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Learning Objectives

1. Define a statistical model 
2. Explain the difference between parametric and nonparametric 

statistical models
3. Be familiar with Dirichlet process mixtures and their use in clustering

a) Explain how the Dirichlet process generalizes the Dirichlet distribution
b) Express a Dirichlet process mixture model as a plate model
c) Explain the Gibbs sampling algorithm for inference in a Dirichlet process 

mixture model
4. Be familiar with Gaussian processes and their use in regression

a) Define a Gaussian process in terms of a mean and covariance function
b) Describe how a Gaussian process regression model can be expressed as 

a linear regression model with a set of basis functions
c) Describe the kernel trick and its use in machine learning
d) Explain how inference works in Gaussian process regression



George Mason University

Nonparametrics - 3 -

Department of Systems Engineering and Operations Research

©Kathryn Blackmond Laskey Spring 2019

Outline

• Parametric and nonparametric statistical 
models

• Dirichlet process mixtures and 
nonparametric clustering

• Gaussian processes and nonparametric 
regression
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Statistical Models
• A statistical model on a sample space X is a set of probability 

distributions on X
– Models are indexed by parameter q, i.e., 

• The objective of inference is to use observations from Pq to draw 
inferences about q, and hence about the data-generating process Pq

• To draw inferences about q, a Bayesian specifies a prior distribution for 
q and uses Bayes rule to find the posterior distribution 

– For example, if observations X1, …, Xn are iid draws from f(x |q) and prior 
distribution is g(q), then the posterior distribution is

• A model is called parametric if the parameter θ has finite dimension, 
and nonparametric if the parameter θ has infinite dimension

– To do Bayesian inference with nonparametric models, we need to define a 
prior distribution on an infinite-dimensional space and develop methods to 
find a posterior distribution

X1

θ

X2
Xn…

 

g(θ | x1,…xn )=
f (x |θ )g(θ )

f (x)
=

f (xi |θ )
i=1

n

∏ g(θ )

f (xi |θ )
i=1

n

∏ g(θ )dµ(θ )∫

M = {Pθ |θ ∈ T}
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Why Nonparametrics?

• Statisticians often fit models of varying complexity and then choose 
the one that best fits the observations

• Nonparametric models adapt their complexity according to the data
• Nonparametric models can grow in complexity as the sample size 

increases

Figure taken from http://mlg.eng.cam.ac.uk/zoubin/talks/uai05tutorial-b.pdf
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Examples of Nonparametric Models

• We will consider two important classes of nonparametric Bayesian 
methods:

– Dirichlet process mixtures for clustering
– Gaussian process for nonlinear regression

• These methods are important in their own right and illustrate 
important concepts in Bayesian nonparametrics

– Both methods are infinite-dimensional generalizations of commonly 
applied parametric models

– Both methods exploit conjugacy for efficient inference
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Outline

• Parametric and nonparametric statistical 
models

• Dirichlet process mixtures and 
nonparametric clustering

• Gaussian processes and nonparametric 
regression
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Clustering
• Clustering seeks to sub-divide a set of observations into subsets 

called clusters
– Each observation belongs to exactly one cluster
– Observations in the same cluster are more similar to each other than to 

observations in different clusters
• Typically, we use a mixture distribution as a model for clustering

– Latent categorical RV Zi indicates the cluster to which 
observation i belongs

– Observations in same cluster are iid
• A nonparametric model does not fix the number of clusters

– Adapts to the observations
– Can grow as sample size grows

 

π ~ Dirichlet(α1,…αR )
φr ~ h(φ)
zi | π ~ Multinomial(1,π )
xi | zi ,φzi ~ f (x |φzi )

A finite mixture model 
with R clusters

zi 

xi 

i=1,…,N 

π 

ϕr 

r=1,…,R 

Plot taken from Orbanz (2014)
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The Multinomial-Dirichlet Conjugate Family
• The Multinomial(n, π) distribution is a multivariate generalization of the 

