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Abstract—Internet of Things (IoT) is experiencing an explosion
in the data traffic due to the increase in the number of
heterogeneous applications. The existing cloud computing models
will not be capable to support the IoT applications that are delay-
sensitive and using high bandwidth. The Edge-IoT systems
represented by shared edge clouds support a wide range of IoT
applications. Edge clouds provide resources closer to the IoT
devices to tackle the delay sensitivity and bandwidth issues.
However, the allocation of these resources with guaranteed
application’s utility in the context of Edge-IoT with multiple
heterogeneous IoT applications, various resource demands, and
limited resource availability is challenging. In this paper, we
propose a novel enhanced online Q-learning scheme to allocate
resources from edge clouds to IoT applications to maximize their
utility and maintain allocation fairness among them. The
developed online Q-learning scheme approximates its Q-value to
tackle the problem of large state space, reduce the required
learning computation, and expedite the system convergence. It is
implemented using two settings: centralized using a dedicated
controller at the edge cloud and distributed where edge servers
learn cooperatively to achieve a common goal of finding joint
resource allocation policy that maximizes the IoT applications’
utilities. Extensive numerical results demonstrate the capability of
the proposed scheme in improving applications’ utilities and
allocation fairness.

Index Terms—Edge computing, internet of things, resource
allocation, online q-learning.

I. INTRODUCTION

W ITH the current growth of heterogeneous IoT applica-

tions such as 4 K/8 K UHD video, hologram, interactive

mobile gaming, smart homes, etc. [1], there will be tremendous

demand for network and computing resources to support these

applications. It will be very difficult for the existing centralized

cloud computing systems to scale with projected billions or

even trillions of weak IoT devices and ubiquitous applications,

due to the large amount of generated data and the relatively

long distance between IoT devices and clouds [2]. Edge com-

puting is considered as a potential approach that brings more

computing, networking, storage, and intelligence resources to

the edge, which would specifically benefit IoT applications that

are delay-sensitive, bandwidth/data intensive, or that require

closer intelligence [3], [4]. Moreover, virtualized and shared

“edge clouds” and the corresponding Edge-IoT systems are

enablers for the real time applications such as autonomous driv-

ing, robotics, smart homes and healthcare, which require low

latency [1], [4], [5].

However, unlike cloud computing, the edge computing par-

adigm is still in the developing stage. Cloud computing has

virtually unlimited computing and networking resources in

large data centers, while edge computing has usually limited

resources over distributed edge nodes that have different con-

figurations and capabilities. In addition, heterogeneous IoT

applications have different resource, quality, and priorities

requirements, which makes the resource allocation problem

more challenging. The resource allocation problem in Edge-

IoT with these characteristics in addition to consideration of

IoT applications’ utilities and fairness is not well-explored.

In this paper, we propose a resource allocation model that

aims to maximize the IoT applications’ utilities with consider-

ation of allocation fairness among the heterogeneous IoT appli-

cations. The application utility is defined as the gain received by

these applications as a result of the resource allocation and it is

evaluated in terms of the number of applications’ requests suc-

cessfully served by the edge cloud. The utility is tied with the

number of resource requests initiated by the applications and

time consumed to process these requests. To achieve the maxi-

mization goal, we develop a novel online Q-learning scheme to

allocate resources to the IoT applications. The proposed scheme

has the following merits. 1) It is aware of contextual information

from the IoT application side including delay requirements and

priority, and from the edge cloud side including the edge server

capacity and server load. 2) The scheme exploits such awareness

information to allocate edge resources such that the utility of the

applications is maximized and the resource are fairly allocated.

For example, applications that have urgent delay requirements

will have the priority in resource allocation over the ones that

are not delay sensitive. 3) The scheme tackles the dimensionality

issue of online Q-learning due to the large state/action space in

Edge-IoT systems by developing approximation mechanism for

the Q-value. The Q-value is approximated as a function of much
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smaller set of variables. This reduces the scheme complexity as

smaller state/action space is exploited and expedites the scheme

convergence. 4) The proposed online Q-learning scheme uses

the historical resource allocation actions of the edge servers to

achieve distributed and cooperative resource allocation which

enhances the scalability of the system and avoids the bottleneck

processing of the typical centralized allocation. To the best of

our knowledge, the proposed scheme is the first to use online

Q-learning to tackle the utility based resource allocation with

the above merits for multiple heterogeneous applications at the

Edge-IoT networks.

We choose online Q-learning [6] for such resource allocation

problem as it is model free and the system can learn from its

past experience. It is challenging to determine the exact state

transition model for such dynamic Edge-IoT environment by

applying a model-based method such as dynamic programming

algorithms. Moreover, it is not trivial to list all the state and

action pairs to migrate from one state to another, and it is not

practical to pre-define the state transition model in problem

solving. The paper has the following unique contributions:

� We propose a novel resource allocation model that aims

to maximize the IoT applications’ utilities with consid-

eration of multiple applications’ priorities and various

delay requirements, and with guaranteed fairness in

resource allocation. In the proposed model, the resour-

ces are allocated from the edge servers to the IoT appli-

cations with awareness of the following factors: the

edge server load, the capacity of each server, and the

IoT application’s requirements that are determined by

the application type.

� We develop an enhanced centralized online Q-learning

based resource allocation scheme that aims to maximize

IoT applications utilities. This scheme employs a con-

troller at the network edge which exploits awareness

information of edge cloud and IoT applications to

achieve resource allocation.

� We propose a novel distributed and cooperative online

Q-learning based resource allocation scheme that

exploits the capability of edge servers to learn coopera-

tively through sharing their historical resource alloca-

tion actions and the fact that allocation actions do not

alter for similar network states. Thus, edge servers

exploit these historical actions for allocation decisions

if they encounter similar network scenarios.

� The proposed online Q-learning model accounts for the

dimensionality problem in typical Q-leanring due to the

large state/action space. The proposed learning model

narrows the state space by approximating Q-value as

function of smaller set of variables using a brief repre-

sentation feature. This reduces the required computation

and expedites the convergence significantly in compari-

son to standard online Q-learning.

The rest of the paper is organized as follows. The related

work is presented in Section II. Section III describes the sys-

tem model, fairness characterization, and problem formula-

tion. The centralized and distributed online Q-learning

schemes for resource allocation are presented in Section IV.

