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« Describe knowledge elicitation as a problem in system
lifecycle engineering

— Describe the stages in building a Bayesian network and/or
decision graph model

— Describe the activities that occur at each stage
— Describe the products produced at each stage

« Describe how the KE process is managed

« Be prepared to carry out the process of developing,
implementing and testing a Bayesian network or decision
graph model for a problem of interest to you
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j> * The Knowledge Acquisition Lifecycle
 Building the Model

 Managing and Evaluating the Model

* Knowledge Engineering for Relational
Graphical Models
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Importance of Structured KE Process

m

« Graphical models have become well established tools for
representing and reasoning under uncertainty

« Applications are growing more complex
« A formal, repeatable process for knowledge engineering is

becoming more important

— Early work on elicitation of probability models (1970’s) focused
on eliciting single probabilities or univariate probability
distributions

— Early work in graphical models tended to assume that structure
elicitation was relatively straightforward

— As models become more complex the KE process must be
managed

« Knowledge elicitation for large Bayesian networks is a

problem in systems engineering /
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What is Knowledge Acquisition? \

* Objective:
— Construct a model to perform defined task

— Develop knowledge base for use in solving problems in defined class
» Modularity
» Modifiability and reusability

« Participants: Collaboration between problem expert(s) and
modeling expert(s)
* Process: lterate until done
— Define task objective
— Construct model
— Evaluate model
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Systems Engineering

System

— A set of interacting components organized to serve a specified
objective

Systems engineering

— The technical and managerial process by which a user need is
translated into an operational system

System life cycle

— Systems evolve through predictable phases
» Design
» Development
» Operation
» Retirement
— Systems engineering is organized around life cycle
» Support current phase
» Anticipate and plan for next phase

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 6 -



~ George Mason University Department of Systems Engineering and Operations Research

n‘ GEORGN

UNIVERSITY

m

Spiral Model of Lifecycle Engineering

Requi&ments

« System development viewed as repeating cycles of design,
implementation, operation, evaluation

« Evaluation used to plan next cycle
« Early phases develop prototype for planning and risk mitigation
« Later phases develop operational versions
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Agile Development

* Developed by software engineers; being applied by systems
engineers

— http://www.incose.org/chesapek/Docs/2011/Presentations/2011_09
21 _Johnson_AgileEngineering.pdf

* Principles:
— Continuous collaboration with customer
— Continuous updates
— New delivery on very short cycle (often weekly)
— Value participants and interactions
— Emphasize simplicity

« Difficult to do well but good implementation can provide major
benefits on projects emphasizing interaction between developers
and customers
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Agile Process for Graphical Model Engineering

Goal of knowledge engineering
— Discovery and construction of appropriate model
— Not extraction of pre-existing model

» Agile approach is necessary for systems in which requirements are discovered as
development progresses

« KE spirals
— Construct series of prototype models
— Explore behavior of prototype model on sample problems
— Evaluate prototypes and restructures as necessary

« KE changes both expert and elicitor

— Understanding of expert and elicitor deepen as KE proceeds
— Improves communication between elicitor and expert
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Applying Agile Knowledge Engineering

Begin with a small sub-problem
— Self-contained
— Can be completed in short time
— Interesting in its own right
— Reasonably representative of global problem
Build and test model for sub-problem
— Look for common structures and processes that will recur
— Think about more efficient ways to structure KE

— Develop and document conventions (“style guide”) to be
followed as models are expanded

Expand to more complex problems
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Selecting a Subproblem

Initial model or expansion of existing model

Characteristics
— Manageable size
— Interesting in its own right
— Path to expansion
— Risk mitigation
How to restrict

— Focus or target variables - variables of direct interest to client
» Restrict to subset of variables of interest
» Restrict to subset of values
— Evidence variables - variables for which information will be available; used to
draw inferences about the focus variables
» Restrict to subset of evidence sources

— Context variables - variables that will be assumed known and will be set to
definite values