Binomial distribution
– Used to model observations that fall into one of a finite number R of mutually 

exclusive categories
– Parameters: total count n and probabilities π1, …, πR (where Σi πi = 1)

» πi is the probability that an observation falls into category i, for i=1, …, R
– Observation z = (z1, …, zR) is a vector of counts of how many observations fall 

into each category, where Σi Zi = n is the total count 
– Likelihood function:

• The conjugate prior distribution for (π1, …, πR) is the Dirichlet distribution, a 
multivariate generalization of the Beta distribution

– Hyperparameters α1, …, αR (called virtual counts or pseudo-counts)
– Density function (restricted to πi≥0 and Σi πi = 1) 

• The posterior distribution for π1, …, πR given z1, …, zR is Dirichlet with 
parameters α1+z1, …, αR+zR

 
f (z1,...,zR | π1,...,π R ) =

n!
z1!!zR!
⎛

⎝
⎜

⎞

⎠
⎟π1

z1!π R
zR

 
g(π1,...,π R |α1,…,αR ) =

Γ(α1 +…+αR )
Γ(α1)!Γ(αR )

π1
α1−1!π R

αR−1
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• If a k-dimensional random variable (π1, …, πk) has a Dirichlet(α1, …, αk) 
distribution then:

– πi has a Beta(αi, Σj≠I αj) distribution

–

–

– Dirichlet(1,…,1) is called the uniform distribution and puts equal probability density on 
all (π1, …, πR) such that πi ≥ 0 and Σi πi = 1

– We call αi the virtual count or pseudo-count for the ith category

• Marginal likelihood for vector of counts Z=(Z1,…,ZR)

 
E π i[ ] = αi

α1 +!+αR

Some Facts About the Dirichlet Distribution

 
V π i[ ] =

αi α jj≠i∑( )
α1 +!+αR( )2 α1 +!+αR +1( )

 

f (z1,...,zR |α1,…,αR ,n) =
n!

z1!!zR!
⎛

⎝
⎜

⎞

⎠
⎟
Γ(α1 +!+αR )
Γ(α1)!Γ(αR )

Γ(α1 + z1)!Γ(αk + zR )
Γ(α1 +!+αR +n)

if zi = n
i
∑

0 otherwise

⎧

⎨
⎪

⎩
⎪

     

 
Cov π i ,π j

⎡⎣ ⎤⎦=
−αiα j

α1 +!+αR( )2 α1 +!+αR +1( )

Γ(y)≡ uy−1e−u du
0

∞

∫ = (y−1)Γ(y−1)
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Figure taken from http://mlg.eng.cam.ac.uk/zoubin/talks/uai05tutorial-b.pdf
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Dirichlet Distribution and Clustering

• Typically, we use a mixture distribution as a model for clustering
– Latent cluster assignments zi are iid draws from a multinomial distribution 

with parameter (n, π)
– Parameter π is drawn from Dirichlet conjugate prior 
– Observations i = 1, …, N are iid draws from parametric model f(x | ϕzi) with 

cluster-specific parameter ϕzi

– Choose likelihood f(x | ϕzi) from a family with a conjugate prior
– Cluster parameters ϕr, r=1, …, R are iid draws from conjugate prior g(ϕr | ξ)

• Although exact inference is intractable, inference can be performed by 
Gibbs sampling or variational inference

 

π ~ Dirichlet(α1,…αR )
φr ~ g(φ |ξ )
zi | π ~ Multinomial(1,π )
xi | zi ,φzi ~ f (x |φzi )

A finite mixture model 
with R clusters

zi 

xi 

i=1,…,N 

π 

ϕr 

r=1,…,R 

Plot taken from Orbanz (2014)
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Dirichlet Process

• The Dirichlet Process (DP) is an infinite dimensional generalization of the 
Dirichlet distribution

