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This course is dedicated to the memory of 
journalist Danny Pearl, murdered in February 
2002, and to the pioneering research of his 
father Judea Pearl.  Judea Pearl’s research 
has the potential to create unprecedented 
advances in our ability to  anticipate and 

prevent future terrorist incidents.  May Judea’s 
research help to bring about Danny’s vision of 

a world where people of all cultures live 
together in peace, harmony, and mutual 

respect.
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Learning Objectives for Course
• Apply intellectual tools of decision theory to problems of 

inference and decision-making under uncertainty
• Use graphical probability models to:

– Develop computationally efficient representations of 
problems of inference and decision making under 
uncertainty

– Use these models to answer questions and/or solve 
problems requiring reasoning under uncertainty

– Explain results of models
– Understand model assumptions, limitations of results, 

inner workings of models and tools
• Become conversant in state of the art in 

computationally efficient methods for probabilistic 
inference and decision making

• Acquire basis for moving state of the art forward 
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Basic Information
Instructor: Kathryn B. Laskey

– Phone 703-993-1644
– Fax 703-993-1521
– Email klaskey@gmu.edu
– Office 2214 ENGR on GMU Fairfax campus
– Office hours Wednesday 3:30 - 5:30 and by appointment

Place and time:  Tuesday 4:30-7:10 PM, ENGR 1110
Recommended text: 

– Probabilistic Graphical Models: Principles and Techniques (2nd edition) Daphne Koller and Nir 
Friedman. MIT University Press, 2015

IT Supports:
– Web site http://mason.gmu.edu/~klaskey/GraphicalModels/
– Blackboard Upload assignments, solutions, recordings of all lectures

Requirements:
– Assignments 30%
– Take-home midterm 20%
– Take-home final exam 25%
– Project 25%

Prerequisites: 
– Strong skills in probability and statistics 
– Mathematical maturity
– Computational ability

mailto:klaskey@gmu.edu
http://mason.gmu.edu/~klaskey/GraphicalModels/
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Topics

Unit 1: Course Overview and Introduction  
Unit 2: Graph Theory, Conditional Independence and 

Graphical Probability Models
Unit 3: Representing Knowledge in an Uncertain World
Unit 4: Inference: Junction Tree Algorithm
Unit 5: Learning Graphical Models from Data
Unit 6: Knowledge Engineering and Modeling
Unit 7: Inference: Other Algorithms
Unit 8: Planning and Decision Making
Unit 9: Causality
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Learning Objectives - Unit 1
• Describe historical evolution of approaches to modeling 

uncertainty in intelligent systems
• Learn basic terminology of graphical probability models

– Conditional independence
– Graphs to represent conditional dependence structure
– Using graphical models to represent probability and decision 

models
• Refresh knowledge of elementary probability theory
• Interpret a graphical probability or decision model
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Unit 1 Outline

• Uncertainty and Intelligent Systems

• Decision Theory

• Probability Theory: Review and 
Fundamental Concepts

• Graphical Probability Models
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Information Processing Needs
• Advances in information processing have not kept pace with 

advances in sensor and computing technology
– Data deluge
– Information overload

– Knowledge “underload”

• Information processing requirements
– Extract key task-relevant conclusions

from huge volumes of data
– Respond rapidly to previously unknown 

types of situation

– Cope with uncertainty and ambiguity
– Learn from experience
– Support control of

» Allocation of computational resources

» Choice of information to display and format of display

» Management of collection resources Data, data everywhere, and 
not the time to think…
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Knowledge-Based Systems
• A knowledge based system (also called an expert 

system or intelligent system) is a computer system 
designed to behave intelligently in some domain

• Basic premise:  Intelligent problem solving 
requires flexible application of knowledge 

• Key feature:  Separate representation of 
knowledge from application to solve problems

• Advantages:
– opportunistic application of knowledge
– flexibility to try different solution strategies
– facilitates modularity, maintainability, ability to explain 

reasoning to users
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Elements of a Generic 
Knowledge Based System

