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Objectives

• Define a state space model
• Define a dynamic Bayesian network and state why inference in DBNs tends 

to be computationally complex
– Standard DBN
– Partially Dynamic Bayesian Network (PDBN)

• Describe typical inference problems for DBNs:
– Prediction
– Filtering
– Smoothing
– Estimation

• Describe how the following DBN inference algorithms work:
– Temporal rollup exact inference
– Boyen-Koller approximate inference
– Particle filter approximate inference

• Describe key research challenges for inference in state space models
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Dynamic Bayesian Networks

• A dynamic Bayesian network (DBN) is a Bayesian network for which:
– Nodes are indexed by time
– Time is integer-valued and begins at zero (convenient assumption that loses 

no generality)
– The local distribution for a variable can depend on

» Any variable that precedes it in time
» Variables at the same time that are prior to it in the node ordering

– There is an integer k, called the order of the DBN such that the local 
distribution of Xt is the same for all t > k

• A DBN is an order k Markov chain

B(t)

C(t)

A(t)

D(t) D(t+1)

B(t+1)

C(t+1)

A(t+1)

MEBN fragment 
representation for an 
order 1 DBN
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State Space Model

• A state space model is a representation for a dynamic system that 
satisfies the following conditions:
– The behavior of the system depends on a state Xt which evolves in time 
– The state Xt at time t depends on the past only through its dependence 

on the immediate past state Xt-1 (Markov assumption)
» P(Xt | X0, X1, …, Xt-1) = P(Xt | Xt-1)

– The state is hidden and cannot be observed directly
– We learn about the state through an observation Yt which depends on Xt

but not on past states or past observations
» P(Yt | X0, X1, …, Xt, Y0, Y1, …, Yt-1) = P(Yt | Xt)

• State space models are a powerful and general way to model 
systems that evolve in time

X2X1 X3

Y2Y1 Y3
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Typical Tasks for State Space Models

• Prediction -
– Predict states of future variables given observations on past 

variables
• Filtering -

– Infer values of current unobserved variables given current and 
past observed variables 

• Smoothing -
– Revise inferences about past unobserved variables given new 

observations
• Estimation -

– Infer hidden static parameters from observations 

These tasks may be performed offline in 
batch mode or online sequentially
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Examples

• Hidden Markov model
– State is discrete, no internal 

structure
– Observation is discrete
– State transition is discrete 

Markov chain
– Many applications in pattern 

recognition: speech recognition, 
language understanding, image 
understanding…

• Kalman filter
– State is multivariate Gaussian
– Observation is multivariate 

Gaussian
– State transition is linear
– Many applications in tracking and 

filtering

• Dynamic Bayesian network
– State is usually discrete and 

multivariate
– Observation is usually discrete, 

can be multivariate
– Factored state transition 

probability distribution is 
represented as graph plus local 
distributions

– Many applications in robotics, 
artificial intelligence, multi-
source fusion

• Partially dynamic Bayesian 
network
– State includes one or more static 

(not temporally changing) 
variables 

If continuous nodes are allowed then all these examples 
are special cases of partially dynamic Bayesian networks
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Kalman Filter
• Widely applied model for time-varying continuous process 

measured at regular time intervals

– “Filter” noise to find best estimate of current state given measurements

– Predict state at time of next measurement

• Unobservable system state st at time t is a real vector

• Measurement zt at time t depends on system state

• Control input ut at time t affects movement

• At each time step a recursive algorithm applies Bayesian inference with 

normal model to:

– Estimate current state st given observations z1, …, zt
– Predict next state

Prediction

Measurement

Updated (filtered) State Estimate

st st+1

zt zt+1

st+2

zt+2

…

ut ut+1 ut+2

…
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Applications of Kalman Filter
• Kalman filter is applied to a wide range of problems where we need 

to track moving objects
– Fitting and predicting economic time series
– Robot navigation
– Tracking hands, faces, heads in video imagery
– Tracking airplanes, missiles, ships, vehicles …

• There are many enhancements and extensions
– Incorporating non-Gaussian error distributions
– Incorporating non-linear movement equations
– Handling maneuvering tracks
– Tracking multiple objects

