
Test Automation—Automation of What?

Yvan Labiche
Systems and Computer Enginering, Carleton University, Ottawa, Canada

yvan.labiche@carleton.ca

Abstract—Taking a birds-eye view at the different activities

that take place when someone engages in software testing, we
discuss automation problems and some deployed solutions to the
broad notion of software test automation. In doing so, we
discover engineering/deployment problems as well as more
fundamental scientific/research issues.

Keywords—software testing, automation

I.� SOFTWARE TESTING TASKS
Testing is the most common verification strategy deployed.

It entails a number of tasks. Although they can be envisioned at
different granularity, they at least include: (1) Identifying what
needs to be tested, the information to use to create tests (test
model) and how to use it (selection criterion); (2) Constructing
test data by applying a criterion on the test model, along with
test oracle data, that is data to identify whether the response of
the piece of code under test is adequate when presented with
test data; (3) Constructing test code that implements test cases:
test data plus oracle data. This may include the construction of
test drivers (or test scripts), test stubs (or mock-ups),
mechanisms to collect execution information to be compared
with expected ones (oracle data) in an implemented test oracle;
(4) Executing tests (driver/stub/oracle code), which may
require additional set-up and tear-down (i.e., code); (5)
Maintaining tests to accommodate changes to the piece of code
under test as well as changes to test activities (e.g., to fix a fault
in a driver/stub/oracle, to trim a too large set of test cases).

Organizations try to automate these activities and
academics research solutions that are automated (or
automatable). This extended abstract looks at challenges and
solutions for automating those tasks, specifically tasks 2 to 5.
This document is not meant to be an exhaustive discussion
(that would require a textbook). The intent is rather to point to
some salient issues that are sometimes overlooked.

II.� TEST AND ORACLE DATA CONSTRUCTION
The construction of test and oracle data heavily depends on

the test model and associated selection criterion. We discuss a
few well-known models from the automation viewpoint.

A.� Plain language descriptions
When one derives tests from a plain language description of

some functionality, be it a paragraph in a general requirement
document, a use case description, or a function specification,
one typically relies on equivalence class partitioning, boundary
value analysis, or a combination of those into category
partition or decision trees [1].

These techniques are typically performed by hand, unless
some tool support is provided so the user can specify
equivalence classes, boundaries … and rely on combinatorics
and solvers to obtain test case inputs [7]. Random selection is
also easy to automate, though whether random testing is
effective is still an open debate [3]. Identifying oracle data for
inputs generated by these techniques is also an automation
challenge.

Such solutions have also one important drawback, common
to all black-box solutions: the level of abstraction of the test
model hinders the construction of test scripts for those test
inputs. Automating the construction of the test model (e.g.,
equivalence classes, boundaries) is also an interesting problem.

B.� Models of State-Based Behaviour
Numerous models representing state-based behaviour have

been described in the literature, along with selection criteria [1,
15, 16]. Constructing test paths, i.e. sequences of states and
transitions, from these test models is relatively easy to
automate because we can rely on graph algorithms.

Transforming such test paths into executable test cases is
not necessarily as easy because of two main issues. First,
events triggering transitions may accept input data.
Automatically identifying such input values is akin to the
discussion we had in the previous section. Can we identify
ranges of values that are more adequate/interesting, from a
testing point of view, than others? Selecting data individually
for events in a test path may not work if events are related to
each other in complex state-based behaviour: e.g., selecting an
input value for an event in a test path limits the choice of input
values in a sub-sequent event in that path. Automatically
combining existing techniques with category partition may
work, similarly to other models [11], when searching for
interesting input values, as long as automation can rely on
(automatically or manually defined) equivalence classes and
boundaries (cf. previous discussion). Second, some state
machines have guard conditions on transitions, introducing a
so-called counter problem [5]. Constructing test paths that are
executable is akin to the path-sensitization problem, which is
known to be un-decidable in the general case [6], although
some data flow analysis and heuristics can help solve the
problem automatically [4, 12].

Regardless of the automation of (feasible) test path
construction, two issues are worth discussing, though they
relate to test scaffolding more so than to test case construction.
The first issue is due to the level of abstraction of the test
model. Events triggering transitions, along with test data, need
to be transformed into calls in a test script using the API of the
piece of code under test and this transformation is not

This work is funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

116

2018 IEEE International Conference on Software Testing, Verification and Validation Workshops

0-7695-6432-1/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSTW.2018.00037

necessarily straightforward (or automatable). Second, one has
to decide what information to collect for the oracle, and at what
point(s) during a test case execution to collect it. Automating
these activities can be challenging (e.g., observability issues).

C.� Source code
A number of automated solutions exist to derive test cases

from source code: e.g., combining formal methods with testing
[10], combining testing with symbolic execution [13], using
meta-heuristic to find test inputs [9]. One general issue with
those techniques is that they verify that the code performs as
expected, as described by … the code itself. There is a risk
that, should the code be faulty (which is likely), the tests pass
thereby simply confirming that the code is correctly faulty.
There are of course attempts to address this issue, such as
presenting to the developer assertions inferred during test case
executions [9], but checking that those assertions make sense
cannot be automated and can be time consuming, and there is
the issue of whether the test inputs are sufficiently varied to
consider the inferred assertions to be accurate [14].

