Polyphase Equilibria

All reactions governed by equilibrium between
reactants and products e.g.

Ag*(aq) + CI-(aq) « AgCI(s)

Equilibrium governed by an equilibrium constant that
indicates the extent of reaction.

Solid phase equilibria behave in the same manner.

— Another phase develops when the concentration of
one component in the original phase is too large.

— Surface between two phases which can control the
rate at which equilibrium is obtained.

Most commercial alloys are composed of different
phases.

— Thermodynamics of these phases in the solid phase
important to help understand when and how new
solid state phases behave.

We start by discussing single phase solutions.



Ideal Solutions

Ideal solution occurs when no heat generated upon
mixing. l.e. DH_ = 0.
Random combination of solution components occurs.

All interactions between components are equal in
energy — no matter what it interacts with.

In Ideal solutions components having similar physical
and chemical properties in pure state for ideal solutions
with each other. (E.g. Benzene and toluene).

Energy changes from an ideal solution due only to
changes in the entropy.

Free Energy is usually written as a function of T, and P:

de =290 47, &S0 o
EMop &P or
Free Energy varies upon mixing so that the composition
must also be included in the total differential. Thus,
G=1(T,P,n;n,)
The total differential equation becomes:

dG :EQEQ dT +¢9 dP+aa£% dn1+8819£9 dny
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Chemical Potential

GO
Chemical potential defined as M =
g gﬂn‘ o p, nj

The total differential becomes:
dG =- T +VdP + my >dny + 1o > dny

At constant T and P the total differential is:

—dn1+ —dnz my >xdm + mp >dn,

o= Fine
Euler’s theorem: if f(x,y) is a homogeneous function of

degree n then

nxf(x,y) = Xgé[_g +y g[t;;(

Extensive thermodynamlc properties at constant
temperature and pressure are homogeneous functions
of degree 1.

G(n,, n,): HGO G 0
(N 12) G= nlg—‘ﬂn =t ”Zé—ﬂn T Thm+mnp
| | 16h, 2 Oy

Differentiate: dG = mdry + mydm + nodiry + medny

= mdm +mpdny +mdm + npdmy
But from the total derivative we showed:
dG = rr1>dn1 +1Ty >dn2
These two equations cannot be simultaneously correct

unless (Gibbs-Duhem equation):
mdnq + nodro =0



Free Energy of Mixing

Free Energy of mixing obtained by: DG = G¢inal - Ginitial
where G, .., is the free energy of pure components.

Leads to: DG =mym +nonp - m - npnp

But from other courses we know thatGp = Gz +RTInP

In ideal mixture of two components: My = +RT Inpa
where p, is the partial pressure of A in the mixture.

Remember that fugacity is often used instead of
pressure to describe changes in free energy:

. f
lim —=1
p® 05

Remember this tells us that pressure and fugacity
equal each other as the pressure is reduced to zero.
Chemical potential then expressed as:

ma=RTInf +B(T)

where B(T) is a material dependent function of
temperature.

Substitute: DG =m[RTIn fy + B(T)- RTIn f° - B(T)]+
N[ RTIn f, +B(T)- RTIn f,) - B(T)]

= anTInf—%)+ anTInf—%
f f
1 2



Free Energy of Mixing (cont)

In Ideal solutions: f = Xf°, substitute:
DGy = X1RT In X1 + XoRT In X
where X replaced n, since we describe this in terms of
one mole.
For more than a two component system:
DGm = RTé_ Xi In Xi
X <1Pp DGE£0(atT =0)
Recall DH_ = O for ideal solutions; DG, = - T DS_ or
DSm =- Ré Xi In Xi
Notice DS 3 O |

Free energy minimum value and entropy change (see
Fig. ) at maximum when mole fraction is 0.5.

When DH_, * O, it must be included for nonideal
solutions. Then DG, = DH_ - TDS |

Entropy term is still often dominant. E.g. 50-50 CuNi
Alloy, DH_= 1779 Jwhen T DS _ = 5567 J at 973 K.

