Thermodynamic Equations of State

- Thermodynamic equations of state will lead to an understanding of concepts such as surface tension, etc.
- Leads to a knowledge of how to predict the physical property or at least relations between physical properties.

Fundamentals of Thermodynamics:

- Variables in the lab: P, V, T
- First law: $d E=d w+d q$
- Energy is state function; any combination of heat and work possible
- Microscopic scale: energy is sum of rotational, vibrational, translational and electronic energy levels.
- Remember $w=-P d V$; negatvie sign indicates system energy increases when work done on system.
- Assume only PdV work and defining entropy as

$$
d q_{r e} / T \equiv d S
$$

- Leads to first law: $d E=-P d V+T d S$
- Gibbs Free Energy: G = H -TS
- Helmholtz Energy: F = E - TS

Relationship between E and Volume in terms of $\mathrm{P}, \mathrm{V}, \mathrm{T}$

- Take partial of First Law: $d E=-P d V+T d S$ with respect to V at constant T :

$$
\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial S}{\partial V}\right)_{T}
$$

- Equations should be expressed in terms of P, V, T.
- Helmholz free energy. $F \equiv E-T S$
- Differentiate: $d F \equiv d E-T d S-S d T$
- Substitute from first law. $d F \equiv-P d V+T d S-T d S-S d T$
- Total Differential of $F: \quad d F=\overline{=}\left(\frac{\partial F}{\partial V}\right)_{T} d V+\left(\frac{\partial F}{\partial T}\right)_{V} d T$
$\begin{array}{ll}\text { - Comparing leads to: }\left(\frac{\partial F}{\partial V}\right)_{T} & =-P \wedge\left(\frac{\partial^{2} F}{\partial V \partial T}\right)=-\left(\frac{\partial P}{\partial T}\right)_{V} \\ \text { - And also: } \quad\left(\frac{\partial F}{\partial T}\right)_{V} & =-S \wedge\left(\frac{\partial^{2} F}{\partial T \partial V}\right)=-\left(\frac{\partial S}{\partial V}\right)_{T}\end{array}$
- But:

$$
\left(\frac{\partial^{2} F}{\partial T \partial V}\right)=\left(\frac{\partial^{2} F}{\partial V \partial T}\right)
$$

- Substituting from previous two equations: $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
- Which is leads to: $\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial P}{\partial T}\right)_{V}$

Pressure Dependence of Enthalpy

- Enthalpy is defined in terms of energy, pressure and volume: $\mathrm{H} \equiv \mathrm{E}+\mathrm{PV}$.
- Differentiating: $\mathrm{dH}=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP}$.
- From the first law: $\mathrm{dE}=-\mathrm{PdV}+\mathrm{TdS}$;
- Substituting:

$$
\begin{aligned}
\mathrm{dH} & =\mathrm{PdV}+\mathrm{VdP}-\mathrm{PdV}+\mathrm{TdS} \\
& =\mathrm{VdP}+\mathrm{TdS}
\end{aligned}
$$

- Divide by $d P$ and hold T constant: $\left(\frac{\partial H}{\partial P}\right)_{T}=\mathrm{V}+\mathrm{T}\left(\frac{\partial S}{\partial P}\right)_{T}$
- Use Gibbs Free Energy: $\mathrm{G}=\mathrm{H}-\mathrm{TS}$ or $d G=d H-T d S-S d T$
- Substitute for dH: dG=VdP+TdS-TdS-SdT=VdP-SdT
- Write total differential for free energy, $\mathrm{G}(\mathrm{T}, \mathrm{P})$:

$$
d G=\left(\frac{\partial G}{\partial P}\right)_{T} d P+\left(\frac{\partial G}{\partial T}\right)_{P} d T
$$

