snow/Sea Ice data

transform the target domain into source domain feature space by
minimizing 𝐿2 loss function:

𝑙𝑚𝑠𝑒 =
1
𝑛𝑡

𝑛𝑡∑
(𝑖=1)

(𝐷𝐷𝑀 (𝑢𝑖 ) − 𝑥𝑖 )2 (1)

Figure 4 shows the network architecture of the Deep Domain
Mapping. By minimizing the 𝐿2 error we aim to map the features
of the target domain into the feature space of the source domain
that has better feature representation. Our Multiple domains ex-
periments in Table 4 show DDM can significantly improve the
classification accuracy, demonstrate that domain adaptation and
correlation alignment work well on the multiple domains data from
the same feature space. The proposed heterogeneous Deep Domain
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Figure 4: Network Architecture of the Deep Domain Map-
ping for Heterogeneous Domains

Mapping (DDM) network is also generic and flexible. It can be
plugged into other domain adaptation methods and used in areas
other than climate data analytics.

3.2 Domain Adaptation with Correlation
Alignment

The Domain Adaptation in our DMSDA approach consists of a set
of shared MLP feature layers (shown in Figure 1) that is used to
extract the domain invariant representation between source and
target domain, and a correlation layer that is used to minimize
domain shifting by aligning the second order statistics of source
and target data distributions.

After transforming the target domain into the feature space of
source domain via DDM, the dimension of the transformed tar-
get domain is identical to dimension of the source domain and
the source domain and target domain become homogeneous. The
correlation alignment can be formulated as follows.

Given source domain training examples 𝐷𝑠 = {𝑥𝑖 }, 𝑥 ∈ 𝑅𝑑 with
labels 𝐿𝑠 = {𝑦𝑖 }, 𝑖 ∈ {1, ..., 𝐿} and unlabeled transformed target
data set 𝐷𝑡 = {𝑥∗

𝑖
}, 𝑥∗ ∈ 𝑅𝑑 , we can compute the covariance matrix

of the source domain and target domain, represented as 𝐶𝑠 and 𝐶𝑡
respectively.

𝐶𝑠 =
1

𝑛𝑠 − 1
(𝐷𝑇

𝑠 𝐷𝑠 −
1
𝑛𝑠

(1𝑇𝐷𝑠 )𝑇 (1𝑇𝐷𝑠 )) (2)

𝐶𝑡 =
1

𝑛𝑡 − 1
(𝐷𝑇

𝑡 𝐷𝑡 −
1
𝑛𝑡

(1𝑇𝐷𝑡 )𝑇 (1𝑇𝐷𝑡 )) (3)

We use the correlation loss proposed in [17] to measure the
distance between the second order statistics (covariances) of the
source and target data:

𝑙𝑐𝑜𝑟𝑎𝑙 =
1
4𝑑2

| |𝐶𝑠 −𝐶𝑡 | |2𝐹 (4)

, where | |.| |𝐹 denotes the squared matrix Frobenius norm and 𝑑 is
the number of the features.

By combining the correlation loss with the classification loss,
the joint loss function is training to learn the latent features that
can work well on the target domain:

𝑙 = 𝑙𝑐𝑙𝑎𝑠𝑠 +
𝑡∑

(𝑖=1)
𝜆𝑖𝑙𝑐𝑜𝑟𝑎𝑙 (5)

Here, 𝑡 is the number of the correlation layers in the deep network
and 𝜆𝑖 is a weight that balances on the adaptation with the clas-
sification accuracy on the source domains. The classification loss
and the correlation loss play counterparts and reach an equilibrium
at the end of training so that the representative capacities of the
source domain can be adapted to the target domain, so the final
classifier performs well on the target domain with higher accuracy.

3.3 Feature Augmentation
Following our previous work [21], we filter nighttime data records
and choose the daytime records with 0 < solar zenith angle (SZA)
< 80. Four auxiliary attributes shared in both CALIPSO and VIIRS
datasets are surface temperatures, surface emissivity, surface type
and snow ice index. The latitude and longitude of the pixel are also
provided in both CALIPSO and VIIRS datasets. In total there are 6
auxiliary features (summarized in Table 3) supplemented to both
the source and target domains to train the domain adaptation model.
The CALIPSO cloud labels are used as reference label information
in collocated CALIPSO and VIIRS datasets. A collocation algorithm
[9] that fully considers the spatial differences between the two
instruments and parallax effects are used to generate our collocated
datasets.

4 EXPERIMENTS
We conduct several experiments on real world remote sensing
datasets to compare the performance of our proposed model with
the state-of-the-art models. Our experiments help us answer the
following key questions:

• How does our model (DMSDA) perform against many base-
line models including non-domain adaptation and domain
adaptation for cloud type prediction?

• What is the impact of deep domain mapping on the model
performance?

• What is the impact of correlation alignment on the model
performance?

