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Learning Objectives

• Describe knowledge elicitation as a problem in system 
lifecycle engineering

– Describe the stages in building a Bayesian network and/or 
decision graph model

– Describe the activities that occur at each stage
– Describe the products produced at each stage

• Describe how the KE process is managed
• Be prepared to carry out the process of developing, 

implementing and testing a Bayesian network or decision 
graph model for a problem of interest to you
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Unit 7 Outline

• The Knowledge Acquisition Lifecycle

• Building the Model

• Managing and Evaluating the Model

• Knowledge Engineering for Relational 
Graphical Models
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Importance of Structured KE Process

• Graphical models have become well established tools for 
representing and reasoning under uncertainty

• Applications are growing more complex
• A formal, repeatable process for knowledge engineering is 

becoming more important
– Early work on elicitation of probability models (1970’s) focused 

on eliciting single probabilities or univariate probability 
distributions

– Early work in graphical models tended to assume that structure 
elicitation was relatively straightforward

– As models become more complex the KE process must be 
managed

• Knowledge elicitation for large Bayesian networks is a 
problem in systems engineering
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What is Knowledge Acquisition?

• Objective:  
– Construct a model to perform defined task
– Develop knowledge base for use in solving problems in defined class

» Modularity
» Modifiability and reusability

• Participants:  Collaboration between problem expert(s) and 
modeling expert(s)

• Process:  Iterate until done
– Define task objective
– Construct model
– Evaluate model
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Systems Engineering

• System
– A set of interacting components organized to serve a specified 

objective
• Systems engineering

– The technical and managerial process by which a user need is 
translated into an operational system

• System life cycle
– Systems evolve through predictable phases

» Design
» Development
» Operation
» Retirement

– Systems engineering is organized around life cycle
» Support current phase
» Anticipate and plan for next phase
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Spiral Model of Lifecycle Engineering

• System development viewed as repeating cycles of design, 
implementation, operation, evaluation

• Evaluation used to plan next cycle
• Early phases develop prototype for planning and risk mitigation
• Later phases develop operational versions
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Agile Development
• Developed by software engineers; being applied by systems 

engineers
– http://www.incose.org/chesapek/Docs/2011/Presentations/2011_09_

21_Johnson_AgileEngineering.pdf

• Principles:
– Continuous collaboration with customer

– Continuous updates

– New delivery on very short cycle (often weekly)

– Value participants and interactions

– Emphasize simplicity
• Difficult to do well but good implementation can provide major 

benefits on projects emphasizing interaction between developers 
and customers
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Agile Process for Graphical Model Engineering
• Goal of knowledge engineering

– Discovery and construction of appropriate model
– Not extraction of pre-existing model

• Agile approach is necessary for systems in which requirements are discovered as 
development progresses

• KE spirals
– Construct series of prototype models
– Explore behavior of prototype model on sample problems
– Evaluate prototypes and restructures as necessary

• KE changes both expert and elicitor 
– Understanding of expert and elicitor deepen as KE proceeds
– Improves communication between elicitor and expert
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Applying Agile Knowledge Engineering

• Begin with a small sub-problem
– Self-contained
– Can be completed in short time
– Interesting in its own right
– Reasonably representative of global problem

• Build and test model for sub-problem
– Look for common structures and processes that will recur
– Think about more efficient ways to structure KE
– Develop and document conventions (“style guide”) to be 

followed as models are expanded
• Expand to more complex problems
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Selecting a Subproblem

• Initial model or expansion of existing model
• Characteristics

– Manageable size 
– Interesting in its own right
– Path to expansion
– Risk mitigation

• How to restrict
– Focus or target variables - variables of direct interest to client 

» Restrict to subset of variables of interest
» Restrict to subset of values 

– Evidence variables - variables for which information will be available; used to 
draw inferences about the focus variables

» Restrict to subset of evidence sources
– Context variables - variables that will be assumed known and will be set to 

definite values
» Restrict to subset of contextual conditions (sensing conditions, background casual 

conditions; assignment of objects to sensors; number of objects)
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The Participants
• Naive view

– Put problem experts and modeling experts in a room together and 
magic will happen”

• Realistic view
– Pure “problem experts” and pure “modeling experts” will often talk past 

each other
– Modeling experts must learn about the problem and problem experts 

must learn what models can do
– This process can be time consuming and frustrating
– Team will be more productive if both sides expect and tolerate this 

process
• Training

– The most productive way of training modelers and problem experts is 
to construct very simple models of stylized domain problems

