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Abstract—Edge computing is emerging to empower the future
of Internet of Things (IoT) applications. However, due to hetero-
geneity of applications, it is a significant challenge for the edge
cloud to effectively allocate multidimensional limited resources
(CPU, memory, storage, bandwidth, etc.) with constraints of
applications’ Quality of Service (QoS) requirements. In this
paper, we address the resource allocation problem in Edge-IoT
systems through developing a novel framework named DeepEdge
that allocates resources to the heterogeneous IoT applications
with the goal of maximizing users’ Quality of Experience (QoE).
To achieve this goal, we develop a novel QoE model that considers
aligning the heterogeneous requirements of IoT applications to
the available edge resources. The alignment is achieved through
selection of QoS requirement range that can be satisfied by the
available resources. In addition, we propose a novel two-stage
deep reinforcement learning (DRL) scheme that effectively allo-
cates edge resources to serve the IoT applications and maximize
the users’ QoE. Unlike the typical DRL, our scheme exploits
deep neural networks (DNN) to improve actions’ exploration
by using DNN to map the Edge-IoT state to joint resource
allocation action that consists of resource allocation and QoS
class. The joint action not only maximize users’ QoE and satisfies
heterogeneous applications’ requirements but also align the QoS
requirements to the available resources. In addition, we develop
a Q-value approximation approach to tackle the large space
problem of Edge-IoT. Further evaluation shows that DeepEdge
brings considerable improvements in terms of QoE, latency and
application tasks’ success ratio in comparison to the existing
resource allocation schemes.

Index Terms—Resource Allocation, DeepEdge, Edge-IoT, Deep
Reinforcement Learning (DRL), Quality of Experience (QoE)

I. INTRODUCTION

Growing Internet of Things (IoT) applications such as
Google Home and Amazon Echo raise the demands for cloud
computing platforms for data processing. However, it is very
difficult for the existing centralized cloud computing model to
scale with projected large number of IoT devices and ubiqui-
tous applications, due to the large amount of generated data to
be sent over relatively long distance between IoT devices and
clouds. Edge or fog computing [1], [2], [3] is considered as
a potential approach to fulfill these applications demands by
moving more computing, storage, and intelligence resources
to the edge, which would benefit IoT applications that are
delay-sensitive, bandwidth/data intensive, or that require closer
intelligence. We envision a future “Edge-IoT” environment
where various IoT applications could use edge computing to
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fulfill their resource demands and performance requirements.
To enable such a vision, there are some significant challenges
to overcome. On the one hand, from the demand side, a
massive number of IoT devices can run heterogeneous applica-
tions with various Quality of Service (QoS) requirements and
different priorities. On the other hand, from the supply side, the
edge clouds are expected to dynamically allocate multidimen-
sional resources (CPU, storage, and bandwidth) at geospatially
distributed points and different levels of network hierarchy.
This severely complicates the required resource allocation and
scheduling algorithms. Most of the current edge computing
research either focuses on resource allocation without paying
attention to QoS requirements of heterogeneous applications,
or optimizes specific operations such as mobile offloading,
migration, placement, chaining and orchestration [4], [5], [6].

In this paper, we develop a new Edge-IoT framework
named DeepEdge using deep reinforcement learning (DRL)
that allocates resources to heterogeneous IoT applications with
the goal of maximizing users’ Quality of Experience (QoE).
Unlike the existing resource allocation schemes in the Edge-
IoT research, our proposed DeepEdge framework ensures IoT
users’ satisfaction with guaranteed heterogeneous application’s
QoS and accounts for the dynamic resource availability at the
edge in the resource allocation decisions. The paper has the
following new contributions that align with DeepEdge goals:

• We develop a novel QoE model that maps the applications
QoS requirements to a cumulative QoE score that reflects
the IoT users’ satisfaction. The developed QoE model is
noteworthy as it supports adjustment of QoS requirements
acceptable ranges to match with the available resources at
the edge. In addition, it specifies certain weight for each
QoS performance metric to emphasize its impact on the
overall application performance.

• We propose a novel two-stage DRL to fulfill the QoE
model objectives by generating joint actions including
QoS class selection which aligns applications’ QoS re-
quirements to the available resources in addition to the re-
source allocation action. The scheme exploits deep neural
networks (DNN) to map the edge-IoT state information
to resource allocation joint actions.

• The proposed DRL tackles the dimensionality problem in
the heterogeneous edge-IoT environment where the size
of state and action space is large. It formulates the Q-
value in a form of compact representation in which it is
approximated as a function of smaller set of variables.
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• The proposed DRL scheme tackles the tradeoff between
exploration and exploitation encountered in the DRL
action generation by ranking the actions according to their
Q-values to avoid the equal probability of action selection
used in ε-greedy based exploration solutions [48].

The rest of the paper is organized as follows, the related
work, its shortcomings, and the motivation for the QoE and
DRL based resource allocation are presented in Section II.
Section III describes DeepEdge system architecture, system
model and QoE optimization problem formulation. The two-
stage DRL-based resource allocation scheme is illustrated in
Section IV. Section V presents the performance evaluation and
the paper concludes in Section VI.

II. RELATED WORK AND MOTIVATION

In this section, the related work is discussed. In addition,
we present the motivation for developing QoE model that is
backed by DRL for resource allocation.

A. Related Work

The potential benefits of edge computing in different net-
work applications have been studied extensively in the recent
literature. A large number of existing work has focused on
edge computing either about allocation for specific appli-
cations, or optimizing some operations such as offloading,
migration, and orchestration [4], [5], [6]. For offloading, many
schemes have been proposed to make offloading decisions
to optimize energy consumption and delay performance [7],
[8], [9], [10], [11]. Some of the proposals targeted allocation
of edge resources. For example, the utilization of distributive
game-theoretical approaches for resource allocation in “cloud-
edge” multi-level networks [12]. The authors in [9] proposed
an optimization framework for energy-efficient resource allo-
cation, by assuming that the network operator is aware of the
complete information of all users’ applications.