• Knowledge base
– Stores generalizations about the domain

R1:  “IF [Income < 30,000] & [CreditHistory = Poor] 
THEN [deny application]”

• Long term memory
– Stores facts about the world

F1:  “Income_Apl#7 = 21,000”
F2: “CreditHistory_Appl#7 = Poor”

• Inference engine
– Derives conclusions 

R1 + F1 + F2 ® “deny application of Appl#7”

• Working memory
– Holds on to intermediate results of computations
– Receives inputs from the outside world (e.g., 

request to process query; streaming input to real-
time system)

– Reads from and writes to LTM and KB
• Control module

– Sets priorities
– Decides what order to do which tasks

LTM KB

WM

Data Knowledge
Structures
(e.g. rules)

Inferences
Inference
Engine

Outside
World

Control 
Module
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History:  Uncertainty in 
Knowledge-Based Systems

• Early AI stressed the importance of symbolic reasoning as distinct 
from “number crunching”

• Application engineers recognized the need to represent degrees of 
plausibility

• Perhaps the most famous expert system that explicitly allowed for 
degrees of belief was MYCIN, a system for diagnosing bacterial 
infections and prescribing treatment (mid-1980's)

– Certainty factors represented partial degrees of belief
– Isomorphic to probabilities with untenable independence assumptions 

(Heckerman)
• Initially the AI community resisted the use of probabilities

– Artificial intelligence is about symbols not numbers
– Probabilities are too computationally complex
– Experts can't supply the required inputs 

• Probability is now regarded as essential
– Practical successes
– Arguments and existence proofs counter perceived problems
– Researchers in alternative theories encountering the same tough issues
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Extensional versus Intensional
Uncertainty Processing

EXTENSIONAL SYSTEM
• Certainty combines truth-functionally (certainty of a formula is a function of 

the certainties of its subformulas) 
– Most early expert systems (e.g., MYCIN) used extensional uncertainty processing

• A Þp B means "whenever you see A, you are licensed to update the 
certainty in B by an amount which is a function of the rule strength p."

INTENSIONAL SYSTEM
• Assigns probabilities to sets of possible worlds, and the certainties on 

formulas combine by applying set theoretic operations to the sets of worlds 
represented by the formulas. 

• A Þp B is interpreted as a conditional probability statement:  the probability 
of B conditional on the truth of A is p, or PKB(B|A) = p.

A probabilistic system can be either intensional or extensional.  
Extensional approaches to probabilistic reasoning are justified 

only if certain independence assumptions are met.
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Example: 
Common Sources Reporting an Event

• You receive 3 reports from usually reliable sources that there has 

been a terrible nuclear accident near Kiev and thousands are dead

• Then you learn that all 3 reporters talked to the same source

• An intensional system can model the impact of this knowledge on 
your belief that thousands are dead; an extensional system cannot

Newspaper 
Report

Radio 
Report

TV 
Report

Thousands 
Dead



George Mason University

Unit 1(v2) - 14 -

Department of Systems Engineering and Operations Research

©Kathryn Blackmond Laskey Spring 2019

Unit 1 Outline

• Uncertainty and Intelligent Systems

• Decision Theory

• Probability Theory: Review and 
Fundamental Concepts

• Graphical Probability Models
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History: Statistical Inference
• Traditionally, statistical inference was focused on problems 

with very few parameters
– Limit theorems examined behavior of estimators as sample 

size grew large and number of parameters remained fixed
• Emphasis is growing on modeling very high-dimensional 

problems, e.g.
– Marketing tailored to customer
– Healthcare tailored to patient
– Time-varying spatial processes
– Region-specific weather and/or climate models

• Statistical inference methods must be adapted to deal with 
parameter spaces that grow very large to adapt flexibility to 
variability in the data

– Number of parameters grows with size of data set
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What is Decision Theory?
• Formal, structured, scientifically sound approach for 

– Representing knowledge about decision making under uncertainty
– Applying knowledge to solve problems