– Goal is understanding and NOT realism or accuracy!
– Beware:  the training phase can seem pointless and frustrating
– It is important to get expert buy-in 
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The Domain and the Expert

• Domains well suited to reliably and measurably good 
performance

– Tasks are repeatable
– Outcome feedback is available

– Problems are decomposable

– Phenomena are inherently predictable
– Human behavior/”gaming” not involved

• Characteristics to look for in an expert
– Expertise acknowledged by peers

– Articulate
– Interest and ability to reason about reasoning process

– Tolerant of messy model-building process

• Note: some of the best experts as measured by performance on 
the problem are not very good experts for knowledge elicitation

– Can do it but cannot articulate how they do it
– Become frustrated with elicitation process
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Unit 7 Outline

• The Knowledge Acquisition Lifecycle

• Building the Model

• Managing and Evaluating the Model

• Knowledge Engineering for Relational 
Graphical Models
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Model Components

• What are the variables?
– Random variables 
– Action and utility nodes

• What are their states?
• What is the graph structure?

– Is there repeated structure?
• What is the structure of the local distributions?
• What are the parameters?

– Probability distributions
– Utility functions
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The Clarity Test

• Usually begin with vague structure to develop understanding 
of problem

• Final model should have clear operational meaning for all 
components

• Clarity test:
– Could a clairvoyant unambiguously specify value of all nodes 

and states?
– “Fever is high” does not pass clarity test 
– “Fever ≥ 103� F” passes clarity test
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Defining the Variables

• Begin with “focus variable” and spread out to related variables
• Ask about causally related variables

– Variables that could cause a state to be true
– Variables that could prevent a state from being true

• Ask about enabling variables
– Conditions that permit, enhance or inhibit operation of a cause

• Ask about effects of a variable
• Ask about associated variables

– Knowing value provides information about another variable
• Ask about observables

– What evidence could be observed that would enable you to infer state 
of a variable
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Target or Focus Variable in Diagnosis
• Diagnosis problem:  goal is to infer "fault," 

"disease," "problem" from a set of "findings," 
"symptoms" or "indicators"

– Direction of inference is usually from effect to cause
• Modeling issue:  single or multiple fault?
• Single fault

– Collect all faults as states of a single node
– Modeling simplicity and inference tractability

• Applicable domains:
– Pathology- one disease/slide
– Pediatrics- acute diseases
– Highly maintained mechanical systems

• Modified single-disease hypothesis:
– Include common combinations as explicit 

hypotheses

Single Fault Model

Multiple Fault Model
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Target or Focus Variable in Prediction

• Prediction:
– Objective is to predict a variable that has not yet occurred or is 

not known
– Direction of inference is usually from cause to effect

• Applications:
– Planning
– Intelligence analysis 
– Policy modeling
– Strategic decision making
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States of Variables

• States must be exclusive and exhaustive
– Naive modelers sometimes create separate variables for different 

states of the same variable
• Types of variable

– Binary (2-valued)
– Qualitative
– Numeric discrete
– Numeric continuous

• Dealing with infinite and continuous state sets
– Standard Bayesian network software requires finitely many states per 

random variable
» Continuous random variables must be grouped into bins
» Bin boundaries should represent meaningful differences in effect on related 

variables
» Different resolutions may be appropriate for different purposes

– Exact inference algorithms exist for linear Gaussian and conditional 
linear Gaussian BNs

» Software support is limited
– Monte Carlo inference can be used for BNs with continuous variables

» Software support is limited
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Graph Structure
• Goal: develop model that is good enough for task
• Criteria to consider

– Parameter parsimony 
» Fewer nodes, fewer arcs, smaller state spaces, coarser partitions simplifies 

elicitation makes learning more efficient (fewer observations required)
– Fidelity of model to problem

» Greater fidelity often requires more nodes, arcs, states, finer partitions
» Balance benefit against cost of additional modeling
» Too much detail can decrease accuracy

– Expert comfort with probability assessments
• Direction of arcs

– Causal direction can increase:
» Conditional independence
» Ease of probability elicitation
» Efficiency of learning

– Causal direction is required if modeling effects of interventions (planning)
– It may be helpful to show user a graph with arcs in inferential direction even 

if BN has causal arcs 
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Naïve Bayes

• Commonly applied in diagnosis problems
– Simplifies elicitation
– Simplifies inference
– Simplifies learning

