The effect of continuance on the L2 production of onset clusters

Kelly Enochson George Mason University kelly.enochson@gmail.com

Key principles

Sonority

Sonority Distance (SD)

Continuance

• Obligatory Contour Principle (OCP)

Sonority and onset clusters: L2

Broselow and Finer (1991)

 speakers attend to the Minimal Sonority Distance parameter in onset clusters

Eckman and Iverson (1993)

 speakers are sensitive to sonority distance in onset clusters

Carlisle (2006)

 clusters with a large sonority distance are produced correctly more often than those with a small sonority distance

Cardoso and Liakin (2009)

- markedness vs. frequency
- markedness (sonority distance) has a much greater impact on production than frequency of input

Continuance and onset clusters

Morelli (2003)

- s-stop clusters violate Sonority Sequencing Principle, but nevertheless are quite common among the world's languages
- typological implications fricative-stop clusters are the least marked (obst-obst) typologically, despite being a violation of the SSP
- clusters that violate OCP[+cont] are more marked than those that do not

Continuance and onset clusters

• Yavaş and Someillan (2005)

- s-clusters can be grouped according to the continuance of C2
- /sl/, /sw/ group together, and s-stop, s-nasal group together.
- May be due to sonority distance
 - /sw/ and /sl/ have a much larger sonority distance than s-stop and s-nasal.
 - s-stop and s-nasal clusters violate MSD.

Continuance and onset clusters

- Two universals, markedness (SD) and OCP, make opposite predictions about scluster production.
- Yavaş and Someillan study bilingual
 Spanish-English children. OCP[+cont] is freely violated in English and Spanish.

Sonority

definitions of sonority vary; consequently sonority scales vary

Hogg and McCully (1987)

- Clements (1990)
 - 5 point sonority scale
 - combines stops and nasals into "obstruent"

Hogg and McCully (1987)

<u>Sounds</u>	<u>Sonority Index (S.I.)</u>		
Low vowels	10		
Mid vowels	9		
High vowels	8		
Flaps	7		
Laterals	6		
Nasals	5		
Voiced fricatives	4		
Voiceless fricatives	3		
Voiced stops	2		
Voiceless stops	1		

Continuance vs. Sonority

[kl]: SD 5, obeys OCP[+cont]
[fl]: SD 3, violates OCP[+cont]

[sw]: SD 5, violates OCP[+cont]
[st]: SD -2, obeys OCP[+cont]

 OCP[+cont] and sonority distance make opposite predictions regarding s-cluster acquisition/production

The current study

- The study examines the role of OCP[+cont] in the production of L2 onset clusters
- The study examines both s-clusters and non s-clusters

Method

8 participants

5 native speakers of Mandarin Chinese, 1 Cantonese, 2 Japanese
enrolled in English Language Institute
All L1s are languages that do not allow onset clusters
Word list: 83 test words (CCVC), 37 distracter words

Results

No difference between Ll groups
Most common repair strategy – internal vowel epenthesis
131 instances
66% of errors
20% of productions
Deletion of C2 was very rare - 2 occurrences
No C1 deletion
Substitution
51 instances

• 4 involve l, 2 involve J

Results: s-clusters

 Sonority is negatively correlated with correct production*

- No difference between s-stop and s-nasal clusters (obey OCP)
- No difference between sl and sw (violate OCP)
- Clusters that obey OCP[+cont] are produced correctly more often than those that violate OCP[+cont] *

*statistically significant, p<.05

Results: correct production of s-clusters by sonority distance (in %)

Participant	s-stop (SD -2)	s-nasal (SD 2)	sl (SD 3)	sw (SD 5)
1	90	67	17	20
2	60	44	100	20
3	80	89	17	40
4	100	100	83	60
5	100	100	33	60
6	100	100	67	20
7	80	44	100	20
8	80	89	67	100
mean	86	79	61	43

Results: correct production of s-clusters by continuance (in %)*

Participant	clusters obeying OCP	clusters violating OCP	
1	79	18	
2	53	64	
3	84	27	
4	100	73	
5	100	45	
6	100	45	
7	63	45	
8	84	82	
mean	83	50	

*statistically significant, p<.05

Results: non s-clusters

 Sonority does not correlate with correct production
 Continuance does not affect correct production

Results: correct production of non s-clusters by SD (in %)

Participant	SD 7	SD 6	SD 5	SD 4	SD 3
1	88	25	75	100	73
2	100	0	33	67	47
3	38	0	83	83	53
4	100	100	92	92	73
5	75	25	75	67	67
6	88	25	83	67	100
7	38	25	75	75	60
8	88	0	100	92	67
mean	77	25	77	80	68

Results: non s-clusters

Clusters that obey OCP[+cont]
tw, kw, pJ, pl, kl, tJ, kJ, bJ, bl, gl, gJ, dJ
Clusters that violate OCP[+cont]
fJ, fl, ∫r, θJ

Results: correct production of non sclusters by continuance (in %)