The numerical results are discussed in Section V and the paper

concludes in Section VI.

II. RELATED WORK

The recent work in the literature addressed the potential

benefits and technical aspects of edge computing. Many of the

recent work focus on the workload offloading problem [7].

The traffic offloading facilitates access for IoT applications to

resource-rich servers at the edge to handle their power exhaus-

tive computation. In [8], a workload offloading optimization

problem was proposed to minimize energy consumption under

the latency constraint. Another scheme was proposed in [9] to

tackle the workload offloading problem considering latency to

minimize the average response time. In [10], the authors pro-

posed different profit maximization frameworks for cloud pro-

viders. [11] addressed the utility based pairing problem

between the fog nodes and IoT devices with the Irving’s

matching algorithm. All these solutions focus on the offload-

ing problem from the IoT devices to the edge servers without

considering solid models for resource allocation.

Other work considered the resource allocation problem in

Edge-IoT context focusing on serving data service subscribers

(DSSs). For example, the work in [12] considered a three-tier

edge network, where the data service operators can obtain

computing resources from different edge servers to serve their

DSSs using stackelberg game based joint optimization. From

the DSS’s side, the edge cloud was able to surrogate the

requirements and simplify the management of the network.

From the servers’ side, the edge cloud can exploit content and

support service delivery in an efficient way. The work in [13]

proposed an edge computing framework that can provide rich

flexibility in meeting different mobile users’ demands. The

authors in [14] proposed an Edge-IoT architecture to enhance

the system performance and computational resource manage-

ment. It focuses on admission control, computational resource

allocation, and power control. The authors in [15] exploits

reinforcement learning at the IoT devices to decide whether to

offload data for processing to the edge or perform it locally

with energy optimization objective. Deep reinforcement learn-

ing based resource allocation scheme, which aims to allocate

computing and network resources to reduce the average ser-

vice time and balance the use of resources, was proposed

in [16]. Auction theory was also adopted in [17] to allocate

resources for IoT devices with various prices. Auction

schemes do not take the IoT users budget into consideration

for acquiring resources as they only focus on the servers profit

from providing the computation resources.

None of the proposed work in the literature that tackles the

resource allocation in Edge-IoT networks considering multiple

applications with heterogeneous delay requirements and fair-

ness guarantee at the edge, which is essential in the context of

IoT networks. In addition, none of them considered coopera-

tion between edge servers through exploitation of historical

allocations. In addition, it is vital to balance between the effi-

ciency and fairness in resource allocation. Conventional

schemes such as social welfare maximization [18] and auction
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models [19] may not be suitable as they either give the resour-

ces to the applications with high utility as the case in the wel-

fare maximization, or only to the auction winners as in the

auction based models.

III. SYSTEM DESCRIPTIONS

This section describes the system model, fairness character-

istics, and the resource allocation problem formulation.

A. System Model

The considered system model of Edge-IoT is depicted in

Fig. 1, where there are multiple distributed edge servers with

various computation capabilities and multiple heterogeneous

IoT applications that need to acquire available computation

resources to process their data. All the IoT applications’

requests for resources are processed either at a controller

located at the edge for centralized allocation setting or at the

edge servers for the distributed allocation. Each IoT application

sends dynamic requests for resources from the edge and aims to

maximize its utility. It is assumed that the resource requests

arrival rate and resource capacity vary at each time instance.

The edge server load and capacity vary over time based on the

demand of the IoT devices and the resources allocated. Edge

server’s resources capacity, edge server’s load, application’s

delay requirements, and application’s priority are the main fac-

tors that impact the resource allocation. Therefore, our resource

allocation scheme takes these factors into consideration to har-

monize the applications’ interests and support fairness in

resource allocation. The mentioned environment factors related

to the edge servers and the IoT devices can be very dynamic

over the time. Thus, it is difficult to determine an exact model

for this dynamic environment which makes model-free solu-

tions more appealing for such environment.

Let M, N, M, and N be the set of edge servers, the set of

IoT devices, the number of edge servers, and the number of

IoT devices respectively. i and j are the indexes for the IoT

application and the edge server respectively assuming that

each IoT device runs one application. The capacity for each

edge server j is denoted by cj, which is the number of comput-

ing resources available at that server. The edge server is

divided into a set of clusters each of which has homogeneous

computing resources. In case the edge server incorporates var-

ious computing resources, each cluster is considered as a sepa-

rate edge server. Note that distinct edge servers can have

distinct capacity and one application can receive resources

from multiple edge servers. Let si;j be the resources of server
j that are allocated to application i. Hence, the vector of

resources allocated to application i from multiple edge servers

is denoted by si ¼ ðsi;1; si;2;. . .::; si;MÞ. Our resource alloca-

tion scheme aims to find a computation resource allocation

policy p for application i from server j 2M. The application

utility is denoted as uiðsiÞ. Different IoT applications have

distinct methods to define uiðsiÞ. In this work, we consider

delay as the main performance metric for the utility evaluation

since delay sensitive applications are the ones that need maxi-

mum support of edge computing. The delay encountered at

the edge server for certain resource requests initiated by the

IoT applications consists of processing delay and network

delay. The processing delay dpi;j is the time required at the

edge server to process the resources requests. The network

delay dni;j includes the transmission delay and the propagation

delay which is the round trip time between the IoT device and

the edge server and calculated as in [9].

The maximum encountered delay for processing, transmis-

sion and propagation must be maintained below certain thresh-

old dmax
i;j as follows,

vjd
p
i;j þ dni;j � dmax

i;j ; 8i; j (1)

where vj is the server load that impact the processing delay

and is defined as the ratio of the received requests for resour-

ces and the server maximum capacity. The arrival rate of

requests from application i to server j is denoted as �i;j. The

average processing time at the server j is computed as follows,

dpi;j ¼
1

ki;j � �i;j
si;j

; 8i; j (2)

where ki;j is the service rate of one computing unit of server j
to handle application i with constraint

�i;j
si;j

< ki;j. By substitut-
ing (2) in (1),

vj
1

ki;j � �i;j
si;j

� dmax
i;j � dni;j

�i;j � si;j ki;j � vj

dmax
i;j � dni;j

 !
(3)

If dni;j < dmax
i;j , the maximum number of requests that server j

processes for application i is,

�max
i;j ¼ max

(
si;j

 
ki;j � vj

dmax
i;j � dni;j

!
; 0

)

