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Abstract—The information sharing among vehicles provides
intelligent transport applications in the Internet of Vehicles (IoV),
such as self-driving and traffic awareness. However, due to
the openness of the wireless communication (e.g. DSRC), the
integrity, confidentiality and availability of information resources
are easy to be hacked by illegal access, which threatens the
security of the related IoV applications. In this paper, we
propose a novel Risk Prediction-Based Access Control model,
named RPBAC, which assigns the access rights to a node by
predicting the risk level. Considering the impact of limited
training datasets on prediction accuracy, we first introduce the
Generative Adversarial Network (GAN) in our risk prediction
module. The GAN increases the items of training sets to train
the Neural Network, which is used to predict the risk level
of vehicles. In addition, focusing on the problem of pattern
collapse and gradient disappearance in the traditional GAN,
we develop a combined GAN based on Wasserstein distance,
named WCGAN, to improve the convergence time of the training
model. The simulation results show that the WCGAN has a faster
convergence speed than the traditional GAN, and the datasets
generated by WCGAN have a higher similarity with real datasets.
Moreover, the Neural Network (NN) trained with the datasets
generated by WCGAN and real datasets (NN-WCGAN) performs
a faster speed of training, a higher prediction accuracy and a
lower false negative rate than the Neural Network trained with
the datasets generated by GAN and real datasets (NN-GAN),
and the Neural Network trained with the real datasets (NN).
Additionally, the RPBAC model can improve the accuracy of
access control to a great extent.

Index Terms—Access Control, Generative Adversarial Network,
Internet of Vehicles, Risk Prediction

I. INTRODUCTION

As an emerging paradigm, the Internet of Vehicles (IoV)
supports wireless communication for information sharing be-
tween vehicles [1]–[3], improving the safety of traffic [4], [5].
However, the wireless communication faces many threats, such
as replay attack [6], [7]. Therefore, it is critical to protect the
safety of information resources [8].

The access control mechanism aims to reduce the unautho-
rized access in the IoV. Existing access control mechanisms,
such as Role-Based Access Control (RBAC) [9] and Attribute-
Based Access Control (ABAC) [10], are usually based on static
methods. Therefore, once a node is authorized, it will not be
changed. Additionally, when a node is attacked during access
activities, the system is difficult to make a timely response

to protect the resources. Aim at this problem, Weng et al.
[11] have proposed a dynamic scheme for the SDN-based
VANET, the administrator appoints qualified SDN applications
to access resources by allocating a secret key dynamically.
Zhang et al. [12] have proposed a Global Access Control
model, and tackle the need in vehicular communication to
make decisions based on dynamic information.

The risk prediction model predicts the risk level of a node,
which acts as the basis for evaluating the access rights. Najada
et al. [13] have validated that the prediction model based
on Neural Network (NN) is better to process behavior data
of vehicles than other models. Similarly, Mao et al. [14]
have developed a risk prediction model based on the NN,
which predicts the traffic accidents effectively. These solutions
improves the traffic safety to some extent. However, they need
lots of training sets to guarantee the accuracy of models. One
way to overcome this problem is the Generative Adversarial
Network (GAN). For example, Sun et al. [15] have leveraged
the GAN to repair the parking data, which improves the perfor-
mance of parking guidance system. Additionally, considering
the impact of mode collapse and gradient disappearance on the
performance of GAN, Arjovsky et al. [16] have replaced the
Jensen-Shannon divergence with the Wasserstein-1 distance to
solve the problem of gradient disappearance. Zhang et al. [17]
have proposed a new architecture for the GAN, which uses two
different discriminators to solve the problem of mode collapse.

Therefore, this paper proposes a Risk Prediction-Based Ac-
cess Control (RPBAC) model to secure the information sharing
between vehicles. Furthermore, focusing on the problem of
pattern collapse and gradient disappearance, a combined GAN
based on Wasserstein distance (WCGAN) is proposed. The
main contributions of this paper are as follows:

• We propose a Risk Prediction-Based Access Control
(RPBAC) model. Considering the problem of limited
training sets, we introduce the GAN in the risk prediction
module, the generator generates new datasets by learning
the distributions of real datasets, which increases the
items of training sets, improving the accuracy of the NN.