DRL has been employed for solving decision-making re-
lated problems in the context of edge computing such as
computation offloading [13], [14], [15], [16], management
problems in vehicular networks [17], [18], [19], [20], [21] and
edge resource allocation [22], [23]. For vehicular networks,
DRL has been investigated to solve several problems including
resource allocation [24] and computation offloading [25], [26],
[27]. For instance, the work in [28] exploited DRL to solve
the problem of edge resource management by leveraging
hierarchical learning architectures. In [29], the authors pro-
posed a knowledge driven service offloading decision frame-
work for vehicular network in which the offloading decision
was formulated for multiple tasks as a long-term planning
problem solved by DRL. The authors in [30] proposed a
resource allocation policy for the Edge-IoT system to improve
the efficiency of resource utilization using deep Q-networks
(DQN). The work in [31] proposed a DQN-based resource
allocation scheme, which can allocate computing and network
resources to reduce the average service time. In [32], a joint
optimization solution solved by actor-critic DRL was proposed
for allocation of resources in fog-enabled IoT systems. The
work in [33] proposed a framework for edge offloading based

on DRL with latency and power consumption minimization
as optimization objectives. Task offloading with a single-
user edge computing system was explored in [34] where
DRL was exploited to optimize the trade-off between energy
consumption and slowdown of tasks in the processing queue.
An online computation offloading scheme based on DQN
was studied in [35] under random task arrivals. The work in
[36] investigated strategies for the allocation of computational
resources using DRL in edge computing networks.

Given the related work, none of the existing schemes
considered awareness of multiple heterogeneous applications’
demands and aligning them with the available resources at
the edge. Heterogeneous IoT applications may have different
requirements and characteristics. These requirements might
not be fulfilled with the available resources at the edge at
certain time instant, given that the edge has limited computing
power comparing with the cloud computing that is of virtually
unlimited computing power but the relatively high latency.
The problem of satisfying users’ QoE and applications’ de-
mands in multiple heterogeneous applications and dynamic
IoT environment with the ability to adjust QoS requirements
of applications to fit with the available resources is not
addressed. None of the proposed DRL schemes for resource
allocation considered using DNN to diversify action generation
rather than approximation of value functions of reinforcement
learning. In addition, the related work neither proposed an
effective approach to tackle the problem of large state space
in Edge-IoT nor effectively handled the tradeoff of exploration
and exploitation in reinforcement learning. A series of typical
Edge-IoT applications and their characteristics are summarized
in Table I.

TABLE I
EDGE-IOT APPLICATIONS AND THEIR CHARACTERISTICS.

Devices and 

Applications
Data type

Priority 

(1-4: H to 

L)

Computing 

Intensiveness

Data 

Intensiveness

Latency 

Sensitivity

Emergency real-

time response (e.g. 

gunshot detection 

)

video/audio 1 high high high

VR/AR related 

applications
video 2 or  3 high high high

Home voice 

assistant
audio 2 medium medium/low high

Cognitive 

assistance
video/audio 2 or  3 high/medium high/medium medium

Building access 

face detection
video 3 medium medium/low medium

Personal 

Identification

audio/image/

text
3 medium/low medium/low medium

Home health 

monitoring
text 2 low low low

Common smart 

home devices
text/audio 4 medium/low low low

Low-level sensors text 4 low low low

B. Motivation

1) Quality of Experience (QoE): QoS metrics have been
utilized for long as the performance optimization objective
in resource allocation proposals [37], [38]. However, they
do not capture the quality perceived by users, which may
result in waste of network resources. QoE concept came
into practice to enable broader understanding of the impact
of the network performance and complement the traditional
performance measurement. In contrast to QoS, QoE not only
depends on the technical performance of the system but also
other factors such as contents, applications, user expectations
and goals, and contexts of use. QoE is more comprehen-
sive evaluation particularly for IoT application services as
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it focuses on users satisfaction reflected by application QoS
guarantees through the maximization of certain quality scores.
In this paper motivated by the heterogeneous applications,
which directly deal with the users’ perception, QoE fits the
resource allocation problem as an optimization goal since it
can guarantee dynamic resource allocation with users satis-
faction. Thus, we develop a novel QoE estimation model for
edge resource allocation with heterogeneous IoT applications
that has the following characteristics: 1) It monitors the
Edge-IoT environment and gathers information including QoS
requirements of applications and edge resources availability.
2) It defines the QoS performance metrics that are associated
with certain IoT application, and determines their impact on
the application performance. 3) Moreover, it supports the
adjustment of the application’s QoS to align with the available
resources and boosts the achieved QoE.

There are some existing works utilizing the QoE concept
in the edge computing context. For example, the authors in
[39] proposed a QoE-aware application placement policy that
prioritizes different application placement requests according
to user expectations. In [40], a framework for edge computing
resource distribution was proposed with crucial security and
authentication components by which it ensures the delivery
of users’ QoE. However, none of these proposals consid-
ered resource allocation problem for multiple heterogeneous
applications as each one is focusing on specific application
and mostly HTTP videos. Moreover, they do not tackle the
situation when QoS requirements of the application cannot be
fulfilled by the available resources at certain time.

2) Deep Reinforcement Learning: Reinforcement learning
[41] such as Q-learning has become an active research area
[42], [43]. It deals with agents that learn to make better
decisions directly from experience through interacting with
the environment. Recently, reinforcement learning was com-
bined with deep learning techniques to develop DRL which
demonstrated significant impact on various applications such
as video gaming, Computer Go, and data center cooling. DRL
is well-suited for the resource allocation problem in Edge-IoT
given its large scale and dynamicity for the following reasons:
1) Edge-IoT systems are dynamic in the context of resource
demand and resource availability varies over the time which
makes it difficult to use numerical optimization to solve the
resource allocation problem. DRL learns over time resource
allocation actions that match with environment dynamics. 2)
Resource allocation decisions made in the Edge-IoT context
are highly repetitive, hence, it generates a bunch of training
data for the DRL technique; 3) DRL is capable of modeling
complex systems such as Edge-IoT systems as various signals
can be formulated as inputs to the DNN and the output
strategy can be utilized in an online stochastic environment.
With continuous learning, the learning agent becomes able to
optimize specific tasks under varying conditions; 4) DRL does
not require any prior knowledge of the system’s behavior to
learn a resource allocation policy. Moreover, it can support
a variety of objectives just by using different reinforcement
rewards.

III. SYSTEM DESCRIPTION

In this section, we present the proposed DeepEdge system
model and architecture, the QoE model, and the QoE maxi-
mization problem formulation.

