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Learning Objectives

• Construct an graphical model for a decision problem
• Construct a model for a decision involving whether to gather 

information
• Construct a collection of BN fragments to represent 

knowledge for a planning problem
– Knowledge about goals of planning agent
– Knowledge about how the state of the world evolves, including 

uncertainty and persistence of world states
– Knowledge about how actions influence the state of the world

• Describe some approaches to selecting action policies for a 
planner
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Unit 8 Outline

• Modeling decision problems with decision 
graphs

• Planning and temporal models
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The Elements of a Decision

• Objectives
• Alternatives to choose between
• Uncertainty in Events and Outcomes
• Consequences of the Decision
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What makes a decision hard to make?

• Competing objectives
• Uncertainty
• Politics
• Lack of information
• Differing perspectives of Decision makers
• Disagreement over what is to be accomplished
• Complexity
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Critical Components

Values
What do we want?

Outcomes
What might happen?

Alternatives
What can we do?

We want to choose the alternative that is most likely to serve 
our values given our information about future outcomes
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• Elements of a decision problem
– Possible actions:  {a}aÎA

– States of the world (usually uncertain):  {s}sÎS

– Possible consequences:  {c}cÎC
» Consequences c(s,a) are functions of states and actions

• Question:  What is the best action?
• Ingredients of a decision theoretic model

– Utility function u(c) expresses preference for consequences
– Probability p(s) expresses knowledge/uncertainty about state of world
– Best action maximizes expected utility:

• Decision maker may need to trade off
– Different dimensions of value
– Value now against value in future
– Value for self against value for others

• Outcomes may be uncertain

Decision Theory
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Influence Diagrams / Decision Graphs
• An influence diagram (aka decision graph) is a DAG that 

depicts relationships among variables in a decision problem. 
– Extends Bayesian network to include decisions 

• An influence diagram has 3 types of node:
– World state nodes (aka chance nodes) 

» Drawn as circles or ovals.  (deterministic nodes may be 
distinguished visually from uncertain world state nodes)

» Represent features of the world that affect the decision problem
– Decision nodes

» Drawn as rectangles
» Represent choices open to the decision maker

– Value nodes
» Drawn as triangles, hexagons or rounded boxes 

(there are different conventions)
» Represent attributes that matter to the decision maker

Bayesian network is an influence diagram with no decision or value nodes
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Relevance Arc

Influence Arc

Information Arc

Value Arcs
Notation for value nodes varies.  Some packages use 
rounded boxes, others diamonds, others hexagons.

Types of Influence
• Arcs into chance nodes from other chance nodes 

are called relevance arcs.  A relevance arc 
indicates that the value of one variable is 
relevant to the probability distribution of the other 
variable. 

• Arcs from decision nodes into chance nodes are 
called influence arcs.  An influence arc means 
that the decision affects, or influences, the 
outcome of the chance node.

• Arcs into decision nodes are called information 
arcs.  An information arc means that the quantity 
will be known at the time the decision is made.

– Decision nodes are ordered in time
– In standard influence diagrams, decision node and 

all its information predecessors are (implicit) 
information predecessors to all future decision 
nodes (no forgetting) 

• Arcs from chance or decision nodes into value 
nodes represent functional links.  Value nodes 
may not be parents to decision or chance nodes.
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Example:  Regulatory Decision
• Policy question:  permit or ban chemical?

– Need to trade off economic value against potential health effects
– Information is available to inform the decision 

• Apply the KE Process
– Begin with “focus variable” and spread out to related variables
– Ask about: 

» causally related variables
» enabling variables
» effects of a variable
» associated variables
» observables

1
0
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2nd Spiral of the Regulatory Decision Model

• Begin with “focus variable” and spread out to related variables
• Ask about causally related variables

– Variables that could cause a state to be true
– Variables that could prevent a state 

from being true
• Ask about enabling variables

– Conditions that permit, enhance or 
inhibit operation of a cause

• Ask about effects of a variable
• Ask about associated variables

– Knowing value provides information about another variable
• Ask about observables

– What evidence could be observed that would enable you to infer 
state of a variable

1
1
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Final Spiral of the Regulatory Decision Model

• The completed influence diagram
– Does it satisfy the goals of your model?
– Does it satisfy the “clarity test”?