» Restrict to subset of contextual conditions (sensing conditions, background casual
conditions; assignment of objects to sensors; number of objects)
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 Naive view

 Realistic view

« Training

The Participants

Put problem experts and modeling experts in a room together and
magic will happen”

Pure “problem experts” and pure “modeling experts” will often talk past
each other

Modeling experts must learn about the problem and problem experts
must learn what models can do

This process can be time consuming and frustrating

Team will be more productive if both sides expect and tolerate this
process

The most productive way of training modelers and problem experts is
to construct very simple models of stylized domain problems

Goal is understanding and NOT realism or accuracy!
Beware: the training phase can seem pointless and frustrating
It is important to get expert buy-in
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The Domain and the Expert

« Domains well suited to reliably and measurably good
performance

— Tasks are repeatable
— Outcome feedback is available
— Problems are decomposable
— Phenomena are inherently predictable
— Human behavior/’'gaming” not involved
« Characteristics to look for in an expert
— Expertise acknowledged by peers
— Articulate
— Interest and ability to reason about reasoning process
— Tolerant of messy model-building process

* Note: some of the best experts as measured by performance on
the problem are not very good experts for knowledge elicitation

— Can do it but cannot articulate how they do it
— Become frustrated with elicitation process
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Unit 7 Outline

* The Knowledge Acquisition Lifecycle

 Building the Model

 Managing and Evaluating the Model

* Knowledge Engineering for Relational

Graphical Models
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Model Components

« What are the variables?
— Random variables
— Action and utility nodes

« What are their states?

« What is the graph structure?
— Is there repeated structure?

« What is the structure of the local distributions?

« What are the parameters?
— Probability distributions
— Utility functions

\_ _/
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The Clarity Test

« Usually begin with vague structure to develop understanding
of problem

* Final model should have clear operational meaning for all
components
« Clarity test:

— Could a clairvoyant unambiguously specify value of all nodes
and states?

— “Fever is high” does not pass clarity test
— “Fever 2 103° F” passes clarity test
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Defining the Variables

Ask about causally related variables
— Variables that could cause a state to be true
— Variables that could prevent a state from being true

« Ask about enabling variables

 Ask about effects of a variable
 Ask about associated variables

 Ask about observables

of a variable

Begin with “focus variable” and spread out to related variables

— Conditions that permit, enhance or inhibit operation of a cause

— Knowing value provides information about another variable

— What evidence could be observed that would enable you to infer state

©Kathryn Blackmond Laskey Spring 2019
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Target or Focus Variable in Diagnosis

« Diagnosis problem: goal is to infer "fault,"
"disease," "problem" from a set of "findings,"
"symptoms" or "indicators"

— Direction of inference is usually from effect to cause F
» Modeling issue: single or multiple fault?
« Single fault

— Collect all faults as states of a single node

— Modeling simplicity and inference tractability S1 S2 S3
« Applicable domains: Single Fault Model

— Pathology- one disease/slide

— Pediatrics- acute diseases

— Highly maintained mechanical systems O Q Q
+ Modified single-disease hypothesis: F1 - F3

— Include common combinations as explicit
hypotheses

S1 S2 S3
Multiple Fault Model
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Target or Focus Variable in Prediction \
* Prediction:
— Objective is to predict a variable that has not yet occurred or is
not known

— Direction of inference is usually from cause to effect
« Applications:

— Planning

— Intelligence analysis

— Policy modeling

— Strategic decision making

\_ _/
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States of Variables

States must be exclusive and exhaustive

— Naive modelers sometimes create separate variables for different
states of the same variable

Types of variable
— Binary (2-valued)
— Qualitative
— Numeric discrete
— Numeric continuous

Dealing with infinite and continuous state sets
— Standard Bayesian network software requires finitely many states per
random variable
» Continuous random variables must be grouped into bins

» Bin boundaries should represent meaningful differences in effect on related
variables

