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Abstract— A recent trend for big data analytics is to pro-
vide heterogeneous architectures to allow support for hardware
specialization. Considering the time dedicated to create such
hardware implementations, an analysis that estimates how much
benefit we gain in terms of speed and energy efficiency, through
offloading various functions to hardware would be necessary. This
work analyzes data mining and machine learning algorithms,
which are utilized extensively in big data applications in a
heterogeneous CPU+FPGA platform. We select and offload the
computational intensive kernels to the hardware accelerator to
achieve the highest speed-up and best energy-efficiency. We use
the latest Xilinx Zynq boards for implementation and result
analysis. We also perform a first order comprehensive analysis
of communication and computation overheads to understand
how the speedup of each application contributes to its overall
execution in an end-to-end Hadoop MapReduce environment.
Moreover, we study how other system parameters such as the
choice of CPU (big vs little) and the number of mapper slots
affect the performance and power-efficiency benefits of hardware
acceleration. The results show that a kernel speedup of upto
×321.5 with hardware+software co-design can be achieved. This
results in ×2.72 speedup, 2.13× power reduction, and 15.21×
energy efficiency improvement (EDP) in an end-to-end Hadoop
MapReduce environment.

Index Terms— machine learning, hardware+software co-
design, Zynq boards, MapReduce, Hadoop, FPGA

I. INTRODUCTION

Advances in various branches of technology - data sensing,
data communication, data computation, and data storage - are
driving an era of unprecedented innovation for information
retrieval. Emerging big data analytics applications require a
significant amount of server computational power [1], [2].
However, while demand for data center computational re-
sources continues to grow, the semiconductor industry has
reached its physical scaling limits and is no longer able to
reduce power consumption in new chips [3].

As chips are hitting power limits, computing systems are
moving away from general-purpose designs and toward greater
specialization. Hardware acceleration through specialization
has received renewed interest in recent years, mainly due to
the dark silicon challenge.

Moreover, various types of parallelism have been explored
as an alternative to technology scaling to meet the demands of
the high performance systems. MapReduce [4], a framework

utilized extensively for big-data application, is a well-utilized
implementation for processing and generating large data sets,
in which the programs are parallelized and executed on a large
cluster of commodity servers.

To address the computing requirements of big data, and
based on the benchmarking and characterization results, we
envision a data-driven heterogeneous architecture for next
generation big data server platforms that leverage the power of
field programmable gate array (FPGA) to build custom accel-
erators. We leverage the latest developments in heterogeneous
prototype platforms, such as Xilinx Zynq that enables integra-
tion of asymmetric cores with FPGA accelerators to build the
foundation of server architecture to address performance and
energy efficiency requirements of the emerging big data server
architecture.

Most recent works focus on the implementation of an entire
particular machine learning application or offloading complete
phases of MapReduce to the FPGA hardware [5], [6], [7],
[8]. While these approaches provide performance benefit, their
implementations require excessive hardware resources and
extensive design effort. As an alternative, hardware+software
(HW+SW) co-design of the algorithm trades some speedup at
a benefit of less hardware.

We study various data mining and machine learning al-
gorithms, namely K-means clustering, K nearest neighbors
(KNN), support vector machine (SVM) and Naive Bayes
classifier, and profile them in order to find the CPU-intensive
and time-consuming kernels (hotspot functions) to offload to
the FPGA. Still, the rest of the application, Hadoop file system
management, compression and decompression, shuffling and
sorting, and standard Java library accesses are performed at
GHz clock frequency CPU server. This methodology raises
several new challenges and trade-offs in performance, energy,
application mapping, HW+SW partitioning, scheduling, and
resource allocation.

We assume the applications are fully known, therefore we
can find the best possible application-to-core+FPGA match.
For mapping of big data analytics applications to FPGA, we
are performing the following tasks in this paper:
• Mapping hot regions of various data mining and machine

learning algorithms to the FPGA.
• Communication cost analysis of moving hotspot func-



Fig. 1. Illustration of Four Vs of big data.

tions to the FPGA.
• Evaluation of HW+SW implementation of the algorithms

in an end-to-end MapReduce system in terms of perfor-
mance and energy efficiency.

• Sensitivity analysis based on the number of mapper slots,
and the micro-architecture diversity of the server; big
Xeon cores vs little Atom cores.