1
2
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Information Collection Decisions
• Sometimes it is possible to collect information about relevant variables 

• If information is free it cannot decrease your expected utility (and often 
increases your expected utility)

– Why is this true?

• Expected value of perfect information (EVPI)

– Add a decision “buy information” to the influence diagram.  If “buy information” is 
selected uncertainty is resolved prior to decision.

– The difference between expected utility of “buy information” and expected 
expected utility of next-highest branch is EVPI

– Buy information if its cost (in utility units) is less than EVPI

• If information is costly it should be "purchased" only if it might change your 
decision

– Why is this true?

• Expected value of imperfect information

– The “buy information” decision gives only probabilistic information about the event 
in question

• Collecting imperfect information is sub-optimal if the cost exceeds EVPI

• In information collection decisions "cost of information" is a component of 
value
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Example:  Car Buyer

• Decision problem:  whether to buy a car
– Car might be a lemon
– Good car has value 60, bad car has value -100

• Can ask for a mechanic friend’s opinion
– No opinion if don’t ask
– If ask and car is good, 80% chance opinion is OK 
– If ask and car is lemon, 65% chance opinion is 

not-OK
– Asking costs -5 (price of happy-hour beer)

• Netica assumes utilities of multiple terminal 
value nodes are additive
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Car Buyer – Ask Mechanic?

• Compiling the network solves for optimal first 
decision

– Netica inserts “no-forgetting” link from ”Ask 
Mechanic?” to “Buy It?”

– Best action is not to ask
• To find EVPI

– Set cost of test to 0
– Asking mechanic has utility 31.4, not asking has 

utility 28
– Asking is worth 31.4 – 28 = 3.4
– If cost of test is less than 3.4 it is optimal to test

• If do test, best choice is to buy if OK, don’t buy 
if mechanic says not OK
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An Influence Diagram for Evacuation

Decision Value

Hurricane 
Path

Outcomes:
Hits Miami
Misses Miami

Alternatives:
Evacuate
Stay

Choice Outcome Value

Evacuate
Hits Miami

Safety, High Cost
Misses Miami

Stay
Hits Miami Danger, Low Cost

Misses Miami Safety, Low Cost

Forecast
Outcomes:
Will Hit Miami
Will Miss Miami
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Sequential Decision Problems

Note: Payoff = Cash Flow;
Total Payoff = Net Present Value

1
7
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Dynamic Decision Networks

• Inference Sub-net
– Set of BN that analyses the data provided to the system and 

makes probability inferences on that data.
– Usually: one BN assigned for each object to be analyzed.

• Data Fusion Sub-net
– Uses either BNs or influence diagrams for merging the data 

coming from the inference Sub-net.
– Number of nodes vary with number of BN in the Inference Sub-

net.
• Decision Sub-net

– One or more influence diagrams define an optimal set of 
actions to be taken during time step “t”.

– Calculate the value of information provided to the inference 
sub-nets.

1
8
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Dynamic Decision Networks

1
9

System 
External 

Interfaces

Decisions

Collected 
Data

Influence 
Diagram

Bayesian 
Network 
Diagram

Inference sub-net

Track 1 
Collected 
Data

Track n 
Collected 
Data

Track 2 
Collected 
Data

Data fusion 
sub-net

Maritime 
track 
fusion

Airborne 
track 
fusion

Decision sub-net
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Example: “Wise Pilot” DDN System
Costa, P. C. G. (1999)

• Manages the aircraft’s data sensors and weaponry, avoiding 
pilot overload.

• Only one influence diagram for the decision sub-net, also 
responsible for controlling the value of information.

• One variable-node Bayesian network structure for the data 
fusion sub-net.

• Variable number of BN in the inference sub-net. One for 
each perceived track.

2
0
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“Wise Pilot” 
DDN with 3 Tracks

• Relational representation 
has repeated structure

• Ground model with 3 tracks 
is shown here 

• Temporal element not 
modeled here
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DDNs and MEBNs

• The MEBN equivalent of an Influence Diagram is a Multi-
Entity Decision Graph (MEDG).