• Considering the problem of pattern collapse and gradi-
ent disappearance, we design a combined GAN based
on Wasserstein distance (WCGAN). By using multiple
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Fig. 1. The Risk Prediction-Based Access Control model.

generators, the WCGAN covers different modes.
The rest of this paper is organized as follows. Section II

presents the proposed RPBAC model. Section III explains
the problem in the traditional GAN, formulates the proposed
method WCGAN and states the method algorithm. The per-
formance of the RPBAC and the WCGAN are evaluated in
Section IV. Section V concludes this paper.

II. THE RISK PREDICTION-BASED ACCESS CONTROL
MODEL

Fig. 1 shows the proposed RPBAC model, which includes
the behavior feature selection module, the risk prediction
module and the access rights decision module. The detailed
descriptions of these modules are as follows.

A. The Behavior Feature Selection Module

The principal purpose of behavior feature selection module
is to select behavior features from the historical datasets.
Behavior features, including the received signal strength, the
packet transmitted amount, the packet received amount, the
packet delivery ratio, the packet drop ratio, the packet capture
ratio, the packet collision ratio, the packet re-transmission
ratio, and the packet tamper ratio [18], are selected as a
representative sequence to train the risk prediction module.

B. The Risk Prediction Module

The risk prediction module consists of a four-layer Neural
Network (NN), including one input layer, two hidden layers
and one output layer. The output layer has one unit, which is
a sigmoid function given by (1).

f(x) =
1

1 + e−x
(1)

The range of the function is [0, 1]. If the input represents a
normal behavior, the output is close to 0, otherwise, the output
is close to 1.

Considering the problem of limited training sets, the
risk prediction module introduces the GAN. Fig. 2 shows

Fig. 2. The structure of Generative Adversarial Network.

the structure of GAN, the Long Short-Term Memory
(LSTM) is acted as the generator G, and the Convolu-
tional Neural Network (CNN) is acted as the discrimi-
nator D. The historical behavior is represented as B =
{B1, B2, ..., Bt−1}, where Bt−1 is a subsequence at time
t−1, and Bt−1 = {bt−1,1, bt−1,2, ..., bt−1,9, riskt−1} with ten
features, such as bt−1,1 is the packet transmitted amount and
riskt−1 is the risk level. Given a sequence B, a new sequence
Bt = {b′t,1, b′t,2, ..., b′t,9, risk′t} can be generated by the G,
where risk′t is the risk level of this new sequence.

The training process of the GAN can be attributed to the
“minimax game” between the G and the D, where the G
generates new sequence as accurately as possible to “cheat”
the D, and the D discriminates whether the input is a real
sequence to “beat” the G. The objective function of the GAN
is given by (2).

min
G

max
D

V (D,G) = Eb∼pdata(b)[logD(b)]

+Ez∼pz(z)[log(1−D(G(z)))]
(2)

Where the D aims to maximize the expectation of logD(b)+
log(1 − D(G(z))), on the contrary, the G aims to minimize
the expectation of log(1−D(G(z)))

C. The Access Rights Decision Module
This module is responsible for determining the access rights

of a node, based on a predefined strategy. In this paper,
we customize the access control strategy with a threshold n,
n = 0.5. Therefore, the vehicle could access the information
resource, when the predicted risk level is below n.

III. THE COMBINED GAN BASED ON WASSERSTEIN
DISTANCE

In this section, we describe the problem in the traditional
GAN, and state the proposed method WCGAN in terms of
Wasserstein distance and the combined GAN.