• DP defines a distribution over (infinite discrete) probability distributions
G ~ DP( � | H, α)
H is the base measure (may be continuous or discrete)
α > 0 is the concentration parameter

• DP is defined according to the following condition on the finite-dimensional 
marginals:

– If G ~ DP( � | H, α) is a Dirichlet process on sample space Φ, then for any finite 
partition {B1, …, Bk} of Φ (i.e.,               and                   for i≠j),  
(G(B1), …, G(Bk)) ~ Dirichlet(αH(B1), …, αH(Bk))

• Dirichlet process prior distribution can be used to define a natural 
extension of a finite mixture model to an infinite-dimensional mixture

Bi∩Bj =∅ Bi∪ =Φ
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Stick-Breaking Generative Process for DP
• The following sampling procedure draws a distribution G ~ DP( � | H, α) 

from a Dirichlet process with base measure H and concentration α
1. v1, v2, … ~ iid Beta(1, α)

2. [note that πi > 0 and                  ]

3. ϕ1, ϕ2, … ~ iid H(�)

4. G is the distribution that samples ϕi with probability πi for i = 1, 2, ...

• This sampling procedure is called a stick breaking process

• In a clustering problem, we typically choose the base measure H to 
draw a parameter ϕ from family of distributions that is conjugate to the 
data likelihood f(x | ϕ):

ϕ ~ g(ϕ | ξ) where g(ϕ | ξ) is a conjugate family to f(x | ϕ)

π k = vk (1− vj )
j=1

k−1

∏ π i =1i=1

∞

∑

π1 π2

(1− v1)(1− v2 )
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Reminder: Conjugate Families of Distributions
• A family g(θ|α) of distributions parameterized by α is a 

conjugate family for the family of distributions f(x|θ) if it is 
closed under sampling from f(x|θ), that is:

IF Data X1, …, Xn are a random sample from f(x|θ)
AND prior distribution for unknown parameter Θ is 
g(θ |α)

THEN Posterior distribution for parameter Θ is g(θ|α*), 
another member of the conjugate family

• We call α a hyperparameter
• Examples of conjugate families:

– Poisson likelihood, gamma prior distribution on rate
– Exponential likelihood, inverse gamma distribution on mean
– Binomial likelihood, beta distribution on probability
– Multinomial likelihood, Dirichlet distribution on probabilities
– Normal distribution, normal-gamma distribution on precision 

(inverse of variance)
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Comparing Finite and Infinite Mixture Plate Models

A finite mixture model 
with R clusters

 

π ~ Dirichlet(α1,…αR )
φr ~ g(φ |ξ )
zi | π ~ Multinomial(1,π )
Xi | zi ,φzi ~ f (x |φzi )

G ~ DP(H ,α)
φi ~G
Xi |φi ~ f (x |φZi )

A Dirichlet process 
mixture model

A Dirichlet process 
mixture model sampled 

by stick-breaking
vk ~ Beta(1,α)
φr ~ g(φ |ξ )

π i = vi (1− vj )
j=1

i−1

∏

zi | v1:i ~ Multinomial(1,π )
xi | zi ,φzi ~ f (x |φzi )

zi 

xi 

i=1,…,N 

π 

ϕr 

r=1,…,R 

ϕi 

xi 

i=1,…,N 

G 

zi 

xi 

i=1,…,N 

vk 

ϕr 

r=1,…,∞ 

k=1,…,∞ 

This representation leaves clusters 
implicit. Observations xi and xj belong to 
the same cluster if they were generated 

by the same parameter, i.e., ϕi=ϕj
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Examples of DP Draws

Source: https://en.wikipedia.org/wiki/Dirichlet_process
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Another View of the Dirichlet Process
• If Φi~ iid G and G ~ DP( � | H, α), then a generative model for the cluster 

parameters ϕ1, ϕ2, … (marginal over G) is:
1. Draw ϕ1 from H
2. For n > 1, 

a. with probability α/(α+n-1) draw ϕn from H
b. with probability (n-1)/(α+n-1) , draw ϕn uniformly from {ϕ1, ϕ2, …, ϕn-1}