• MEDGs are for IDs what MEBNs are for BNs
– Much more expressive
– Address the issue of representing an uncertain number of 

threats
• MEDG implementation for UnBBayes is under development
• This is an important area of research in Decision Analysis. 

Shou Matsumoto, “A Framework for Decision Making with Probabilistic Ontologies,” 
PhD dissertation, SEOR Department, April 2019
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Solving for the Optimal Decision

• BN inference algorithms can be adapted to solve for the 
optimal decision in influence diagrams

– Exact: Adapt junction tree algorithm (Jensen et al, 1994) or 
bucket elimination to decision problems

– Approximate: Adapt IJGP to decision problems
• No-forgetting arcs can make multiple-decision problems 

intractable
• Limited-memory influence diagrams (LIMID) relax the no-

forgetting assumption and the assumption on a fixed 
ordering of decisions

– LIMID solution is an approximate solution to the optimal 
decision problem with full memory of past decisions
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Unit 8 Outline

• Modeling decision problems with decision 
graphs

• Planning and temporal models
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Planning
• A planner is designed to construct a sequence of actions intended to 

satisfy a goal
• Planning problem can be decomposed into:

– Plan identification
– Plan evaluation

• Plan identification typically involves heuristic rules designed to nominate 
“good” plans, e.g:

– Heuristic rules for nominating actions that move planner closer to goal
– Heuristic rules for breaking goal into subgoals
– Heuristic “conflict resolution” strategies for selecting a rule to apply when 

conditions of multiple rules are met
– Heuristic “problem space expansion” operators to apply when an impasse is 

reached (no rules can fire)
• Planning under uncertainty

– Early AI planners assumed no uncertainty
– Planning under uncertainty is an active research area
– Ways of responding to unexpected contingencies

» Contingency planning tries to pre-plan for all contingencies (computationally 
infeasible for all but the smallest problems)

» Replanning reinvokes planner when unexpected contingency occurs (may not be 
feasible in real time)

» Reactive planning pre-compiles stereotypic, fast reactions to contingencies (no time 
to develop good response)
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Decision Theoretic Planning

• Decison theoretic planning is an active area of research
• Key ideas in decision theoretic approach to plan evaluation

– Goals are represented as attributes of utility
» Achievement of goal may not be all-or-nothing.  There can be degrees of 

goal attainment
» One goal may be traded off against another
» Value of plan outcome is measured by utility
» Planner’s utility function trades off degree of attainment among all goals

– Uncertainty about plan outcomes is represented by probability
» Plans are evaluated prospectively by expected utility

– Actions change the probabilities of outcomes
» A plan is a set of instructions for taking actions
» Actions may be conditioned on the state of the world at the time the action 

is taken
» The best plan is the one with the highest expected utility
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Policies
• A local policy for a decision node in an influence diagram is a function from the 

decision node’s information predecessors to its action set
– What you do at a decision node can depend only on what is known to you at the time you 

make the decision as represented by the information predecessors
– Sometimes policies are randomized

• A  policy for an influence diagram is a set of local policies
– A policy determines (up to possible randomization) what the decision maker will do at 

every contingency
– An optimal policy maximizes expected utility
– Influence diagram solution algorithms find an optimal policy

• Solving an influence diagram
– The best decision to take today depends on outcomes tomorrow which will depend on how 

I decide tomorrow
– “Folding back” or dynamic programming algorithm (finite time horizon)

» Find the optimal policy for the decision farthest into the future
» Do until done:  Find the optimal policy for a decision given that all decisions coming after it are 

taken optimally
• When there are many decisions, finding the optimal policy is typically intractable

– A policy can depend on all past actions and all information predecessors of past actions
– We can design agents that forget all but a summary of their past history
– These agents optimize on a restricted policy space (policy is allowed to depend on past 

actions only through history)
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Markov Decision Processes

• MDPs are becoming a common representation for decision theoretic planning
• MDP represents temporal sequence of decisions
• Partially observable Markov decision process (POMDP) is MDP in which state 

is only partially observable
• POMDP has:

– State that evolves in time with Markov transitions
– Actions that are under control of decision maker
– Values (or costs) at each time step