A. DeepEdge System Model and Architecture

The considered system model in this paper consists of
multiple groups of IoT devices at one side of the network.
These IoT devices demand resources from the edge of the
network to support their applications in tasks processing.
Each group of IoT devices runs different applications. These
applications are assumed to be heterogeneous and may have
distinct QoS requirements. In addition, the system model
includes the edge at the other side of the network which is
considered as the resource provider and manager of the Edge-
IoT resource allocation. The resources are located at the edge
servers where computation, memory and other resources are
available. The resource allocation process is managed by a
controller located at the edge. It is a centralized component
that receives IoT devices’ requests and allocate resources at
the edge servers using DRL integrated with QoE optimization.

The proposed DeepEdge architecture is presented in Fig. 1.
The architecture consists of multiple components that work
together to achieve the resource allocation with maximum
users’ QoE. The architecture includes the IoT environment
and the edge cloud. The IoT environment comprises multiple
types of IoT devices: devices that run multiple applications and
multiple devices that run the same applications such as camera
surveillance. The edge cloud consists of certain number of
edge servers that comprise virtual machines, memory, and
computation resources. IoT and edge computing update the
controller implemented at the edge with their states. For
example, the IoT sends information about QoS requirements of
the IoT applications’ and the edge computing servers provide
information about the available resources, their location, and
their current load. The controller incorporates a resource allo-
cation manager (RAM) which runs the two-stage DRL scheme
and decides the resource allocation policy that maximizes the
QoE and adapts applications’ QoS requirements to align with
the available resources. The controller receives the application
and edge servers state information through the devices and
servers modules respectively. The QoE model is integrated
with the controller to enforce its objectives and constraints to
achieve user satisfaction and efficient resources utilization in
Edge-IoT with multiple heterogeneous applications.

B. The New QoE Model

The proposed QoE model aims to dynamically map the
IoT applications’ performance metrics such as latency into a
cumulative quality score that evaluates the IoT user satisfac-
tion. QoE is designated to be the optimization objective that
DeepEdge exploits to drive the resource allocation decisions.
The QoE formulation consists of multiple QoS performance
metrics that quantify the IoT application performance. A
cumulative quality score is mapped to multiple quality scores
each corresponds to a QoS metric acceptable range. This range
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Fig. 1. DeepEdge Architecture

is tunable to enforce the QoS requirements to fit with the
available resources. This brings a wide range of flexibility
that can enhance the system resource allocation capability
and maintains applications operations uninterrupted. More-
over, the QoE model incorporates the following key attributes:
1) determination of the weights of QoS metrics according
to their impact on the IoT application operation; 2) QoE
estimation based on the achieved QoS performance metrics of
multiple heterogeneous IoT applications and the application
priority that is determined according to the application type.
For instance, applications with critical QoS requirements are
given the highest priority.

Our QoE model is generic and can accommodate several
IoT applications. We picked the following applications in
this paper for demonstration purposes: emergency response,
health monitoring, and personal identification. These applica-
tions comprise a broad range of QoS performance metrics,
different priorities and various resource demands. Emergency
response is latency sensitive with intensive data and high
computation requirements while health monitoring has low
latency sensitivity and requires lower data and computation.
Personal identification has the least priority with moderate
data intensiveness, computation and latency requirements. We
denote the application type by the index ς and the IoT user
(device) that runs the application by index i ∈ N . The network
model assumes that one device can run single or multiple
applications; or multiple devices run the same application. The
QoE model considers latency (T ), packet error rate (RE), and
packet loss rate (RL) as QoS metrics for each application and
assigns certain weight w for each metric to describe its impact
on the application QoS. A parameter called application’s
QoS class ας is defined to represent the possible metric
adjustment range. The range is evaluated using a quality score
Φ which quantifies the IoT user satisfaction and contributes
to the cumulative quality score. ας is selected to achieve the
alignment of the QoS requirements of the IoT application such
that they are consistent with the application’s priority and the
available resources at the edge. The application’s priority βς
is ranked starting from 1 to indicate the highest priority and
it is assumed to be predetermined.

Table II presents the parameters of our QoE model including
βς , ας , w and the corresponding quality score Φ of each metric

class for the three heterogeneous applications considered in
this model. The priority βς is specified based on how crucial
is the resource allocation for the application. The performance
metric weight w is selected to show how sensitive the appli-
cation for the corresponding metric. For example, emergency
response is more sensitive to latency than to PLR or PER. The
QoS class ας is set using DRL to maximize Φ and align to the
resource availability at the edge. For instance, if the current
resource request for certain application at certain time instant
cannot be fulfilled due to lack of resources at the edge, the
application ας will be altered in certain ranges that maintains
the application service and fit with the available resources.
The metric classes indicated in Table II show examples of
the metric ranges that correspond to certain ας . The quality
score Φ given in Table II shows how the selection of different
class ας affects the achieved QoE. All the presented values
for metric ranges and Φ are for demonstration of the QoE
model functionality and how Φ is influenced by the selected
on ας . Moreover, the values of the metrics ranges are tied to
the metric weight specified. For instance, high latency weight
in emergency response causes its latency ranges of different
classes to be lower than other applications.

Φ is mapped to the following metrics: (T ), (RL) and
(RE). The latency T is calculated according to the link
bandwidth, data size and the propagation medium. Packet loss
rate RL is evaluated according to [44] as, RL = MSS.η

goodput.RTT
where MSS is the maximum segment size, η is a constant
that incorporates the loss model and the acknowledgment
strategy, goodput is the ratio of the delivered packets over
the delivery completion time, and RTT is the round trip time.
The packet error rate RE is found according to the estimation
model in [45], which relies on the link characteristics found
using statistics from two distinct types of probing messages.
QoE combines user experience and expectation to the edge
computing system and network performance. The performance
of the edge system is typically evaluated by QoS metrics. Thus,
it is necessary to have qualitative relationship between QoS
and QoE to be able to achieve QoE control mechanism based
on QoS with maximum efficacy [46], [47]. To achieve this, we
use a generic formula to correlate the variation in QoE with
the achieved QoS metrics including latency, loss and error
rates. The QoS metrics are represented by quality scores ΦT ,
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TABLE II
SAMPLE QUALITY SCORE FOR HETEROGENEOUS APPLICATIONS WITH