This paper is organized as follows. In Section II, a back-
ground is provided on big data, MapReduce, and Apache
Hadoop. In Section III, the end-to-end system architecture
utilized for implementation and analysis purposes is intro-
duced. In Section IV, the acceleration of studied benchmarks is
described. Section V introduces the analytical assumptions uti-
lized for evaluation of potential speedup and energy-efficiency
gain. In Section VII, the results of profiling and hardware
implementation of micro kernels and functions within the
studied benchmarks are introduced. Section VI introduces
Zynq as the case study for HW+SW acceleration. Section
IX discusses the related work and Section X sums up the
conclusions.

II. BIG DATA AND MAPREDUCE FRAMEWORK

The cloud is a new platform that has been used to cost
effectively deploy an increasingly wide variety of applications.
Vast amount of data are now stored in a few places rather
than distributed across a billion isolated computers, therefore
it creates opportunity to learn from the aggregated data. The
rise of cloud computing and cloud data storage, therefore, has
facilitated the emergence of big data applications. Big data
applications are characterized by four critical features, referred
as the four V, shown in Fig. 1: volume, velocity, variety, and
veracity [9]. Big data is inherently large in volume. Velocity
refers to how fast the data is generated and to how fast it should
be analyzed. In other words, velocity addresses the challenges
related to processing data in real-time. Variety refers to the
number and diversity of sources of data and databases, such
as sensor data, social media, multimedia, text, and much
more. Veracity refers to the level of trust, consistency, and
completeness in data.

MapReduce is the programming model developed by
Google to handle large-scale data analysis. MapReduce con-
sists of map and reduce functions. The map functions parcel

Fig. 2. Hadoop MapReduce: Computational Framework Phases [11].

out the work to different nodes in the distributed cluster. They
process <key/value> pairs to generate a set of intermediate
<key/value> pairs. The reduce functions merge all the inter-
mediate values with the same intermediate key and collate the
work to resolve the results.

Apache Hadoop is an open-source Java-based framework of
MapReduce implementation. It assists the processing of large
datasets in a distributed computing environment and stores
data in highly fault-tolerant distributed file system (HDFS).
Hadoop runs the job by breaking it into tasks, i.e., map and
reduce tasks. The input data is divided into fixed-size pieces
called input splits. Each map task processes a logical split of
this data that resides on the Hadoop distributed file system
(HDFS). Small input splits yield better load balancing among
mappers and reducers at the cost of communication overhead.
In order to perform data locality optimization, it is best to run
the map task on a node where, input data resides in the HDFS.
Thus, the optimal split size for data is the size of an HDFS
block (Typically 64MB, 128MB, etc.) [10].

The Hadoop MapReduce implementation consists of several
phases as depicted in Fig. 2. Compression and decompression
are optional phases, which can improve the performance of
the system especially for large data sizes.

III. SYSTEM ARCHITECTURE

The system studied in this paper, consists of a high-
performance CPU as the master node, which is connected to
several Zynq devices as slave nodes.

The master node runs the HDFS, and is responsible for the
job scheduling between all the slave nodes. It is configured to
distribute the computation workloads among the slave nodes
(worker nodes), as shown in Fig. 3. Each worker node has a
fixed number of map and reduce slots, the number of which,
is statistically configured.

Is this paper, we compare two types of server platform
as the master node; Intel Atom C2758, and Intel Xeon E5.
These two types of servers represent two schools of thought
on server architecture design: using big Xeon cores, which
is a conventional approach to designing a high-performance
server, and Atom, which is a new trajectory in server design
that advocates the use of a low-power core to address the dark
silicon challenge facing servers [12], [13], [14].

Intel Atom C2758 server deploys 8 processor cores per
node, a two-level cache hierarchy (L1 and L2 cache sizes of
24KB and 1024KB, respectively), and an operating frequency
of 2.4GHz with Turbo Boost. Intel Xeon E5-2420 has two
socket of six aggressive processor cores per node, three levels
of cache hierarchy: L1 and L2 cache are private to each core



Fig. 3. System architecture.

while LLC (L3) is shared among all cores. L1, L2 and L3
cache sizes are 32KB, 256KB and 15MB, respectively.

In the system architecture, each slave node is equipped with
a Zynq device, which is considered as a mapper/reducer slot.
The Zynq devices are ZedBoards featuring XC7Z020 Zynq
SoCs. The ZedBoard integrates two 667 MHz ARM Cortex-
A9 with an Artix-7 FPGA with 85 KB logic cells and 560 KB
block RAM.

Thus, ZedBoard is divided into two partitions - the ARM
Cortex-A9 processor-based processing system (PS) and the
FPGA being the programmable logic (PL). The connections
between the PL and PS is established through the AXI
interconnect, which will be described in more detail in Section
VI.