• The probability of assigning a new observation to an existing component is 
proportional to the number of instances already assigned to it (“rich get richer”)

• The probability that a new cluster is created depends on the concentration 
parameter and the number of observations already assigned to clusters

– The larger the concentration parameter, the more likely a new cluster is created
– The larger the number of observations already assigned to clusters, the less likely a 

new cluster will be created for the next observation
• Metaphor: Chinese Restaurant process

– Customers arrive at a Chinese restaurant with infinitely many tables
– Each customer sits at an occupied table with probability (n-1)/(α+n-1) or a vacant 

table with probability α/(α+n-1)
– Popular tables attract more customers
– Likelihood that a new customer will sit at an unoccupied table decreases as number 

of already-seated customers grows
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Conjugate Updating with Dirichlet Process

• A Dirichlet process distribution DP( � | H, α) on sample space Φ is a 
conjugate prior distribution for infinite discrete distributions on Φ

IF Observations ϕ1, ϕ2, …, ϕn are a random sample from the 
(discrete) distribution G(�), AND the prior distribution for G is
DP( � | H, α) 

THEN the posterior distribution for G conditional on Φ1, Φ2, … is
DP( � | H*, α*), another member of the conjugate family

• The posterior hyperparameters are:
α* = α + n

H* = 1
α +n

αH + δφi
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟

The Dirac measure δϕ assigns 
probability 1 to the value ϕ
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Inference with DP Mixtures: Gibbs Sampling

1. Initialize number of clusters R < n and cluster parameters ϕ1, ϕ2, …, ϕR

2. Initialize cluster memberships 1 ≤ z1, z2, … , zn ≤ R
3. At each iteration k do the following:

• Let K be the current number of clusters that have observations assigned, 
and define a 0th cluster that has no current observations

• For i = 1, ..., n:
a. Find probabilty that the ith observation is in each cluster 0, 1, ..., r, conditional 

on parameters ϕ1, ϕ2, …, ϕR and the cluster assignments of observations other 
than i

b. Sample new value for ith cluster membership 0 ≤ zi ≤ R using these 
probabilities

• For r = 0, … R:
a. For each occupied cluster r, find the posterior distribution of 

ϕr conditional on the observations assigned to cluster r
b. Sample a new value of ϕr from this posterior distribution

If the atoms of G are distributions g(ϕ | ξ) from a family 
conjugate to f(x | ϕ) then the conditional distributions for 
sampling are easily obtained

ϕi 

xi 

i=1,…,N 

G 
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Variational Inference for DP Mixtures
• In Gibbs sampling we repeatedly sample each latent variable from 

its distribution given the observations, the hyperparameters, and 
the cluster assignments of the other variables

• Variational inference replaces sampling with an optimization 
problem:

– Choose a family of distributions q(z,v,ϕ|!) on the latent cluster 
assignments z, stick-breaking variables v, and cluster parameters ϕ

– A specific distribution q(z,v,ϕ|!*) is chosen from this family to optimize a 
lower bound on the log-likelihood of the observations

– Variational family q(z,v,ϕ|!) is chosen as a class of distributions for 
which the optimization problem is tractable

• A common approach is to choose a fully factored 
distribution in which all the variables are 
independent

• Variational EM algorithm repeatedly cycles through
the latent variables, optimizing the parameters for
each distribution given data and current estimates
for other parameters

Zi	

Xi
i=1,…,N	

Vk	

ϕr	

r=1,…,∞	

k=1,…,∞	
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Hierarchical Dirichlet Processes
• Data is divided into J groups