• Usually costs are assumed additive
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MDP Example:  Inventory Control

Stock(0) Stock(1)

Order(1) Order(2)Order(0)

OrderCost(0) OrderCost(1) OrderCost(2)

InventoryCost(0) InventoryCost(1) InventoryCost(2)

TerminalCost

Stock(2) Stock(3)

Demand(1) Demand(1)Demand(0)
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Inventory Example Continued

• Stock(i) - amount of inventory in stock at time period i
– Observed before order is placed

• Order(i) - amount ordered for next time period
• Demand(i) - amount of items requested by customers in time period i
• OrderCost(i) - cost of order placed

– Depends on how many units are ordered
• InventoryCost(i) - cost of excess inventory and/or unmet demand

– Depends on difference between stock plus incoming order and demand
• TerminalCost(i) - cost of excess inventory at end of time horizon



DecisionMaking - 31 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

This equation forms the basis for exact and approximate 
algorithms for solving MDPs and POMDPs

The Dynamic Programming Optimality Equation
(Bellman Equation)

• sk is the state of the system at time k
• Tk(sk) is the optimal total payoff from time k to the end of the process
• ak is the action taken at time k
• vk is the single-period value at time k

!" #" = min() * +" #", -" + !"/0 #"/0
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Solving a Dynamic Program

• For a finite-horizon problem with additive utility we can solve a 
dynamic program exactly using a recursive algorithm

– Begin at terminal period: terminal costs are known and there is only 
one possible policy (remain terminated)

– Go to previous period
– For each policy and each state, compute current costs + future costs of 

following optimal policy from next period to end
– Set optimal policy for state equal to minimum of policies computed 

under step 3 for that state, and set optimal cost to cost of that policy
– If initial period we are done, else go to 2

• This recursive algorithm is closely related to variable elimination & 
belief propagation

• For infinite horizon problem there is no terminal period
• Even for finite horizon problems this algorithm may be intractable

!" #" = min() * +" #", -" + !"/0 #"/0
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Inventory Control Again
(Example 3.2, Bertsekas, 1995, p. 23)

• Notation:
– Time index k - varies from 0 to horizon N
– State variable xk - stock available at beginning of kth period
– Control variable uk - stock ordered (and immediately delivered) at beginning 

of kth period
– Random noise wk - demand during the kth period with given (constant) 

probability distribution
– Purchasing cost cuk - cost of ordering uk units at c per unit
– Holding/shortage cost r(xk,uk,wk) - cost of excess inventory or unmet demand
– Terminal cost R(xN) - cost of having xN units left at end of N periods

• State evolution (excess demand is lost):
– xk+1 = max{ 0, xk + uk - wk }

• “Closed loop” optimization: we know inventory xk at the time order is 
made, so uk(xk) can depend on system state

• Total cost of closed-loop policy p = {uk(xk)}k=0,…N-1:

!" #$ = & ' #( +*
+,$

(

- #+ + ./+(#+)
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Specific Parameters and Constraints

• Inventory and demand are non-negative integers ranging 
from 0 to 2

• Upper bound on storage capacity: xk + uk ≤ 2
• Inventory (holding/shortage) cost is quadratic in difference 

between demand and available supply: r(xk) = (xk + uk - wk)2

• Per-unit purchasing cost is 1
• No terminal cost: R(xN) = 0
• Demand distribution: 

– P(wk=0) = 0.1
– P(wk=1) = 0.7
– P(wk=2) = 0.2

• Assume initial stock x0 = 0
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DP Solution: Periods 3 and 2

Order cost
Holding/storage cost
Previous period optimal cost
Demand probability
Total cost

Period 2 Order Cost Demand = 0 Demand = 1 Demand = 2 Total Cost

x2=0 u2=0 0 0.1(0+0.0) 0.7(1+ 0.0) 0.2(4+ 0.0) 1.5

u2=1 1 0.1(1+ 0.0) 0.7(0+ 0.0) 0.2(1+ 0.0) 1.3

u2=2 2 0.1(4+ 0.0) 0.7(1+ 0.0) 0.2(0+ 0.0) 3.1

x2=1 u2=0 0 0.1(1+0.0) 0.7(0+ 0.0) 0.2(1+ 0.0) 0.3

u2=1 1 0.1(4+ 0.0) 0.7(1+ 0.0) 0.2(0+ 0.0) 2.1

u2=2 2 Infeasible Infeasible Infeasible --

x2=2 u2=0 0 0.1(4+ 0.0) 0.7(1+ 0.0) 0.2(0+ 0.0) 1.1

u2=1 1 Infeasible Infeasible Infeasible --

u2=2 2 Infeasible Infeasible Infeasible --

Period 3:  Total cost = Terminal cost = 0 
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DP Solution: Period 1