Instead of inferring oracle assertions from test case
executions, one can rely on assertions already embedded into
the code, a.k.a. contracts. Although contracts are seldom used
in practice, then are extremely useful when constructing and
maintaining software and tend to be reasonable alternatives to
creating custom oracles [2, 8], possibly helping solve the oracle
problem [17], thereby reducing test automation costs.

Code coverage tools also facilitate automation, though the
more interesting coverage criteria (e.g., data flow ones) are
seldom supported and it is still not clear whether those criteria
are anyway reliable indicators of test suite quality.

III.�TEST SCAFFOLDING
A number of technologies have been created to automate

the construction of the test scaffolding. They are often
programming language specific. The work started with Java,
due to its popularity, and then extended to other programming
languages. Technologies include those for constructing test
scripts (drivers) such as JUnit (junit.org) or test stubs such as
JMock (jmock.org). Other technologies are programming
language agnostic, such as TTCN-3 (ttcn-3.org). Other
automated solutions are proprietary. These technologies are
extremely useful since they provide languages to create the test
scaffolding, they facilitate test cases (re) executions, they allow
the evaluation of oracle assertions. They however do not help
the user solve important problems: see previous discussions.

IV.�MAINTENANCE
A lot of work has been published on regression testing and

made its way into automated tool support, including the
possibility to fix tests (instead of simply discarding them) when
the application code changes. One maintenance problem that
has been overlooked, but is now stressing because of the ever
growing code base of tests, is the maintenance of the test code
itself. Since test code is source code, and even though authors
advocate test code should be as simple as possible [6], test
code of commercial software is very complex and we can
expect such test code to be plagued by issues similar to

application code: e.g., high complexity to the extent this affect
understanding/maintenance, lack of documentation such as
rationale for tests, clones.

V.� CONCLUSION
The extent of automation available for constructing test

scaffolding, specifically automation of executions, while
extremely useful, sometimes leads to miss-conceptions about
the level of test automation achieved in software development
projects. Some practitioners are tempted to claim that they
conduct automated testing because they use those technologies.
I tend to oppose this claim because these technologies
automate somewhat the easiest activities. Indeed, they do not
help solve harder problems such as (1) what are (beyond mere
code construction) start-up and tear-down activities of tests, (2)
what are interesting test data, (3) what expected behaviour to
check in oracle assertions. Unfortunately, as we have briefly
discussed, there is seldom any general automated solution for
these hard problems. To conclude, there are still many aspects
of software testing that can (and should) be automated.

REFERENCES
[1] Ammann P. and Offutt A. J., Introduction to Software Testing,

Cambridge University Press, 2008.
[2] Araujo W., Briand L. C. and Labiche Y., “On the effectiveness of

contracts as test oracles in the detection and diagnosis of functional faults
in concurrent object-oriented software,” IEEE TSE, 40 (10), 2014.

[3] Arcuri A. and Briand L., “Adaptive random testing: an illusion of
effectiveness?,” Proc. ISSTA, pp. 265-275, 2011.

[4] Asoudeh N. and Labiche Y., “Multi-objective construction of an entire
adequate test suite for an EFSM,” Proc. ISSRE, pp. 288-299, 2014.

[5] Asoudeh N. and Labiche Y., “On the effect of counters in guard
conditions when state-based multi-objective testing,” Proc. IEEE QSIC,
Reliability and Security-Companion, pp. 105-114, 2015.

[6] Beizer B., Software Testing Techniques, Van Nostrand Reinhold, 2nd
Edition, 1990.

[7] Briand L. C., Labiche Y., Bawar Z. and Spido N., “Using machine
learning to refine Category-Partition test specifications and test suites,”
IST, 51 (11), 2009.

[8] Briand L. C., Labiche Y. and Sun H., “Investigating the Use of Analysis
Contracts to Improve the Testability of Object-Oriented Code,” Software
- Practice and Experience, 33 (7), 2003.

[9] Fraser G. and Arcuri A., “EvoSuite: automatic test suite generation for
object-oriented software,” Proc. ACM SIGSOFT FSE, pp. 416-419, 2011.

[10] Fraser G., Wotawa F. and Ammann P., “Testing with model checkers: a
survey,” STVR, 19 (3), 2009.

[11] Hartmann J., Vieira M., Foster H. and Ruder A., “TDE/UML: A UML-
based Test Generator to Support System Testing,” Proc. Annual
International Software Testing Conference in India, 2005.

[12] Korel B., Tahat L. H. and Vaysburg B., “Model-Based Regression Test
Reduction using Dependence Analysis,” Proc. IEEE ICSM, pp. 214-223,
2002.

[13] Qu X. and Robinson B., “A Case Study of Concolic Testing Tools and
Their Limitations,” Proc. IEEE ESEM, pp. 117-126, 2011.

[14] Rahman F. and Labiche Y., “A comparative study of invariants generated
by Daikon and user-defined design contracts,” Proc. IEEE QSIC, pp.
174-183, 2014.

[15] Utting M. and Legeard B., Practical Model-Based Testing: A Tools
Approach, Morgan-Kaufmann, 2006.

[16] Utting M., Pretschner A. and Legeard B., “A taxonomy of model-based
testing approaches,” STVR, 22, 2012.

[17] Weyuker E. J., “On Testing Non-testable Programs,” The Computer
Journal, 25 (4), 1982.

117