A. Problem Statement
1) Gradient disappearance: The objective function of the

GAN can be equivalent to optimizing the Jensen-Shannon
divergence between the real distributions Pr and the generated
distributions Pg . The JS divergence and the associated KL
distance are expressed as (3).⎧⎪⎪⎨

⎪⎪⎩
KL(Pr||Pg) =

∫
Pr(x) log(

Pr(x)
Pg(x)

)dx

JS(Pr||Pg) =
1
2KL(Pr||Pg(x)+Pr(x)

2 )

+ 1
2KL(Pg||Pg(x)+Pr(x)

2 )

(3)
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Fig. 3. The distribution of Pr and Pg .

Where Pr and Pg are continuous, when the two distributions
do not overlap with each other, the Jensen-Shannon divergence
tends to be a constant, which leads to the disappearance of
gradient.

2) Mode collapse: In the GAN, the learning ability of a
single generator is limited. The single generator just fits part
distributions of real datasets, which leads to the lack of modes.

B. The Method Statement of WCGAN

1) The loss function based on Wasserstein distance: The
WCGAN replaces the JS divergence with the Wasserstein
distance to solve the problem of gradient disappearance.
Wasserstein distance calculated in (4), aims to find the lowest
cost of converting Pg into Pr.

W (Pr, Pg) = inf
γ∼∏

(Pr,Pg)
E(x,y)∼γ [||x− y||] (4)

Where
∏

(Pr, Pg) represents all possible joint between Pr and
Pg , and ||x−y|| is the distance between the real dataset y and
the generated dataset x.

As shown in Fig. 3, Pr is the uniform distribution of (0, Z),
and Pg is the uniform distribution of (θ, Z), where θ is the
vertical distance between Pr and Pg . The JS divergence and
the Wasserstein distance between Pr and Pg are formulated
as (5).⎧⎪⎨
⎪⎩

JS(Pr||Pg) =

{
log(

Pg(x)
1
2Pg(x)+0

) = log 2, ifθ �= 0

0, ifθ = 0

W (Pr||Pg) = |θ|
(5)

When θ equals to 0, the JS divergence also equals to 0. When
θ is greater than 0, the JS divergence is a constant, which
cannot provide an effective gradient. However, the Wasserstein
distance changes with θ, providing an gradient for training.

The WCGAN introduces the Wasserstein distance into the
loss function of discriminator. Compared with (2), the resis-
tance loss of discriminator and the resistance loss of generator
can be expressed as (6) and (7).

LAd
d = D(s̃0:t)−D(s0:t) (6)

LAd
g = −LAd

d = D(s0:t)−D(s̃0:t) (7)

The goal of discriminator becomes to minimize D(s̃0:t) −
D(s0:t), and, the goal of generator becomes to minimize
D(s0:t)−D(s̃0:t), where s̃0:t is a generated dataset, and s0:t
is a real dataset.

Fig. 4. The combined Generative Adversarial Network.

2) The combined GAN: In order to deal with the problem
of mode collapse, the WCGAN combines multiple generators
to cover multiple distributions. As shown in Fig. 4, we utilize
two generators, which share an input and complement with
each other to learn more modes.

Given m generators, the discriminator produces a probabil-
ity distribution of soft-max over m+1 classes. The probability
that the input belongs to real sequence is denoted by Dm+1(.).
Combined with (2), the objective function of GAN is given
by (8).

min
G

max
D

Ex∼pdata
logDm+1(x; θd)

+Ex∼pz
log(1−Dm+1(Gi(z; θ

i
g); θd)

(8)

Where θd is the parameter of discriminator, θig is the parameter
of generator i, Gi(z; θ

i
g) represents the generate function of

generator i, and Dm+1(Gi(z; θ
i
g); θd) represents the probabil-

ity that Gi(z; θ
i
g) is discriminated as a real dataset.

Combined with (6), aim at the output of generator i, the
loss function of discriminator is calculated as (9).