DH_ varies with temperature since heat capacities of
reactants and products have weak temperature
dependence.



Phase Diagram for Ideal Binary Solutions

o Solubility rules of liquid solutions are familiar to us:

“like dissolves like”
* NaCl in C,H, does not dissolve
* NaCl in H,O dissolves

 Organic alcohols in H,O polar side of molecule
helps low MW alcohols dissolve.

« Solubility rules for solids (similar concept); one metal
dissolves in the other when they:

Are within 15% of the same size
Have similar crystal structure,
Have similar electronegativity,
Have same # of valence electrons,

Or else at least when valence electrons are not the
same, element with largest # of valence electrons
dissolves in the one with fewer:; not the reverse.

e Solubility will be limited if these requirements are not
met.

* Ni-Cu alloys satisfy these requirements and form nearly
ideal solutions.

Liquidus upper portion of curve
Solidus lower portion.

Composition of each phase in equilibrium is often
different. E.g. X,(solid) = 0.60 mp = 1300°C;
Xyi(liquid) » 0.47



Calculation of Equilibrium Cencentrations in
Liquid Phase

o Equilibrium exists when DG =0 b Chemical potential of
each component in each phase must also be the same
in each phase.

« The DG for the formation of liquid phase under
reversible conditions will be the sum of the free energy
to convert the pure component into the liquid phase
plus the free energy of mixing.

DG = Xp,| *DGB me + DGR, mix

« But, DGR ix = RT|Xa|InXa| +Xp| INXp, |
e Sothat DG =Xg)*DGg ma +RT|[Xa InXa| +Xg,InXg |
e At equilibrium chemical potentials for each component
in each phase must be equal. ng| =npgs
« Remember for ideal solutions:
mg; =g, +RTINXg  Ung s=ng ¢ +RTINXp g
- Equating the two: m, +RTInXp| =ngs+RTInXp s
XB,s
XB,|

ng - mMBs=RTIn

. Below the melting point "B, - MB,s>0

and Xg J/Xz, > 1, otherwise reaction would proceed
spontaneously.



Free Energy of Melting

G/T 6
Recall "2t =DHp
LI
T 4BGO_T
Integrate: g g 9 __Q'BmeIDHBMd(T Y

At T, .- DG

B,mel

= O WhICh leads to DGg ,,¢(T)

X1 1 0
DG meg = DH B e &— -
T TBmeIg

which is the free energy of melting at temperatures
other than the melting temperature at equilibrium.

Free Energy Change for the solid can be obtained as
above for the liquid phase:
DGg = X sX0Ga t +RT[XasInXas+XpsInXg )

B,mel™

Free Energy of Freezing negative in front of equation:

ae1 1 ('j
DG f—'DHAmelé_'
A T TAmeIg

Combine these 4 equations gives:

& 1 9
DGg =- X a s XOH A mel T +RT[XAs|nXAs+XBs|nXBs]
Ame g
=<l 1 O
DG = Xg,| ><DI'lB,melé*' :"' RT[XA,szA,s"'><B,s,|r'><B,s]
T TB,meI 7]



Chemical Potentials

Express each equation in terms of Chemical Potential
by taking the derivative of each. For the solid phase

one gets:
SN - TR (ot
! DXg, S DXps
IDGg 1 6? X 1 0 0
- = - XasXPH - “+ RT[XasINX ac +Xg <InXg |?
B Wes Xpe§ NS AT o [XasinXas+Xg,s ol
é Xg U
=-RTaNXp s +—
e xB,sg
=-RT[nXg s +1]

For the liquid phase component B:

DG % @ 1 0 0
Mg = 1 I _ 1l QXBJ sDH B,melé_' T+ RT[XA,Sln XA,S+ XB,l In XBJ]Z
Xg1 TXg, & T Temd g P
0 e Xgu
:DHBme,aei- 1 T+RTan Xg, + Bl
gl TBmig & XBlg
0
= DH g e G - — =2+ RT[In Xg | +1]
"7 Teme g '