- By inspection: $\left(\frac{\partial G}{\partial P}\right)_{T}=V \wedge\left(\frac{\partial G}{\partial T}\right)_{P}=-S$
- Second derivative $\left(\frac{\partial^{2} G}{\partial P \partial T}\right)=\left(\frac{\partial V}{\partial T}\right)_{P} \wedge\left(\frac{\partial^{2} G}{\partial T \partial P}\right)=-\left(\frac{\partial S}{\partial P}\right)_{T}$
- Or: $\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}$
- Substitute for enthalpy equation:

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=\mathrm{V}-\mathrm{T}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Equations of State:Temperature Dependence

- Recall 3 variables to be used are $\mathrm{P}, \mathrm{V}, \mathrm{T}$.
- Knowledge of two of the variables allows determination of the energy state of the system.
- Two polynomial equations of state used here.

$$
\begin{aligned}
& -V=f(P) \text { and } \\
& -P=f(V)
\end{aligned}
$$

- $V=V_{0}\left[1+a_{0}(T)-a_{1}(T) P+a_{2}(T) P^{2}+\ldots\right]$ where
- coefficients a_{j} are functions of temperature.
- $\mathrm{V}_{\mathrm{o}}=$ volume at absolute zero.
- Differentiate with respect to T and neglect higher terms:

$$
\left(\frac{\partial V}{\partial T}\right)_{P}=\mathrm{V}_{\mathrm{o}}\left(\frac{\partial a_{o}}{\partial T}\right)_{P}
$$

- When using only the first two terms of the series expansion, we have: $\mathrm{V}=\mathrm{V}_{0}\left[1+\mathrm{a}_{0}(\mathrm{~T})\right]$.
- Substitute for $\mathrm{V}_{0}: \mathrm{V}_{\mathrm{o}}=\mathrm{V} /\left[1+\mathrm{a}_{0}(\mathrm{~T})\right]$.

$$
\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{1}{\left[1+a_{o}(T)\right]}\left(\frac{\partial a_{o}}{\partial T}\right)_{P}
$$

When ao $\ll 1$, the equations reduces to:

$$
\left(\frac{\partial a_{o}}{\partial T}\right)_{P}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\alpha
$$

where $\alpha=$ volume expansivity, relative change in volume with temperature; related to temperature variation of a_{0}.

Equations of State: Pressure Dependence

- Found by taking derivative of equation of state with respect to pressure:

$$
\left(\frac{\partial V}{\partial P}\right)_{T}=-V_{0} a_{1} \vee-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{V_{0}}{V} a_{1}
$$

where higher pressure terms are ignored (only first order considered significant).

- But $\mathrm{V}=\mathrm{V}_{0}\left[1+\mathrm{a}_{0}\right]$; so that

$$
\chi=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{a_{1}}{1+a_{0}} \approx a_{1}
$$

since $\mathrm{a}_{1} \ll \mathrm{a}_{0} \ll 1$

- $\chi=$ isothermal compressibility.
- Pressure as a function of T, V :

$$
P=P_{0}(T)+P_{1}(T)\left[\frac{V_{0}-V}{V_{0}}\right]+P_{2}(T)\left[\frac{V_{0}-V}{V_{0}}\right]^{2}+\ldots
$$

- $P_{i}=$ material dependent coefficients; determined experimentally.
- $\mathrm{P}_{\mathrm{o}}=$ pressure required to decrease the volume of the solid at higher temperature to what it would be at 0 K and no pressure.
- $\mathrm{P}_{0} \ll \mathrm{P}_{1}$ or P_{2}

Relationship between P_{i} and a_{i}

- Recall: $\mathrm{V}=\mathrm{V}_{0}\left[1+\mathrm{a}_{0}(\mathrm{~T})-\mathrm{a}_{1}(\mathrm{~T}) \mathrm{P}+\mathrm{a}_{2}(\mathrm{~T}) \mathrm{P}^{2}+\ldots\right]$
- Solve for Volume: $\frac{V}{V_{0}}=1+a_{0}(T)-a_{1}(T) P+a_{2}(T) P^{2}$

$$
\frac{V}{V_{0}}-1=a_{0}(T)-a_{1}(T) P+a_{2}(T) P^{2}
$$

- We use this in the earlier equation:

$$
\frac{V_{0}-V}{V_{0}}=-a_{0}(T)+a_{1}(T) P-a_{2}(T) P^{2}
$$

$$
P=P_{0}(T)+P_{1}(T)\left[\frac{V_{0}-V}{V_{0}}\right]+P_{2}(T)\left[\frac{V_{0}-V}{V_{0}}\right]^{2}+\ldots
$$