The basic idea for designing the switching network in Fig. 3,
is to have a network with enough capacity at a reasonable cost,
so that all components can communicate with each other at an
acceptable speed. The master and slave nodes communicate
with each other through the switching network, which is
implemented with the PCI-Express.

In order to have a better estimation of the speedup gains
in the architecture in Fig. 3, various overheads need to be
taken into account, which include the overhead of the data
transfer time between the nodes in the network through the
PCI-Express, the overhead of the switching network, and the
data transfer time between the ARM core (PS) and the FPGA
(PL) in the ZedBoard. These overheads have been marked with
”OV” in Fig. 3.

IV. BENCHMARK ACCELERATION

Acceleration of the applications through HW+SW co-design
is a complex problem, particularly because different phases
of the same application often prefer different configurations
and, thus, it requires specific scheduling and mapping to find
the best match. Making wrong scheduling decisions leads to
suboptimal performance and negatively impacts power and
energy consumption [15].

The primary step to deal with these problems is a compre-
hensive workload analysis and performance monitoring when
running an end-to-end or full system benchmark. To this end,
we introduce the architecture of an end-to-end MapReduce

TABLE I

PROFILING RESULTS.

Application Function calls percentage time/call

Example 1 N = 100 k = 13 f = 10

K means clustering 80 100% 500µs
find nearest point 10321 75% 2.91µs

K-means euclid dist 2 89783 50% 223ns
Example 2 N = 17695 k = 13 f = 18

K means clustering 80 99.9% 358ms
find nearest point 17025982 84.6% 1.424µs

euclid dist 2 134110063 75.7% 162ns

Example1 f=5
KNN classify 18597 97.07% 889.29µs

KNN sq euclid dist 280004358 80.26% 59.39ns
Example2 f=10

KNN classify 18597 99% 1.571ms
sq euclid dist 280004358 88.28% 114.92ns

Example 1 N = 610 M = 370 f = 9930

solve dual 7136 78.3% 375.56µs
sprod ns 2667530 8.2%s 105ns

SVM sprod ss 245091 2.6% 367ns
Example 2 N = 2000 M = 879 f = 9947

solve dual 7136 91.41% 388.17µs
spro ns 2667530 8.5%s 97.5ns
sprod ss 245091 1.3% 163ns

linelength 18597 13.85% 2.094µs
areaunderCurve 18597 13.48% 1.997µs

Naive Bayes normDecay 18597 11.61% 1.687µs
abs 9521459 11.98% 3.3ns

nb classify 18597 8.99% 1.205µs

implementation. We select four widely used application for
HW+SW co-design. We characterize each application in order
to find out which kernels are the best candidates to be
offloaded to the hardware for acceleration.

A. Profiling

As a first step, a comprehensive workload analysis and
performance monitoring is done for four widely used machine
learning kernels. We profile each application using the GNU
profiler. We execute the profiling for various input data sizes
and different parameters. Table I shows the profiling results for
selected examples for each application. A detailed description
of the results for each application comes in the sequel.

1) K-means: K-means is a partitioning-based clustering
application that partitions n observations into k clusters such
that each observation is mapped to the cluster with the closest
mean based on specific features. In this paper, the K-means
application from NU-MineBench [16] is studied.

K-means comprises several kernels. Three dominant ones,
which account for a considerable portion of the execu-
tion time are kmeans clustering, find nearest point and eu-
clid dist 2. Kmean clustering is the top function, which calls
find nearest point, which in turn calls euclid dist 2. The tim-
ing behaviour of the application is highly dependent on input
parameters including number of points (N ), number of clusters
(k), and the feature size (f ). Based on Table I, the time spent
in all of the functions increases with the number of points
and feature size. Note, that since the functions are nested, the
percentage numbers are not adding up to 100%.



2) KNN: KNN is a pattern recognition algorithm, which
finds the k nearest neighbors of a vector among N training
vectors based on f features. In order to profile the KNN
algorithm, a C-based implementation of KNN is profiled.
Table I shows the profiling results of KNN classifier for two
functions that dominate the execution time, i.e KNN classify
and sq euclid dist. The results show that the time per call
increases with the feature size.

3) SVM: SVM is a machine learning algorithm, that is
used extensively in data analysis and pattern recognition as
non-probabilistic binary linear classifier. We utilize SVM-light
C-based code [17] for different data sets. Sprod ns, sprod ss
and solve dual are three independent functions, which take up
most of the SVM-learn execution time. The first two compute
the inner product of sparse vectors, and the latter solves dual
problems. Based on the results in Table I, the number of
training documents (N ), support vectors (M ) and feature size
(f ) are important factors that influence the execution time.