�max
i;j ¼ si;jqi;j; 8i; j (4)

where qi;j ¼ maxfðki;j � vj
dmax
i
�dn

i;j
Þ; 0g. The service of requests

of application i is considered successful if the total delay is less

Fig. 1. Edge-IoT Network Model.
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than or equal the maximum delay tolerance. The utility of

application i with resources allocated from server j is calcu-

lated as follows,

ui;jðsi;jÞ ¼ hi;jqi;jsi;j ¼ ri;jsi;j 8i; j (5)

where ri;j ¼ hi;jqi;j and hi;j is the gain of the application i
resulted from computing resources allocation from server j. It
is assumed that ri;j is computed beforehand. The total utility

for application i with resources allocated from multiple serv-

ers is given by,

uiðsiÞ ¼
XM
j¼1

ui;j ¼
XM
j¼1

ri;jsi;j 8i (6)

One point to note is that the IoT devices prefer to request serv-

ices from edge servers that are close and lightly loaded. Thus,

the value of ri;j is dependent on the load for server j. The IoT
application priority denoted by pi is assumed to be predeter-

mined and ranked based on the application’s delay requirements.

For example, the application with minimal delay requirements

will be given the highest priority in resource allocation.

B. Fairness Characterization

We characterize the fairness of the proposed utility model

using the envy-freeness feature [20], where every IoT applica-

tion i feels that its resource share from certain edge server j is
at least as good as other applications. Therefore, the applica-

tion i will not envy other applications. In the proposed utility

model, each application i aims to maximize its utility uiðsiÞ
with capacity constraint

PN
i¼1 si;j � cj 8j 2M which indi-

cates that the edge servers may have different capacities cj.
The term zi ¼ maxjfri;jsi;jg is defined as the maximum

achieved utility of application i over a set of edge servers. The
preferred set PRi of application i includes all the edge servers
that support the achievement of zi such that PRi ¼ fj :
ri;jsi;j ¼ zig; 8i. Thus, each application i will aim to obtain its

resources from the server that can give zi (maximum utility).

When the capacities of the edge servers are the same, an envy

free allocation indicates uðsiÞ � uðs0iÞ for all i and i0 2 N.

Since the servers have different capacities, it implies that the

maximum utility of application zi can only be achieved

through allocation from PRi. Thus, the envy-freeness classical

definition has to be extended i.e. an allocation is envy-free if:

uiðsiÞ
zi
� uiðsi0 Þ

zi0
8i0 2 N (7)

where i
0 2 N; i

0 6¼ i is the index of other IoT applications. The

inequality in (7) can be written as,

uiðsiÞzi0 � uiðsi0 Þzi 8i; i
0 2 N (8)

Now, we can prove that the allocation is envy-free if the con-

dition in (8) holds as follows,

uiðsiÞzi0 ¼ zi0
XM
j¼1

ri;jsi;j ¼ zi0
XM
j¼1

ri;j
�max
i;j

qi;j
(9Þ

zi0
XM
j¼1

ri;j

qi;j
�max
i;j ¼ zi0Wi

XM
j¼1

�max
i;j (10Þ

zi0Wi

XM
j¼1

�max
i;j ¼ zi0Wizi (11Þ

In (9), we substitute si;j ¼ �max
i;j =qi;j according to (4). Note

that in (10), Wi refers to the total gain IoT application i
receives as a result of allocation from edge servers j 2 PRi

and defined according to (5) as Wi ¼
PPRi

j
ri;j
qi;j

. This can be

inferred from the fact that each application will acquire

resources from edge server in its preferred list PRi to maxi-

mize its utility. The results in (11) confirms that application i
achieves its maximum utility as the maximum number of

resource requests is satisfied when application i finds the ulti-
mate allocation at certain server j.

zi0Wizi ¼Wizi
XM
j¼1

�max
i
0
;j
¼ zi

XM
j¼1

ri;j

qi;j
�max
i
0
;j

zi
XM
j¼1

ri;j

qi;j
�max
i
0
;j
¼ zi

XM
j¼1

ri;jsi0 ;j ¼ ziuiðsi0 Þ 8i; j (12)

The fairness characteristic in (8) is proved as it is only fair if

the IoT application i receives its resources from PRi such that

the utilities of all applications are maximized.

C. Problem Formulation

The allocation problem is formulated to maximize the uiðsiÞ
for all IoT applications subjected to the IoT application delay

requirements and the edge server resources capacity con-

straints. The resource allocation problem to achieve the ulti-

mate allocation of computing resources s�i is defined as follows,

max
ðsi2SÞ

X
i

uiðs�i Þ s:t: (13)

C1 : vjd
p
i;j þ dni;j � dmax

i;j ; 8i

C2 : si;j � 0; 8i; j

C3 :
XN
i¼1

si;j � cj; 8j 2M

C1 is the constraint that maintains the delay of serving certain

application less than the maximum tolerable delay. Moreover, it

implicitly accounts for the priority of the IoT applications as the

applications that are delay sensitive are given higher priority in

resource allocation. C2 confirms that the number of resources

allocated is positive. The capacity constraint in C3 guarantees

that the allocated resources from certain edge server j 2M
never exceed its capacity.
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IV. ONLINE Q-LEARNING SCHEME FOR RESOURCE

ALLOCATION IN EDGE-IOT

In this section, we describe the online Q-learning scheme

employed to achieve resource allocation using both the cen-

tralized and the distributed online Q-learning settings.

A. Online Q-Learning Scheme Overview

Online Q-learning [6] is a model-free reinforcement

learning technique which can be used to find an action pol-

icy for any given Markov decision process (MDP). It works

by learning a Q-value function that ultimately gives the

expected utility of selecting certain action in a certain state

and following the policy thereafter. MDP includes a dis-

crete set of environment states A and a discrete set of

actions B. At each epoch t, the learning agent obtains net-

work state information a and selects certain action b. A

reward R will be received and used to define certain

Q-value which evaluates the action selected. The process

continues iteratively until it converges to an action policy

that maximizes the Q-value.