» Different resolutions may be appropriate for different purposes

— Exact inference algorithms exist for linear Gaussian and conditional
linear Gaussian BNs

» Software support is limited

— Monte Carlo inference can be used for BNs with continuous variables
» Software support is limited
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Graph Structure

Goal: develop model that is good enough for task

Criteria to consider

— Parameter parsimony

» Fewer nodes, fewer arcs, smaller state spaces, coarser partitions simplifies
elicitation makes learning more efficient (fewer observations required)

— Fidelity of model to problem

» Greater fidelity often requires more nodes, arcs, states, finer partitions
» Balance benefit against cost of additional modeling
» Too much detail can decrease accuracy

— Expert comfort with probability assessments

Direction of arcs
— Causal direction can increase:
» Conditional independence
» Ease of probability elicitation
» Efficiency of learning
— Causal direction is required if modeling effects of interventions (planning)

— It may be helpful to show user a graph with arcs in inferential direction even
if BN has causal arcs

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 21 -



~

B1 GEORGN

George Mason University Department of Systems Engineering and Operations Research

m

RSIT

<

Naive Bayes

« Commonly applied in diagnosis problems
— Simplifies elicitation
— Simplifies inference
— Simplifies learning
« Single parent node and multiple leaf nodes that are conditionally
Independent given parent

— Also known as "idiot Bayes"

— Simplifies knowledge engineering and
speeds up computation

— Often OK at least approximately

S1 S2 S3
Naive Bayes Model
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Handling Dependency:

Adding States to Parent Variable

m

* Problem: Symptoms not independent given fault

« Solution: Redefine parent variable to create model with
iIndependent symptoms

— Incorporate into states of parent variable conditions that modify
relationship between symptoms

« Example
— P(Malaise|UTI, fever) > P(Malaise | UTI)
— Redefine UTI states {absent, mild, moderate, severe}
— P(Malaise | severe UTI, fever) ~ P(Malaise | Severe UTI)

\ @ ° @ Example courtesy of Mike Shvy
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Handling Dependency:
Adding Intermediate Variables

— Children are dependent given original parents
— More parsimonious than drawing arcs between symptoms

 Examples:

Using partitions or ICI can !

simplify specification of
distribution of intermediate
random variable

L hol
Example courtesy of Mike Shwe

* Intermediate variable is used to model dependency of children given parent
— Symptoms are independent of fault given intermediate variable

— “True state” variable creates conditional independence of sensor reports
— Intermediate mechanism creates independence among a set of related findings

- Excess sugar

_/
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Local Distribution Structure

 Local distributions:

— One distribution for each combination of values of parent
variables

— Assessment is exponential in number of parent variables
— Assessment can be reduced by exploiting structure
« Examples of local distribution structure
— Context specific independence: elicitation by partition
— Independence of causal influence
— Divorcing

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 25 -
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Context-Specific Independence

Partition state set of parents into subsets
— Set of subsets is called a partition
— Each subset is a partition element

 Elicit one probability distribution per partition element
« Child is independent of parent given partition element
« Examples:

type given weather=sunny

« Knowledge elicitation using partitions

same probability distributions
— Sometimes several children induce same partition
— Partitions may form basis of type hierarchy

partition element as a subtype of the parent variable

— P(reported location | location, sensor-type, weather) independent of sensor

— P(fever=high | disease) is the same for disease e {flu, measles}

— For each child variable ask expert to group states of parent variable having

» When many indicators induce a common partition element we may name that

» e.g., acute infectious disease “isa” infectious disease “isa” disease

©Kathryn Blackmond Laskey Spring 2019
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Independence of Causal Influence

« Assumption: causal influences operate independently of each other in
producing effect

— Probability that C1 causes effect does not depend on whether C2 is operating
— Excludes synergy or inhibition

 Examples
— Noisy logic gates (Noisy-OR, Noisy-AND, Noisy-XOR)
— Noisy adder
— Noisy MAX
— General noisy deterministic function
 Elicitation:
— |ICl structure:

» "Does the presence of C2, C3, ... increase or decrease [strengthen or weaken] the
impact of C1 on E?"

