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Thermodynamic Equations of State

.

• Thermodynamic equations of state will lead to an 
understanding of concepts such as surface tension, 
etc. 

• Leads to a knowledge of how to predict the 
physical property or at least relations between 
physical properties.

Fundamentals of Thermodynamics:

• Variables in the lab: P, V, T
• First law: dE = dw + dq
• Energy is state function; any combination of heat 

and work possible
• Microscopic scale: energy is sum of rotational, 

vibrational, translational and electronic energy 
levels.

• Remember w = −PdV; negatvie sign indicates 
system energy increases when work done on 
system.

• Assume only PdV work and defining entropy as
dqrev/T ≡ dS

• Leads to first law:  dE = −PdV + TdS
• Gibbs Free Energy: G = H −TS
• Helmholtz Energy:  F = E − TS
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Relationship between E and Volume in 
terms of P, V, T

• Take partial of First Law: dE = −PdV + TdS with 
respect to V at constant T:

• Equations should be expressed in terms of P, V, T.
• Helmholz free energy:
• Differentiate:
• Substitute from first law.

• Total Differential of F: 

• Comparing leads to:

• And also: 

• But: 

• Substituting from previous two equations:

• Which is leads to:
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Pressure Dependence of Enthalpy

• Enthalpy is defined in terms of energy, pressure and 
volume:  H ≡E + PV.

• Differentiating: dH = dE + PdV + VdP.
• From the first law: dE = − PdV + TdS;
• Substituting: 

• Divide by dP and hold T constant:

• Use Gibbs Free Energy: G = H − TS or 
dG = dH − TdS − SdT

• Substitute for dH: dG=VdP+ΤdS−TdS−SdT=VdP−SdT
• Write total differential for free energy, G(T,P):

• By inspection:

• Second derivative:

• Or: 

• Substitute for enthalpy equation:
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Equations of State:Temperature 
Dependence

• Recall 3 variables to be used are P, V, T.
• Knowledge of two of the variables allows 

determination of the energy state of the system.
• Two polynomial equations of state used here.  

– V = f(P) and 
– P = f(V)

• V = Vo[1 + ao(T) – a1(T)P + a2(T)P2 + …] where 
– coefficients aj are functions of temperature.
– Vo = volume at absolute zero.

• Differentiate with respect to T and neglect higher 
terms:

• When using only the first two terms of the series 
expansion, we have: V = Vo[1 + ao(T)].

• Substitute for Vo: Vo = V/[1+ao(T)].

• When ao << 1, the equations reduces to:

where α = volume expansivity, relative change in 
volume with temperature; related to temperature 
variation of ao.
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Equations of State: Pressure Dependence

• Found by taking derivative of equation of state with 
respect to pressure:

where higher pressure terms are ignored (only first 
order considered significant). 

• But V = Vo[1+ ao]; so that 

since a1<<a0<<1
§ χ = isothermal compressibility.
§ Pressure as a function of T, V: 

§ Pi = material dependent coefficients; determined 
experimentally.

§ Po = pressure required to decrease the volume of the 
solid at higher temperature to what it would be at 0 K 
and no pressure. 

§ P0<< P1 or P2
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Relationship between Pi and ai

• Recall: V = Vo[1 + ao(T) – a1(T)P + a2(T)P2 + …] 
• Solve for Volume:

• We use this in the earlier equation:

• To get

• Expand the second term
• Neglect squared and higher terms in terms of ao and 

Po.

• This can only be true when the following happens:
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Relationship between Pi and ai (cont.)

• Solve for ai from

• Gives:

• Pi can also be expressed in terms of ai,
• Figure shows that compressibility increases 

with atomic number.
• Slopes at high pressures are similar for all.
• Coefficients of expansion nearly constant at 

absolute zero (see figure), but increase at 
higher temperatures .
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Pressure Dependence of Heat Capacity

• Recall the definition of heat capacity:

• Take its derivative with respect to P at constant T 

• But earlier we showed:

• Substitute:

• We can now use the equation of state to determine 
an equation for calculating heat capacity under 
various conditions. 

• Recall: V = Vo[1 + ao(T) – a1(T)P + a2(T)P2 + …] 
• Substitute:
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CP Vs P(cont)

• Integration gives the pressure dependence of CP.

• Co
P = heat capacity at zero pressure. 

• The first second derivative term is dominant at high 
temperature and heat capacity is expected to decrease 
with increasing pressure in this temperature regime 
(see negative sign in equation).

• Recall that alpha is the volume expansitivity:

• The first term is the temperature coefficient of thermal 
expansion.  

• This term nearly linear at high temperatures. 
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Cv vs P

• Earlier we showed: 

• Take derivative of both sides with respect to T:

• But:

• Substitute: 

• Earlier we used the equation of state:

• Take second derivative:

• Substitute into above equation, rearrange, and 
integrate:
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CV vs P(cont)

• But                           so that

which becomes: 

• Theoretical calculations using heat capacity can be 
done with constant volume; 

• Experimental evaluation of heat capacities are usually 
at constant pressure. 

• A relationship between the two needed.
• The total derivatives for S(T,V) and S(T,P) multiplied by 

T are:

• First term first reaction: CPdT
• First term second reaction: CVdT
• We also note the following Maxwell reactions:

• Substitute into above equations and subtract from each 
other to get:
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CV vs P(cont2)

• At either constant volume or temperature we get:

• We now find the two partials using the equations of 
state:

• Assume: V = Vo and third term is zero since it is at 
constant volume:

• Taking the derivative at constant pressure of the other 
equation of state to obtain the other partial:

• Substitute into equation at top of page to get:

which allows us to determine one heat capacity for the 
other, if molar volume and α is known.
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S, E, G vs P

• Pressure’s effect on these variables determined as we 
did with heat capacity.

• For Entropy recall that: 

• Substitute for CV from earlier relationships:

• Energy is determined from the relationship we 
developed earlier:

• We use  the equation of state to determine an 
expression for this:
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S, E, G vs P(cont)

• Now we rearrange and integrate:

• Free Energy, G = f(P,V, T): dG = −SdT + VdP.
• Replace each term 

• Equations of state used with standard thermodynamic 
relationships to determine values of thermodynamic 
quantities from a set of data.
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