We formulate the MDP in this paper such that factors

include server load, IoT devices, edge servers, server capac-

ity, arrival rate of resources requests from IoT devices, and

total delay threshold are taken into consideration in the

resource allocation action selection. The state of the devel-

oped scheme evolves as a discrete-time Markov decision

process (DTMDP) in which the resource allocation is defined

as the action. The scheme aims to maximize the IoT applica-

tions utilities while satisfying the constraints defined in

C1-C3. Such maximization problem lies within the domain

of DTMDP. However, the large number of Edge-IoT states

represents a significant impediment on developing a model-

based scheme. Therefore, we choose model-free online

Q-learning to solve the resource allocation problem with

varying resource requests and edge resource capacity over

time. The state transitions and actions occur at discrete time

epochs. The DTMDP is formulated as ðA;B; T; RÞ where T :
A� B� A! ½0; 1� is the state transition probability func-

tion. The actions available at each epoch depends on the

Edge-IoT state space. For instance, if there is no resource

requested from the edge, then the edge servers are switched

off and no resource allocation will be necessary.

We consider the following DTMDP for resource allocation:

@t ¼ ðN;M; dmax
i;j ; uiðsiÞ; si;jÞ. The MDP components are

defined as follows,

� State: the environment state at epoch t is defined as, at=
(i, j, vj, cj, d

max
i;j , �i;j; pi). at 2 A describes the evolu-

tion of the network state in time epoch t ¼ 1; 2::. The
state information is acquired by the controller in the

centralized setting or the corresponding edge server in

the distributed one. pi refers to the IoT application pri-

ority which is predetermined according to the applica-

tion delay requirements.

� Action: bt ¼ ðsi;jÞ is defined as the allocation of com-

puting resource si;j for all IoT applications. It is selected

for each state at at epoch t.

� Reward: the reward function is the utility achieved by

all the IoT applications 8i and is defined as, Rtða; bÞ ¼P
i uiðsiÞ.

The allocation policy p : A! B is defined as the probabil-
ity of selecting certain action bt at state at that maximizes
the achieved utility subjected to the optimization con-
straints C1-C3. The value function which is defined as the
total expected discounted utility function over infinite time
horizon conditioned on initial network state a1 for alloca-
tion policy p 2 P is found as,

Vpða1Þ ¼ Ep

X1
t¼1

bt�1Rðat;pðbtÞÞja1
( )

(14)

where the expectation Ep is over distinct actions in distinct

states for t ¼ 1; 2; 3. . . and b 2 ½0; 1Þ is the discount factor. The
DTMDP evolution for certain resource allocation policy p 2 P
isMarkovian with the following state transition probability:

T ða; b; a0Þ ¼ Prðatþ1 ¼ a0jat ¼ a; bt ¼ bÞ (15)

where a0t 2 A and t ¼ 1; 2; . . .. An exact model for the transi-

tion probability is impractical because: 1) the resource request

processing is constrained by dynamic factors including the

server load, server capacity, and IoT application delay require-

ments; 2) it is infeasible to list all the ða; b; a0Þ pairs; 3) it is not
desirable to predefine the state transition model for problems

in which the real state information deviates from the model; 4)

the DTMDP state space for such Edge-IoT system is large

which makes it extremely difficult to compute the resource

allocation policy. Therefore, we develop an online Q-learning

based resource allocation scheme which gradually adapts to

the dynamic Edge-IoT environment according to the received

reward.

B. Centralized Resource Allocation Using Enhanced Online

Q-learning

In this setting, we assume that a controller is located

between the edge servers and the IoT applications. This con-

troller follows the DTMDP defined in Section IV-A and man-

ages the resource allocation process as it receives the state

information from both sides (edge servers and IoT applica-

tions) and employs the online Q-learning technique to achieve

the ultimate resource allocation policy. Fig. 2 presents the cen-

tralized resource allocation setting. When the Edge-IoT sys-

tem is in the state at 2 A in epoch t, a finite set of possible

actions can be selected by the controller from the action space

B. The action bt is selected by the controller in epoch t. The
controller learns the optimal resource allocation policy which

is defined based on the optimal Q-values Q�ða; bÞ as follows,

p�ðaÞ ¼ argmax
b2B

Q�ða; bÞ (16)

The optimal Q-value of the online Q-learning is defined as the

current expected reward added to a future discounted reward

as follows,
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Q�ða; bÞ ¼ E½Rtða; bÞ þ b
X
a02A

max
b02B

Q�ða;0 b0Þ� (17)

where b is the discount factor and b0 2 B is the future action.

The optimal Q-value Q�ða; bÞ is learned by updating the

Q-value under the action b in epoch t as follows,

Qtþ1ða; bÞ ¼ ð1� atÞQtða; bÞ þ at½Rtða; bÞ

þbmaxb02BQtða;0 b0Þ �Qtða; bÞ� (18)

where at 2 ð0; 1� is the learning rate. The initialization of

Qtða; bÞ for all ða; bÞ 2 A� B is arbitrary. The considered

online Q-learning scheme is a stochastic approximation method

established to solve the Bellman’s optimality equation in (18)

associated with the discrete time DTMDP. Online Q-learning

does not need explicit state transition probability model and it

converges with probability one to an optimal solution if
P1

t¼1 a
t

is infinite,
P1

t¼1ðatÞ2 is finite, and all state/action pairs are vis-

ited infinitely [21]. These conditions are satisfied if the probabil-

ity of the action selection in any state is not zero during the

action exploration step. We utilize �-greedy strategy [22] to bal-
ance exploration and exploitation in online Q-learning. � is the
percent of the time that the controller takes a randomly selected

action (exploration) rather than taking the action that will maxi-

mize its reward (exploitation).Given the considered DTMDP

above in Edge-IoT environment which can be very dynamic and

has a large number of state/action pairs, it makes the representa-

tion of Qtða; bÞ impossible. This curse of dimensionality in the

proposed DTMDP increases the computational complexity.

Thus, it is necessary to develop a form of brief representation in

which the Q-values are approximated as a function of smaller

set of variables with a reduced and countable state space Aþ.
The compact representation of Q : Aþ �B! R is achieved

using the function Q
0
: Aþ � B� RV ! R which is called a

function approximator.