4.1 Datasets and Evaluation Metrics
We conduct experiments on CALIPSO active sensor (source) and
VIIRS passive sensor (target) remote satellite sensing datasets[21].
The training dataset is collocated 9-day (Day 101, 102, 106, 112,
114, 118, 122, 126 and 133) CALIPSO and VIIRS datasets containing
700,000 records. We then evaluate each built model by predicting
the subsequent 6 days that are Day 138, 142, 144, 147, 154 and 155.
Figure 5 shows the number of records in each cloud type (class) for
the training and test VIIRS datasets. Analyzing the class distribution
in the training dataset, as illustrated in Figure 5, we can see some
class imbalance with highest class label data available for ’Pure
Liquid’ and lowest class label data available for ’Pure Cloud’.

We used Accuracy as the evaluation metric to compare all the
models:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Total number of correct predictions

Total number of data points
(6)
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Table 4: Accuracy on predicting the cloud types on VIIRS (target) dataset.

Models - Single Domain Source Target Training Validation Day-138 Day-142 Day-144 Day-147 Day-154 Day-155

Random Forest VIIRS VIIRS 0.858 0.824 0.659 0.649 0.658 0.67 0.709 0.655
MLP-CALIPSO CALIPSO CALIPSO 1.0 1.0 0.99 0.99 0.99 0.99 0.99 0.99
MLP-VIIRS VIIRS VIIRS 0.71 0.7 0.651 0.642 0.647 0.65 0.695 0.636

Models - Multiple Domains Source Target Training Validation Day-138 Day-142 Day-144 Day-147 Day-154 Day-155

Domain Mapping Only CALIPSO VIIRS 0.990 0.670 0.550 0.560 0.530 0.540 0.560 0.530
Correlation Align. Only CALIPSO VIIRS 0.990 0.310 0.320 0.316 0.280 0.269 0.282 0.279

DMSDA CALIPSO VIIRS 0.990 0.680 0.670 0.660 0.659 0.671 0.704 0.667

Figure 5: Data distribution (data point count for each cloud
type) for training and test VIIRS datasets (Day 138, 142, 144,
147, 154, 155).

4.2 Performance Comparison using data from
single domain

For non-domain adaptation model comparison, we conducted ex-
periments on three baseline models which were trained on data
from a single domain. These baseline models include 1) RF model:
Random Forest trained on VIIRS data, 2) MLP-VIIRS: A deep learn-
ing based MLP Model trained on VIIRS data, 3) MLP-CALIPSO: A
deep learning based MLP Model trained on CALIPSO data.

In order to make fair comparison to our proposed approach, we
apply the same neural network used in the shared layer of our
DMSDA network to build the neural network for baseline models
(MLP-CALIPSO and MLP-VIIRS), with the same type and number
of layers. In our experiments, the MLP (shared) layers are 4 dense
layers with 128, 256, 128, 64 neurons respectively, each layer is
followed with a ReLU activation function and Dropout (0.5). To
train the RF model, we specify 100 as the number of trees and 15 as
the maximum depth of the trees in the forest.

As an ML-based baseline result, RF achieves around 85% training,
82% validation and around 70% test accuracy. For the single domain
experiments, we can see the MLP-CALIPSO achieves 99% accuracy
in predicting the active sensing dataset, which is expected as we can
see the data distribution of each cloud type is very discriminative
from the CALIPSO pairwise plot shown in Figure 2. In comparison,
MLP-VIIRS model has lower accuracy around 65%, as VIIRS is a

passive dataset collected by detecting the reflection of natural radi-
ation and their feature discrimination power is weak, which can
also be seen in VIIRS pairwise plot in Figure 3. This observation
highlights the importance of using multiple sensors data to better
understand and classify the unlabeled passive sensing data that has
wider spatial coverage. Our proposed deep multi-sensor domain
adaptation approach aims to achieve higher accuracy than using
single domain data by transferring the discriminating power from
the source domain to target domain.

4.3 Performance comparison of using data
from multiple domains

For domain adaptation model comparisons, we conducted exper-
iments on two more baseline models that use our heterogeneous
domain mapping and correlation alignment respectively, using both
source and target datasets. These baseline models include the fol-
lowing: 1) Domain Mapping Only: This model uses the deep domain
mapping but no correlation alignment, 2) Correlation Alignment
Only: This model uses the Correlation alignment but no Deep Do-
main Mapping strategy. Comparing these baseline models with our
proposed DMSDA model can help understand the importance of
each module in our approach.

From the result of multiple sources based models in Table 4, our
proposed DMSDA approach outperforms the two domain adapta-
tion baselines significantly. DMSDA improves the accuracy by 23%
in average of all the predictions from Day-138 to Day-155 when
compared to using the Domain Mapping Only approach. It also
has shown almost double accuracy improvement compared to the
Correlation Alignment Only approach with domain adaptation that
uses the raw source and target features.

4.4 Impact of Domain Mapping
The very low accuracy (around 30%) in predicting the cloud satellite
data with Correlation Alignment Only approach exemplifies the
inherent complexities in heterogeneous data representation and the
challenge of directly applying existing domain adaptation methods
in heterogeneous domains. Our proposed Deep Domain Mapping
can mitigate the gap between the heterogeneous source and tar-
get domains and extract the domain invariant representation by
integrating with the domain adaptation technique.