Setting the two chemical potentials equal to each other:
Mg, =MB,s

- RT[In X ¢ +1] = DH B,me,g- TBlme' 2+ RTfin Xz, +1]
) 9

n Xps DHp mg &1 1 0

XB| R éT TB mel B




Chemical Potential of A

As with B we take the derivative with respect to X, to
determine the Chemical potential, m,

® 0 2
_ DGg 1 1 T+ RT[XA,S InXa s+ XgsIn xB,s]i

x|
Mys = = - Xas DHamel &= - .
S ﬂXA,s '”XA,sé S me é? TA,meI a a

6 _ 6 Xasl
! THRTAN Xp 5 + =25

Tamel 17} é As
=sih 1 0
=- DHA,melé? - Tamel Q:+RT[In XAs +]]
And for the liquid:
_IDG _ 1 gex

eel
=St RS N xDH =
M) ™al TXay & B| B,me|§T

=< |
= -DHAmel é? -

19 0
——2 RT[Xa N XA +Xg,In Xgy |7
Bmel g 7]
é Xa 0
=RTaNXp |+
& XA,I 1]
=RT[nXa; +1]

Setting them equal
mAS = mA|

&£l 1

— %+RT[InXAS+1]
T TA,m g '

lnXA,s_DHA,meI&.I.__ 1 9
XA,I R éT TA,mdB

RT|InX A +1]=- DH A g

g R &1 Tame g 10



Calculation of Liquidus and Solidus Curves

e Usin Hpme 8 1 U
9 Xp,s = Xp, &Xpe — zu

8 R T TB,melw

€DH A mel &L oy

Xps= Xl 0pe—amEe=. L Zu

& R T TA,melm

Xgs+Xas=1UXpg| +Xp| =1
 We perform algabraic manipulations

epDH 1 eDH 2L 1 o
= exp A me A, mel
&  épH a8 1 & éDH @’ 1 oo €DH a8 1 o
Xg | Sexpe——=—— B.mdl ¢= . - expé Amd ¢= Ui =1- expé Al - Y
a R &T T 4 a R KT T o a R ST T
8 B.mel gff 8 Amel gy é Amel g

i érH oV
 To obtain - epé A,me|?_ L g
Yo, = 8 R & Tamd g

expé g— TU- expé — - Ry
. é R T TB,me!bj 8 R T TA,meIQg

 Complete liquidus and solidus curves are then
calculated from the melting points and heats of fusion

(see Fig. 9.3).
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REAL SOLID SOLUTIONS

Solutions not obeying Raoult’s law call real (nonideal)
solutions.

Instead of mole fraction a correction must be added to account
for the deviation from ideality. Chemical potential becomes:

ma =} +RTInap
a=gxX
where g = the activity coefficient.
Substitute for a, to get:
my =M} +RTIngp XX 4 Ung =mg + RTIngg XX
oT, X).
Excess free energy compared with ideal solution determined
and related to the activity coefficient.

DGt e = DG+ real - DGt ideal
= (X ADMy + XBD'TB)" (X ADMa; + X gDmg,;)
But we know that Dmy; = RTIn X, UDmg; = RTIn Xg
Substitute:
DG ¢ = RT(XaINgaX p+XgInggXg)- RT(X AN X o+ XgIn Xg)
=RT(X 5lngs + XgIngg)
As stated earlier, heat of mixing of ideal solution is zero.

Bragg-Williams model assumes all DG; is due to a heat of
mixing. DG; ,=DH; .
DH; . can be determined from average bond energy, e, and the

number of nearest neighbors. Gives the overall energy
associated with the bonding in the phase.
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Requirements for Equilibrium Among
Phases

To explore necessary requirements for equilibrium to exist,
write total differential with respect to T, P, composition.