• Single parent node and multiple leaf nodes that are conditionally 
independent given parent

– Also known as "idiot Bayes"
– Simplifies knowledge engineering and 

speeds up computation
– Often OK at least approximately

Naïve Bayes Model
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Handling Dependency:
Adding States to Parent Variable

• Problem:  Symptoms not independent given fault
• Solution:  Redefine parent variable to create model with 

independent symptoms
– Incorporate into states of parent variable conditions that modify 

relationship between symptoms
• Example

– P(Malaise|UTI, fever) > P(Malaise | UTI)
– Redefine UTI states {absent, mild, moderate, severe}
– P(Malaise | severe UTI, fever) » P(Malaise | Severe UTI)

Example courtesy of Mike Shwe
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Handling Dependency:
Adding Intermediate Variables

• Intermediate variable is used to model dependency of children given parent
– Symptoms are independent of fault given intermediate variable
– Children are dependent given original parents
– More parsimonious than drawing arcs between symptoms

• Examples:
– “True state” variable creates conditional independence of sensor reports
– Intermediate mechanism creates independence among a set of related findings

Example courtesy of Mike Shwe

Using partitions or ICI can 
simplify specification of 

distribution of intermediate 
random variable
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Local Distribution Structure

• Local distributions: 
– One distribution for each combination of values of parent 

variables
– Assessment is exponential in number of parent variables
– Assessment can be reduced by exploiting structure

• Examples of local distribution structure
– Context specific independence: elicitation by partition
– Independence of causal influence
– Divorcing
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Context-Specific Independence

• Partition state set of parents into subsets
– Set of subsets is called a partition
– Each subset is a partition element

• Elicit one probability distribution per partition element
• Child is independent of parent given partition element
• Examples:

– P(reported location | location, sensor-type, weather) independent of sensor 
type given weather=sunny

– P(fever=high | disease) is the same for disease Î {flu, measles}
• Knowledge elicitation using partitions

– For each child variable ask expert to group states of parent variable having 
same probability distributions

– Sometimes  several children induce same partition
– Partitions may form basis of type hierarchy

» When many indicators induce a common partition element we may name that 
partition element as a subtype of the parent variable

» e.g., acute infectious disease “isa” infectious disease “isa” disease
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Independence of Causal Influence
• Assumption:  causal influences operate independently of each other in 

producing effect

– Probability that C1 causes effect does not depend on whether C2 is operating

– Excludes synergy or inhibition

• Examples

– Noisy logic gates (Noisy-OR, Noisy-AND, Noisy-XOR)

– Noisy adder

– Noisy MAX

– General noisy deterministic function

• Elicitation:

– ICI structure:  

» "Does the presence of C2, C3, … increase or decrease [strengthen or weaken] the 
impact of C1 on E?"

» "Does the presence of C2, C3, … increase or decrease the probability C1 will cause E 
to occur?"

– Parameters:

» ICI structure allows calculation of entire probability table from single-cause 
distributions
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Divorcing

• Divorcing generalizes partitions and ICI 
• An intermediate variable summarizes the effect of a subset 

of parents on the child
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Exploiting Context-Specific Indepdendence
• Context-specific independence can simplify elicitation
• Example: 

– Government supporters and apolitical people rarely criticize the government.  
Dissidents often do, as do government agents (because they are trying to lure 
Rechtian agents into thinking they are dissidents)

– Need to specify only one distribution given {Supporter, Apolitical} and another 
probability given {Agent, Dissident}  

• Eliciting partitions from expert:
– Ask expert: “Which variables help to distinguish between supporters and agents?” 
– Expert answers: “Criticizing the government”
– Ask: “Does this variable give any information to help distinguish between agents 

and dissidents?  Between supporters and apolitical people?”
– Expert answers: “No”
– Result: Distribution for criticism is same for agents and dissidents, and same for 

supporters and apolitical people
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Specialists and Generalists

• In many disciplines experts tend to partition problems into sub-categories 
exhibiting context-specific independence.  

• If we know which sub-category to focus on, we can ignore cues relevant for 
other categories.