» Data association – which object goes with which track?
» Hypothesis management – which data association hypotheses have enough 

support to merit attention?
» Track initiation and deletion
» Spurious measurements not due to any tracks
» Incorporating information about object type

– Missing data and non-regular time measurement intervals
– Fusing information from multiple sensors
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Details: Simple 1-Dimensional Kalman Filter 
with no Control

• State: position and velocity st = (xt, vt)
• Initial state (x1, v1) is known
• Evolution equations: 

§ vt | vt-1 ~ N(vt-1, τ2)
§ xt | xt-1, vt-1 ~ N(xt-1 + vt-1, σ2)
§ zt | xt ~ N(xt, ξ2)

§ At time t > 1, conditional on z1:t-1 the 
current state variables are normally 
distributed
§ vt | z1:t-1 has mean mt and variance φt

2

§ xt | vt , z1:t-1 has mean at + btvt and variance ψt
2

§ We can use normal-normal 
conjugate updating to 
develop recursive updating 
equations for mt, at, bt, φt

2

and ψt
2

xt xt+1

zt zt+1

xt+2

zt+2

…

vt vt+1 vt+2

Diagram source: Faragher, Understanding the Basis of the 
Kalman Filter, IEEE Signal Processing, 128, 2012 
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Bayesian Updating: Position
• Reminder of evolution equations: 

§ vt | z1:t-1 ~ N(mt, φt
2)

§ xt | vt , z1:t-1 ~ N(at + btvt, ψt
2)

§ zt | xt ~ N(xt, ξ2)
• Use Bayesian conjugate updating to find new conditional distribution for 

position given velocity
– Distribution of xt given z1:t, vt is normal

§ Mean                           =  at* + bt*vt ,   where at* =                       and bt* = 

§ Standard deviation  ψt*  =  

xt xt+1

zt zt+1

vt vt+1

at + btvt
ψ t

2 + zt
ξt
2

1
ψ t

2 +
1
ξt
2

at
ψ t

2 +
zt
ξt
2

1
ψ t

2 +
1
ξt
2

bt
ψ t

2

1
ψ t

2 +
1
ξt
2

1
ψt
2 +

1
ξt
2

⎛

⎝
⎜

⎞

⎠
⎟

−1/2
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Bayesian Updating: Velocity
• Reminder of evolution equations: 

§ vt | z1:t-1 ~ N(mt, φt
2)

§ xt | vt , z1:t-1 ~ N(at + btvt, ψt
2)

§ zt | xt ~ N(xt, ξ2)
• Use Bayesian conjugate updating to find new distribution for velocity

– Integrate out xt to get distribution of zt given vt and z1:t-1

§ zt | vt , z1:t-1 ~ N(at + btvt, ξ2 + ψt
2)

– Reformulate measurement as yt = (zt - at)/bt

– Conditional distribution of yt given vt is 
§ yt | vt , z1:t-1 ~ N(vt, (ξ2 + ψt

2)/bt
2)

– Distribution of vt given z1:t-1, yt is normal

§ Mean                                     ,   Standard deviation

– This is also the distribution of vt given z1:t

xt xt+1

zt zt+1

vt vt+1

mt*=

mt

ϕt
2 +

ytbt
2

ξt
2 +ψ t

2

1
ϕt

2 +
bt
2

ξt
2 +ψ t

2

ϕt*=
1
ϕt

2 +
bt
2

ξt
2 +ψ t

2

⎛
⎝⎜

⎞
⎠⎟

−1/2
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Predicting the Next Step

• Distribution of st = (xt, vt) given z1:t is normal
§ vt | z1:t ~ N(mt*, (φt*)2)
§ xt | vt , z1:t-1 ~ N(at* + bt*vt, (ψt*)2)

• Distribution of st+1 = (xt+1, vt+1) given vt, xt is independent of z1:t
and normal
§ vt+1 | vt ~ N(vt, τ2)
§ xt+1 | xt, vt ~ N(xt + vt, σ2)