4) Naive Bayes : Bayes classifier is another machine learn-
ing algorithm, which is used as a probabilistic classifier using
strong independent feature model and the Bayesian theorem. A
C-based implementation of the Naive Bayes was profiled for
several examples. Nb classify, Linelength, AreaUnderCurve,
normDecay are a number of functions that carry out mathe-
matical operations on the data and abs is another function that
is called within these functions.

B. High-Level Synthesis of Hotspot Functions

While a hardware equivalent of a C or C++ function can
be realized manually with optimal performance, it can be
extremely time consuming for complex functions. In order to
speedup this process, high-level synthesis (HLS) is used. HLS
is the automated process of transforming a C or C++ code
into a register transfer level (RTL) description. The C/C++
language provides constructs to directly access memory. How-
ever the synthesis of such structures is a big challenge for HLS
tools.

Recent works have addressed the problem of the imple-
mentation of dynamic, pointer-based structures [18], [19].
Xilinx Vivado HLS tool supports pointer arrays, provided each
pointer points to a scalar or an array of scalars. It also supports
pointer casting between native C type. However, it does not
support array of pointers pointing to additional pointers or
general pointer castings [20]. Recent works have addressed
the problem of the implementation of dynamic, pointer-based
structures [18], [19]. Thus, a number of changes were made to
the functions that were selected for hardware implementations
to synthesize them, while maintaining their functionality.

It should be noted that the hardware implementations of
some of the selected functions are dependent on input pa-
rameters, which is specific to each example. For the K-
means applications for instance, the RTL equivalent of the
find nearest point function is highly dependent on the number
of points.

Exploration of the dependencies in the code are of high
importance for optimization purposes. The dependencies could

TABLE II

HLS IMPLEMENTATION RESULTS

Application Function clock[ns] latency[cycles] interval[cycles]

K means clustering 4.01 686 687

K-means find nearest point 3.36 2 3

N = 10, k = 13, f = 10 euclid dis 2 3.36 1 2

K means clustering 4.01 18697 18698

K-means find nearest point 3.38 2 3

N = 17695, k = 13, f = 18 euclid dis 2 3.38 1 2

KNN classify sq euclid dist 5.2 154 3
f = 5

KNN classify sq euclid dist 5.2 224 5
f = 10

SVM learn solve dual 4.55 105 106

N = 610,M = 370, sprod ns 3.65 3210 100
f = 9947 sprod ss 3.65 5113 150

SVM learn solve dual 4.55 3327 3328

N = 2000,M = 879 sprod ns 3.65 3210 100
f = 9930 sprod ss 3.64 5113 150

lineLength 3.65 4116 128

areaUnderCurve 3.65 4134 128

Naive Bayes normDecay 4.13 4146 128

abs 3.13 4 1

nb classify 4.55 957 25

be at fine granularity, i.e., the dependencies between each
iteration of the loops within each function, which can limit
the performance benefit gained through pipelining and loop
unrolling, given availability of unlimited hardware resources.
At a coarse granularity, multiple execution of the same func-
tion may be explored for parallelism. If the result of each call
of the hotspot function is independent from the result of the
previous call, multiple instances of the same function may be
instantiated to speed up the overall execution time; however,
FPGA transfer bandwidth capacity and hardware resources
may become a bottleneck.

Exploitation of parallelism at these levels requires an in-
depth analysis of the code, function calls and timing diagram
of each application for various inputs. In this paper, we aim
to optimize each function exploiting various design techniques
such as pipelining and loop unrolling. Further incorporation of
inter-function parallelization will be the focus of future work.

Table II shows the HLS implementation results of the
studied functions on the ZedBoard. All designs are pipelined
in order to get the best results. The latency values show the
number of clock cycles it takes to produce an output value,
which shows the delay of the circuit. The interval values show
the number of clock cycles between when the task can start
to accept new input data, which is an indicator of the speedup
the function can achieve.

V. HARDWARE+SOFTWARE SPEEDUP CALCULATION

While a thorough investigation of the codes and timing
diagrams will help resolve the dependencies and add more
parallelism to the implementation, in this paper for the purpose
of a general model applicable to all applications, a worse
case scenario is considered in which, it is assumed that
various functions implemented in the hardware may incur
dependencies, thus they are not called simultaneously.

Firstly, we drive the speedup ignoring the overhead. While
this is not a realistic assumption given the communication
latency in ZedBoard, it provides us with an estimate of the
upper-bound speedup that can be achieved. Subsequently, a



basic estimation for the transfer time is also incorporated into
the calculations for deriving the overall execution time.