Order cost
Holding/storage cost
Previous period optimal cost
Demand probability
Total cost

Period 1 Order Cost Demand = 0 Demand = 1 Demand = 2 Total Cost

x1=0 u1=0 0 0.1(0+1.3) 0.7(1+1.3) 0.2(4+1.3) 2.8

u1=1 1 0.1(1+0.3) 0.7(0+1.3) 0.2(1+1.3) 2.5

u1=2 2 0.1(4+1.1) 0.7(1+1.3) 0.2(0+1.3) 3.68

x1=1 u1=0 0 0.1(1+0.3) 0.7(0+1.3) 0.2(1+1.3) 1.5

u1=1 1 0.1(4+1.1) 0.7(1+0.3) 0.2(0+1.3) 2.68

u1=2 2 Infeasible Infeasible Infeasible --

x1=2 u1=0 0 0.1(4+1.1) 0.7(1+0.3) 0.2(0+1.3) 1.68

u1=1 1 Infeasible Infeasible Infeasible --

u1=2 2 Infeasible Infeasible Infeasible --
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DP Solution: Period 0

Order cost
Holding/storage cost
Previous period optimal cost
Demand probability
Total cost

Period 0 Order Cost Demand = 0 Demand = 1 Demand = 2 Total Cost

x2=0 u2=0 0 0.1(0+2.5) 0.7(1+ 2.5) 0.2(4+ 2.5) 4.0

u2=1 1 0.1(1+ 1.5) 0.7(0+ 2.5) 0.2(1+ 2.5) 3.7

u2=2 2 0.1(4+ 1.68) 0.7(1+ 1.5) 0.2(0+ 2.5) 4.818

x2=1 u2=0 0 XXX XXX XXX XXX

u2=1 1 XXX XXX XXX XXX

u2=2 2 Infeasible Infeasible Infeasible --

x2=2 u2=0 0 XXX XXX XXX XXX

u2=1 1 Infeasible Infeasible Infeasible --

u2=2 2 Infeasible Infeasible Infeasible --

If we assume initial stock x2=0 we don’t need to 
compute optimal policy for other values of x2
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Stock(0)
Zero
One
Two

100
0
0

0 � 0

Demand(0)
Zero
One
Two

10.0
70.0
20.0

1.1 � 0.54

AttemptedOrder(0)
Zero
One
Two

-4.0000
-3.7000
-4.8180

ActualOrder(0)
Zero
One
Two

33.3
33.3
33.3

1 � 0.82

Penalty(0)

OrderCost(0)

Stock(1)
Zero
One
Two

70.0
26.7
3.33

0.33 � 0.54

Demand(1)
Zero
One
Two

10.0
70.0
20.0

1.1 � 0.54

AttemptedOrder(1)
Zero
One
Two

InventoryCost(0)

OrderCost(1)

InventoryCost(1)

Penalty(1)

TerminalCost

Stock(2)
Zero
One
Two

61.2
34.3
4.44

0.43 � 0.58

Stock(3)
Zero
One
Two

58.6
36.6
4.77

0.46 � 0.59

Demand(1)
Zero
One
Two

10.0
70.0
20.0

1.1 � 0.54

ActualOrder(1)
Zero
One
Two

35.6
41.1
23.3

0.88 � 0.76

ActualOrder(2)
Zero
One
Two

36.3
43.3
20.4

0.84 � 0.74

AttemptedOrder(2)
Zero
One
Two

Penalty(2)

InventoryCost(2)

OrderCost(2)

Note:  Netica 
maximizes utility.  