• Marginalizing out vt and xt gives the distribution for (xt+1, vt+1) given z1:t

§ vt+1 | z1:t ~ N(mt+1,   ),  where

§ xt+1 | vt , z1:t ~ N(at+1 + bt+1vt+1,  ) ,  where

xt xt+1

vt vt+1

ϕt+1
2

ψ t+1
2

mt+1 = mt*,   ϕt+1
2 = (ϕt*)2 +τ 2

at+1 = at*,   bt+1 = bt*,   ψ t+1
2 = (ψ t*)2 +σ 2
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Summary: Kalman Filter

• The Kalman filter was invented by Rudolf Kalman in 1960-61

• It is widely applied to model time-varying real-valued 
process measured at regular time intervals

– “Filter” noise to find best estimate of current state given measurements

– Predict state at time of next measurement

• We examined a simple 1-dimensional problem with no control input

• The algorithm operates recursively as follows

– Filtering: From prediction of current state (prior given measurements 
prior to current time) and measurement (likelihood) use conjugate 
Bayesian updating to find posterior distribution given measurements up 
to and including current time

– Prediction: Use marginalization to find predictive distribution of next 
state given measurements up to and including current state

st st+1

zt zt+1

st+2

zt+2

…

ut ut+1 ut+2

…
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Partially Dynamic Bayesian Networks

• PDBN has static as well as dynamic nodes
• Most DBN theory and algorithms assume all variables are dynamic
• Static nodes can be exploited for efficiency but may degrade accuracy 

in algorithm not specialized to handle static nodes

Dynamic transitional

Static transitional

Dynamic nontransitional

Static nontransitional

Node types:
• Static nontransitional - static nodes 

with no dynamic children
• Static transitional - static nodes with 

dynamic children
• Dynamic nontransitional - dynamic 

nodes with no children in next time 
step

• Dynamic transitional - dynamic 
nodes with children in next time 
step
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PDBN Inference - Exact Rollup

• Filtering in PDBNs works similarly to a Kalman filter
• We keep information on 2 timesteps

– All the current dynamic nodes
– All the current static nodes
– The dynamic transitional nodes

• Two-stage rolling inference:
1. Initialize

– Set up BN at first timestep
– Set current timestep to 1

2. Apply evidence at current timestep
3. Update beliefs
4. Absorb all nodes except transitional nodes
5. Roll BN forward to next timestep

– Add next time step dynamic nodes
6. Return to Step 2
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Example PDBN

• There are 3 types of objects
– Type 1 objects are usually small 

and asymmetrical
– Type 2 objects are usually 

medium-sized and may be 
symmetrical or asymmetrical

– Type 3 objects are usually large 
and symmetrical

• Objects can be viewed straight 
on or obliquely
– Camera angle is unknown and 

changes with time
• Asymmetrical objects viewed 

obliquely may look smaller than 
actual size and may appear 
symmetrical

Dynamic transitional

Dynamic nontransitional

Static transitional

Static nontransitional
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Example: Exact Rollup 
(First Evidence)

1. Apply evidence at current time step
2. Update beliefs on all unobserved RVs

3. Absorb all RVs not part of past expression

Initialize  PDBN at Time Step 1

4. Extend to next time step
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Example: Exact Rollup 
(Next Evidence)

1. Apply evidence at current time step
2. Update beliefs on all unobserved RVs

3. Absorb all RVs not part of past expression

Begin with current 2-PDBN

4. Extend to next time step
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Comparison

Fully Extended 3 Time 
Step PDBN (answer is 

same)

Rolled up network at time step 
3 after processing evidence at 

time steps 1 and 2
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Approximate PDBN Inference

• Exact rollup is intractable for all but the most simple PDBNs
– Even for sparsely connected DBN usually cannot construct sparse 

junction tree
– When there are many variables inference is intractable

• Approximation methods
– Boyen-Koller 

» Deterministic approximation 
» Replaces exact past expression with simplified past expression

– Particle filter
» Stochastic approximation 
» Approximates past expression with sample of �particles�

– Additional algorithms under development



Dynamic - 21 -

George Mason University

©Kathryn Blackmond Laskey Spring 2019

Boyen-Koller Approximation

• Works like rollup except we approximate marginal 
distribution of Xt given past and current evidence by 
simpler structure

• Keep information on 2 timesteps
– All the current dynamic nodes
– An approximate �past expression� that summarizes all previous evidence
– The approximate past expression contains static and dynamic transitional 

nodes but structure is simpler than exact rollup past expression

• The Boyen-Koller algorithm
1. Get observations on dynamic nontransitional evidence nodes
2. Use Bayesian inference to update beliefs on unobserved nodes 
3. Compute new approximate past expression

– Use same structure as approximate past expression from previous timestep
– Replace beliefs with updated marginal beliefs

4. Roll BN forward to next timestep, keeping only the new past expression
5. Return to Step 1
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Example: Fully Factored BK 
(First Evidence)

1. Apply evidence at current time step

2. Update beliefs on all unobserved RVs

3. Remove RVs not part of past expression & 
adjust belief tables in past expression to 
conform to current conditional probabilities

Initialize  PDBN at Time Step 1

4. Extend to next time step
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Example: Fully Factored BK 
(Next Evidence)

1. Apply evidence at current time step
2. Update beliefs on all unobserved RVs

3. Absorb all RVs not part of past expression

Begin with current 2-PDBN

4. Extend to next time step
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Comparison

Fully Extended 3 Time 
Step PDBN

BK approximate network at 
time step 3 after processing 

evidence at time steps 1 and 2
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Boyen-Koller Theory

• If DBN has a unique stationary distribution, the forward prediction 
operation �shrinks� both the approximate and exact belief states 
toward the stationary distribution of the DBN (if it has one) and closer 
to each other

• Effect of errors due to previous approximations decreases 
exponentially

• Overall error remains bounded indefinitely
• Approximation error depends on how well the approximate belief 

state matches the exact belief state
• Important issues  

– How to choose the structure for the approximate belief state
» Tractable
» Closely approximates exact state

– Approximation bounds do not apply when there are static nodes!
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Factored Frontier

• Similar to Boyen-Koller
– Boyen-Koller does exact prediction followed by marginalization

• Factored frontier approximates the prediction step using 
factored distributions
– This amounts to applying junction tree propagation to �loopy�

tree but ignoring the multiple connections
• Factored frontier is equivalent to  single iteration of �loopy 

belief propagation�
• Can be improved by iterating loopy belief propagation
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Particle Filter Basic Idea

initialization

Likelihood 
weighting

Resampling

Likelihood 
weighting

Evolution
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Particle Filter Algorithm

• Notation:
– Xt = (X1t, X2t, …, Xkt) is time step t of k-variable DBN 
– There are N particles xit, i=1,…N
– Each particle assigns a value xijt to each random variable Xjt at time step t
– evt is evidence at time t

• Basic particle filter:
– Begin with a sample (equally weighted) of particles x1t, x2t, … xNt

– For each particle xit = (xi1t, xi2t, …, xikt):
» Project forward to obtain a distribution P(Xij(t+1) | xi,pa(j)t)  for Xij(t+1) at time t+1
» Sample trial value x�ij(t+1) from P(Xij(t+1) | xi,pa(j)t) 

– Reweight particles based on evidence
» wi(t+1) µ P(evt+1 | xi(t+1))
» Normalize to sum to 1

– Resample (this step keeps the weights from getting too skewed)
» Sample N particles with replacement from the collection of trial values
» Use weights as probabilities
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Visualizing the Particle Filter

• A nice intuitive explanation of the particle filter (with no math):
– https://www.youtube.com/watch?v=aUkBa1zMKv4

https://www.youtube.com/watch?v=aUkBa1zMKv4
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PDBN Particle Filter

1. Apply evidence at current time step

2. Calculate weights of particles

3. Sample particles with replacement; 
probability proportional to weights 

4. Only past expression nodes are needed 

Generate initial sample of static 
and first timestep dynamic 
nodes

4. Sample next timestep for each particle
5. Go to 1

• PF maintains collection of 
weighted particles

• Each particle is a single 
realization of all nodes in 
the BN

• Belief bars should be 
interpreted as histograms 
of weighted particle counts
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Step-by-Step Example 
(1 of 3)