» "Does the presence of C2, C3, ... increase or decrease the probability C1 will cause E
to occur?"

— Parameters:

» |ICI structure allows calculation of entire probability table from single-cause
distributions

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 27 -



~ George Mason University Department of Systems Engineering and Operations Research

n‘ GEORGN

UNIVERSITY

m

Divorcing

« Divorcing generalizes partitions and ICI

 An intermediate variable summarizes the effect of a subset
of parents on the child

QO o0 o0 0 Q9
NN
= /e
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Exploiting Context-Specific Indepdendence

» Context-specific independence can simplify elicitation
 Example:

— Government supporters and apolitical people rarely criticize the government.
Dissidents often do, as do government agents (because they are trying to lure
Rechtian agents into thinking they are dissidents)

— Need to specify only one distribution given {Supporter, Apolitical} and another
probability given {Agent, Dissident}

 Eliciting partitions from expert:
— Ask expert: “Which variables help to distinguish between supporters and agents?”
— Expert answers: “Criticizing the government”

— Ask: “Does this variable give any information to help distinguish between agents
and dissidents? Between supporters and apolitical people?”

— Expert answers: “No”

— Result: Distribution for criticism is same for agents and dissidents, and same for
supporters and apolitical people

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 29 -
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Specialists and Generalists

In many disciplines experts tend to partition problems into sub-categories
exhibiting context-specific independence.

If we know which sub-category to focus on, we can ignore cues relevant for
other categories.
— Specialists focus on difficult cases in one sub-category

— Generalists focus on
» Solving easy cases in any category
» Diagnosing when to call in a specialist and which specialist to call

Context-specific independence justifies and supports this strategy

— Some variables are most useful for sorting cases into sub-categories, and may
be (approximately) independent of which hypothesis is correct within sub-
category

— Other cues may be useful for discriminating within sub-categories

Partitions can represent this type of reasoning

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 30 -
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Assessing Probability Distributions

Theory
— Parametric expression may be suggested on theoretical grounds
» P(Node|Parents) = f(parents,parameter)
— Elicit parameter from expert or estimate from observations
— Test theory against data

Statistical estimation (when data are available)
— Frequencies (problem with zero probabilities)

— Posterior distribution given Dirichlet prior distribution
» Uniform prior
» Elicit prior frequencies and virtual prior sample size from expert

— Regression model (discrete or continuous)
— Independence of causal influence

Direct elicitation
— Probabilities

— Odds (better for extreme probabilities)
— Continuous distributions: percentiles, density function, parameters

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 31 -



Direct Elicitation

Example: Will George Mason University make Sweet 16
in 20187

» Ask for probability or area on wheel
so that decision maker is indifferent
between 2 lotteries:

» Direct question: “What is the
probability GMU will make Sweet

16 in 20097?”
Sweet 16 ga
* Visual representation /C>< Not ¢p
— Adjust the size of the gray area so the Land gray ga

probability that we will make Sweet 16 ~ ) ]
is the same as the probability that a nd white B
spinner will land in the gray area

» Ask decision maker about betting
odds and solve for probability

Sweet 16 ¢x
Land gray ($X)

Betagamsf( ] | nd white gy

— For small prizes, p=Y/(X+Y)

George Mason University Department of Systems Engineering and Operations Research
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Comments

« Many decision makers are uncomfortable with numerical probabilities
— Decision makers may prefer qualitative terms such as “fairly likely” or “improbable”

— These phrases have ambiguous meaning and can cause miscommunication unless
they are calibrated to agreed-upon numerical values

— Sometimes visual devices are a good compromise. |f manipulated on a computer
screen they can be translated directly into numerical probabilities

— Betting odds are often less useful in practice than asking directly about probabilities -
betting odds come from probabilities and not vice versa