- To get $P=P_{o}(T)+P_{1}(T)\left(-a_{o}(T)+a_{1} P-a_{2} P_{2}+\ldots\right)+$

$$
P_{2}(T)\left(-a_{o}(T)+a_{1} P-a_{2} P_{2}+\ldots\right)^{2}+\ldots
$$

- Expand the second term
- Neglect squared and higher terms in terms of a_{0} and $\mathrm{P}_{\mathrm{o}} \cdot P=P_{o}+P_{1}\left(-a_{o}+a_{1} P-a_{2} P^{2}+\ldots\right)+$

$$
P_{2}\left(-2 a_{o} a_{1} P+a_{o} a_{2} P^{2}+a_{1}^{2} P^{2}+\ldots\right)^{2}+\ldots
$$

- This can only be true when the following happens:

$$
\begin{aligned}
& P_{o}-P_{1} a_{o}=0, \\
& P_{1} a_{1}-2 P_{2} a_{o} a_{1}=1, \\
& -P_{1} a_{2}+2 P_{2} a_{o} a_{2}+P_{2} a_{1}^{2}=0
\end{aligned}
$$

Relationship between P_{i} and a_{i} (cont.)

- Solve for a_{i} from $P_{o}-P_{1} a_{o}=0$,

$$
\begin{aligned}
& P_{1} a_{1}-2 P_{2} a_{o} a_{1}=1, \\
& -P_{1} a_{2}+2 P_{2} a_{o} a_{2}+P_{2} a_{1}^{2}=0
\end{aligned}
$$

- Gives:

$$
\begin{aligned}
& a_{o}=\frac{P_{o}}{P_{1}} \\
& a_{1}=\frac{1}{P_{1}-2 P_{2} a_{o}}=\frac{1}{P_{1}}\left(1+\frac{2 P_{o} P_{2}}{P_{1}^{2}}\right) \\
& a_{2}=\frac{P_{2}}{P_{1}^{3}}\left(1+\frac{6 P_{o} P_{2}}{P_{1}^{2}}\right)
\end{aligned}
$$

- P_{i} can also be expressed in terms of a_{i},

Figure shows that compressibility increases with atomic number.

- Slopes at high pressures are similar for all.
- Coefficients of expansion nearly constant at absolute zero (see figure), but increase at higher temperatures

Pressure Dependence of Heat Capacity

- Recall the definition of heat capacity: $C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}$
- Take its derivative with respect to P at constant T

$$
\left(\frac{\partial C_{P}}{\partial P}\right)_{T}=\frac{\partial}{\partial P}\left[\left(\frac{\partial H}{\partial T}\right)_{P}\right]_{T}=\frac{\partial}{\partial T}\left[\left(\frac{\partial H}{\partial P}\right)_{T}\right]_{P}
$$

- But earlier we showed: $\left(\frac{\partial H}{\partial P}\right)_{T}=\mathrm{V}-\mathrm{T}\left(\frac{\partial V}{\partial T}\right)_{P}$
- Substitute: $\left(\frac{\partial C_{P}}{\partial P}\right)_{T}=\frac{\partial}{\partial P}\left[\left(\frac{\partial H}{\partial T}\right)_{P}\right]_{T}=\frac{\partial}{\partial T}\left[V-T\left(\frac{\partial V}{\partial T}\right)_{P}\right]_{P}$

$$
=\left(\frac{\partial V}{\partial T}\right)_{P}-\left(\frac{\partial T}{\partial T}\right)_{P}\left(\frac{\partial V}{\partial T}\right)_{P}-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{P}
$$

$$
\left(\frac{\partial C_{P}}{\partial P}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)
$$