1. Sample values for Static Nodes
a. For i=1:numParticles

 i. Randomly draw ObjectType(i) from Pr(ObjectType)
 ii. Randomly draw ObjectSize(i) from Pr(ObjectSize | ObjectType)
 iii. Randomly draw ObjectShape(i) from Pr(ObjectShape | ObjectType)

end
b. Set Particle(i) <- [ObjectType(i), ObjectSize(i), ObjectShape(i)]

2. Sample values for non-evidence dynamic nodes, using initial distributions for dynamic transitional nodes
a. For i=1:numParticles

 i. Randomly draw CameraAngle1(i) according to initial distribution Pr(CameraAngle1)
 ii. Randomly draw ApparentSize1(i) and ApparentShape1(i) according to
 Pr(ApparentSize | CameraAngle1(i), ObjectSize(i), ObjectShape(i) ) and

Pr(ApparentShape | CameraAngle1(i), ObjectShape(i) )
end

b. Set Particle(i) <- Particle(i) + [CameraAngle1(i), ApparentSize1(i), ApparentShape1(i)]
3. Set T=1
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Step-by-Step Example 
(2 of 3)

4. Calculate weights
a. Set evidence values szrT and shprT for SizeReportT and ShapeReportT.  That is:

 i. szr1=Large and shpr1=Symmetrical;
 ii. szr2 = Medium and shpr2=Symmetrical;
 iii. Evidence values at times greater than 2 were not given in the example.

b. For i=1:numParticles
 i. Calculate unnormalized weight for each particle:

    Set wUnnorm(i) <- Pr(szrT | ApparentSizeT(i) ) * Pr(shprT | ApparentShapeT(i) )
end

c. For i=1:numParticles
 i. Calculate normalized weight: Set  w(i) <- wUnnorm(i)/SumOverj(wUnnorm(j))

5. Resample
a. For i=1:numParticles

 i. Draw ResampleIndex(i) between 1 and numParticles with probability w(i) of drawing i
 ii. Set NewParticle(i) <- Particle(ResampleIndex(i))

end
b. For i=1:numParticles

 i. Set Particle(i)=NewParticle(i)
end
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Step-by-Step Example 
(3 of 3)

6. If T is last time step, exit. Else roll forward to T <- T+1
7. Sample values for non-evidence dynamic nodes, using DBN distributions for dynamic transitional nodes

a. For i=1:numParticles
 i. Randomly draw CameraAngleT(i) according to Pr(CameraAngleT | CameraAngleT-1)
 ii. Randomly draw ApparentSizeT(i) and ApparentShapeT(i) according to
 Pr(ApparentSize | CameraAngleT-1(i), ObjectSize(i), ObjectShape(i) ) and

Pr(ApparentShape | CameraAngleT-1(i), ObjectShape(i) )
end

b. Set Particle(i) <- Particle(i) + [CameraAngleT(i), ApparentSizeT(i), ApparentShapeT(i)]
8. Go to Step 3.
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Weighted Monte Carlo: BasicTheory

• Our goal is to estimate a target integral (or sum):*

• We can calculate (or estimate) a(x) but not the integral
• We can easily simulate observations from probability 

distribution q(x)
• Re-express our target integral (or sum):*

• Sample observations x1, …, xn from q(x)
• Estimate t by:

t = a(x)dµ(x)
x
∫

t =
a(x)
q(x)

q(x)dµ(x)
x
∫

t̂ =
1
n

a(xi )
q(xi )i=1

n

∑
* This is generic notation that applies to sums and/or integrals 

over arbitrary sets. The notation dµ(x) stands for the �unit of 
measure� over which we are integrating or summing.  Read it 
as dx in a univariate integral, dx1…dxn in a multivariate 
integral, or a �point mass� at each element of a discrete set 
(in the latter case the integral symbol should be read as Sx).See also: approximate 

inference lecture
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Application: A Simple Particle Filter