To approximate the Q-function, we consider a group of

functions Q ¼ fQ#g that are parameterized by a finite dimen-

sional vector # ¼ ½f#vgVv¼1� 2 RV . The iterative procedure to

find Q� is replaced by a suitable procedure to find #� instead
such that Q� is approximated by a function in Q. Therefore,

we switch from searching in an infinite dimensional function

space to a finite dimensional space ðRV Þ. An implication can

be deduced that unlessQ� 2 Q, we cannot determine the exact

Q�. We will be able to determine the fixed point of a combined

operator %H, where % is a mapping that projects a function

defined in Aþ � B to a point inQ. The group Q is assumed to

have a linear span of a basis function xv : A
þ � B! R and

any q 2 Q can be written as a linear combination of xvða; bÞ.
Therefore, the approximated Q

0
is calculated as follows:

Q
0 ða; b; #Þ ¼

XV
v¼1

#vxvða; bÞ ¼ #xT ða; bÞ (19)

where T is the transpose operator and the vector xða; bÞ ¼
½xvða; bÞVv¼1� with a scalar function xvða; bÞ defined over Aþ �
B and #v belongs to the vector # 2 RV . xvða; bÞðv ¼
1; 2; 3. . .:; V Þ is viewed as the basis functions and #vðv ¼
1; 2; 3. . .:; V Þ are the associated weights. The basis functions

xvða; bÞ adopted for Q-value approximation are assumed to be

bounded and linearly independent and
P jxvða; bÞÞj � 1 for all

ða; bÞ 2 Aþ � B. We consider a sample based approximation

model that introduce further restrictions on the set of the basis

functions. This allows to derive error bounds for the given

approximationQ#� . The basis functions are also assumed to ver-

ify jjxvjj1 ¼ 1. With the basis functions assumptions hold, the

basis functions are linearly independent.

The online Q-learning defined earlier is combined with the

compact state representation using gradient based update. Thus,

the update rule in (18) is re-defined accordingly as follows,

#tþ1 ¼ #t þ atðRtða; bÞ þ bmax
b02B

#txT ða;0 b0Þ�

#txT ða; bÞÞxða; bÞ (20)

The new update rule in (20) is composed of #t ¼ ½f#t
vgVv¼1�

which is the vector of parameter value over epoch t, a generic
temporal difference in the epoch and the gradient. The gradi-

ent (xða; bÞ) is defined as the vector of partial derivatives with

respect to #t.

Since the update rule in (20) is performed in a vector basis,

it will not converge. Thus, we use ordinary differential equa-

tions (ODE) to obtain the necessary conditions for conver-

gence. To proceed, we first introduce the following definitions

and assumptions.

Definition 1: we define the matrix � as,

� ¼ E½xT ða; bÞxða; bÞ� (21)

For the parameter vector # and a specific network state a 2 Aþ,
we define a vector xða; #Þ ¼ ½fxvða; bÞgVv¼1� where b 2 B#

a . B
#
a

is the set of optimal resource allocation actions for state a and it

is defined as B#
afb 2 B#

a jb ¼ arg maxb02B#xT ða; b0Þg. Now,

we define the following a #-dependent matrix:

�# ¼ E½xT ða; #Þxða; #Þ� (22)

Both � and �# are positive. We introduce the following

required assumptions,

Fig. 2. Centralized resource allocation setting.
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Assumption 1: The basis functions fxvða; bÞgVv¼1 are line-

arly independent for all ða; bÞ 2 Aþ �B.

Assumption 2: For every v ¼ ð1; 2. . .:V Þ, xvða; bÞ is

bounded, which means Efx2
vða; bÞg < 1 and the reward

function satisfies EfR2ða; bÞg < 1.

Assumption 3: The learning rate fatg fulfill the constraintP1
t¼1 a

t ¼ 1 and
P1

t¼1ðatÞ2 < 1.

Proposition 1: Under assumptions 1-3 and Definition 1, the

approximated online Q-learning converges with probability

one, if

�# < � 8# 2 RV (23)

Proof: The convergence of the proposed online Q-learning

requires finding stable fixed points of the ODE associated with

the update rule in (20), which are found as follows,

#:t ¼ E½Rtða; bÞ þ b#txT ða;0 #tÞ � #txT ða; bÞÞxða; bÞ� (24)

We need to find a stable points of the ODE defined in (24) to

prove the convergence of the proposed online Q-learning.

Thus, we define two trajectories #t
1 and #t

2 of the ODE with

different initial conditions and #t
0 ¼ #t

1 � #t
2. Then, we have

@k#t
0k2

@t
¼ 2ð#:t

1 � #:t
2 Þð#t

0ÞT ¼ 2bE½#t
1x

T ða;0 #t
1Þxða; bÞð#t

0ÞT

�#t
2x

T ða;0 #t
2Þxða; bÞð#t

0ÞT � � 2#t
0�ð#t

0ÞT (25)

Using the definition of xða; #) in Definition 1, we can infer the

following two inequalities,

#t
1x

T ða;0 #t
1Þ � #t

1x
T ða;0 #t

2Þ (26)

#t
2x

T ða;0 #t
2Þ � #t

2x
T ða;0 #t

1Þ (27)

Since the expectation E in (25) is taken over different resource

allocation actions in different states, we can define the two sets

Gþ¼ fða; bÞ 2 Aþ � Bj#t
0x

T ða; bÞ>0g and G� 2 Aþ�B�
Gþ. If we substitute (26) and (27) in (25), we get,

@k#t
0k2

@t
� 2b E½#t

0x
T ða;0 #t

2ÞÞxða; bÞð#t
0ÞT jGþ�

�

þE½#t
0x

T ða;0 #t
1ÞÞxða; bÞð#t

0ÞT jG��Þ � 2#t
0�ð#t

0ÞT (28)

Holder’s inequality [23] is applied to the expectation in (28) as

follows,

@k#t
0k2

@t
� 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð#t

0x
T ða;0 #t

2ÞÞ2jGþ�
q

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxða; bÞð#t

0ÞT Þ2jGþ�
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð#t

0x
T ða;0 #t

1ÞÞ2jG��
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxða; bÞð#t

0ÞT Þ2jG��
q �

� 2#t
0�ð#t

0ÞT

� 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð#t

0x
T ða;0 #t

2ÞÞ2�
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxða; bÞð#t

0ÞT Þ2jGþ�
q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð#t

0x
T ða;0 #t

1ÞÞ2�
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxða; bÞð#t

0ÞT Þ2jG��
q �

�2#t
0�ð#t

0ÞT

With application of the definition of �# in (22), we get,

@k#t
0k2

@t
� 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½#t

0�
#1ð#t

0ÞT ; #t
0�

#2ð#t
0ÞT �

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxða; bÞð#t

0ÞT Þ2�
q

þ�2#t
0�ð#t

0ÞT (29)