Free energy of an isolated system must be at a minimum
for equilibrium to exist, i.e. dG =0

do=FS0 T ECY  gp, HOGL dnl+ae”§—Gi dny
efr ﬂp,ni eﬂpﬁr,ni ﬂr]:I-ET,F’,nj ﬂnzgl',P,nj

=- T +VdP+ & mdn

Examine the way each variable changes at equilibrium to
keep dG = 0.

Entropy: total entropy change

ﬂS: é_dS| :d;ql.kd&.l.m(.l.ﬂzo
i dT; dT, dT;

where i refers to the different phases able to transfer heat.

Heat is only transferred from hotter to colder regions
(Zeroeth law of Thermo.)

& |, dgp dq; 9_ éaejqj+1 + daj+2 +><><><+dﬂ9:

8dT1 dT, de !5 ngj +1 de+2 dT; a
Heat lost by one part of the system (dgj,,...dq;) must equal

the heat gained by some other part of it (dq;...dq)).
T,<T,
Heat gain and lost can be thought of as coming in pairs;

Difference should always be positive since division by T,
gives a smaller number than division by T;

dﬂ- di >0

dT; dT,

This cannot be true since the sum of these must be equal.

Conclusion:heat must be transferred isothermally; no
temperature gradients.
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Pressure gradients when systems are at
equilibrium
 Examine the existence of pressure gradients when a
system. Second term in the total differential gives

information on the mechanical stability of phases under
isothermal conditions.

 Total volume must be kept constant, although the volume
of certain regions may vary.

 Varying volumes in some regions means it is possible to
do PdV work within the system.

e Since dG =0 and V = constant: adVy +dV, + dVg +:3=0
*  Work would be: P,dV, +R,dVy, +PydVg +332 =0
» Rearrange: P,dV, = - (P,dVv, + P4V +333)
e But: dVa :-(dVb+d\/g+>>>)
«  And - Py ldVp +dVg+:2) = - [PudVy, + PV +53:)
« For the two sides to be equal, P, =R, = Pg =3
» Thus, there can be no pressure gradients in the system, if
it is at equilibrium.
Chemical Potential Changes
o At equilibrium,
dG =0 =nfdnf + n?dn? +nidny +>00e M dng +ngdng +nBdng + o0+ nfdnd +nPdnd +rdng + o
« Butin an isolated system matter is conserved b
a dnq =0;a dno =0;etc.
* As with work (pressure) we can show this equation can
only be true when

ot =0 =0+ =nf =0 = =1 = =
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The Phase Rule

Gives us the total number of experimental parameters
required to totally describe an equilibrium between multiple
component systems in equilibrium with several phases.

Tells us how many variables can be changed without
changing the composition or number of phases (degrees of
freedom).

Let ¢ = # of components; p = # of phases; there are pc
composition variables.

Add T and P for the system (only one of each since same
for all phases (see earlier overhead).

There are now pc + 2 variables possible.

Reduce that number by using relationships between the

components:
_1.yb b b _a. _
xf +x;1 + 3006 X 2 =L XP + X5 %0 Xy —lXi'V+X§V+>°°<+X\r'1V—1

Composition of all of components can be determined, from
the composition of c-1 components for each phase. We
need to know p fewer compositions.

Degrees of freedom are then: f=pc—-p+2=p(c—-1) +2
Chemical potentials in each phase must be the same:
nf :m_lb = =xoxnf :mg = =xenf =md = nf =xx

Each equivalency reduces the number of independent

variables. For p phases and ¢ components the total number

of constraints is c(p — 1); subtract from other degrees of
freedom: f =p(c-1)+2+c(p-1)
=C- p+2
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Phase Rule and Phase Diagram

See Fig. 9.4; pressure held constant in constructing phase
diagram b eliminates one variable.

e Itis two component system, ¢ = 2.
e Solidusregion:c=2;p=1pb f=2-1+1=2.
—Two variables can change independently with no change in
the number of phases.
e Liquidus region: c=2; p=1b f=2. Same behavior.
e« Two phase in equilibrium: f=2 -2+ 1 =1. Only one variable
can be changed independently and maintain two phases.