Participant	clusters obeying OCP	clusters violating OCP
1	81	73
2	56	47
3	64	53
4	94	73
5	67	67
6	72	100
7	64	53
8	83	67
mean	73	67

Discussion: /l/

I/ is +continuant

- following Yavaş and Someillan (2005), SPE (Chomsky and Halle, 1968)
- It is possible that difficulty with [sl] is because of [l]
- Speakers do not show particular difficulty with [1].
 - The high percentage of epenthesis shown in [sl] is not apparent in other clusters, such as [pl], [kl]
 - only 4 occurrences of substituting 1 for another segment, only 1 occurrences of deleting 1

Discussion: SD 6

Participant	SD 7	SD 6	SD 5	SD 4	SD 3
1	88	25	75	100	73
2	100	0	33	67	47
3	38	0	83	83	53
4	100	100	92	92	73
5	75	25	75	67	67
6	88	25	83	67	100
7	38	25	75	75	60
8	88	0	100	92	67
mean	77	25	77	80	68

Discussion: SD 6

●[dw], [gw]

- rare in English
- few tokens

 infrequent (Google Ngram)
 even without these tokens, sonority results and continuance results are not significant

Discussion

Participants are not deleting (Weinberger 1994)
Sonority distance is not a factor
Results are the opposite of Yavaş and Someillan's results

- Ll vs L2
- evidence of OCP violations from Spanish and English

Discussion: similar findings in previous research

- Major (1996)
- 4 Brazilian Portuguese speakers learning English. "#FL (fricative-liquid) promotes error, #FS (fricative-stop) is least likely to do so." (p.87)
 - Major attributes the result to positive transfer for s-stop clusters.
- Abrahamsson (1999)
- longitudinal case study of 1 Spanish speaker learning Swedish. Speaker modified /sl/ more often than s-stop and s-nasal clusters.
 - Abrahamsson attributes this to the small number of /sl/ tokens in the study.
- I suggest that OCP[+cont] plays a role in these results

Discussion

Lls do not allow onset clusters.
 English freely violates OCP[+cont].

 Participants' behavior is not like the L1 or the L2. They show OCP effects in a new domain.

Discussion: s-clusters

 Learners are more sensitive to continuance in s-clusters

 OCP[+cont] may be another domain in which s-clusters behave differently from non-s-clusters

 Data support Yavas and Someillan's grouping of s-clusters by continuance of C2

Limitations of the research

 Cantonese – allows obstruents in coda position, possible segment contact

 Japanese fast speech – results in s-stop clusters

Future Research

account for word frequency

 look at lower proficiency English speakers

References

- *Abrahamsson, N. (1999). Vowel epenthesis of /sC(C)/ onsets in Spanish/Swedish interphonology: A longitudinal study. Language Learning, 49, 473-508.
- *Broselow, E. and Finer, D. (1991). Parameter setting in second language phonology and syntax.
 Second Language Research 7, 35-59.
- *Cardoso, W. and Liakin, D. (2009). When input frequency patterns fail to drive learning: Evidence from Brazilian Portuguese English. In B. Baptista, A. Rauber, and M. Watkins (eds.), *Recent Research in Second Language Phonetics/Phonology: Perception and Production*, pp. 174-202. Newcastle Upon Tyne: Cambridge Scholars.
- *Carlisle, R. (2006). The Sonority Cycle and the Acquisition of Complex Onsets. In B.O. Baptista & M.A. Watkins (eds), *English with a Latin Beat : Studies in Portuguese/Spanish-English Interphonology*. Amsterdam: Benjamins.
- *Chomsky, N. and M. Halle (1968). *The Sound Patterns of English*. Harper & Row: New York
- *Clements, G. (1990). The role of the sonority cycle in core syllabification. In J. Kingston & M. E.
 Beckman (eds), Papers in laboratory phonology I: between the grammar and physic of speech.
 New York: Cambridge University Press.
- *Eckman, F. and Iverson, G. (1993). Sonority and markedness among onset clusters in the interlanguage of ESL learners. Second Language Research 9 (3): 234-252.
- *Hogg, R. and McCully, C. (1987). *Metrical Phonology: a coursebook*. New York: Cambridge University Press
- *Major, R. (1996). Markedness in second language acquisition of consonant clusters. In D.R.
 Preston and R. Bayley (eds), *Variation and second language acquisition*. Amsterdam: Benjamins
- *Morelli, F. (2003). The Relative Harmony of /s+stop/ Onsets: Obstruent Clusters and the Sonority Sequencing Principle. In Fery, C. and van de Vijver, R. (eds.) The Syllable in Optimality Theory. Cambridge: Cambridge University Press.
- *Weinberger, S.H. (1994). Functional and phonetic constraints on second language phonology.
 In M. Yavas (ed) *First and Second Language Phonology*. San Diego: Singular Publishing Group.
- *Yavaş, M. and Someillan, M. (2005). Patterns of Acquisition of /s/-clusters in Spanish-English Bilinguals. Journal of Multilingual Communication Disorders. 3(1): 50-55.