A. Zero-overhead communication

In Section IV we derived the amount of time spent in
each function in the software implementations. Here, for the
purpose of a general model applicable to all applications, it is
assumed that various functions implemented in the hardware
may not be called simultaneously. The amount of time spent in
each function is therefore deducted from the overall execution
time to find the time spent in the software. Then, for each
function implemented in the hardware, the hardware time
per call for each function is calculated as the interval cycles
multiplied by the clock period. For each function, the number
of times that function is called is multiplied by the hardware
time per call to find the hardware time for that function.
If more than one function is implemented in the hardware,
the total hardware times for all the functions will be added
together to get the total hardware times. The final accelerated
execution time will be the total software time plus the total
hardware time.

Eq (1) shows the equation used to derive the accelerated
time.

Tacc = Torig −
n∑

i=1

SWi,PC × Ci +

n∑
i=1

HWi,PC × Ci, (1)

where Tacc and Torig show the total execution time in the
accelerated design and the purely software implementations,
respectively, n is the number of accelerated functions, SWi,PC

and HWi,PC are the software and hardware time per call for
function i, respectively and Ci is the the number of calls to
function i.

B. Modeling the overhead

The assumptions for the calculation of the overhead due
to PS-PL and the PCI-Express communication are described
in the sequel; however, these assumptions are used for a first
order assessment. Network queueing depth, latency, contention
in larger networks and the switching network will have to be
addressed for a more detailed assessment.

1) The PL-PS data transfer overhead: In order to calculate
the transfer time, we add the time for communication of the
core with the FPGA. Note that the transfer time is device
dependent. Moreover, the size of data that is communicated
between the core and the hardware should be compared to the
bus bandwidth of the board that is being used. Thus, if the
size of transfer data is large, the communication bandwidth
between the software and hardware may be potential bottle-
necks.

The accelerated time calculated in (1) is modified in (2) to
estimate the new accelerated times with the communication
overhead.

T ′acc = Tacc +

n∑
i=1

Ti,tr × Ci, (2)

where, T ′acc is the total accelerated time and Ti,tr is the
transmission time for each call of function i. Ti,tr is calculated
as:

Ti,tr =
Di

BWPL,PS
, (3)

where Di is the size of data being transferred between the
PL and PS through each call of the accelerated function, and
BWPL,PS is the bandwidth of the data transfer between the
PL and PS.

Considering the Zynq architecture, data transfer is done
using AXI interconnect. Direct memory access (DMA) is
mostly used for larger amount of data to improve the efficiency
and reduce CPU intervention. Thus, the contention and the
cache misses eventually reduces the effective communication
bandwidth.

It should be noted that (2) considers a worse case scenario;
however, we are able to reduce the accelerated time by
overlapping communication and computation on accelerators.

2) Communication Overhead in Hadoop environment: PCI-
Express is used for the communication between the nodes
in the system. Based on the number of nodes, the data is
transferred among the various nodes in the system. In this
paper, we assume that the entire input data is passed from the
master to the slave nodes. Thus, the communication overhead
is calculated as follows.

Tntw =

N∑
i=1

Di,ntw

BWPCI
, (4)

where Di,ntw is the size of data transferred from the master
node to node i, BWPCI is bandwidth of the PCI-Express bus
and N is the number of nodes.

VI. CASE STUDY FOR ZEDBOARD

AXI is an interface standard through which, different com-
ponents communicate with each other. The AXI link contains
an AXI master, which initiates transactions, and the AXI slave,
which responds to the transactions initiated by the master.
The are two types of AXI interfaces, AXI memory mapped
interface and AXI stream interface.

AXI4 is for memory mapped interfaces and allows burst
of up to 256 data transfer cycles with just a single address
phase. AXI4-Stream removes the requirement for an address
phase altogether and allows unlimited data burst size. AXI4-
Stream interfaces and transfers do not have address phases and
are therefore not considered to be memory-mapped. Another
approach is to build systems that combine AXI4-Stream and
AXI memory mapped IP together. Often a DMA engine can
be used to move streams in and out of the shared memory. To
this end AXI Direct Memory Access (DMA) IPs are utilized
in this paper, which provide high-bandwidth direct memory
access between the AXI4 memory mapped and AXI4-Stream
IP interfaces.

At a 100MHz clock frequency, data transitions may be
realized from AXI4 master to AXI stream slave and AXI
stream slave to AXI4 master at data-rates of 400MBps and



300MBps, respectively, which are 99.76% and 74.64% of the
theoretical bandwidths [21]. These numbers are utilized to find
the data transfer overhead between the PL and PS in the Zynq
devices.