- We can now use the equation of state to determine an equation for calculating heat capacity under various conditions.
- Recall: $\mathrm{V}=\mathrm{V}_{0}\left[1+\mathrm{a}_{0}(\mathrm{~T})-\mathrm{a}_{1}(\mathrm{~T}) \mathrm{P}+\mathrm{a}_{2}(\mathrm{~T}) \mathrm{P}^{2}+\ldots\right]$
- Substitute:

$$
\begin{aligned}
& \left(\frac{\partial C_{P}}{\partial P}\right)_{T}=-T V_{o}\left(\frac{\left.\partial^{2} 1+a_{o}(T)+a_{1}(T) P+a_{2}(T) P^{2}\right]}{\partial T^{2}}\right)_{P} \\
& \left(\frac{\partial C_{P}}{\partial P}\right)_{T}=-T V_{o}\left(\frac{\partial^{2} a_{o}(T)}{\partial T^{2}}+\frac{\partial^{2} a_{1}(T)}{\partial T^{2}} P+\frac{\partial^{2} a_{2}(T)}{\partial T^{2}} P^{2}\right)_{P}
\end{aligned}
$$

$\mathrm{C}_{\mathrm{P}} \mathrm{Vs} \mathrm{P}$ (cont)

- Integration gives the pressure dependence of C_{p}.

$$
\begin{aligned}
& \int_{C_{P}^{o}}^{C_{P}} \partial C_{P}=-T V_{o} \int_{0}^{P}\left(\frac{\partial^{2} a_{o}(T)}{\partial T^{2}}+\frac{\partial^{2} a_{1}(T)}{\partial T^{2}} P+\frac{\partial^{2} a_{2}(T)}{\partial T^{2}} P^{2}\right) d P \\
& C_{P}=C_{P}^{o}-T V\left(\frac{\partial^{2} a_{o}(T)}{\partial T^{2}} P+\frac{1}{2} \frac{\partial^{2} a_{1}(T)}{\partial T^{2}} P^{2}+\frac{1}{3} \frac{\partial^{2} a_{2}(T)}{\partial T^{2}} P^{3}\right)
\end{aligned}
$$

- $\mathrm{C}_{\mathrm{P}}{ }^{\circ}=$ heat capacity at zero pressure.
- The first second derivative term is dominant at high temperature and heat capacity is expected to decrease with increasing pressure in this temperature regime (see negative sign in equation).
- Recall that alpha is the volume expansitivity: $\alpha=\left(\frac{\partial a_{o}}{\partial T}\right)_{P}$
- The first term is the temperature coefficient of thermal expansion.
- This term nearly linear at high temperatures.

C_{v} vs P

- Earlier we showed: $\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial P}{\partial T}\right)_{V}$
- Take derivative of both sides with respect to T :

$$
\frac{\partial^{2} E}{\partial T \partial V}=\frac{\partial^{2} E}{\partial V \partial T}=-\frac{\partial P}{\partial T}+\frac{\partial T}{\partial T} \frac{\partial P}{\partial T}+T \frac{\partial^{2} P}{\partial T^{2}}
$$

- But: $C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}$
- Substitute: $\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=T \frac{\partial^{2} P}{\partial T^{2}}$
- Earlier we used the equation of state:

$$
P=P_{0}(T)+P_{1}(T)\left[\frac{V_{0}-V}{V_{0}}\right]+P_{2}(T)\left[\frac{V_{0}-V}{V_{0}}\right]^{2}+\ldots .
$$

- Take second derivative:

$$
\frac{\partial^{2} P}{\partial T^{2}}=\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}+\frac{\partial P_{2}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\ldots
$$

- Substitute into above equagion, rearrange, and integrate: $\int_{C_{V}^{o}}^{C_{V}} \partial C_{V}=T \int_{V_{o}}^{V} \frac{\partial^{2}}{\partial T^{2}} \partial V$
$\int_{C_{V}^{o}}^{C_{V}} \partial C_{V}=T \int_{V_{o}}^{V}\left(\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}+\frac{\partial P_{2}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\ldots\right) d V$