VARIOUS REQUIREMENTS

Application Priority Performance 
Metrics

Metric 
Weight

Metric 
Class

Metric Range Score

Emergency 
Response 1

Latency 0.7
1 
2 
3

50 ms to 100 ms 
100 ms to 150 ms 
150 ms to 200 ms

10 
7 
4

Packet Error 
Rate 0.15

1 
2 
3

10 
8 
6

Packet Loss 
Rate 0.15

1 
2 
3

10 
8 
6

Health 
Monitoring 2

Latency 0.1
1 
2 
3

150 ms to 200 ms 
200 ms to 400 ms 
400 ms to 600 ms

10 
8 
6

Packet Error 
Rate 0.45

1 
2 
3

10 
7 
5

Packet Loss 
Rate 

1 
2 
3

10 
7 
4

Personal 
Identification 3

Latency
1 
2 
3

100 ms to 150 ms 
150 ms to 250 ms 
250 ms to 350 ms

10 
8 
5

Packet Error 
Rate

1 
2 
3

10 
7 
5

Packet Loss 
Rate 

1 
2 
3

10 
7 
5

10−3
10−2
10−1

10−4
10−3
10−2

10−6
10−5
10−4

10−7
10−6
10−5

10−3
10−2
10−1

10−3
10−2
10−1

0.45

0.33

0.33

0.33

ΦRL, and ΦRE for latency, packet loss rate and packet error
rate respectively. Each of these scores is obtained based on the
application type and the selected metric class ας as indicated in
Table II. For instance, if the resource allocation action was to
select ας as 1 for the emergency response application which
corresponds to the best range for all the QoS metrics, the
quality score will be 10. The cumulative quality score achieved
for each application with certain amount of resources allocated
is calculated as follows,

Φς =
∑
i

∑
j

∑
r

xr,i,j [w1.ΦT + w2.ΦRL
+ w3.ΦRE

] (1)

where xr,i,j is the resource allocation indicator with r as a
resource type (CPU, memory..etc), i is the index of IoT device
running the application, j is the index of the edge server pro-
viding the resources, and w is the weight of the performance
metric. The cumulative quality score captures the impact of
each of the QoS metrics on the overall performance. If the
QoS metrics are below minimum thresholds, the cumulative
quality score Φς will be compromised. The proposed defi-
nition of QoE reflects all its impacting parameters including
cumulative Φς normalized score, the metric class (ας ) and
the priority (βς ). It maps the relationship between Φς and
QoE according to the applications’ characteristics since the
applications’ requirements vary from one type of application to
the other. Therefore, QoE for multiple applications is modeled
using an exponential mapping function to the quality score Φς
as follows,

QoE = ϑ
∑
ς

{e
Φς−ας + e−Φς+ας

eας + βς
+ 1} (2)

where ϑ is scaling constant selected for the mapping function.
The definition in (2) is non-linear exponential monotonic
mapping function, which suits our model as the performance
metrics considered cannot be scaled uniformly, i.e., equal
perceived performance difference does not correspond to equal
numerical difference in the Φς score. The considered QoS

metrics including LA, PLR, and PER have exponential inter-
dependency with user QoE in the proposed edge-IoT system.
For example, when the QoE value is high, any variation in
these metrics will heavily impact the QoE. However, consider-
able variation in these QoS metrics will not exhibit significant
impact if the QoE is low. Thus, exponential mapping function
is able to capture the impact of QoS metrics on QoE specifi-
cally for sensitive applications such as emergency response. In
addition, different experiments in the literature demonstrated
that exponential mapping outperforms other mapping functions
such as linear or logarithmic [49].

C. Problem Formulation

In this section, we formulate the resource allocation op-
timization problem with the goal of maximizing the QoE
found in (2) with consideration of all applications. QoE is
rewarded when applications’ QoS requirements are satisfied
and thereafter the user satisfaction through achieving high
QoE. The resource allocation optimization problem for QoE
maximization is formulated as:

max
(xr,i,j),ας

QoE (3)

s.t. xr,i,j ≥ 0, ∀j, r (4)∑
j

∑
r

xr,i,j ≤ Cj , ∀i (5)

T ς ≤ Tmax (6)

RςE ≤ R
max
E (7)

RςL ≤ R
max
L (8)

Edge server’s capacity Cj is defined in constraint (5) to
confirm that the allocated resources cannot exceed the server
capacity. (6), (7), (8) are the constraints for QoS metrics
including T , RE , and RL respectively to guarantee that
they will not exceed the maximum threshold. Note that ς is
used to indicate the performance metric achieved for certain
application. The definition of QoE in (2) is derived as a
function of quality scores for each QoS metric Φ and the
resource allocation factor x. The quality scores correspond
to the user satisfaction according to the achieved below the
threshold QoS metrics values as in the constraints (6) to (8).
Technically, we try to maximize the achievable QoE for each
user under the conditions that all other users running different
applications achieve maximum QoE. The mutual interest in
each resource unit at certain server for all the users causes the
optimization problem to be coupled across them. Moreover,
the constraint in (5) makes the optimization problem coupled
across all the resources of each edge server. This makes the
convexity of the QoE cannot be guaranteed and hence, the
optimization function in (3) becomes non-convex.

The formulated QoE optimization problem comprises the
allocation of resources xr,i,j and the selection of the most
appropriate QoS class ας . This will be the core of the decision-
making problem solved by DRL in the next section.
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IV. TWO-STAGE DEEP REINFORCEMENT LEARNING
SCHEME FOR RESOURCE ALLOCATION IN EDGE-IOT

In this section, we illustrate the two-stages DRL scheme
built to allocate resources from the edge to the IoT ap-
plications. First, rationale and overview of the scheme are
presented. Then, the two stages of DRL are illustrated.

A. Scheme Rationale and Overview

The DRL for resource allocation is implemented in the
RAM module in the controller of DeepEdge. Despite the fact
that DRL has a potential to solve the resource allocation
problem in the Edge-IoT domain, diversity in action explo-
ration remains a major challenge for DRL in such environment
with large state/action space and sparse reward values. It
is infeasible to rely on simple look up table of state/action
and Q-values, i.e. it is necessary to approximate the Q-value
to minimize the complexity of the scheme and account for
state/action dimensionality. The sparse reward values can lead
the DRL to achieve sub-optimal resource allocation policy. In
addition, it is necessary to utilize multi-dimensional data and
analyze it to determine the best resource allocation policy. The
multi-dimensional data comprises edge server resources avail-
ability, IoT applications resource demands, and applications’
QoS requirements. To tackle these challenges and leverage
the multi-dimensional data for resource allocation, we build a
novel two-stage DRL scheme that has the following merits: 1)
It exploits DNN to enhance action exploration by mapping the
Edge-IoT system state to joint actions of resource allocation
and QoS class selection. Q-value of DRL is approximated
as a function of smaller set of variables to tackle the large
state/action space of Edge-IoT environment. This distinguishes
our scheme from the typical DRL schemes which utilize DNN
to approximate the value function using temporal difference
and train DNN accordingly. 2) The exploration generated
actions are ranked according to their Q-values to avoid the
equal probability of action selection. This ranking is used
to select the DNN training data and balance exploration and
exploitation of actions. The balance is achieved using effective
action selection probability, which is varied as a graded
function of Q-value using Boltzmann distribution [50] such
that the best action is given the highest selection probability. 3)
It exploits information about QoS requirements of the hetero-
geneous applications, the resource demands, and the resources
availability in actions generation; 4) The scheme generates
joint actions including resource allocation with certain QoS
class.