�iD = Dm+1(Gi(z; θ
i
g); θd)−Dm+1(x; θd) (9)

In (9), the discriminator aims to maximize the probability that
the real data set x is discriminated as a real data set, and
minimize the probability that the generated data set Gi(z; θ

i
g)

is discriminated as a real data set. Similarly, aim at the output
of all generators, the loss function of the discriminator is
calculated as (10).

LD =
1

m

m∑
i=1

�iD (10)

Consequently, the gradient of the discriminator is calculated
in (11).

∇θdLD = ∇θd [
1

m

m∑
i=1

�iD] (11)

Combined with (7) and (9), the goal of the generator i is
the opposite of the discriminator, as calculated in (12).

�iG = Dm+1(x; θd)−Dm+1(Gi(z; θ
i
g); θd) (12)

Therefore, the gradient of the generator i is calculated in (13).

∇θi
g
�iG = ∇θi

g
[−Dm+1(Gi(z; θ

i
g); θd)] (13)

In this case, all generators can be updated in parallel.
The generators form a hybrid mode caused by the objective
function. When pd = 1

m

∑m
i=1 pgi , each generator represents

a hybrid component to achieve global optimality.
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3) The WCGAN procedure: The pseudo code of the WC-
GAN training is illustrated in Algorithm 1. First, we initialize
the parameters θg and θd. Second, the generator i generates
a dataset Bi

t at time t by learning the distributions of real
datasets B = {B0, B1, · · · , Bt−1}. Third, the θd is updated
ndisc times based on the gradient of discriminator and the
learning rate λ. Fourth, the m generators generate new datasets
to calculate their loss function and gradient function respec-
tively, which are used to update θig . Then, the parameter θg
and θd are updated alternately, until θg converges. Finally, the
m generators Gθg are obtained.

Algorithm 1 The training algorithm of the WCGAN.
Input: learning rate λ = 0.1, parameters θg and θd, the

number of generators m = 2, the number of iterations
ndisc = 5, historical behavior datasets of nodes, random
distribution z ∼ p(z).

Output: the m generators Gθg .
1: Initialization θd and θg
2: while θg has not converged do
3: for t = 1 to ndisc do
4: for i = 1 to m do
5: Sample behavior datasets B =

{B0, B1, · · · , Bt−1}, set random distribution
z ∼ p(z)

6: Calculate Bi
t ← Gi(B, z)

7: Calculate �iD ← Dm+1(Gi(z; θ
i
g); θd)

−Dm+1(x; θd)
8: end for
9: Update the parameters θd ← θd + λ∇θd

1
m

∑m
i=0 �

i
D

10: end for
11: for i = 1 to m do
12: Sample behavior datasets B = {B0, B1, · · · , Bt−1},

set random distribution z ∼ p(z)
13: Calculate Bi

t ← Gi(B, z)
14: Calculate �iG ← Dm+1(x; θd)−Dm+1(Gi(z; θ

i
g); θd)

15: end for
16: Update the parameters θig ← θig+λ∇θi

g
�iG

17: end while
18: Return to the m generators Gθg

IV. EVALUATION

In this section, we mainly conduct related experiments to
evaluate the performance of the proposed method WCGAN
and the proposed RPBAC model.

A. Experimental Setup

The related experiments are conducted in the TensorFlow
1.12.0, running on a PC with 8G memory and Intel Core
i5 3.3GHz, the simulation process is written in Python. The
experimental datasets are from an intrusion detection project
conducted by MIT Lincoln Laboratory [19]. The datasets are
divided into two parts: 5 million items of communication be-
havior for training, 2 million items of communication behavior
for testing. We extract 0.2% random samples in the training

sets, including 5000 items of normal records and 5000 items
of abnormal records. The learning rate is λ, λ = 0.1.