• "Divide and conquer" principle
– Human provides judgments on simple sub-problems
– Computer aggregates responses consistently

• Heuristic approaches can be judged by how well they approximate 
decision theoretic ideal

• Decision theory provides a foundation for learning systems that:
– Protect against ”overfitting" 

» Decision theoretic systems have a built in bias against complexity for small data 
sets (“natural Occam’s razor”) but add complexity as needed to explain data

– Provide clear semantics for "bias"
– Integrate top-down expert knowledge with bottom-up case-based learning
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Decision Theory
• Elements of a decision problem

– Possible actions:  {a}aÎA

– States of the world (usually uncertain):  {s}sÎS

– Possible consequences:  {c}cÎC

» Consequences c(s,a) are functions of states and actions

• Question:  What is the best action?
• Ingredients of a decision theoretic model

– Utility function u(c) expresses preference for consequences
– Probability p(s) expresses knowledge/uncertainty about state of world
– Best action maximizes expected utility:

Graphical  model for generic medical decision problem
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Simplified Example

• Actions:  diagnoses and treatment plans
• States of world:  Actual disease patient has
• Consequences:  Outcome of treatment plan
• Utilities:  Measure "goodness" of outcomes

Probabilities:  P(Has disease) = .6

Expected utilities:
Treat: .6´90 + .4´90 = 90
Don't treat: .6´0 + .4´100 = 40

Optimal action:  Treat patient

Action State Outcome Utility

Treat Has disease Disease free
Side effects

90

Treat Doesn't have 
disease

Disease free
Side effects

90

Don't treat Has disease Long illness
No side effects

0

Don't treat Doesn't have 
disease

Disease free
No side effects

100
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Decision Theory 
as a Foundation for Intelligent Systems

• Justifications
– Axiomatics
– Clear semantics
– Practical success
– Built in learning theory

• Some reasons for growing popularity:
– Computational tools now exist for problems of realistic complexity
– Systems based on decision theory have achieved success
– Benefits of decision theoretic thinking and pitfalls of shortcuts are 

becoming more widely understood
– Evolutionary arguments: Adaptive agents situated in environments 

that reward “rational” behavior will evolve toward approximate 
rationality

• The best working systems may not be decision theoretic
– Engineering tradeoff between cost/tractability and theoretical purity
– Beware of any system that is not approximately decision theoretic!
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Decision Theory for Intelligent Systems
• Traditional decision theory:

– Problem context is assumed known
– Fixed, known set of possible actions, possible outcomes
– Known (or pre-existing to be elicited) probabilities and utilities
– Representation is simple and unstructured
– Emphasis is on solving for posterior distribution or optimal decision

• Traditional decision analysis:
– Human-intensive, largely manual with some computer assistance
– Emphasis is on one-time solution

• For knowledge-based systems
– Constructing a knowledge representation is as important as problem 

solution
– Possible actions, possible outcomes are constructed at solution time 

from implicit internal representation
– Emphasis is on repeatable performance on a class of problems
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Unit 1 Outline

• Uncertainty and Intelligent Systems

• Decision Theory

• Probability Theory: Review and 
Fundamental Concepts

• Graphical Probability Models
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Probability Theory

• Probability theory is a body of mathematical theory which 
has been applied to problems of reasoning with uncertainty

• Probability can be used to model: 
– Problems with natural symmetries (physics; games of chance; 

explicit randomization in statistical experiments)

– Problems characterized by stable long-run frequencies
– Degrees of belief of rational agents for propositions about 

which they are uncertain

• There has been active debate over “interpretations of 
probability” and the types of problem to which it can 
meaningfully be applied
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Probability:  Basic Definition
• A finitely additive probability distribution is a function applied to 

events, or subsets of a universal set W, such that:
1. !(#) ≥ 0 for all sets #
2. !(Ω) = 1
3. If #Ç* = ∅ then !(#È*) = !(#) + !(*)

• A probability distribution is countably additive if it satisfies:
3. If #-Ç#. = Æ for all -, ., then !(⋃123