VII. IMPLEMENTATION RESULTS

A. Acceleration results on the Zedboard

Table III shows the results of the overall speedup. For each
application, various functions were selected for acceleration.
The first set of reported speedups is derived based on (1), with
zero-overhead. The second set of results includes the overhead.
The overhead-included speedup is considerably lower than
the zero-overhead speedup, only if the size of data being
transferred is large, or the accelerated function is called many
times.

For each application, various functions were selected for
acceleration. For the K-means application, implementing the
top module yields a noticeably high speedup. Table III
shows that when we select lower-level functions such as
find nearest point and euclid dist 2, the resulting speedup is
becoming significantly lower. That is to be expected, since
utilization of a dedicated hardware optimized for a specific
function will result in a faster design.

Implementation of the sprod ns and sprod ss function for
SVM showed that the hardware time for these functions is
higher than the software time, which precludes them for
being accelerated through hardware. The solve dual function
however resulted in lower hardware time, which is thus the
only results reported for SVM in Table III.

For the Naive Bayes algorithm, various functions were
selected for hardware implementation. The first results are
derived for when only one of the functions were selected and
the last result is derived for the case where several functions
were selected. The results show that by increasing the number
of functions that are moved to the hardware, the speedup
increases; however the amount of available hardware should
also be considered.

In Table III, the size of data being transferred during each
call of the k means clustering is considerably high, thus the
overhead of the data transmission results in a significant drop
in the speedup (64% and 54% drop for feature sizes of 10
and 18, respectively). When the find nearest point function is
accelerated, the size of transferred data during each call is
much lower; however, since the number of function calls is
higher, we still observe some drop in the speedup (3.2% and
3.6% drop for feature sizes of 10 and 18, respectively).

Table III shows that selection of the functions for acceler-
ation is not only concluded based on the implementation on
the hardware, but also on the data transfer overhead.

B. Acceleration results in Hadoop environment

In this section, we present the speedup results in an end-to-
end Hadoop system for offloading time-intensive functions of
the studied machine learning kernels to FPGA accelerator. We
use Intel Vtune for hotspot analysis of Hadoop MapReduce.
Intel VTune is a performance-profiling tool that provides an

TABLE III

HLS IMPLEMENTATION RESULTS

Application accelerated function Zero-overhead Speedup Overhead-included Speedup

N = 100, k = 13, f = 10

k means clustering 181.5 65.08

find nearest point 3.96 3.83

K-means euclid disc 2 1.94 1.94

N = 17695, k = 13, f = 18

k means clustering 312.5 146.83

find nearest point 5.89 5.77

euclid dist 2 3.64 3.64

f = 5

KNN sq euclid dist 2.44 1.92

f = 10

sq euclid dist 3.15 2.37

N = 2000,M = 879f = 9947

SVM solve dual 4.03 4.03

N = 610,M = 370f = 9930

solve dual 8.23 8.23

lineLength 1.126 1.126

areaUnderCurve 1.138 1.138

normDecay 1.091 1.091

nb classify 1.093 1.093

Naive Bayes mh abs 1.0071 1.0071

(lineLength,
areaUnderCurve, 1.629 1.629

normDecay,
nb classify)

interface to the processor performance counters [22]. Using
Vtune, we analyze the contribution of kernel execution time
over the total execution time when running Hadoop.

Fig. 4 shows the common hotspot modules of big data
applications on both Intel Atom C2758 and Xeon E5, for
different number of mappers. Application kernel represents the
computation part to perform the task such as K-means, KNN,
etc. Libz performs the data compression and decompression
tasks for the Hadoop workload.

Amdahl’s law is used to calculate the overall speedup on
an end-to-end Hadoop system, based on the speedup results
from Table III and Hadoop hotspot analysis in Fig. 4.

Fig. 5 shows the achievable acceleration of the Hadoop
system for selected examples in Table III for an architecture
with four mapper slots. Results show that the speedup of each
application through HW+SW acceleration is translated into a
lower speedup on the end-to-end Hadoop system. For instance,
while the acceleration of the K-means yields a speedup of
the order of 312× with zero overhead, the speedup drops to
146× with the data transfer overhead, and 2.72× and 2.78×
on Hadoop platform with Atom and Xeon, respectively. The
final speedup is greatly affected by the fraction of time the
kernel execution takes to run in the Hadoop environment. In
other words, even if are able to significantly accelerate the
kernel through HW+SW co-design, the overall acceleration
on the Hadoop platform is insignificant if most of the time
is spent on operations other than the kernel, including data
compression and transfers.