If the condition in (23) is met, we can indicate that,

@k#t
0k2

@t
� 2b#t

0�ð#t
0ÞT � 2#t

0�ð#t
0ÞT

¼ ð2b� 2Þ#t
0�ð#t

0ÞT < 0 (30)

which means that #t
0 converges to the origin. Therefore, there

exists a stable point of the ODE in (24). Thus, the proposed

online Q-learning with Q-value approximation converges with

probability one. &

Since there is a stable point #� of the ODE in (24), we can

indicate the following,

0 ¼ E½Rða; bÞ þ b#txT ða;0 #tÞ � #txT ða; bÞÞxðx; yÞ� (31)

Then,

#� ¼ E½Rtða; bÞ þ b#�xT ða;0 #�ÞÞxða; bÞ���1 (32)

As a result, the optimal approximated Q-function confirms that,

Q0ða; b; #�Þ ¼ E½Rtða; bÞ þ b#�xT ða;0 #�ÞÞ
xða; bÞ� ���1xða; bÞ (33)

for all ða; bÞ 2 Aþ � B.

C. Distributed and Cooperative Approximated Online Q-

Learning Resource Allocation

Even with the brief representation of the Q-value in the cen-

tralized setting, the number of allocation actions will grow

exponentially as the number of IoT devices increases in Edge-

IoT. This increase will eventually create a practical scalability

challenge as the controller will not be able to cope with such

Edge-IoT system with large number of IoT devices with het-

erogeneous applications. The edge servers can cooperate with

each other in learning to enhance the resource allocation. This

cooperation facilitates a distributed scheme for resource allo-

cation. In the distributed scheme, edge servers learn in a coop-

erative multi-agent learning fashion how to make local

decisions for resource allocation of IoT devices in their prox-

imities. In this setting, the IoT devices send the resource

requests to the edge server in their proximity. The edge servers

shares their state information with each others through the

controller and learn cooperatively to achieve a common goal

of finding joint resource allocation policy that maximizes the

IoT applications’ utilities and fulfill the constraints in C1 to
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C3. The controller acts as a repository in this setting from

which the learning agents (edge servers) obtain the online

Q-learning MDP (state/action/rewards) of each other. Thus,

these servers can exploit them to achieve their actions policy

in the distributed learning. This cooperation solves the scal-

ability problem and enhances the decision making for resource

allocation. In addition, it optimizes the resource allocation

action as it is generated based on the shared information

between all the edge servers.

The edge servers take the role of the learning agent in a

team Markov game. The game is defined as D ¼ fM; Aþ;
B;Rg with the common objective of finding a resource alloca-

tion policy p that maximizes the total expected applications

utilities given in (13), where M is the set of the edge servers.

The optimal Q-value Q�ðs; bÞ for all ða; bÞ 2 Aþ � B, is

related to the optimal joint resource allocation policy and cap-

tures the team Markov game structure. For each environment

state a 2 Aþ, the edge servers play the game Da ¼ fM; B;
Q�ða; :Þg in which Q�ða; :Þ is independent. The actions in the

team Markov game is generated jointly by the M independent

edge servers in a distributed fashion. The joint resource alloca-

tion action b at state a is evaluated as optimal if Q�ða; bÞ �
Q�ða; b0Þ for all b0 2 B. The distributed and cooperative

resource allocation setting is presented in Fig. 3. Since it is

impossible to have a particular state visited infinitely often

when the state space is large which is the case in Edge-IoT, we

exploit the compact representation model explained in section

IV-B. Consequently, we conclude the following proposition.

Proposition 2: For the Markovian game D, the distributed

multi-agent online Q-learning algorithm converges with prob-

ability one if the constraint in Proposition 1 holds.

Proof: If we consider that each edge server follows an

independent resource allocation strategy as the controller in

Section IV-B, then, the team Markov game is a discrete time

MDP. As a result, the proof of Proposition 2 is the same as the

proof of Proposition 1 in the centralized setting. &

To coordinate the multi-agent learning, the following

assumptions are made,

Assumption 4: The resource allocation policy of different

edge servers do not change significantly in similar network

states.

Assumption 5: The initial network state aðtÞ evolves accord-
ing to irreducible and Harris recurrent Markov chain [24].

Based on Assumption 4, it is necessary to check the state sim-

ilarities in order to exploit the historical allocation actions of

each edge server. Therefore, we exploit Hamming distance [25]

to measure the similarity between two network states a and a0

denoted by DHða; a0Þ. Each edge server can employ the

resource allocation action used by other edge servers for the

current network state by using the past actions of these servers.

The historical actions up to epoch t can be obtained by the

s-algebra as follows,

F ðtÞ ¼ s faðnÞ; bðnÞgtn¼1; fRðaðnÞ; bðnÞÞgt�1n¼1
� �

(34)

where the information of each experienced state aðnÞ, each per-
formed action bðnÞ and application utilityRðaðnÞ; bðnÞÞ can be
extracted from the controller. At each epoch t, every edge

server checks the Hamming distance between the current state

aðtÞ and state aðnÞ in F ðtÞ. Then, it obtains a sample set

AþF ðaðtÞ; F ðtÞÞ, which is composed of F most recent states

from F ðtÞ that minimize the distance
PF

f¼1 DHðaðtÞ; aðnfÞÞÞ.
Then, a virtual game is created as GaðtÞ ¼ fM; B; EðaðtÞ; :Þg
for state aðtÞ at t, where EðaðtÞ; :Þ is the common reward (util-

ity) that all the servers gain after they select resource allocation

action b 2 B and is set to 1 if b ¼ argmaxb02BQ0ðaðtÞ; b;0 #�Þ
and 0 otherwise. In addition, B