– Specialists focus on difficult cases in one sub-category 
– Generalists focus on

» Solving easy cases in any category  
» Diagnosing when to call in a specialist and which specialist to call

• Context-specific independence justifies and supports this strategy
– Some variables are most useful for sorting cases into sub-categories, and may 

be (approximately) independent of which hypothesis is correct within sub-
category 

– Other cues may be useful for discriminating within sub-categories
• Partitions can represent this type of reasoning
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Assessing Probability Distributions

• Theory
– Parametric expression may be suggested on theoretical grounds

» P(Node|Parents) = f(parents,parameter)
– Elicit parameter from expert or estimate from observations
– Test theory against data

• Statistical estimation (when data are available)
– Frequencies (problem with zero probabilities)
– Posterior distribution given Dirichlet prior distribution

» Uniform prior
» Elicit prior frequencies and virtual prior sample size from expert

– Regression model (discrete or continuous)
– Independence of causal influence

• Direct elicitation
– Probabilities
– Odds (better for extreme probabilities)
– Continuous distributions:  percentiles, density function, parameters
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Example: Will George Mason University make Sweet 16 
in 2018?

Direct Elicitation

• Direct question:  “What is the 

probability GMU will make Sweet 

16 in 2009?”

• Visual representation

– Adjust the size of the gray area so the 

probability that we will make Sweet 16 

is the same as the probability that a 

spinner will land in the gray area

• Ask for probability or area on wheel 
so that decision maker is indifferent 
between 2 lotteries:

• Ask decision maker about betting 
odds and solve for probability 

– For small prizes, p=Y/(X+Y)

Sweet 16

Not
Land gray

Land white

$X

($X)
($Y)

$Y

Sweet 16

Not
Land gray

Land white

$A

$A
$B

$B

Bet for

Bet against
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Comments
• Many decision makers are uncomfortable with numerical probabilities

– Decision makers may prefer qualitative terms such as “fairly likely” or “improbable”
– These phrases have ambiguous meaning and can cause miscommunication unless 

they are calibrated to agreed-upon numerical values
– Sometimes visual devices are a good compromise.  If manipulated on a computer 

screen they can be translated directly into numerical probabilities
– Betting odds are often less useful in practice than asking directly about probabilities -

betting odds come from probabilities and not vice versa
– People find frequencies (3 out of every 100) easier than probabilities (0.03)
– For very small probabilities orders of magnitude must be used  

» “State a1 is 100 times more likely than State a2”
» “We will generally see about 100 cases of State a1 for every case of State a2”

– Assessing very small probabilities is difficult
• Probability assessors should be aware of systematic distortions of probability 

judgment
– Treating low-probability events as impossible
– Overconfidence and other anchoring effects
– Neglect of base rates
– Overweighting salient events

• If time permits it is good to phrase questions in multiple ways and to feed back 
consequences of judgments to decision maker
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Probability Scales:
an Empirical Study

• Twenty-three NATO  intelligence 
analysts were given statements 
about likelihood of events, e.g.:
� ”It is highly likely that the 

Soviets will invade 
Czechoslovakia”

• The basic sentence structure was 
fixed but qualifiers varied, e.g.:
� ”It is almost certain that the 

Soviets will invade 
Czechoslovakia”

• Analysts indicated percentage 
they would assign to each 
statement if it appeared in an 
intelligence assessment

Source: Barclay, et al (1977)
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Assessing Odds

• Direct assessment of probabilities can yield very poor results 
on extreme probabilities

– Direct assessment focuses on absolute magnitude
– 0.01 seems "not much different" from 0.001
– Orders of magnitude are important in Bayes Rule

• Assessing by odds
– "State a1 of variable A is 3 times more likely than state a2"
– Yields equation P(a1) = 3P(a2)
– Solve for P(a1) and P(a2)



Knowledge Engineering - 36 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Continuous Distributions
• Continuous random variables can take on values on a continuum

– Parametric models (e.g., Normal, Gamma, Chi-square)
– Nonparametric models
– “Semi-parametric” models (kernel density functions)

• The cumulative distribution function  (cdf)
– F(x) = P(X≤x)
– Value of cdf at x is the probability that the random variable is less than or equal to 

the number x
– F(x) is a step function for discrete variables, and a smoothly increasing function for 

continuous variables
• Probability density function (pdf)

– The pdf measures the relative probability of different values of the continuous 
random variable.  The value f(x)Dx is approximately equal to the probability that X 
lies in the small interval [x-Dx, x+Dx]

– The pdf is the derivative of the cdf: 

» f(x) = !"($)!$
– The cdf is the integral of the pdf:

» & ' = ∫*+$ , - .-
– The probability that X lies in the interval [a, b] is equal to the area under the curve 

defined by the cdf:
– P(a≤X≤b) = F(b) - F(a)  =  ∫/

0 , - .-
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Example Types of Density Function
• Symmetric and unimodal

• Symmetric and skewed distribution

• Bimodal

We can show the expert 
different shapes and ask 
which best fits judgments

It may help to show 
density function and 
report percentiles (“With 
this density function, 23% 
of the cases will have 
value less than 1.5.”)