• Assume:
– State space model has state transition distribution f(xt | xt-1) and 

observation distribution g(yt | xt):
– Collection of equally weighted particles {x(i)

t-1}i=1,..n provides an 
estimate of the fest(xt-1 | y1:t-1) distribution of states given past evidence 

– We want to estimate fest(xt-1 | y1:t)
• Sample from the state transition distribution f(xt | x(i)

t-1) and 
weight each particle by w(i)

t µ g(yt | ) (normalize weights to sum 
to 1)

• Use weighted particles for estimating functions of state
• Resample to move to the next time step:

– Sample       (with replacement) with probability w(i)
t to obtain a 

collection {x(i)
t}i=1,..n of equally weighted particles

• Why does this work?

 !xt
(i )

 !xt
(i )

 !xt
(i )
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Particle Filter: Estimation

• Goal: estimate expected value of function of current state:

• Re-express the integral:

• Approximate numerator and denominator:

• Take ratio:
 

t(xt )Pr(xt−1 | y1:t−1) f (xt | xt−1)g(yt | xt )dxt−1
xt−1

∫ dxt
xt
∫      ≈      1

n
t( !xt

(i ) )g(yt | !xt
(i ) )

i
∑

Pr(xt−1 | y1:t−1) f (xt | xt−1)g(yt | xt )dxt−1
xt−1

∫ dxt
xt
∫      ≈      1

n
g(yt | !xt

(i ) )
i
∑

t = t(xt ) f (xt | y1:t )
xt
∫

t =
t(xt )Pr(xt−1 | y1:t−1) f (xt | xt−1)g(yt | xt )

g(yt )
dxt−1

xt−1
∫ dxt

xt
∫

 

t ≈
t( !xt

(i ) )g(yt | !xt
(i ) )

i
∑

g(yt | !xt
(i ) )

i
∑

= wt
(i )t( !xt

(i ) )
i
∑

a(xt ) = t(xt ) f (xt | xt−1
(i ) )g(yt | xt )

q(xt ) = f (xt | xt−1
(i ) )

a(xt ) = f (xt | xt−1
(i ) )g(yt | xt )

q(xt ) = f (xt | xt−1
(i ) )

Estimate before resampling
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Particle Filter: Resampling

• We could avoid resampling and carry weighted particles.  
• Weight update without resampling is:

– w(i)
tµ w(i)

t-1 g(yt | x(i)
t)

• In practice the weights become very unbalanced after a few 
iterations: most are very near zero and a few have larger 
values

• Resampling preserves expected values but avoids unbalanced 
weights
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Particle Filter: Limiting Behavior

• Under reasonable conditions on the importance distribution, 
weighted Monte Carlo estimates satisfy a central limit theorem

• As number of samples becomes large
– Estimate converges with probability 1 to the integral being 

estimated
– Deviations of estimate from true value have approximately a 

Gaussian distribution 
• These results apply as number of particles becomes large 

while holding the number of time steps fixed
• We are often interested in holding number of samples fixed 

and letting number of time steps become large
• There are no large-sample results for this case!
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Modifications of Basic Algorithm

• Importance sampling
– Sample trial value x�ij(t+1) from distribution other than P(xij(t+1) | xipaji)t) and 

weight the estimate appropriately
– The optimal sampling distribution would be P(xij(t+1) | xipa(i)t,evt) but this may 

be intractable
– Poorly chosen importance distribution can make things worse

• Rao-Blackwellization
– Sometimes we can disconnect the BN into tractable sub-parts by sampling 

only some of the variables
– Use temporal rollup for variables not sampled
– Theory: replacing sampled value by expectation lowers variance of 

estimator
• Auxiliary particle filter

– Goal is to increase number of particles in useful regions of  space but 
avoid duplicated particles from resampling

– Resample before propagating forward rather than afterward
– Sample auxiliary value xa

ij(t+1) given xijt, compute weights given evidence, 
resample

– For each xa
ij(t+1) in the resampled collection sample �real� particle xij(t+1)
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Importance Sampling

• Instead of sampling from transition distribution f(xt | x(i)
t-1) we can 

sample from an an importance distribution q(xt) 
• To retain correct expected values we adjust the weights:

• Performance depends on a good importance distribution
– The optimal importance distribution is a probability density function 

proportional to
– Standard particle filter uses
– This can be a poor choice

• Adaptive importance sampling repeats importance sampling, 
improving the importance distribution on each step

 
wt
(i ) ∝

f ( !xt
(i ) | xt−1

(i ) )g(yt | !xt
(i ) )

q( !xt
(i ) )

 f ( !xt
(i ) | xt−1

(i ) )g(yt | !xt
(i ) )

 f ( !xt
(i ) | xt−1

(i ) )
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Dynamic Iterative Importance 
Sampling for PDBNs (Chang)

• Importance distribution:
– Same factored structure as original BN
– Replace original CPTs with importance CPTs (ICPTs) estimated from 

importance samples
– ICPTs are updated on each time step

• The algorithm:  
1. Initialize importance distribution
2. For number of adaptation steps:

– Generate samples using current importance distribution
– Compute weights and update scores
– Update ICPTs

3. Roll over to next time step 
– Replace CPTs for transitional nodes with ICPTs

• Product of ICPTs is good approximation to joint PDF
• Empirical results show method is effective except when evidence 

has extremely small probabilities
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Adaptive Importance 
Sampling: Caveat

• Good importance distribution appears to be the single most effective 
way to improve weighted Monte Carlo

• Optimal importance function is proportional to target distribution
• Adaptive importance sampling: 

– Estimate optimal importance function from previous samples
– Use estimate to generate the next set of samples

• Caution: Estimates from adaptive importance sampling have correct 
expectation but may not satisfy a Central Limit Theorem!
– Intuition: overfitted estimates can cause extreme weights (cases for 

which  denominator of weight is very small relative to numerator)
– There are ways to ensure that estimates satisfy CLT (e.g., put small fixed

weight on uniform CPT in ICPT estimate for DIIS)
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Rao-Blackwell Particle Filter

• We can reduce variance either by:
– Increasing the number of particles
– Replacing a sampling step by an exact computation with the same expectation

• When exact computation on part of the problem is cheap, then inserting 
an exact computation can improve accuracy

B(t)

C(t)

A(t)

D(t) D(t+1)

B(t+1)

C(t+1)

A(t+1)

B(t)

cit

A(t)

D(t) D(t+1)

B(t+1)

C(t+1)

A(t+1)
Example:

• If we know C(t) then we can 
decompose the computation 
into two simpler sub-
problems, which we may be 
able to afford to do exactly

• We can simulate C(t) and 
compute distribution of A(t), 
B(t) and D(t) exactly given C(t)

• Variance will be less for a 
given number of particles than 
simulating all variables
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Filtering and Estimation

• Inferences are more accurate if we compute distributions before 
sampling than after

• To infer distribution of jth variable at time t based on Monte Carlo 
sampling:
– Roll each equally weighted particle xit-1 forward through the transition model 

to obtain a distribution P(Xji(t-1)|ev[0,..t-1])
– Compute weight wit µ P(evt | xit)
– Approximate the marginal distribution of jth variable given evidence up to 

and including t as:

• Delayed inference (infer static or unobserved dynamic variable at time 
t using data up to and including time t+k) is generally more accurate 
than concurrent inference 
– More information is used
– May be less accurate if resampling is used because resampling reduces 

distinct past samples

P(Xjt ,ev[0,t ] ) = wjtP(Xjit | xi(t−1),ev[0,t−1] )
i
∑



Dynamic - 45 -

George Mason University

©Kathryn Blackmond Laskey Spring 2019

Challenge: Particle Impoverishment

• After several rounds of resampling, typically all particles are 
descended from a single initial particle

• When there are static nodes or near-deterministic transitions 
this can cause very poor performance

• Particle impoverishment can result in convergence to local 
minima of likelihood function and very poor estimates

• There is no asymptotic theory for particle filter as number of 
timesteps becomes large -- asymptotic theory relates to number 
of particles becoming large

• There are no guarantees of convergence!!
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Dealing with Impoverishment