Our DRL scheme consists of two stages: 1) Action ex-
ploration and evaluation. 2) Action exploitation and DNN
training. In the first stage, we employ DNN to generate joint
resource allocation and QoS class selection actions. After
the generation of the joint actions, reinforcement learning
is engaged to evaluate the joint actions and select the ones
that have the maximum Q-value, which is defined based on
the achieved QoE described earlier in the system model.
In the second stage, the joint actions with the highest Q-
value during exploration are exploited and stored in a replay
memory. The memory is used to train the DNN and update its
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Fig. 2. DeepEdge two-stage DRL scheme overview.

parameter such that the actions generated in the next iteration
are improved. The overview of the two-stage DRL mechanism
is shown in Fig. 2. More specifically, in the first stage, the
scheme generates joint actions based on the DNN current
action policy πθt , parameterized by θt which is the weight
that connects the hidden neurons in DNN. Then, the generated
actions during exploration are evaluated using the proposed
approximated Q-value.

In the second stage, the best joint actions are selected among
the actions generated with certain action selection probability.
The state and the corresponding selected joint action with the
highest Q-value (St, X

∗
t ) is added to a replay memory. The

action policy at DNN is updated by fetching a batch of training
samples to train the DNN. After training, DNN updates its
weighing parameter θt to θt+1 and the action policy πθt+1 . The
new action policy πθt+1

will be exploited in the next iteration
to generate joint actions at t+1. Such a reinforcement learning
iteration allows the DNN to continuously improve the quality
of the actions generated.

B. Deep Reinforcement Learning Stages

In this section, we illustrate the two stages of DRL for
resource allocation joint action generation.

1) First Stage: Action Exploration and Evaluation: In this
stage, the DNN receive the Edge-IoT state St information at
time t defined as the IoT applications resource demand yi,
the QoS requirements and the resources available at the edge
St = {yi, RmaxL , RmaxE , Tmax, Cj}. According to the current
action policy denoted as πθt : {St} → Xt, a set of joint
actions is generated by DNN and denoted by a mapping fθt
as follows,

Xt = fθt(St) (9)

where Xt = {Xt
k, k = 1, 2, ....K}, and Xt

k = {xtr,i,j , αtς} is
the kth entry of Xt. Each entry in Xt is a joint action and
is assumed to be continuous. The universal approximation
theorem claims that if hidden layers have large number of
hidden neurons and a proper activation function is applied
at the neurons, they will be sufficient to approximate any
continuous mapping f [51]. We exploit ReLU as an activation
function [52] of the hidden layers, where the output b and input
v of a neuron are related by b = max{v, 0}. In the output
layer, we use sigmoid activation function as b = 1/(1 + e−v).
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It is necessary to map the set of joint actions Xt to a discrete
action set such that the actions can be evaluated by the
reinforcement learning Q-value function. We employ typical
K-nearest-neighbors (KNN) algorithm [53] to do the mapping.
After obtaining the candidates discrete joint actions from
KNN, the performance of these actions is evaluated using
reinforcement learning. The action evaluation is conducted
based on the QoE optimization objective defined in (3).

We assume that the Edge-IoT environment evolves as a
discrete-time Markov decision process (DTMDP). The maxi-
mization problem in (3) falls within the domain of a DTMDP.
In order to find the optimal action policy, we define a DTMDP
that associates an action to every Edge-IoT state, a state
transition and a reward function. The state transitions and
actions occur at discrete time epochs. DeepEdge controller
monitors the Edge-IoT state St in current epoch t and gener-
ates discrete joint actions Xt, which are found using DNN. A
reward function is generated for each joint action Xt at the
end of the epoch. The reward function Rt is selected to be the
QoE defined in (2). The formal expression for the DTMDP
is given as (S,X, T,R) , where T : S ×X × S′ → [0, 1] is a
state transition probability function. Ultimately, the objective
of DRL integrated with DTMDP is to find an optimal joint
action Xt that maximizes the QoE in (2). The Q-value of
the reinforcement learning is exploited to evaluate the joint
action is defined as the current expected reward plus a future
discounted reward as follows,

Q∗(St, Xt) = E[R(St, Xt) + ϕ max
X′∈Xt

Q∗(S′t, X
′
t)] (10)

where ϕ ∈ (0, 1] is the discount factor. The optimal Q-value
Q∗(St, Xt) is updated by the change in the Q-value according
to the transition from state St to state S′t under the action Xt

at epoch t as follows,

Qt+1(St, Xt) = (1− µt)Q(St, Xt) + µ

[R(St, Xt) + ϕ max
X′∈X

Q(S
′

t, X
′

t)] (11)

where µ ∈ [0, 1] is the learning rate. Reinforcement learning is
a stochastic approximation method that solves the Bellman’s
optimality equation associated with the DTMDP. It does not
require state transition probability model as it converges with
probability one to a solution if

∑∞
t=1 ϕ

t is infinite,
∑∞
t=1(ϕt)2

is finite, and all state/action pairs are visited infinitely often
[54].