Bimodal distribution may 
mean a missing parent
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Assessing Continuous Distributions
• Continuous distributions are often assessed by asking about the cdf

– Pick values and assess probability (this method can also be used for discrete 
random variables) :

» P(sales ≤ $10,000) = ?
» P(sales ≤ $20,000) = ?
» P(sales ≤ $40,000) = ?
» P(sales ≤ $65,000) = ?
» P(sales ≤ $100,000) = ?

– Pick probabilities and assess values:
» P(sales ≤ ?) = .10
» P(sales ≤ ?) = .30
» P(sales ≤ ?) = .50
» P(sales ≤ ?) = .70
» P(sales ≤ ?) = .90

• Depending on how the judgments will be used, we may interpolate between 
these points or we may fit a parameterized probability distribution to the 
expert’s judgments

• This method may be problematic for parameters whose meaning is not 
straightforward to the decision maker

– e.g., What is your cdf for the mean number of transmission errors per hour?
• Another method is to ask about shape of density function
• These methods can yield different results

– Suggestion:  use both and resolve inconsistencies
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Parameterized Continuous Distributions
• Use of standard parameterized distributions may greatly economize on 

elicitation, e.g.:
– Normal
– Log-normal
– Gamma
– Exponential

• Assess several percentiles and select parameters to fit the percentiles 
(this may take some work)

• Check that shape of density function is acceptable
• Ask about “sufficient statistics”

– What do you think is the average number of transmission errors per 8-hour 
period when averaged over many periods? 

• When data are available they can be used to augment expert judgment
– Use expert judgment to specify a prior distribution
– Learn posterior distribution for parameters
– Use structure learning method to check structural assumptions

» Partitions, presence/absence of arcs, functional form of distribution
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Combining Models from Multiple Sources

• Problem decomposition
– Some elements learned from data; others elicited from experts
– Different experts specify different parts of model

• Aggregating different inputs on same model component
– There is a large literature on combining probability estimates
– We can combine estimates from multiple experts, multiple 

models, or both
– Typically the combination rule is some kind of average
– Many weighting schemes have been proposed; it has proven 

surprisingly difficult to beat simple averaging
• Prediction markets

– Useful for forecasting well-defined events on which outcome 
feedback will become available 
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Unit 7 Outline

• The Knowledge Acquisition Lifecycle

• Building the Model

• Managing and Evaluating the Model

• Knowledge Engineering for Relational 
Graphical Models
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Managing Knowledge Acquisition

• Record rationale for modeling decisions
• Develop “style guide” to maintain consistency across 

multiple subproblems
– Naming conventions
– Variable definitions
– Modeling conventions

• Enforce configuration management
– History of model versions
– Protocols for making and logging changes to current model
– Rationale for changes

• Develop protocol for testing models
– Record of test results traced to model changes and rationale
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Configuration Management

• Formal process is required for managing evolution of 
complex models

• Configuration management includes:
– Archiving history of evolving versions
– Protocols for making and logging changes to current 

knowledge base
– Protocols for documenting changes and rationale
– Automated comparison of similarities and differences between 

different versions of knowledge base
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Model Agility

• Requirement:  rapid adaptation of model to a new situation
• Support for model agility

– Libraries of reusable model fragments
– Documentation of stable and changeable aspects of model
– Development of data sources for inputs to changeable model 

components
» Protocols for data collection and maintenance
» Protocols for importing data into knowledge base

– Automated support for propagating impact of changes
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Model Evaluation

• Model walk-through
– Present completed model to "fresh" experts and/or modelers
– Evaluate all components of model

• Sensitivity analysis
– Measures effect of one variable on another
– Compare with expert intuition to evaluate model
– Evaluate whether additional modeling is needed

• Case-based evaluation
– Run model on set of test cases

» Cases to check local model fragments (component testing)
» Cases to test behavior of global model (whole-model testing)

– Compare with expert judgment or “ground truth”
– Important issue:  selection of test cases
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Unit 7 Outline

• The Knowledge Acquisition Lifecycle

• Building the Model

• Managing and Evaluating the Model

• Knowledge Engineering for Relational 
Graphical Models
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Knowledge Engineering for Relational Models