– Each group consists of clusters
– Clusters are shared between groups (data points in 

same group can belong to same cluster

ϕik 

xik 

i=1,…,ni 

Gk 

k=1,…,K 

G0 
G0 | H, γ ~ DP( � | H, γ)

Gk | G0, α ~ DP( � | G0, α), k=1, …, K

• Common DP H forms base 
measure for drawing G0

• G0 is base measure for DP 
draw for each group

Source: Gharamani, 2005
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Outline

• Parametric and nonparametric statistical 
models

• Dirichlet process mixtures and 
nonparametric clustering

• Gaussian processes and nonparametric 
regression
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Regression

• Regression seeks to model a dependent variable as a function of 
one or more independent variables plus random noise

yi = f(xi) + εi where εi are iid RVs with E[εi] = 0
• The most common regression model is normal linear regression
• e.g., Simple linear regression (one predictor):

f(x) = β0 + β1x is a linear function of the predictor variable
ε has a zero-mean normal distribution

• If the dependent variable has a nonlinear relationship to the 
independent variable(s), we can include polynomial terms in the 
regression, e.g.:

f(x) = β0 + β1x + β2x2 + … + βnxn + ε
• Bayesian regression places a prior distribution on the regression 

coefficients (β0, β1,…, βn)
• We can view this as placing a prior distribution on polynomial 

functions of degree n
• We would like to allow a more flexible class of functions than 

polynomials of a fixed degree
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Bayesian Linear 
Regression

Bayesian simple linear 
regression places a 
prior distribution on 
functions of the form 
f(x) = w1 + w2x and 
uses observations to 
infer a posterior 
distribution on this 
class of functions

Source: Rasmussen and Williams (2006)
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Gaussian Process
• A linear or polynomial regression places a prior distribution on a 

restricted class of functions:
f(x) = β0 + β1x for linear regression
f(x) = β0 + β1x + β2x2 + … + βkxk for polynomial regression

• A Gaussian process can place a distribution on a richer class of 
functions

Definition: A Gaussian process is a collection of random variables, any 
finite number of which have a joint Gaussian distribution

– Must satisfy consistency property: if (y1, y2) ~ N(µ, Σ) then y1 ~ N(µ1, Σ11), 
where µ1 and Σ11 are the relevant subvector and submatrix of µ and Σ

• A Gaussian process is completely specified by its mean function m(x)
and covariance function k(x,x’) (aka kernel)

– m(x) = E[f(x)]
– k(x,x’) = E((f(x) - m(x)) (f(x’) – m(x’))]

• A GP with mean function m(x) and covariance function k(x,x’) satisfies 
the consistency property
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Samples from Gaussian Processes with Different k(x,x’)

Source: Gharamani, 2005
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Features and Basis Functions
• The mean function for Bayesian linear regression is a Gaussian process:

– m(x) = E[f(x)] = E[β0] + x E[β1] 

– k(x,x’) = E((β0 + β1x - m(x)) (β0 + β1x’ – m(x’))] = (1, x)Σ(1, x’)T, where Σ = Cov(β) 
is the covariance matrix of the regression coefficients

– For any n, the function values f(x1), f(x2), …, f(xn) are jointly Gaussian, 
although the covariance matrix is singular for n > 2

• The mean function for polynomial regression is also a Gaussian process
– m(x) = E[f(x)] = E[β0] + x E[β1] + … + xk E[β1] 

– k(x,x’) = (1, x, …, xk)Σ(1, x’, …, x’k)T, where Σ = Cov(β) is the covariance matrix 
of the polynomial regression coefficients

– For any n, the function values f(x1), f(x2), …, f(xn) are jointly Gaussian, 
although the covariance matrix is singular for n > k+1

• We can generalize this idea, mapping the dependent variable(s) into a 
high-dimensional space using a set of basis functions (φ1(x), …,φk(x))

– f(x) = β1φ1(x) + β2φ2(x) + … + βkφk(x)

– m(x) = φ1(x)E[β1] + φ2(x)E[β2] + … + φk(x)E[βk] 