C_{v} vs P (cont)

- But $d\left(\frac{V_{o}-V}{V_{o}}\right)=-\frac{d V}{V_{O}}$ so that
$\int_{C_{V}^{o}}^{C_{V}} \partial C_{V}=-V_{o} T \int_{V_{o}}^{V}\left(\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}+\frac{\partial P_{1}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{\partial P_{2}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\ldots\right) d\left(\frac{V_{o}-V}{V_{o}}\right)$
which becomes:
$C_{V}=C_{V}^{o}-V_{o} T\left(\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{1}{2} \frac{\partial P_{1}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\frac{1}{3} \frac{\partial P_{2}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{3}+\ldots\right)$
- Theoretical calculations using heat capacity can be done with constant volume;
- Experimental evaluation of heat capacities are usually at constant pressure.
- A relationship between the two needed.
- The total derivatives for $S(T, V)$ and $S(T, P)$ multiplied by T are:

$$
T d S=T\left(\frac{\partial S}{\partial T}\right)_{V} d T+T\left(\frac{\partial S}{\partial V}\right)_{T} d V \wedge T d S=T\left(\frac{\partial S}{\partial T}\right)_{P} d T+T\left(\frac{\partial S}{\partial P}\right)_{T} d P
$$

- First term first reaction: $\mathrm{C}_{\mathrm{p}} \mathrm{dT}$
- First term second reaction: $\mathrm{C}_{\mathrm{V}} \mathrm{dT}$
- We also note the following Maxwell reactions:

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \wedge\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)
$$

- Substitute into above equátions and subtract from each other to get:

$$
\left(C_{P}-C_{V}\right) d T=T\left(\frac{\partial P}{\partial T}\right)_{V} d V-T\left(\frac{\partial V}{\partial T}\right)_{P} d P
$$

C_{v} vs P (cont2)

- At either constant volume or temperature we get:

$$
\left(C_{P}-C_{V}\right)=T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

- We now find the two partials using the equations of state:

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial P_{o}}{\partial T}\right)_{V}+\left(\frac{\partial P_{1}}{\partial T}\right)_{V}\left[\frac{V_{o}-V}{V_{o}}\right]-P_{1} d\left(\frac{V}{V_{o}}\right)_{T}+\ldots
$$

- Assume: $\mathrm{V}=\mathrm{V}_{0}$ and third term is zero since it is at constant volume:

$$
\left(\frac{\partial P}{\partial T}\right)_{V} \approx\left(\frac{\partial\left(a_{o} / a_{1}\right)}{\partial T}\right)=\frac{\alpha}{a_{1}}
$$

- Taking the derivative at constant pressure of the other equation of state to obtain the other partial:

$$
\begin{aligned}
\left(\frac{\partial V}{\partial T}\right)_{P} & =V_{o}\left(\frac{\partial\left(1+a_{o}(T)-a_{1}(T) P+a_{2}(T) P^{2}\right)}{\partial T}\right)_{P} \\
& =\left(\frac{\partial a_{o}(T)}{\partial T}-\frac{\partial a_{1}(T)}{\partial T} P+\frac{\partial a_{2}(T)}{\partial T} P^{2}\right)_{P}=\left(\frac{\partial a_{o}(T)}{\partial T}\right)_{P=0}
\end{aligned}
$$

$$
=\alpha V_{0}
$$

- Substitute into equation at top of page to get:

$$
\begin{aligned}
C_{P}^{o}-C_{V}^{o} & =\frac{T V_{o} \alpha^{2}}{a_{1}} \\
& =\frac{T V_{o} \alpha^{2}}{\chi}
\end{aligned}
$$

which allows us to determine one heat capacity for the other, if molar volume and α is known.