4 #1) = ∑1234 #1
• From this basic definition one can deduce:

– !(∅) = 0
– !(#) lies between 0 and 1 for all subsets # of W
– !(#È*) = !(#) + !(*) − !(#Ç*) for any # and *
– and other familiar identities of probability theory
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Fundamental Concepts of Probability

• Conditional probability
• Independence and dependence
• Conditional independence
• Law of total probability
• Bayes rule
• Random variable
• Joint probability distribution
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Conditional Probability
• The conditional probability of an event given another event is the 

probability that the first occurs if the second has occurred
– P(A|B, C) means probability of event A given that events B and C have 

occurred.

• Example:
– In Figure 1, the probability space consists of the whole square. Each event is 

represented by a shape inside the square. The probability of an event is 
represented by the area of its shape.

– In Figure 2, we know that event A is true, so everything outside A is 
false.This is shown by “expanding” A to have area 1 and setting P(B | A) to 
the area of the part of B that is inside of A

A∩B

B A

Figure 1 Figure 2

P(B|A) =
P(A∩B)

P(A)

A∩B

A
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Independence

• Events A and B are independent if the conditional probability 
of B given A is equal to the unconditional probability of B

• That is:

– P(A|B) = P(A), or P(B|A) = P(B). 

– This means that knowing B doesn’t change our beliefs about A

A Ç B A Ç ~B

~A Ç B ~A Ç ~B

A and B are independent

A Ç B
A Ç ~B

~A Ç B ~A Ç ~B

A and B are not independent



George Mason University

Unit 1(v2) - 27 -

Department of Systems Engineering and Operations Research

©Kathryn Blackmond Laskey Spring 2019

Conditional Independence
• Events A and B are conditionally independent given event C if 

learning the value of C makes A and B independent
– P(A|C) = P(A|B, C)
– This means that if C is known, then learning about B doesn’t 

change our beliefs about A

A Ç B Ç C
A Ç

~B Ç
C

~A Ç B Ç C
~A Ç ~BÇ

C

A and B are independent 
with high probability given C

A Ç
B Ç

~C
A Ç ~B Ç ~C

~A Ç
B Ç

~C
~A Ç ~B Ç ~C

A and B are independent 
with low probability given ~C
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Law of Total Probability

! " =$
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Bayes Rule: The Law of Belief Dynamics
• Objective: use new evidence E to update beliefs probability of hypothesis H

– H: patient has (does not have) disease
– E: evidence from test

• From the definition of conditional probability it is easy to derive Bayes rule:
(standard form)

(odds-likelihood form)

– Terminology:
» "($ ) - The prior probability of H " % & - The likelihood for E given H
» "(% ) - The predictive probability of E " & % - The posterior probability of H given E

» - The likelihood ratio for H1 versus H2 - The prior odds ratio for H1 versus H2

P(E)>0 

P(H2)>0 

" & % = " % & "(&)
"(%)

"(&)│E)
"(&,│E)

= " % &) "(&))
" % &, "(&,)

" % &)
" % &,

"(&))
"(&,)

The posterior probability of H1 increases 
relative to H2 if the evidence is more likely 

given H1 than given H2
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Bayes Rule Example

• At this time of the year in this 
location, 80% of the days
have rain

• However, the weather 
forecaster says tomorrow 
will be sunny. 

• We know:
– She is right 90% of the time when she predicts a 

sunny day, and 
– She is right 70% of the time when she predicts a 

rainy day. 
• What is the probability of rain for tomorrow?

?
??
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Bayes Rule Example – With Numbers
• Notation:

§ S: sunny day.
§ ~S: (not S) rainy day
§ F: a sunny weather forecast.
§ ~F: a rainy weather forecast.