– k(x,x’) = φ(x)Σφ(x’)T, where Σ = Cov(β) is the covariance matrix of the 
regression coefficients for the basis functions
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Covariance Functions and Basis Functions
• A commonly used covariance function is the squared exponential*

» v controls the overall variance of the process
» λ controls the length scale
» GP with squared exponential covariance function is infinitely mean-square 

differentiable

• Squared exponential covariance function corresponds to a 
Bayesian linear regression with infinitely many basis functions

• For any positive definite covariance function, there is an expansion 
in terms of (possibly infinitely many) basis functions for a Bayesian 
linear regression

• Other examples of basis functions and corresponding covariance 
functions can be found at 

http://www.gaussianprocess.org/gpml/chapters/RW4.pdf

k(x, x ')= vexp − 1
2

x − x '( )2

λ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

*Also called radial basis function (RBF) or Gaussian
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Bayesian Inference with Noise-Free Observations

Source: Rasmussen and Williams (2006)
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Bayesian Inference with Noisy Observations

Source: Gharamani, 2005
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Graphical Model Representation of GP Regression

Source: Rasmussen and Williams (2006)
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Inference with Gaussian Process
• Gaussian process regression models dependent variable as a 

Gaussian process plus iid normal zero-mean noise
yi = f(xi) + εi
εi ~iid N(0,σ2)

• Prior distribution for f is a Gaussian process 
f ~ GP(0, k) (for simplicity assume zero-mean prior)

• Note that the prior distribution for y is also a Gaussian process with 
mean function m and covariance function ky, where 

ky(x,x) = k(x,x) + σ2  and ky(x,x’) = k(x,x’) for x≠x’
• Observe data (x1,y1), (x2,y2), …, (xn,yn)  
• Posterior predictive distribution for y(x) is Gaussian process with

m*(x) = (k(x,x1), …, k(x,xn)) (K(X,X) + σ2I)-1 (y1, …, yn)T

ky*(y,y’) = K(Y,Y) – K(Y,X) (K(X,X) + σ2I)-1 K(X, (y,y’))

K(X,X) is the matrix with entries k(xi,xj) for i,j=1,…,n
K(Y,X) is the matrix with entries k(y,xj) and k(y’,xj)   for j=1,…,n
K(X,Y) = K(Y,X) T

K(Y,Y) is the matrix with diagonal elements k(y,y) and k(y’,y’) and off-diagonal elements k(y,y’)
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Working With High-Dimensional Feature Spaces: 
the Kernel Trick

• Gaussian process regression can be viewed as mapping the 
original dependent variable(s) into an implicit infinite-dimensional 
feature space (the basis functions)

– The learning algorithm operates with the kernel function k(x,x’)
– k(x,x’) is the inner product of projections of pairs of data points into the 

infinite-dimensional feature space:
k(x,x’) = φ(x)Σφ(x’)T, where Σ is the covariance matrix of the 
regression coefficients for the basis functions

– We never actually compute the features (basis functions) in this infinite-
dimensional space

– Working with the kernel is computationally cheaper than working 
directly with the basis functions

• The approach of working with kernels rather than explicitly with 
features in a high (or infinite) dimensional space is known as the 
kernel trick

• There are many machine learning approaches that make use of the 
kernel trick
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Summary and Synthesis

• Nonparametric methods allow the dimension of the model to adapt 
to the data and for dimensionality to grow as the number of 
observations increases

• Distributions used for nonparametric models are often 
generalizations of commonly applied finite-dimensional models

– Conjugacy is inherited from finite-dimensional case
– Inference methods are similar to finite-dimensional case

• We studied two of the most commonly applied nonparametric 
models

– Dirichlet process mixture models for clustering
– Gaussian process for Bayesian nonlinear regression

• Bayesian nonparametrics is an active research topic and many new 
methods are being developed
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