B. The Performance Evaluation of the method WCGAN

In order to validate the effectiveness of the proposed WC-
GAN, we first use the real training datasets to train the GAN
and the WCGAN. Additionally, the WCGAN and the GAN
are both used to generate 5000 items of normal records and
5000 items of abnormal records. Therefore, we use 20000
items of records (including the datasets generated by the
WCGAN and the real training datasets), 20000 items of
records (including the datasets generated by the GAN and the
real training datasets), and the real training datasets to train
the NN respectively. Then, we compare the loss function, the
prediction accuracy and the false negative rate among the NN-
WCGAN, the NN-GAN and the NN.

Fig. 5 shows the experimental results related to the WC-
GAN. Fig. 5 (a) shows the comparison of the loss function
between the WCGAN and the GAN. After 12 iterations, the
loss of the WCGAN approaches to 0, which indicates that the
datasets generated by WCGAN are almost same as the real
datasets, and the proposed WCGAN converges faster than the
GAN. Additionally, Fig. 5 (b) shows the loss function of the
NN in different training sets, after 12 iterations, the loss of
NN-WCGAN is about 0.03, the NN-GAN is about 0.12 and
the NN is about 0.15, which indicates that the NN-WCGAN
converges faster. Similarly, Fig. 5 (c) shows the comparison
of the prediction accuracy, compared with the NN, the NN-
WCGAN and the NN-GAN have a higher accuracy. However
due to multiple types of abnormal records in the training sets,
the GAN cannot fit the distributions of abnormal records by
using a single generator. Therefore, the false negative rate
of NN-GAN is higher than the NN, as is shown in Fig. 5
(d). The WCGAN utilizes two generators to learn multiple
distributions, increasing the similarity between the generated
datasets ad the real datasets. Therefore, the false negative rate
of the NN-WCGAN is similar to the NN. As a result, the
datasets generated by the WCGAN could be used to train the
NN, improving the performance of the NN.

C. The Performance Evaluation of RPBAC Model

The datasets of the experiments related to RPBAC model
consist of different requests. Each request includes three
attributes: the subject (the requesting node), the object (the
accessed node), and the type of request. The subject is selected
randomly. The selected nodes generate 10 rounds of requests,
R1, R2, · · · , R10. The requests in each round come from 50
nodes. Each node initiates i requests, where i ∈ {1, 2, ..., 10}.
The type of request is composed of normal and malicious
request alternately. We compare the number of correct access
and the average response time among the RPBAC model,
the RBAC model and the ABAC model to evaluate the
effectiveness of the proposed RPBAC model.

Fig. 6 shows the experimental results related to the RPBAC
model, where Fig. 6 (a) shows the comparison of the number
of correct control among the three models, the control accuracy
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(a) Comparison of the loss function. (b) The loss function of NN.

(c) The prediction accuracy of NN. (d) The false negative rate of NN.

Fig. 5. The experimental results related to the WCGAN.

(a) The number of correct access. (b) The average response time.

Fig. 6. The experimental results related to the RPBAC model.

of the RBAC model is about 72%, the ABAC model is about
75%, and the RPBAC model is about 87%. Compared with the
traditional static mechanisms, the proposed RPBAC adjusts the
access rights dynamically by predicting the current risk level
of vehicles, which improves the accuracy of access control.
However, the RPBAC also needs more time to calculate the
risk level, as shown in Fig. 6 (b). Fortunately, the increased
time is relatively small to acceptance.

V. CONCLUSION

This paper proposes a novel access control model named
RPBAC. By controlling the access rights of vehicles, the
RPBAC model protects the safety of information sharing
in the IoV. Moreover, we introduce the GAN in the risk
prediction module to solve the problem of limited training
sets. We also analyze the problem of pattern collapse and
gradient disappearance in the traditional GAN, and develop
an improved GAN, named WCGAN. To this end, compared
with the traditional GAN, the experimental results show that
our WCGAN performs a faster convergence speed. Moreover,
the proposed WCGAN improves the prediction accuracy and
reduces the false negative rate of the NN by increasing the
items of training sets. Additionally, the proposed RPBAC

model improves the accuracy of access control significantly.
Future research includes exploring the WCGAN and the
RPBAC model in a real-world deployment.
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