00
j ðaðtÞÞ is created for each edge

server as the set of joint actions that achieve reward of value

1 in state aðtÞ.
The multi-agent approximated online Q-learning is imple-

mented through the following procedure, when t � Z, all the
edge servers select resource allocation actions randomly. from

t ¼ Z þ 1, each edge server j picks l allocation records

Bþj;lðAþF ðaðtÞ; F ðtÞÞÞ from the historical actions that corre-

sponds to AþF ðaðtÞ; F ðtÞÞ. Note that Z and l are two integers

that satisfy 1 � l � F � Z. Considering the following con-

ditions: (i) there exist a resource allocation action b ¼
ðbj; b�jÞ 2 B

00
j ðaðtÞÞ such that b0�j ¼ b�j for all b0 ¼ ðb0j; b0�jÞ 2

Bþj;lðAþF ðaðtÞ; F ðtÞÞÞ; (ii) there exists al least one joint action b
that is b 2 Bþj;lðAþF ðaðtÞ; F ðtÞÞÞ uB

00
j ðaðtÞÞ. If (i) and (ii) are

satisfied, the edge server j selects the allocation action B
00
j ðn�Þ,

where n� ¼ maxnfnjbðnÞ 2 YF ðXF ðxt; F ðtÞÞÞ u B
00
j ðaðtÞÞg.

Otherwise, the edge server j selects a random action from

B0jðaðtÞÞ ¼ fbjjbj ¼ argmaxb0
j
E0ðaðtÞ; b0jÞg, where

E0ðaðtÞ; bjÞ ¼
X
b�j

EðaðtÞ; bÞ g
t
jðaðtÞ; b�jÞ

l
(35)

The value in (35) is found using l records that are randomly

drawn from F most recent actions, gtjðaðtÞ; b�jÞ is the number

of times the other servers perform the joint action b�j in state

aðtÞ. The distributed multi-agent online Q-learning for resource

allocation process in Edge-IoT is illustrated in Algorithm 1.

The distributed multi-agent learning for resource allocation

converges with probability one to the best joint resource allo-

cation policy with consideration of assumptions 1-5 and l �
F=ð%Da þ 2Þ for each a 2 Aþ, where %Da is the best response

graph of game Da [26].

Fig. 3. Distributed resource allocation setting.
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The convergence of f#tg to the optimal #� is demonstrated

as a result of Proposition 2. Thus, the game GaðtÞ based on #t

will evolve to reach the game Ga established based on #� for
a 2 Aþ. Under Assumptions 4 and 5, the team stage game DaðtÞ
is decreased to a team stage game with states AþF ðaðtÞ; F ðtÞÞ.
The M servers manage resource allocation policy for all aðtÞ
as l � F=ð%DaðtÞ þ 2Þ by applying theorem 1 in [26]. This guar-

antees that the distributed multi-agent resource allocation will

converge with probability one.

V. EVALUATION AND NUMERICAL RESULTS

A. Simulation Setup

The evaluation environment composes of area with dimen-

sions of 10x10 km, where the locations of edge servers and IoT

devices are uniformly assigned. A total of 90 edge servers and

900 locations are generated, where each IoT device assumes to

hold one of these locations. We consider three applications

with various delay requirements in our simulation: gun-shot

detection (GSD) (300 devices), Virtual Reality (VR) applica-

tion (300 devices), and home voice assistant (VA) (300 devi-

ces), which are all delay sensitive but with different priorities.

Highest priority goes to GSD, then VR application and finally

VA and this is reflected on the number of resource requests for

each application. The link bandwidth between the IoT devices

and edge servers is assumed to have the capacity of 54 Mbps as

the traffic of the considered applications is heavy while the link

capacity between the edge servers is 100 Mbps. The network

delay including transmission and propagation delays are esti-

mated according to the round trip time and link capacity and it

is assumed to be between [1,2] ms for the link between IoT

devices and edge servers and between [0.5, 1.2] ms for the link

between the edge servers. The resource requests length are

exponentially distributed with an average length of 80 KB. The

processing delay at the edge server is 40 ms on average. The

maximum tolerable delay of the application follows a uniform

distribution. The service rate ki;j is generated randomly with

maximum rate of 200 requests per unit time. The evaluation

results consist of applications utilities, fairness in resource allo-

cation, and delay measurement. We consider social welfare

with different weights (SW) [18], the three-tier resource alloca-

tion scheme proposed in [12] (TRA), DQN scheme in [27], and

the resource allocation scheme (ECF) proposed in [14] for per-

formance comparison. In the social welfare maximization

scheme, the objective is to maximize the user utility subjected

to the capacity constraints of the edge servers. The scheme

TRA uses stackelberg game based optimization to allocate

resources from edge servers to services subscribers. In ECF

framework, cross-layer dynamic stochastic network optimiza-

tion is exploited to maximize the system utility, based on the

Lyapunov stochastic optimization approach. The label (OQL-

Cent) indicates our proposed centralized online Q-learning set-

ting while (OQL-Dist) indicates the distributed one. In [27], the

authors proposed a DQN based offloading and resource alloca-

tion scheme for Edge-IoT system. They exploit deep neural net-

works for Q-value approximation to account for the

dimensionality problem in large scale Edge-IoT environment

with a large number of IoT devices.

B. Application Utility and Fairness Evaluation

In this section, we demonstrate the capability of the pro-

posed scheme in terms of the achieved application utility,

network utility and fairness in resource allocation. Applica-

tion utility is defined as the maximum gain that the applica-

tion can achieve from its resource allocation. It measures

the satisfaction of the application as it is a function of the

number of applications requests that are successfully proc-

essed. The request is considered to be successfully proc-

essed if the encountered delay including both network and

processing delay are less than maximum tolerable delay of

the application. Fig. 4 presents the performance comparison

among the schemes in terms of application utility achieved

for the three considered applications. The network utility

which is the cumulative utility for all applications against

the number of servers is presented in Fig. 5. The results in

Fig. 4 and Fig. 5 show that our scheme outperforms all

other schemes in terms of the utility achieved. We notice

that SW scheme allocates resources fairly but with low

Algorithm 1: Distributed online Q-learning algorithm for

resource allocation

Require:i, j, cj, d
max
i;j , �i;j, vj, pi

Ensure:si for IoT App

1: Initialization of Learning;

2: set t ¼ 1, #V
v  0

3: evaluate the state aðtÞ;
4: if (t < Z þ 1) then
5: Select action b randomly;