• Data:
§ P(~S) =  0.80
§ P(F|S) = 0.90
§ P(~F|~S) = 0.70

P(S) =  0.20
P(~F|S) = 0.10
P(F|~S) = 0.30

P(~F|~S) = .70P(F|~S) = .30P(F|S) =.90P(~F|S) = .10

P(S) = .20 P(~S) = .80

P(F|~S) P(~S)
.30 x .80 = .24

P(F|S)P(S)
.90 x .20 = .18

P(F|S)P(S) + P(F|~S) P(~S) = P(F)
.18 + .24 = .42

P(F|~S)P(~S) 
P(F)

P(~S|F) = 

.24/.42 = .5714 

P(F|S)P(S) 

P(F)
P(S|F) = 

.18/.42 = .429
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Random Variable
• A random variable represents a property or feature of the world

– Property can take on one of a set of allowable values
– Probability quantifies likelihoods of different values 
– Likelihood of different values may depend on values of other properties
– Statistics texts often assume values are numbers; we assume values can be 

taken from any well-defined set 
• Examples:

– Whether a patient is a smoker (Possible values: True/False)
– Speed of a car in km/hr (Possible values: Non-negative numbers)
– Marital status of a loan applicant (Possible values: Single / Married / Divorced / 

Separated / Widowed)
• Mathematically, a random variable is defined as a function that maps 

elements of a sample space to outcomes of the random variable
– Smoker : Patients ® {True, False} 
– Speed : Cars @ times ® Positive Real Numbers
– MaritalStatus : Applicants ® {Single, Married, Divorced,…}

• Probabilities on sample space give rise to probabilities on values
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Joint Probability Distribution
• A joint probability distribution is a probability distribution defined on 

a k-dimensional sample space
• Weather example – sample space

– S: day à {True, False} True means sunny day
– F: day à {True, False} True means forecast sunny
– (S,F): day à {(True,True), (True,False), (False,True), (False,False)}

• Weather example – joint probability distribution
– P(True, True) = 0.2x0.9 = 0.18
– P(True, False) = 0.2x0.1 = 0.02
– P(False, True) = 0.8x0.3 = 0.24
– P(False, False) = 0.8x0.7 =0.56

• Weather example – marginal distribution for S:
– P(S=True) = 0.2, P(S=False) = 0.8

• Weather example – conditional distribution for S given F
– P(S=True | F=True) = 0.429, P(S=False | F=True) = 0.571
– P(S=True | F=False) = 0.034, P(S=False | F=False) = 0.966

P(True,True) =.18P(True,False) = .02 P(False,True) =.24 P(False,False) =.56
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Unit 1 Outline

• Uncertainty and Intelligent Systems

• Statistical Decision Theory and Graphical 
Models

• Probability Theory: Review and 
Fundamental Concepts

• Graphical Probability and Decision Models



George Mason University

Unit 1(v2) - 35 -

Department of Systems Engineering and Operations Research

©Kathryn Blackmond Laskey Spring 2019

Graphical Models for Representing 
Inference and Decision Problems

• Graphs are a natural representation for links between propositions
• Graphical representations of probabilistic dependencies have become very 

popular, e.g.
– Directed graphical models (Bayesian networks)
– Markov networks (Markov random fields)
– Graphical models on chain graphs
– Factor graphs
– Probability trees
– Hidden Markov models - special case of Bayesian networks
– Influence diagrams (decision graphs)
– Markov decision processes (MDPs) and partially observable Markov decision 

processes (POMDPs) - special case of influence diagrams
• This course examines graphical models for representing 

– Joint probability distributions on many random variables
– Decision problems with uncertain outcomes
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Uncertain Inference Example

Vehicles travel faster on roads than on smooth terrain and faster 
on smooth terrain than on rough terrain.  Tracked vehicles travel 
off-road more often than wheeled vehicles. Tracked vehicles can 
travel on very rough terrain where wheeled vehicles cannot travel.  
Tracked vehicles travel faster than wheeled vehicles on rough 
terrain, but wheeled vehicles travel faster than tracked vehicles 
on smooth terrain and roads.  A moving target indicator (MTI) 
sensor provides approximate position and velocity for vehicles 
that are moving, but cannot see stationary objects.  An imaging 
sensor usually distinguishes vehicles from other objects, and 
usually reports correctly whether a vehicle is tracked or wheeled.  
Cloud cover can interfere with the ability of the imaging sensor to 
distinguish vehicles from other objects. 
Objective: infer vehicle type from MTI and imaging sensor reports 
(given information about the road network, terrain, and weather)
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Vehicle Identification Random Variables
• Highly simplified sample space with seven binary RVs