S, E, G vs P

- Pressure's effect on these variables determined as we did with heat capacity.
- For Entropy recall that: $S=\int_{0}^{T} \frac{C_{V}}{T} d T$
- Substitute for C_{v} from earlier relationships:

$$
\begin{aligned}
S & =\int_{0}^{T} \frac{C_{V}}{T} d T= \\
& =\int_{0}^{T} \frac{C_{V}^{o}}{T} d T-V_{o} \int\left(\frac{\partial P_{0}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{1}{2} \frac{\partial P_{1}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\frac{1}{3} \frac{\partial P_{2}^{2}(T)}{\partial T^{2}}\left[\frac{V_{o}-V}{V_{o}}\right]^{3}+\ldots\right) d T \\
& =C_{V}^{o} \ln T-V_{o}\left(\frac{\partial P_{0}(T)}{\partial T}\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{1}{2} \frac{\partial P_{1}(T)}{\partial T}\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\frac{1}{3} \frac{\partial P_{2}(T)}{\partial T}\left[\frac{V_{o}-V}{V_{o}}\right]^{3}+\ldots\right) \\
& \text { Energy is determined from the relationship we }
\end{aligned}
$$ developed earlier:

$$
\left(\frac{\partial E}{\partial V}\right)_{T}=-P+T\left(\frac{\partial P}{\partial T}\right)_{V}
$$

- We use the equation of state to determine an expression for this:

$$
T\left(\frac{\partial P}{\partial T}\right)_{V}-P=
$$

$$
\left[T\left(\frac{\partial P_{o}}{\partial T}\right)_{V}-P_{o}\right]+\left[T\left(\frac{\partial P_{1}}{\partial T}\right)_{V}-P_{1}\right]\left[\frac{V_{o}-V}{V_{o}}\right]+\left[T\left(\frac{\partial P_{2}}{\partial T}\right)_{V}-P_{2}\right]\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\ldots
$$

S, E, G vs P(cont)

- Now we rearrange and integrate:
$\int_{E_{o}}^{E} d E=E-E_{o}=$
$\left.-V_{o}\right\}\left\{\left[T\left(\frac{\partial P_{o}}{\partial T}\right)_{V}-P_{o}\right]+\left[T\left(\frac{\partial P_{1}}{\partial T}\right)_{V}-P_{1}\right]\left[\frac{V_{o}-V}{V_{o}}\right]+\left[T\left(\frac{\partial P_{2}}{\partial T}\right)_{V}-P_{2}\right]\left[\frac{V_{o}-V}{V_{o}}\right]^{2}+\ldots\right\} d\left(\frac{V_{o}-V}{V_{o}}\right)$
$E=E_{o o}-V_{o}\left[T\left(\frac{\partial P_{o}}{\partial T}\right)_{V}-P_{o}\right]\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{1}{2}\left[T\left(\frac{\partial P_{1}}{\partial T}\right)_{V}-P_{1}\right]\left[\frac{V_{o}-V}{V_{o}}\right]+\frac{1}{3}\left[T\left(\frac{\partial P_{2}}{\partial T}\right)_{V}-P_{2}\right]\left[\frac{V_{o}-V}{V_{o}}\right]^{2}$
- Free Energy, $G=f(P, V, T): d G=-S d T+V d P$.
- Replace each term

$$
\begin{aligned}
\int_{G_{o o}}^{G} d G & =-\int_{0}^{T}\left(S_{o}+\int_{0}^{T} C_{v_{o}} d \ln T\right) d T+\int_{0}^{P} V_{o}\left[1+a_{o}+a_{1} P+a_{2} P^{2}\right] d P \\
G & =E_{o o}-\int_{0}^{T}\left(\int_{0}^{T} C_{v_{o}} d \ln T\right) d T+P V_{o}\left[1+a_{o}+\frac{1}{2} a_{1} P+\frac{1}{3} a_{2} P^{2}\right]
\end{aligned}
$$

- Equations of state used with standard thermodynamic relationships to determine values of thermodynamic quantities from a set of data.