To minimize costs, 
set utility to 

negative cost

Netica Model

• Implementing constrained policies in Netica:  
– Unconstrained “attempted decision” node
– “Actual decision” node is equal to attempted decision if feasible; otherwise is set to any feasible choice
– Penalty node adds a penalty if actual decision ≠ attempted decision
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Infinite Horizon Problems
• Infinite horizon problems pose challenges

– Need to analyze limiting behavior as horizon tends to infinity

– To achieve a bounded total cost we often use discounting (costs k periods in the 

future count only dk as much as current costs

• Standard classes of problems:

– Stochastic shortest path problems - Horizon is finite but uncertain and may be 

affected by policy

– Discounted problems with bounded cost per stage - The total cost is well-defined 

because it is bounded above by a geometric series M + dM + d2M + …, where M 

is the upper bound of the per-stage cost

– Problems with unbounded cost per stage - These are mathematically challenging 

because some policies may have infinite cost

– Average cost problems - If we don’t discount then all policies may have infinite 

cost, but the limit as the average cost may be well-defined for each finite horizion 

and may have a well-defined limit as the horizon tends to zero

• We may approximate a finite-horizon problem with an infinite-horizon 

problem for which the solution is well-defined and tractable

• Typically we assume stationarity 

– System evolution equation, per-stage costs, and random disturbance do not 

change from one stage to the next

– Typically optimal policy is also stationary
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Value Iteration Algorithm
• Assume:

– Problem is stationary (therefore optimal policy is stationary)
– Finite state space (infinite state spaces require more sophisticated 

analysis)
• The algorithm:

– Initialize:
» Set k=0
» Begin with an initial guess for the optimal cost function T0(s)

– Do until termination criterion is met:
» Increment k
» Apply DP iteration to find optimal cost Tk(s) for each s 

– Terminate when change in value is less than a threshold
• When state space is finite and problem is stationary value 

iteration converges to the optimal policy

• The DP iteration: !" # = min( ) * #, , +.
/0
12(#0|#, ,)!"67 #′
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• Assume:
– Problem is stationary (therefore optimal policy is stationary)
– Finite state space (infinite state spaces require more sophisticated analysis)

• The algorithm:
– Initialize:

» Set k=0
» Begin with an initial  stationary policy a0

– Do until termination criterion is met:
» Increment k
» Apply policy evaluation 
» Apply policy improvement to find optimal policy a(s) for each s 

– Terminate when policy does not change
• When state space is finite and problem is stationary policy iteration converges 

to the optimal policy in a finite number of steps

• Policy evaluation - solve for
(system of linear equations)

• Policy improvement:

Policy Iteration Algorithm

!" # = min( ) *(s, ."(#)) +1
23
45 #3 #, ." # !" #′

."78(#) = argmin( ) *(s, .) +1
23
45 #3 #, . !" #′
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Reinforcement Learning

• Reinforcement learning (RL) is a branch of machine learning 
that studies how software agents should act to maximize 
cumulative reward

• This is the same class of problems addressed by dynamic 
programming

• Both DP and RL can be formulated as Markov decision 
processes or partially observable Markov decision 
processes

• RL generally assumes reward is unknown; agent learns 
about reward through sampling

• RL algorithms are typically designed for approximate 
solution of problems where exact solution is intractable



DecisionMaking - 43 -©Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

Spring 2019

Causality and Action
• We have discussed 2 types of action

– Actions that change the world (intervening actions)
– Actions that provide information about the state of the world (non-

intervening actions)
• Intervening action

– Normal time evolution of variable is “interrupted”
– Agent sets the value of variable to desired value
– Variables causally downstream are affected by change
– Variables causally upstream are unaffected

• Non-intervening action 
– Variable is information predecessor to future actions
– No other changes

• Every action has aspects of both
– When we take an action our knowledge is updated to include the fact 

that we took the action (but we may forget actions we took)
– Observing the world changes it (we often do not model the impact of 

actions whose impact is negligible)
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Summary and Synthesis

• Graphical modeling approach can be extended to compact 
and composable representations for goals, actions and 
decision policies

• Decision theoretic planning involves selecting action policies 
that achieve high expected utility for agents

• Planning and decision making models tend to be intractable 
and approximation methods are needed
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