Our DMSDA approach’s prediction accuracy is comparable or
slightly better than the the widely used Random Forest Model in
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climate data analytics. This is reasonable when using the super-
vised learning approach such as Random Forest in the single target
domain assuming the label information is fully available, however,
our DMSDA approach is unsupervised domain adaptation that does
not require any label information in the target domain, and solely
rely on the label information of the source domain and the correla-
tion between the source and target domain to build the model and
make the prediction. Moreover, in Domain Adaptation, training on
the target domain with target labels is the gold standard in many
domain adaptation applications as that’s the best the model can
achieve. So the domain adaptation performance is upper bounded
by the performance on the target domain dataset (i.e. trained on
the target data and labels). However, typically in real applications
target domain labels are unreliable or unavailable. Our problem
setup is slightly different as the target domain labels are obtained
from a different satellite (source domain) with co-located latitudes
and longitudes.

5 DISCUSSION
Since this work is still in progress, we would like to discuss things
we plan to focus on next.

Model Optimization. We will conduct more post analysis to
understand what features and components contribute to the im-
provement of the model performance. We will also improve the
domain adaptation network with joint optimization of the DDM
𝐿2 loss with terminal classification loss and correlation alignment
loss.

Detailed Evaluation.Wewill performmore detailed evaluation
to understand the capability of our model. First, we will measure
accuracy and area under ROC (AUROC) for each of the six labels
to know how well the trained model works for each label type.
Second, we will study whether the test accuracy of different days is
correlated with the similarity of data distribution, namely whether
higher data distribution similarity between a test dataset and train-
ing dataset will lead to better performance (accuracy) for the test
dataset.

Off-track Evaluation. As mentioned in Section 1, passive sen-
sors like VIIRS have better spatial coverage, and our goal is to apply
the trained model to predict labels for all VIIRS pixels, a.k.a. off-
track pixels, not just those collocated with CALIPSO, a.k.a. in-track
pixels. Because we will not have CALIPSO labels for the off-track
pixels, one way to evaluate the accuracy our trained model for
these pixels is to leverage additional active sensors. For instance,
as an active sensor, CloudSat also provides accurate cloud type
detection results but its track is different from CALIPSO. We could
use CloudSat data as labels to evaluate how good our trained model
is for off-track pixels.

Utilizing Weak Labels from VIIRS Dataset. In our current
work, cloud information (i.e., the labels) in VIIRS dataset is not used
because it is not accurate enough. We plan to study whether the
VIIRS cloud information could be used as weak labels to help train
our deep learning model because it could provide some information
for the off-track pixels. Then our overall learning task will change
from unsupervised learning to weakly supervised learning [25]
task. We will evaluate whether this approach could help improve
the overall prediction accuracy even further.

Model TrainingwithMoreDataset.Both VIIRS and CALIPSO
have been orbiting the Earth for many years, which means we could
expand our model training dataset. We plan to use multiple years of
collocated dataset as training data and test on another full year data.
In this way, we could get more general model and avoid bias caused
by temporal correlation, such as seasonality among the dataset.

Scalable Model Training with Large Dataset. We estimate
the overall volume of the above mentioned multi-year dataset will
be over 1 TB. To deal with the big dataset, we plan to investigate
scalable model training techniques including parallel model train-
ing on a GPU cluster and parallel hyperparameter tuning via the
integration of big data engines like Spark 1 or Dask 2.

Comparing to Other Deep Domain Adaptation Methods.
We plan to explore and compare with other state of art deep domain
adaptation methods such as Adversarial Discriminative Domain
Adaptation (ADDA) [19]. We would like to integrate our Deep
Domain Mapping module with ADDA and evaluate its effectiveness
and portability.

Utilizing Neighboring Pixels for Joint Prediction. Our cur-
rent network architecture trains and tests each pixel record indepen-
dently. Because remote sensing data are often spatially correlated,
we will investigate whether taking into the information of neigh-
boring pixels and use of deep learning models that can capture
spatial information (e.g., CNN and / or graph neural networks)
could improve the cloud class prediction performance.

Utilizing Spatial Temporal Correlation. Because our data
has both spatial and temporal information, one potential improve-
ment on top of our current work is to study how to capture spatial
and temporal correlations from data and use them to help prediction.
We plan to explore Graph Neural Network models such as Diffusion
Convolutional Recurrent Neural Networks [12] for capturing the
spatial temporal correlations present in the remote sensing data.

6 CONCLUSIONS
With the advances in remote sensing, we are seeing more and
more satellites orbiting the Earth. By utilizing data from multiple
satellites jointly, we could achieve better information retrieval for
the targeted geophysics variables. Towards this goal, we propose a
DeepMulti-Sensor Domain Adaptationmethodwith heterogeneous
domain mapping and correlation alignment to employ both active
and passive sensing data in cloud type detection. Our experiments
show our model can achieve higher accuracy in classifying the
challenging passive remote sensing dataset by transferring the
representation from the active sensing dataset. For future work, we
plan to improve ourmethod further based on the ideas in Discussion
section.
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