• More particles (brute force)
– Usually not very effective when particle impoverishment is severe (especially in case of 

static variables)
• Regularized particle filter

– Ordinary particle filter uses discrete approximation to state density
– Regularized particle filter 

» Approximate state density at past time step with continuous distribution (often mixture of 
Gaussians with small standard deviation (�bandwidth�)

» Resample from approximate density before propagating to next timestep

• Adaptive importance sampling
– A good importance distribution is the best solution to particle impoverishment
– Bad importance distribution can make impoverishment much worse 
– Adaptive importance sampling iteratively improves approximation
– Computation cost is worth it if good importance distribution is found
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Particle Impoverishment 
with Static Parameters

• Standard PF cannot recover from impoverishment of static 
parameter

• Suggested approaches:
– Artificial evolution of static parameter

» Ad hoc; no justification for amount of perturbation; information loss over time

– Shrinkage (Liu & West)
» Combines ideas from artificial evolution & kernel smoothing
» Perturbation �shrinks� static parameter for each particle toward 

weighted sample mean
• Perturbation holds variance of set of particles constant
• Correlation in disturbances compensates for information loss

– Resample-Move (Gilks & Berzuini)
» Metropolis-Hastings step corrects for particle impoverishment
» MH sampling of static parameter involves entire trajectory but is performed less 

frequently as runs become longer

• There is not much literature on empirical performance of these 
approaches in applications

•
• •

•

•

•

•

•

•

•

••

X
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Static Parameter Shrinkage

• Justification:
– Ad hoc �jiggling� of static parameter increases variance of estimator
– This can compensate for reduction in variance due to impoverishment
– There is no theory to justify how much to jiggle or to evaluate how well the 

compensation works
• Shrinkage algorithm - Insert after resampling step of PF:

– Estimate posterior distribution of static parameter
– �Jiggle� static parameter randomly as follows:

» Hold static parameter fixed with probability p
» Sample from estimated posterior distribution with probability 1-p

• Avoids overdispersion from ad hoc jiggling
– If PF estimate is accurate estimate of posterior distribution then L-W shrinkage 

will maintain accurate mean & variance
– If PF estimate gets stuck in local optimum L-W may not help much 
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Resample-Move Algorithm

• Keep record of entire trajectory of each particle
– Current static parameter value
– Current and past values of all dynamic state variables
– Current and past observations

• Insert �move� step after resampling step in PF algorithm
– For each particle:

» Use a proposal distribution to suggest a random change in the particle trajectory (static 
parameter, present state, and/or past state(s)

» Evaluate:
• Likelihood of new & old trajectories
• Probability of proposing new from old and old from new

» Decide whether to accept or reject change
• �Better� (more likely) new state increases chance of acceptance 
• �Easy� transition back from new state increases chance of acceptance  

• �Move� step is a Markov process with unique stationary distribution equal to 
distribution we want to estimate

• Computationally more challenging than standard PF
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Some Illustrative Results

• Tested algorithms on one-dimensional problem from literature
• Shrinkage and resample-move improve estimate
• Need to explore relative improvement against computation cost of:

– More particles
– Shrinkage step
– MH step 

• Need to extend to multi-dimensional PDBNs

Standard 
auxiliary PF

More shrinkage More shrinkage
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Some General Points

• Online inference in state space models with static parameters 
is hard

• Find parts of computation where sampling can be replaced by 
cheap exact computation

• Find good heuristic approximations to use as proposal 
distribution

• Good proposal distribution is typically more important than 
more samples

• Offline estimation of static parameters may be necessary
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Summary and Synthesis

• Dynamic Bayesian networks pose a challenge for BN methods
– Even sparsely connected DBNs give rise to intractable junction trees
– Approximation is necessary for problems of any size

• Standard tasks for DBN inference
– Filtering
– Prediction
– Smoothing
– Estimation

• Approximation approaches
– Project current belief to lower-dimensional approximation that can be rolled 

forward in time tractably (Boyen-Koller and factored frontier)
– Monte Carlo simulation (particle filter)
– Hybrid approaches

• We discussed several ways to improve approximate methods
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