— People find frequencies (3 out of every 100) easier than probabilities (0.03)
— For very small probabilities orders of magnitude must be used

» “State a1is 100 times more likely than State a2”
» “We will generally see about 100 cases of State a1 for every case of State a2”

— Assessing very small probabilities is difficult

» Probability assessors should be aware of systematic distortions of probability
judgment

— Treating low-probability events as impossible

— Overconfidence and other anchoring effects
— Neglect of base rates

— Overweighting salient events

« |f time permits it is good to phrase questions in multiple ways and to feed back
consequences of judgments to decision maker
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Probability Scales:

Empirical Study

» Twenty-three NATO intelligence
analysts were given statements
about likelihood of events, e.g.:

- "It is highly likely that the
Soviets will invade
Czechoslovakia”

 The basic sentence structure was
fixed but qualifiers varied, e.g.:

- "It is almost certain that the
Soviets will invade
Czechoslovakia”

» Analysts indicated percentage
they would assign to each
statement if it appeared in an
intelligence assessment

Source: Barclay, et al (1977)

STATEMENT

ALMOST
CERTAINLY

HIGHLY
LIKELY

VERY GOOD
CHANCE

PROBABLE

LIKELY

PROBABLY

WE BELIEVE

BETTER THAN
EVEN

WE DOUBT

IMPROBABLE ¥
UNLIKELY

PROBABLY J

NOT

LITTLE
CHANCE

ALMOST
NO CHANCE

HIGHLY Sl d .
UNLIKELY =

[
CHANCES Eosa il

Y RN RN
i AR NOREONN AR

|

30 40 50 60 70 8O 90 100
ASSIGNED PROBABILITY (%)

Figure 3.5

WHAT UNCERTAINTY STATEMENTS MEAN TO DIFFERENT READERS
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Y Assessing Odds \

« Direct assessment of probabilities can yield very poor results
on extreme probabilities

— Direct assessment focuses on absolute magnitude
— 0.01 seems "not much different" from 0.001
— Orders of magnitude are important in Bayes Rule

P(H,IE) _P(EIH,)P(H,)
PH,IE) P(EIH,)P(H,)

* Assessing by odds

— "State a1 of variable A is 3 times more likely than state a2"
— Yields equation P(a1) = 3P(a2)
— Solve for P(a1) and P(a2)

/
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» Continuous random variables can take on values on a continuum
— Parametric models (e.g., Normal, Gamma, Chi-square)
— Nonparametric models
— “Semi-parametric” models (kernel density functions)
» The cumulative distribution function (cdf)
— F(x) = P(X=x)
— Value of cdf at x is the probability that the random variable is less than or equal to
the number x

— F(x) is a step function for discrete variables, and a smoothly increasing function for
continuous variables

» Probability density function (pdf)

— The pdf measures the relative probability of different values of the continuous
random variable. The value f(x)Ax is approximately equal to the probability that X
lies in the small interval [x-AX, X+AX]

— The pdf is the derivative of the cdf:

» f(x)= dl;;x)

— The cdf is the integral of the pdf:
» F(x)= [ _ fwdu

— The probability that X lies in the interval [a, b] is equal to the area under the curve
defined by the cdf:
— P(asXsb) = F(b) - F(a) = [, f(wdu
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Example Types of Density Function
Symmetric and unimodal

f(x) versus x F(x) versus x

« Symmetric and skewed distribution We can show the expert
£(x) different shapes and ask
XD VErsts X F(x) versus x which best fits judgments
0.47 .
| It may help to show
o / density function and
Al report percentiles (“With
o2l this density function, 23%
© ‘ . DN : ,  of the cases will have
. Bir_rioda_l1 ° 1 ’ -2 -1 0 1 2 value less than 1.5.7)
f(x) versus x F(x) versus x Bimodal distribution may

mean a missing parent

0.5 T
0.4 + . -/
0.3+

2 1 0 1 2 2 - =1 0 1 2
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Continuous distributions are often assessed by asking about the cdf