—E.g. temperature variation, the composition in the particular
phase changes to a new place on the graph.
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Some Phase Diagrams

¢ Single component system:
— One phase present:

\

c=1p=1bp )
f=1-1+2=2 S| o |E .
Pressure and temperature can % g § Liquid
be varied independently to a é 9
maintain a single phase. L

— Two phase present: /J Vapor
c=1l,p=2
f=1-2+2=1 Temperature
Only one independent Phase Diagram of Sulfur

variable; changes in one
variable affect the dependent
variable.

— Three phases present (triple point) c=1;p=3b
f=1-3+2
A change in any variable changes the number of phases;
note that S has three triple points.
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Two component Phase Diagram (Binary
phase Diagram)

c=2, f=2-2+2
=2
Phase diagram plotted (Fig. 9.9) with either pressure or
temperature constant.
Liquidus = negative deviation from ideality
Solidus = positive deviation from ideality.

Minimum (or maximum) = point where composition of each
phase is same.

Solidus has two components that are not the same in
composition and coexist over some temperature range.

Composition of each determined by the lever law.

Run an isothermal tie line between two phase lines (dashed
line in bottom portion of phase diagram.

Conservation of matter gives
Xg(Ng +Ng') =Xgahg + Xp gy
where Xg = overall mole fraction of B; n,, n, are the number
of moles in each phase.
Rearrange to get: n, _Xpa'- Xp
Ny ) XB - XBa
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Ternary Systems

Often represented using planar graphs under isothermal and
isobaric conditions.

Triangular graphical representation used to describe
composition of a solution.

Composition determined using parallel lines on the appropriate
side of the graph (see Fig. 9.19).

— Pointx: 0.3 A, 0.5B, and 0.2 C;
— Pointy: 0.1 A, 0.35 B, and 0.55 C;
— Pointz: 0.6 A, 0.1 B, and 0.3 C;
A point on any of the sides has only two components.

The line from one apex to any point on the opposite end of the
triangle gives constant ratio of components any where along
the line.

E.g. Consider dotted line from B to other end of triangle:
— At 0.9B: we have 0.05 A and 0.05C; A/IC=1.0
— At 0.5B: we have 0.25 A and 0.25 C; A/C = 1.0, etc.
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H,O/CHCI,/CH,COOH

Binary solutions of CHCly/ CH3;COOH (left) and H,O/
CH3;COOH (right) form single phases at all concentrations.

CHCI,;/H,O mixtures form single phases at the two extremes in
relative concentration, but a 2 phase region exists at
intermediate concentrations.

Follow the line a,a,aza, to see what happens when acetic acid
added to a two phase mixture of CHCI,/H,O.

Note from our earlier discussion the relative proportions of
CHCIy/H,O do not change as we add CH;COOH to the
solution.

— a,: composition of aqueous and chloroform phases given
by a,” and a,’, respectively. The relative amount in the
agueous phase is given by the lever rule (the ratio of the
lengths of the two tie line segments.

— ag two phases, although the chloroform layer is only a
trace.

— a4 only one phase exist at any point on the line beyond
as, i.e. after addition of any more acetic acid.
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NH,Cl/(NH,),S0,/H,0

b: solubility of ammonium chloride in water; Solid ammonium
chloride in equilibrium with the saturated solution.

c: solubility of ammonium sulfate: solid ammonium sulfate in
equilibrium with saturated solution.

Let's analyze the line a,a,aza,. The relative amounts of two
salts the same all of the way down the line. Only the relative
amount of water is varying. Moving down line is like
evaporating water.

a;: single phase between two salts and water.

a,: small amount of solid ammonium chloride and an aqueous
solution of the salts in equilibrium.

ag: more water has evaporated; more ammonium chloride
precipitated; solution composition given by point d.

After a; both salts start to precipitate.
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