C. Power and Energy-delay product

An important benefit of offloading applications to dedicated
hardware is enhancing power efficiency. General-purpose
CPUs such as Atom and Xeon are not designed to provide
maximum efficiency for every application. Accelerators can



Fig. 4. Hotspot analysis before acceleration.

Fig. 5. Acceleration on a full-blown system with four mapper slots.

help improve the efficiency by not only speeding up execution
time, but also executing the task with just enough required
hardware resources.

The power values were calculated with the same methodol-
ogy as the one used to calculate the execution time in Section
V. Power measurement for each application is done using
picoScope digital oscilloscope for the ARM and FPGA board
(the board idle power was deducted from the power readings
value when running application to estimate core power). We
measured the power by measuring the current flowing to core
and multiplying that by the core voltage. To measure the
current, we measured the voltage drop across the test points
provided on the board divided by the resistance around those
points.

Assuming a uniform distribution of energy over the exe-
cution time, the energy dissipation of the accelerated regions
was replaced with that of the FPGA to get the energy of the
accelerated kernel. Wattsup pro meter was used for power
reading on the end-to-end Hadoop system running on Xeon
and Atom servers; however, only a fraction of the total energy
is due to the kernel, which is substituted with the energy of
accelerated kernel. By averaging the resulting Hadoop energy
over the new execution time, the power consumption values
were calculated.

Table IV shows the power and energy-delay-product (EDP)
results for four mappers on Xeon and Atom. The initial
power numbers refer to the power values on Hadoop before
acceleration and the accelerated power refer to power number
after acceleration. Power ratio shows the ratio of power before
the acceleration to the power after the acceleration. EDP shows
the energy delay product.

Based on Table IV, power is reduced by up to 3.7× in the

TABLE IV

POWER AND ENERGY ANALYSIS FOR FOUR MAPPER SLOTS

Application ini power[w] acc power[w] ini EDP[ws2] acc EDP[ws2] power ratio EDP ratio

Xeon
K-means 15.88 7.45 42939.52 2823.1 2.13 15.21

KNN 18.59 9.07 22330.06 3853.57 2.05 5.79
SVM 17.37 12.24 13615.73 4601.9 1.42 2.96
NB 32.26 8.72 18580.43 2316.3 3.7 8.02

Atom
K-means 2.99 2.68 5412.17 680.84 1.11 7.95

KNN 3.14 2.87 14912.68 4283.73 1.09 3.48
SVM 2.87 2.77 5062.68 862.09 1.03 5.87
NB 4.26 3.96 5103.49 2242.03 1.07 2.28

(a) (b)

Fig. 6. Execution time for various number of mapper slots on Atom and
Xeon

studied applications. Moreover, since both the execution time
and the power has been reduced through the acceleration, EDP
is significantly reduced by upto 15.21×.

VIII. SENSITIVITY ANALYSIS

A. Number of mapper Slots

An important factor in determining the performance of an
analytics application running in Hadoop MapReduce environ-
ment is the number of mapper and reducer slots. The optimal
number of mappers and reducers aims to create a balance
among the CPU computing power and the amount of data
that is transported across nodes. In this section, we evaluate
FPGA acceleration results using different number of mappers
for running the Hadoop with 1, 4 and 8 mapper slots.

Fig. 4 shows the results of the hotspot analysis for different
number of mappers. Fig. 6 shows the FPGA acceleration
results using different number of mapper slots.

Results show that for Atom, K-means, KNN and SVM yield
almost the same execution time for different number of mapper
slots and for the Naive Bayes, four mapper slots yield the best
results. When Xeon server runs the master node, for KNN and
SVM, four mapper slots yield the best results.

While increasing the number of mapper slots in the archi-
tecture allows the exploitation of more levels of parallelism,
the communication overhead limits the range of achievable
speedup. For instance, Fig. 6 shows that increasing the number
of mapper slots to four enhances the performance; however,
further increase has no or negative effect on the execution
time. However, the optimal configuration is highly dependent
on the application type, the architecture of the master node,
the hotspot characteristics of the application on the Hadoop
framework, size of input data splits and the implementation.