— Pick values and assess probability (this method can also be used for discrete
random variables) :
» P(sales <$10,000) ="
P(sales < $20,000) = ?
» P(sales < $40,000) =7
P(sales < $65,000) = ?
» P(sales < $100,000) =?
— Pick probabilities and assess values:
» P(sales<7?)=.10
P(sales <7?)=.30
» P(sales <7?)=.50
P(sales<?)=.70
» P(sales<7?)=.90
Depending on how the judgments will be used, we may interpolate between
these points or we may fit a parameterized probability distribution to the
expert’s judgments
This method may be problematic for parameters whose meaning is not
straightforward to the decision maker

— e.g., What is your cdf for the mean number of transmission errors per hour?

Another method is to ask about shape of density function
 These methods can yield different results
— Suggestion: use both and resolve inconsistencies

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 38 -
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Parameterized Continuous Distributions

* Use of standard parameterized distributions may greatly economize on
elicitation, e.g.:

— Normal
— Log-normal
— Gamma
— Exponential

» Assess several percentiles and select parameters to fit the percentiles
(this may take some work)

» Check that shape of density function is acceptable

* Ask about “sufficient statistics”

— What do you think is the average number of transmission errors per 8-hour
period when averaged over many periods?

 When data are available they can be used to augment expert judgment
— Use expert judgment to specify a prior distribution
— Learn posterior distribution for parameters
— Use structure learning method to check structural assumptions
» Partitions, presence/absence of arcs, functional form of distribution

©Kathryn Blackmond Laskey Spring 2019 Knowledge Engineering - 39 -
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Combining Models from Multiple Sources \

* Problem decomposition
— Some elements learned from data; others elicited from experts
— Different experts specify different parts of model

« Aggregating different inputs on same model component

— There is a large literature on combining probability estimates

— We can combine estimates from multiple experts, multiple
models, or both

— Typically the combination rule is some kind of average

— Many weighting schemes have been proposed; it has proven
surprisingly difficult to beat simple averaging

 Prediction markets

— Useful for forecasting well-defined events on which outcome
feedback will become available

\_ _/
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Unit 7 Outline

* The Knowledge Acquisition Lifecycle

 Building the Model

i> « Managing and Evaluating the Model

* Knowledge Engineering for Relational

Graphical Models
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Managing Knowledge Acquisition

Record rationale for modeling decisions

Develop “style guide” to maintain consistency across
multiple subproblems

— Naming conventions
— Variable definitions
— Modeling conventions
Enforce configuration management
— History of model versions
— Protocols for making and logging changes to current model
— Rationale for changes
Develop protocol for testing models
— Record of test results traced to model changes and rationale
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Configuration Management

 Formal process is required for managing evolution of
complex models

« Configuration management includes:
— Archiving history of evolving versions

— Protocols for making and logging changes to current
knowledge base

— Protocols for documenting changes and rationale

— Automated comparison of similarities and differences between
different versions of knowledge base
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Model Agility

 Requirement: rapid adaptation of model to a new situation

« Support for model agility
— Libraries of reusable model fragments
— Documentation of stable and changeable aspects of model

— Development of data sources for inputs to changeable model
components

» Protocols for data collection and maintenance
» Protocols for importing data into knowledge base

— Automated support for propagating impact of changes
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Model Evaluation

Model walk-through
— Present completed model to "fresh" experts and/or modelers
— Evaluate all components of model
Sensitivity analysis
— Measures effect of one variable on another
— Compare with expert intuition to evaluate model
— Evaluate whether additional modeling is needed

Case-based evaluation

— Run model on set of test cases
» Cases to check local model fragments (component testing)
» Cases to test behavior of global model (whole-model testing)
— Compare with expert judgment or “ground truth”
— Important issue: selection of test cases
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Knowledge Engineering for Relational Models \

Relational representations (e.g., MEBN, PRM, OOBN) require
knowledge about:

— Entity types (e.g., patients, diseases, tests)
— Attributes of entities (e.g., gender of patient, sensitivity of test)

— Relationships among entities (e.g., patients have diseases; patients take
tests)

Entity-relationship model specification is needed for database schema
design; object-oriented software design; ontological engineering

— There is a literature on methodologies for entity-relationship modeling
Literature in these areas usually does not treat uncertainty

Growth area in probabilistic modeling
— Software support is not widely available

— Experience base is small of people knowledgeable in specifying relational
models

— Literature is still small

_/
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MASON Uncertainty Modeling Process for \
Semantic Technology (UMP-ST)

Phases
Disciplincs Inception Elaboration Construction Transition

Raguiramanms

Analysis & Basign

iimpiementayson
Tesy

I1 El E2 Cc1 c2 C3 T1 T2
Iterations

« Guideline for probabilistic ontology developers
« Describes main tasks involved in creating probabilistic ontologies
« Based on Unified Process (UP) for software engineering
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« The Comptroller’s office is responsible for inspecting
Brazilian Government projects and programs

— Provides transparency and helps to prevent corruption

Procurement law

— Susceptible to many forms of corruption

« Use case purpose: support
information fusion to detect
possible fraud in
procurements

Report for Decision Makers

Use Case: Detecting Procurement Fraud

and auditing

 All contracts with the private sector must follow the national

— Select the most advantageous proposal for a contract in its interest

Design - UnBBayes

%

Inference - Knowledge

__—
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Goal: Find suspicious procurements

Query: Is there any relation between the committee
and the enterprises that participated in the
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* Queries
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Use Case: Maritime Security Operations

« Support maritime domain awareness (MDA)

« Enable predictive situational awareness in
maritime operations

* Provide higher-level fusion to reason about
threats in the maritime domain

Predictions &
Impact Assessments

s ~( /
0° PrroGANOS

............
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P{GEORGE , Goal: Identify whether a ship is a ship of interest

Goals

* Queries
« Evidence

Evaluation o \/ ~_-
« Verification
 Validation

* Requirement

* Behavior

¢ . * Scenario

true = 9,
CYCLE:
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( isRelatedToAnyTerrorist(person) )

Y
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N T
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Query: Does the ship have a terrorist crew member?

Evidence: Crew member related to any terrorist; Crew
member associated with terrorist organization

Ship
Person

Entities N

_ Organization
. Attnl?ut:es.
L L isTerroristPerson
| ~ hasCrewMember

isRelatedTo

a terrorist,

is also a terrorist

isRelatedTo Social Network Information

Person Rashiember Organization

Terrorist TerroristOrganization

& ( isTerroristOrganization(org) )
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UMP-ST Plugin to UnBBayes \

* Provides support for probabilistic ontology creation, evolution
and maintenance

« Addresses problems faced by PO designers:
— Complexity of creating probabilistic ontologies
— Difficulty of maintaining and evolving probabilistic ontologies
— Lack of tool for documenting probabilistic ontologies
— Need for tools to support requirements traceability

« Tool for documenting, maintaining and evolving probabilistic
ontologies

— Provides step by step guidance for creating probabilistic ontologies
— Provides centralized tool for documenting probabilistic ontologies

— Enables identification of impact of changes through requirements
traceability

\_ _/
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Summary and Synthesis

Graphical model development is a problem in system lifecycle engineering

— Begin with a small subproblem

Self-contained

» Can be completed in short time

Interesting in its own right

Reasonably representative of global problem
— lteratively expand and refine

— Test and evaluate at each stage

» Elicitation review

Sensitivity analysis — quantitative and qualitative
» Case-based testing — local and global
Evaluation against empirical data

Effective management of knowledge engineering process improves
— Communication between domain experts and knowledge engineers
— Quality of model
— Reusability of results

Software supports are needed for agile lifecycle engineering of probabilistic
graphical models

¥
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