One of the main shortcomings of using Q-value for ac-
tion evaluation in the dynamic Edge-IoT environment is the
large state space. It is not feasible to use state/action tables
and find the corresponding Q-value in such environment for
action evaluation. Thus, it is necessary to approximate the
Q-value. This approximation reduces the complexity of the
system and enhances its convergence. Thus, we approximate
the Q-value as a function of a smaller set of variables in
which Q-value utilizes a countable state space S∗ using
the function Q

′
: S∗ × X . This function is referred as

a function approximator. The vector ρ = {ρp}Pp=1 is ex-
ploited to approximate the Q-value by minimizing the met-
ric of difference between Q∗(St, Xt) and Q′(St, Xt, ρ) for
all (St, Xt) ∈ S∗ × X . Thus, the approximated Q′ value

is formalized as, Q′(St, Xt, ρ) =
∑P
p=1 ρ

pψp(St, Xt) =

ρψT (St, Xt) where T denotes the transpose operator and the
vector ψ(St, Xt) = [ψp(St, Xt)

P
p=1] with a scalar function

ψp(St, Xt) that is identified as the basis function (BF) over
S∗ × χ, and ρp(p = 1, ...., P ) are the associated weights.
We use Stochastic Gradient Descent (SGD) method to update
the weights. The Q-value update rule in (11) is redefined as
follows,

ρt+1ψ
T (St, Xt) =

{
(1− µt)ρtψT (St, Xt) + µt[

R(St, Xt) + ϕ max
X′∈ X

ρtψ
T (S

′

t, X
′

t)
]}
ψ(St, Xt) (12)

where the gradient is a vector of partial derivatives with respect
to the elements of ρt.

2) Second Stage: Action Exploitation and DNN Training:
The action with the highest Q-value X∗t must be exploited
among other actions of state St and added to the replay
memory to train the DNN. The replay memory will be
populated with state/action pairs that have the highest Q-
value over certain number of iterations. The action exploitation
is accomplished through determination of action policy (πtς ),
which is defined as the probability of selection of action Xt at
state St. It corresponds to the set of actions with the highest
Q-value. The attainment of this policy is tied to resolving the
exploration vs. exploitation tradeoff. Exploration aims to look
for new joint actions so it does not only utilize the actions
known to achieve high Q-value. Exploitation is the process of
using the good actions available. The most common method
to balance exploration and exploitation is to use the ε-greedy
selection [48], where ε is the portion of the time that a learning
agent takes a randomly selected action instead of taking the
action that is most likely to maximize its reward given the
actions available. However, ε-greedy selects equally among the
available actions i.e. the worst action is likely to be chosen as
the best one. In order to overcome this issue, we develop a new
method in which the action selection probabilities are varied as
a graded function of Q-value. The best joint action is given the
highest selection probability while others are ranked according
to their Q-values. Boltzmann distribution [50] is adopted to
achieve this ranking. The action selection probability at epoch
t is given as follows,

π∗ς (St, Xt) =
eQ(St,Xt)/τ∑

X′∈X e
Q(S

′
t ,X

′
t)/τ

(13)

where τ is a positive parameter which can take high value and
this indicates that the actions probabilities nearly equal. In case
τ has low values, this indicated a big difference in selection
probabilities for actions with different Q-values. This action
selection probability is updated after Q-value approximation
as follows,

π∗ς (St, Xt) =
eρtψ

T (St,Xt)/τ∑
X∈X e

ρtψT (St,Xt)/τ
(14)

The selected state/actions pairs are added to the memory at
each epoch and utilized later to train the DNN. This improves
the upcoming joint actions that will be generated by the DNN
in the future epoch. To achieve this, DeepEdge maintains an
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initially empty memory of limited capacity. At the t-th epoch,
a new training data (St, X

∗
t ) is added to the memory. When

the memory is full, the newly generated data sample replaces
the oldest one. The experience replay technique [42], [55] is
utilized to train the DNN using the stored data samples. After
certain number of epochs when there is enough data to train
the DNN, we randomly select a group of training data samples
{(Sυ, X∗υ)|υ ∈ Υt} from the memory, where Υ is the set
of selected time indices. The DNN parameter θt is updated
using Adam algorithm [56] which targets minimization of the
average cross-entropy loss L(θt) defined as follows,

L(θt) = − 1

|Υt|
∑
υ∈Υt

[(X∗υ)T log fθt(Sυ)+

(1−X∗υ)T log(1− fθt(Sυ))] (15)

where |Υt| is the size of Υt, T denotes the transpose operator,
and the log function is the element-wise logarithm operation
for a vector. We start the training step when the number of
samples is larger than half of the memory size. Eventually, the
DNN learns the best joint action for each state (St, X

∗
t ). Thus,

it becomes smarter and continuously improves its produced
joint action.

The two-stage DRL for resource allocation procedure is
presented in Algorithm 1. The algorithm acquires the Edge-IoT

Algorithm 1 Two-stage Deep Reinforcement Learning Algo-
rithm to Solve Resource Allocation in DeepEdge
Require: Network state St which include QoS requirements of the

application, resource demands edge servers resources capacity at
each epoch t

Ensure: Joint action for resource allocation and QoS metric class
Xt = {X∗

t , α
t
ς}

1: BEGIN
2: Initialize the DNN with random parameters θt and empty replay

memory
3: Set iteration number m and the training interval Ω
4: for (t=1 to m) do
5: Generate a set of joint actions Xt = fθt(St)
6: Use KNN to convert the continuous set of actions into a

discrete set
7: Run Approximated reinforcement learning to evaluate the

action for resource allocation that must satisfy X∗
t =

maxX ρψ
T (St, Xt)

8: Exploit actions according (14)
9: Update the memory by adding (St, X

∗
t )

10: if Ω = 1 then
11: Uniformly select a group of data samples {(Sυ, Xυ)|υ ∈

Υt} from the memory
12: Train the DNN with {(Sυ, Xυ)|υ ∈ Υt} and update θt

using Adam algorithm
13: end if
14: end for
15: END

state information which includes QoS requirements, resource
demand and edge servers resources capacity information.
It starts by initializing the DNN with certain parameter θ.
The DNN generates the joint actions. The output of DNN
is converted to discrete format and then received by the
approximated reinforcement learning to evaluate the generated
actions by the DNN. The actions with the highest Q-value

are exploited according to the probability in (14) and used to
populate the dedicated memory of DNN. After certain number
of epoch, a sample of state/action pairs is fetched from the
memory and used for DNN training and updating θ using
Adam algorithm.