§ K = Vehicle is tracked (true/false)

§ R = Vehicle is on road (true/false)

§ W = Weather is clear (true/false)

§ F = Vehicle is traveling fast (true/false)

§ I = Image sensor reports tracked vehicle (true/false)

§ M = MTI sensor reports vehicle is moving fast (true/false)

§ G = GIS sensor reports road (true/false)

• Binary RVs map sample space of 27 = 128 combinations of 
truth-values to true/false values
§ e.g. R maps (K, R, W, F, I, M, G) to value of R 

§ Joint distribution specifies a probability for each of these 128 elements

• For a problem with 100 true/false random variables, the 
sample space would have 2100 = 1.3 x 1030 elements (more 
than Avogadro’s number)
§ Reasoning directly with the full joint distribution is not scalable

§ We need a more efficient divide-and-conquer approach
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Vehicle ID: Graphical Probability Model
• There are 7 random variables: (R, W, K, F, I, G, M)

– Each random variable maps an element of the sample space to a value 
indicating whether the random variable is true or false in that world

• We can use a graphical probability model to represent direct dependencies
• In a Bayesian network (aka directed graphical model) each random 

variable is conditionally independent of its non-descendants given its 
parents

– Example: I is conditionally independent of F
given its parents  K and W

– Can you identify some other conditional 
independence relationships?
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Graphical Probability Model and Parsimony
• There are 27 = 128 elements of the sample space (why?)
• 127 numbers are needed to specify the joint distribution (why?)
• The joint distribution specified by this Bayesian network can be written in a 

factored form:

• This Bayesian network can be 
specified with:   1 + 1 + 2 + 4 + 4 + 2 + 2 = 14 probabilities

P(R,W,K,F,I,G,M) = 
P(R)P(W)P(K|R)P(F|K,R)P(I|W,K)P(G|R)P(M|F)
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Vehicle Example Extended:
Many-Valued Random Variables

• Purpose of model: identify object type from multi-sensor reports
• BN simplifies specification:

– Fully general joint distribution: 3240 probabilities (why?)
– This Bayesian network (general): 78 probabilities (why?)

• This model can be specified by combination of expert judgment and 
estimation from data

• A more realistic model would use continuous distribution for speed

Netica software: http://norsys.com
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Summary: Graphical Probability Model
• Formal language  for representing knowledge about 

uncertain quantities
– nodes represent random variables
– arcs represent direct dependence relationships among 

random variables
– local numerical functions encode strengths of dependencies

• Computational architecture for computing impact of 
evidence on beliefs

– updates beliefs when new evidence is observed
– exploits independence assumptions to make computation 

more efficient
• Factored representation of a joint probability distribution on 

many random variables
– scalable representation of high-dimensional distribution
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Summary and Synthesis
• Probability was viewed with disfavor in early days of artificial intelligence

– What changed things?  Why?

• Very high-dimensional distributions were viewed with disfavor in early days of 

mathematical statistics

– What changed things?  Why?

• What is a graphical probability model?

• Graphical probability models have:

– Helped to legitimize probability in artificial intelligence

– Helped statisticians to build increasingly sophisticated and complex models

– Helped to tie together symbolic and numeric computing

– Helped to bridge the sub-symbolic / symbolic gap

• Graphical models support

– Representation of knowledge as modular components that express both what is known 

and what is uncertain about a small part of the world

– Integration of expert knowledge and data

– Decision making in presence of uncertainty, including decisions about whether to collect 

information

• The inventors of probability theory thought of it as a logic of enlightened rational 

reasoning.  The information technology revolution is providing “cognitive tools” to 

support enlightened rational reasoning