TABLE V

EXECUTION TIME FOR DIFFERENT DATA SIZES

Execution time [s] Speedup
Data input 284KB 128MB 2GB 284KB 128MB 2GB
K-means 19.20 181.60 303.26 2.708 2.708 2.707

Data input 172K 4MB 16MB 172K 4MB 16MB
KNN 19.91 132.90 504.62 1.740 1.740 1.740

Data input 100MB 2GB 10GB 100MB 2GB 10GB
SVM 18.93 85.71 337.31 1.479 1.479 1.478

Data input 100MB 2GB 7GB 100MB 2GB 7GB
Naive Bayes 16.62 48.48 104.57 1.444 1.444 1.443

B. Size of data

We have conducted the data size sensitivity analysis of
studied Hadoop machine learning applications on the Xeon
with 4 mappers to understand the impact of size of data on the
speedup. Table V shows the execution time after acceleration
and the speedup for different data sizes for all applications.
Table V shows that as expected, the execution time increases
with the increase in data size. Moreover, the data size has
little impact on the the achievable speedup, which is due to
the overhead for the transfer of data through the switching
network and PCI-express.

C. Big and Little cores

In exploring the choice of architecture for big data, we
compare the performance of big data applications on two very
distinct micro-architectures; a high-performance server, and
the Atom, which is a new trajectory in server design that
advocates the use of a low-power core to address the dark
silicon challenge facing servers.

Based on the results from Fig. 5, the range of speedup
achieved through HW+SW co-design is the almost similar for
Atom and Xeon for the K-means, KNN, and Naive Bayes. For
the SVM, Atom yield a higher speedup.

However, we are more interested in the overall execution
time. Fig 6 shows that the overall execution time is lower
on the the architecture in which, HDFS runs on the high-end
cores (Xeon), especially for the K-means and the Naive Bayes
algorithm.

Based on Table IV, the Atom server yields lower power and
better energy efficiency both before and after the acceleration.
This is to be expected, as Atom uses small cores, designed
to consume low power. However, the power reduction through
hardware acceleration is lower for the low-end server (Atom),
since it already consumes lower power. Moreover, the energy
efficiency is enhanced more significantly for the high-end
server (Xeon). Overall, the results indicate the benefit of FPGA
acceleration in both high-end and low-end server platforms.

IX. RELATED WORK

In [8], FPMR is introduced as a MapReduce framework on
the FPGA with RankBoost as a case study, which adopts a
dynamic scheduling policy for better resource utilization and
load balancing. In [7], a hardware accelerated MapReduce
architecture is implemented on Tilera’s many core processor
board. In this architecture data mapping, data merging and

data reducing processing are offloaded to the accelerators.
The Terasort benchmark is utilized to evaluate the proposed
architecture. In [6] hardware acceleration is explored through
an eight-salve Zynq-based MapReduce architecture. It is im-
plemented for a standard FIR filter to show the benefits gained
through hardware acceleration in the MapReduce framework,
where the whole low-pass filter is implemented on the FPGA.
In [23], a configurable hardware accelerator is used to speed up
the processing of multi-core and cloud computing applications
on the MapReduce framework. The accelerator is utilized to
carry out the reduce tasks.

In [5], a detailed MapReduce implementation of the K-
means application is done in the HW+SW framework, which
enhances the speedup of a non-parallel software implemen-
tation of K-means. While the Hadoop implementation of
the application explores their inherent parallelism and en-
hances their performance with respect to non-MapReduce
software implementation, in this paper, we aim to model
the range of potential speedup that can be achieved through
HW+SW co-design and compare the resulting speedup to
the MapReduce implementation. In a recent work [24], [25],
we provide an estimation of hardware acceleration speedup
using hardware/software co-design of machine learning and
data mining applications on CPU+FPGA platform. However
the communication overhead was not studied thoroughly in
our previous work. In addition this work is different as it
also studies system level parameters of hadoop MapReduce
framework as well as architecture level parameters on the
HW+SW acceleration potentials.

X. CONCLUSIONS

To significantly improve performance and energy-efficiency
of processing big data analytics applications, in this paper
a heterogeneous architecture that integrates general-purpose
CPUs with dedicated FPGA accelerators was studied. Full
Hadoop MapReduce profiling was used to find the hot regions
of several widely used machine learning and data mining
applications. The hardware equivalents of performance hot
regions were developed using high level synthesis tools. With
HW+SW co-design, we offloaded the hot regions to the
hardware to find the design with the highest speed-up. A
comprehensive analysis of communication and computation
overheads in Hadoop was performed to understand how the
speedup of each application contributes to its overall execution
in an end-to-end Hadoop MapReduce environment. Sensitivity
analysis was performed on parameters such as the number of
mapper slots and CPU micro-architecture. The results show
that a kernel speedup of upto ×321.5 with HW+SW co-design
can be achieved. This results in ×2.72 speedup, 2.13× power
reduction and 15.21× energy-efficiency improvement (EDP)
in an end-to-end Hadoop MapReduce environment considering
various data transfer and communication overheads.
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