The complexity of the proposed two-stages DRL is found
based on the number of edge servers J , the number of
available resources of certain type r, and the number of
devices that demand the resources N . The implementation
of the DRL algorithm considers different application and
scenarios. It associates actions generation for the device with
the available resources and edge servers. The computation
complexity of the action exploration stage of the DRL is
O(JNr) operations. The complexity of the exploitation and
training stage is O(mΩ) according to the number of epoch
m and the training interval Ω. The memory requirements to
store the samples for DNN training is N (r∗J). Exploration and
exploitation are achieved with the merit of the approximated
Q-value O(Q

′
θt(St, Xt, ρ)) instead of the typical Q-value in

the traditional Q-learning. The computation complexity of our
proposed two-stages DRL is acceptable given the achieved
performance and in comparison with the traditional Q-learning
which has a an exponential computational complexity of
O(NJ∗r). The traditional Q-learning may only achieve max-
imum achievable QoE by searching all possible combinations
of state/action/rewards. Consequently, it requires more number
of operations and its computation complexity escalates in an
exponential pattern.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed DeepEdge for
resource allocation in Edge-IoT with respect to the average
application’s latency, achieved users’ QoE, and the average
application tasks success ratio.

A. Evaluation Setup

We consider a network that consists of 10 edge servers
uniformly distributed in the network. Each server is equipped
with a 3-core CPU where the CPU cycle frequency of each
core is 3×109 cycles per second. The frame length is 600 sym-
bols where the time of one symbol is 4.5µs. The block-length
of uplinks are all assumed to be equal to 200 symbols. The
number of IoT users is assumed as N ∈ [100, 400], randomly
distributed within the network. The bandwidth available for
sharing is set to 10 MHz. Applications’ latency requirement
and data size, as well as the corresponding CPU cycles, are
determined by the specific IoT application type. We consider
the three applications described in the system model and their
corresponding QoS requirements. The DRL parameters and
rest of simulation parameters are presented in Table III. The
application task data size is set as a uniform distribution, [2,
8] MB, and corresponding CPU cycles is variable.

B. Application Latency Evaluation

We evaluate the performance of DeepEdge in terms of
the average encountered latency for certain application by
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TABLE III
SYSTEM PARAMETERS

Parameter Value
Symbol time 4.5 µs
Frame length 600 symbols
Block-length of uplink 200 symbols
CPU cycles 3× 109 cycles/s
Learning rate µ 0.5
Discount factor ϕ 0.9
Number of hidden Layers 2

varying the number of IoT users starting from 100 users
where 50% of the users run the evaluated application and
50 % run the other two applications with 25% of the users
for each. Fig 3, 4, and 5 present the average latency for the
three applications: emergency response, health monitoring and
personal identification respectively with variable number of
IoT users. The achieved latency is compared to the resource
allocation schemes: DQN-based (AD) [31] and actor-critic
(DR-Leanring) [32] presented in the related work. We increase
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Fig. 3. Latency for emergency response application
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Fig. 4. Latency for health monitoring application

the number of users from 100 to 400 by step of 100 to show
the change of latency. The results show that our proposed
DeepEdge achieves the best result in terms application latency
comparing with the other schemes. Moreover, the latency is
maintained low in comparison to other schemes even with
large number of users involved.

In addition, we compare the performance of DeepEdge
in terms of latency against the optimal exhaustive search
resource allocation for the three applications: emergency re-
sponse, health monitoring and personal identification. Exhaus-
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Fig. 5. Latency for personal identification application

tive search requires searching through all the possible resource
allocation possibilities. It is impractical in the considered edge-
IoT applications where the search becomes complicated and
consumes significant time as the system scale grows in terms
of the numbers of IoT devices, edge server and edge resources.
Table IV presents the recorded latency for 20 devices which
is a small number given the mentioned applications. We

TABLE IV
EVALUATIONS OF DEEPEDGE VS OPTIMAL EXHAUSTIVE SEARCH

Application Exhaustive Latency (ms) DeepEdge Latency (ms)
Emergency Response 1.123 ms 1.165 ms

Health Monitoring 13.24 ms 13.386 ms
Personal Identification 5.878 ms 6.053 ms

only notice a minimal difference in the latency for different
applications between DeepEdge and the optimal scheme given
the small number of devices.

C. Evaluation of Various DeepEdge Resource Allocation Sce-
narios

In this subsection, we discuss and evaluate multiple scenar-
ios of how DeepEdge operates to perform resource allocation
with QoE maximization. Fig. 6 depicts the scenarios of re-
source allocation for multiple heterogeneous applications. For
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Fig. 6. DeepEdge resource allocation scenarios

the first scenario, it has 100 IoT users which run emergency re-
sponse application with high QoS requirements. The resources
requests of emergency response application are sent to the
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TABLE V
EVALUATIONS OF DEEPEDGE RESOURCE ALLOCATION SCENARIOS

Scenario Number of users Application QoS requirements (max) QoS Achieved
LA PLR PER LA PLR PER

First (Single Application) 100 Emergency Response 50 ms 10−2 10−2 39.31 ms 0.00648 0.00425

Second (Application Heterogeneity) 200 Emergency Response 50 ms 10−2 10−2 41.652 ms .00741 0.00524
Health Monitoring 180 ms 10−4 10−4 100.486 ms 0.0000845 0.0000654

Third (Users and Application Heterogeneity)

300 Emergency Response 50 ms 10−2 10−2 43.652 ms .00827 0.00664
Health Monitoring 180 ms 10−4 10−4 111.954 ms 0.0000886 0.0000732

400
Emergency Response 50 ms 10−2 10−2 45.147 ms .00894 0.00712
Health Monitoring 180 ms 10−4 10−4 118.784 ms 0.0000912 0.0000792
Personal Identification 100 ms 10−3 10−3 69.857 ms 0.000787 0.000839

RAM in the controller. The request is processed through the
two-stage DRL by selecting the most appropriate QoS class ας
and allocate edge resources accordingly. In the second scenario
(application heterogeneity), it is assumed that each one of 200
IoT user runs two applications (emergency response and per-
sonal identification), which lets the controller treat all the IoT
users the same. The RAM here receives requests from the same
user but for multiple applications. It recognizes the application
type ς , identifies the applications priority βς and analyzes
their QoS requirements. Then, it enforces the application QoS
class adaptation starting with the lower priority application.
For example, the QoS class of the personal identification
application that has the lowest priority will be adapted first
through proper election of its ας . The two-stage DRL allocates
the resources for both applications with the goal of maximizing
the QoE in (3). In the third scenario (users and application
heterogeneity), we present two evaluation examples: First,
there are 300 heterogeneous IoT users of which 100 users are
running emergency response, 100 users for health monitoring
and 100 with two applications emergency response and health
care monitoring. In the second example: there are 400 IoT
users of which 100 users emergency response, 100 users health
monitoring, 100 users with personal identifications, and 100
users running the three applications simultaneously. All the
users report their requests along with the QoS requirements
of applications to the RAM at the controller. All the requests
are sorted according to the users index i and application type
ς . Then, the RAM allocates resources to these applications
with consideration of application priority βς and resource
availability at the edge. These parameters are exploited by the
two-stage DRL to adapt QoS class αi,ς and allocate resources
accordingly with the goal to maximize the joint QoE for all
users and satisfaction of their applications. Table V presents
the specifications of the three scenarios, QoS metrics require-
ments and the average achieved metrics by DeepEdge for each
application. We observe that DeepEdge always maintains the
QoS metrics below the specified threshold even in the most
complicated setting of the third scenario.