• Relational representations (e.g., MEBN, PRM, OOBN) require 

knowledge about:

– Entity types (e.g., patients, diseases, tests)

– Attributes of entities (e.g., gender of patient, sensitivity of test)

– Relationships among entities (e.g., patients have diseases; patients take 

tests)

• Entity-relationship model specification is needed for database schema 

design; object-oriented software design; ontological engineering

– There is a literature on methodologies for entity-relationship modeling

• Literature in these areas usually does not treat uncertainty

• Growth area in probabilistic modeling

– Software support is not widely available

– Experience base is small of people knowledgeable in specifying relational 

models

– Literature is still small
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Uncertainty Modeling Process for 
Semantic Technology (UMP-ST)

• Guideline for probabilistic ontology developers
• Describes main tasks involved in creating probabilistic ontologies
• Based on Unified Process (UP) for software engineering
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Object
Region
Report
Timestep
Location
ReportedObject
Speed
…

Goal: Identify and type vehicles
Query: Is it a tracked vehicle? Wheeled vehicle? How 
fast is it going?
Evidence:  Weather, Imaging reports, MTI reports, GIS 
reports

IF an object is moving fast and 
is on the road, 

THEN it is more likely that it is 
a wheeled vehicle than a 
tracked vehicle.

PROBABILISTIC
ONTOLOGY

MODELING CYCLE
(POMC): 
VEHICLE

IDENTIFICATION
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Use Case: Detecting Procurement Fraud

• The Comptroller’s office is responsible for inspecting and auditing 
Brazilian Government projects and programs

– Provides transparency and helps to prevent corruption
• All contracts with the private sector must follow the national 

Procurement law
– Select the most advantageous proposal for a contract in its interest
– Susceptible to many forms of corruption

• Use case purpose: support 
information fusion to detect 
possible fraud in 
procurements
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Person ownerOf

Procurement participatesIn

Enterprise livesAt

Goal: Find suspicious procurements

Query: Is there any relation between the committee 

and the enterprises that participated in the 

procurement?

Evidence:  They are siblings; They live at the same 

address

IF a member of the committee 

lives at the same address as 

a person responsible for a 

bidder in the procurement, 

THEN it is more likely that a 

relation exists between the 

committee and the 

enterprises, which lowers 

competition.

POMC:
PROCUREMENT

FRAUD
DETECTION
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Use Case: Maritime Security Operations

• Support maritime domain awareness (MDA)
• Enable predictive situational awareness in 

maritime operations 
• Provide higher-level fusion to reason about 

threats in the maritime domain

QueriesPredictions & 
Impact Assessments

Low level fusion + 
Stovepiped systems + Fog of 

War = Cognitive Overload

?????
? ?
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Goal: Identify whether a ship is a ship of interest

Query: Does the ship have a terrorist crew member?

Evidence:  Crew member related to any terrorist; Crew 

member associated with terrorist organization

Ship

Person

Organization

isTerroristPerson

hasCrewMember

isRelatedTo

IF a crew member is related to 

a terrorist, 

THEN it is more likely that he 

is also a terrorist

MODELING
CYCLE:
MARITIME
DOMAIN

AWARENESS
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UMP-ST Plugin to UnBBayes

• Provides support for probabilistic ontology creation, evolution 
and maintenance

• Addresses problems faced by PO designers:
– Complexity of creating probabilistic ontologies
– Difficulty of maintaining and evolving probabilistic ontologies
– Lack of tool for documenting probabilistic ontologies
– Need for tools to support requirements traceability

• Tool for documenting, maintaining and evolving probabilistic 
ontologies

– Provides step by step guidance for creating probabilistic ontologies
– Provides centralized tool for documenting probabilistic ontologies
– Enables identification of impact of changes through requirements 

traceability
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Summary and Synthesis
• Graphical model development is a problem in system lifecycle engineering

– Begin with a small subproblem
» Self-contained
» Can be completed in short time
» Interesting in its own right
» Reasonably representative of global problem

– Iteratively expand and refine
– Test and evaluate at each stage

» Elicitation review
» Sensitivity analysis – quantitative and qualitative
» Case-based testing – local and global
» Evaluation against empirical data

• Effective management of knowledge engineering process improves
– Communication between domain experts and knowledge engineers
– Quality of model
– Reusability of results

• Software supports are needed for agile lifecycle engineering of probabilistic 
graphical models
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