Moreover, QoE is evaluated with consideration of the differ-
ent scenarios presented in Table V to demonstrate DeepEdge
capability to tackle the heterogeneity of IoT applications
in resource allocation. The QoE function derived in (2) is
exploited as an evaluation metric to demonstrate the merit of
the proposed two-stages DRL against other DRL schemes:
the DQN-based scheme (AD) [31] and the actor critic scheme
(DR-Learning) [32]. However, the QoE function for the AD
and DR-Learning schemes is calculated using the quality score

Fig. 7. QoE for multiple applications scenarios

of the application latency only (not including quality scores
for PLR and PER) as it is the only QoS metric they considered
as an optimization goal. The average QoE is plotted in Fig.
7. Fig. 7 shows that DeepEdge outperforms both schemes
as they lack the capability of handling multiple applications
running on large number of devices. We notice that in the
first scenario, other schemes achieve comparable performance
as only one application is running. The QoE decreases as the
number of users increases which is expected as the competition
between users for resources increases. However, the drop of
QoE in DeepEdge as the number of users increased with
variety of applications is not significant in comparison to the
other schemes.

In addition, we compare the system runtime for each sce-
nario settings for all schemes. Table VI presents the runtime in
seconds for each scheme in each scenario that correspond to
the achieved QoE in Fig. 7. We notice that DeepEdge records

TABLE VI
EVALUATIONS OF RUNTIME FOR ALL SCHEMES IN DIFFERENT SCENARIOS

Scenario Number
of IoT
Users

Runtime (s)

AD DR-
Learning DeepEdge

First (Single Application) 100 2.154 1.656 1.325
Second (Application
Heterogeneity)

200 4.946 3.783 2.913

Third (Users and Application
Heterogeneity)

300 10.285 7.794 5.312
400 15.23 12.062 7.845

the lowest runtime in comparison to other resource allocations
schemes in all scenarios with considerable difference in the
most complicated scenario with 400 devices. Thanks to the
enhanced design of the developed two stages DRL.
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D. Task Success Ratio

Another evaluation factor considered in this paper is the
task success ratio, which is the ratio of the application’s
tasks with satisfied QoS requirements to the total number
of running application’s tasks. We adopt the settings of the
second scenario in Table V. Fig. 8 presents the average task
success ratio of the proposed DeepEdge with average appli-
cation’s resources request rate of 0.5. It is observed that the
performance is improved gradually with learning as the system
becomes familiar with the environment and capable to make
better resource allocation decisions. Moreover, we evaluate
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Fig. 8. Average task success ratio convergence

the task success ratio against the variable task arrival rates in
Fig. 9. It shows that DeepEdge outperforms other allocation
schemes and maintains the success ratio above 0.9 regardless
of the increase in the task arrival rates. Other schemes’ success
ratios fall dramatically as the tasks arrival rate evolves.

E. Convergence and Training Evaluation and Discussion

We evaluate the performance of the DNN utilized in
DeepEdge in terms of the training losses. The evaluation shows
the training quality of DNN in DeepEdge as the resource
allocation proceeds. We plot the training loss rate of our
proposed DRL in Fig. 10 and compare it to other allocation
schemes. The training loss rate gradually decreases and sta-
bilizes at around 0.04. We clearly notice that DRL developed
in DeepEdge converges faster and with lower training loss

Fig. 9. Average task success ratio vs. arrival rate

rate comparing to the DQN in AD [31] and actor-critic in
DR-Learning [32]. The convergence speed of DeepEdge is
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Fig. 10. Normalized Training Loss rate

evaluated in terms of the achieved normalized QoE with
respect to the number of epoch as in Fig. 11. We observe that
the moving average QoE of DeepEdge gradually converges to
the maximum. Specifically, the achieved average QoE exceeds
0.98 and the variance gradually decreases to zero as iteration
becomes larger. We adopt the settings of the second scenario in
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Table IV for the evaluation of training losses and convergence.
The evaluation of DeepEdge shows that it outperforms

other resource allocation schemes. The reason for that is the
consideration of multiple heterogeneous applications in the
proposed QoE model, which aims to guarantee IoT users
satisfaction through fulfillment of different applications’ QoS
requirements. The consideration of aligning the IoT applica-
tions’ requirements with the available resources at the edge
has a tremendous contribution to the achieved performance.
In addition, the developed two-stage DRL adds the following
advantages to DeepEdge. 1) It benefits from historical actions
to foster the framework experience. 2) It generates joint
actions and enhances the diversity of actions at the exploration
stage using DNN. 3) The Q-value approximation reduces
the complexity of the system which can be noticed at the
convergence speed in comparison to other schemes.
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VI. CONCLUSION

Edge computing comes into practice as a potential solution
to tackle the IoT applications resource demanding issue in a
fast manner. Resource allocation in the context of edge com-
puting becomes important as there can be many heterogeneous
IoT applications competing for limited resources at the edge.
The paper has tackled the resource allocation problem in Edge-
IoT environment in a way that fulfills the IoT applications’
requirements and maximizes IoT users’ satisfaction. We devel-
oped the DeepEdge framework which comprises a novel QoE
model to quantify the IoT users satisfactions based on the QoS
requirements of applications. DeepEdge employs a novel two-
stage DRL scheme which learns by reinforcement resource
allocation policy that maximizes users’ QoE, and tunes the
application requirements to align with the available edge re-
sources. Moreover, DeepEdge exploits DNN to generate joint
actions and utilizes historical allocation decision to improve its
generated actions and expedite the system convergence. Evalu-
ation results demonstrate DeepEdge’s capability in optimizing
users QoE and maintaining task success ratio at the maximum.
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