6: if (C1 to C3 are satisfied) then

7: Rtða; bÞ is achieved ;
8: else

9: Rtða; bÞ ¼ 0 ;
10: end if

11: else

12: Update B
00
j ðaðtÞÞ ¼ fbjEðaðtÞ; bÞ ¼ 1g for aðtÞ

13: for (exploitation probability 1� �) do
14: Randomly select Bþj;lðAþF ðaðtÞ; F ðtÞÞÞ out of F actions

corresponding to AþF ðaðtÞ; F ðtÞÞ
15: Calculate E0ðaðtÞ; bjÞ according to (35) and populate

B0jðaðtÞÞ
16: if ((i) and (ii) hold) then

17: select the most recent action from

Bþj;lðAþF ðaðtÞ; F ðtÞÞÞ uB
00
j ðaðtÞÞ

18: else

19: select an action from B0jðaðtÞÞ
20: end if

21: end for

22: for (exploration probability �) do
23: select allocation action randomly

24: end for

25: end if

26: check aðtÞ ! aðtþ 1Þ and RðaðtÞ; bðtÞÞ
27: Update #t according to (20);

28: t ¼ tþ 1;
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utility. In spite of the comparable utility achieved by TRA,

ECF, and DQN schemes in the GSD application, they lack

the fairness feature as the voice assistance application

gained very low utility. The reason is that these schemes

focus on the application that has the highest priority which

is the GSD.

Fig. 6 compares the envy-freeness (EF) among the schemes

where EF =1 means that the allocation is envy-free. The gen-

eral concept of EF is that every IoT application i feels that its
resource share from certain edge server j is at least as good as

other applications. Therefore, the application i will not envy

other applications. EF is calculated as follows,

EF ¼ mini;k
uiðsiÞ=zi
uiðskÞ=zk

(36)

where i and k are the indices of two different IoT applications,

u is the utility function, z is the maximum utility of the appli-

cation. We can notice that our scheme in both settings outper-

forms the TRA, ECF and DQN schemes.

C. Delay Evaluation

In this section, we evaluate the performance of the proposed

resource allocation scheme in terms of the encountered average

service delays which include both processing and network

delay. We evaluate the average service delay recorded by our

scheme for the GSD, VR and VA applications as a function of

the probability of resources requests from the edge cloud. We

compare the performance of the proposed scheme against the

one achieved by SW, TRA, ECF, and DQN schemes. Fig. 7,

Fig. 8, and Fig. 9 present the average service delay for the

GSD, VR and VA applications respectively. The figures show

that the delay is reduced as the resources request probability

increases because more resources will be available for the

applications. In addition, we observe that our proposed scheme

outperforms the other schemes as it recorded the lowest service

delay for all the applications which highlights the advantages

of using online Q-learning to determine the most appropriate

resource allocation policy that maximizes the applications utili-

ties. In addition, we demonstrate the capability of our proposed

Fig. 4. Application utility for different applications.

Fig. 5. Network utility against the number of servers.

Fig. 6. EF score for resource allocation schemes

Fig. 7. Average delay for GSD application

Fig. 8. Average delay for VR application.
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resource allocation scheme to maintain the average delay

defined in (1) below certain delay threshold defined according

to the application type as in C1. Fig. 10 presents the average

delay of different applications compared to their corresponding

threshold. It is evident that our scheme using both centralized

and distributed settings is able to maintain the average applica-

tions delays below the specified threshold and consequently

fulfills the constraint inC1.

D. Applications and Environment Analysis

In this part, the effect of the number of IoT devices and

number of edge servers on the achieved network utility is

evaluated. Fig. 11 and Fig. 12 show the impact of the number

of the IoT devices and the number of edge servers on the

achieved utilities for the three applications: GSD, VR and VA

following both online Q-learning settings. Note that the ratio

of each application is 1/3 of the total number of the IoT devi-

ces. We observe that as the number of devices increases, the

network utility decreases as the same set of edge servers is

shared among more devices. However, the utility increases

significantly as the number of servers increases where more

resources will be available.

In addition, we demonstrate the capability of our resource

allocation scheme in maintaining the average edge server load

balanced and stable regardless of the number of IoT devices

that join the system. Fig. 13 shows the normalized average

server utilization versus the number of IoT devices. We can

notice that our scheme using both approaches keep the utiliza-

tion of the server steady and balanced. The server utilization

is compared with the utilization achieved by the DQN scheme.

The DQN scheme measured server utilization deteriorates as

the number of IoT devices increases. This evaluation demon-

strates that the proposed online Q-leaning scheme maintained

the server utilization i.e. the amount of allocated resources

below the maximum capacity. Finally, Fig. 14 measures the

speed of convergence of our scheme using both centralized

and distributed settings. We compare the performance to

cooperative online Q-learning with same optimization objec-

tive but without Q-value approximation (OQL-NA), DQN,

Fig. 10. Average delay for multiple application compared to threshold

Fig. 11. Application utility with variable number of IoT devices

Fig. 12. Application utility with variable number of edge servers.

Fig. 13. Average edge server utilization with variable number of IoT
devices.

Fig. 9. Average delay for VA application.
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and ECF schemes. It is evident that our scheme achieves a

considerable improvement in speed of convergence in com-

parison to the typical online Q-learning thanks to the approxi-

mation of Q-value that reduces that state space. We also

notice that the centralized approach achieved better conver-

gence than the distributed one. The reason is that the distrib-

uted approach requires information exchange of the historical

resource allocation actions among the edge servers which con-

sumes more time. The evaluation in Fig. 14 is executed for the

GSD application.

All the presented results demonstrate the potential of the

proposed utility based resource allocation in Edge-IoT using

approximated online Q-learning. Note that the distributed set-

ting of online Q-learning records better results than the cen-

tralized setting. This is expected as the edge servers learn the

ultimate resource allocation action in a cooperative manner

and in the distributed setting. The cooperative learning allows

the edge servers to utilize the controller as a repository to store

their individual resource allocation policy. This makes edge

servers able to exploit each others allocation policies in simi-

lar network scenarios. Hence, it fosters the servers’ capability

to have better resource allocation actions in comparison with

the centralized online Q-learning. Each edge server obtains

the state information from the controller and becomes able to

play an optimal resource allocation action in a team Markov

game by using its historical experience and other servers expe-

rience. Moreover, the computational complexity of the cen-

tralized online Q-learning increases significantly as a result of

the extreme growth in the number of IoT devices in compari-

son with the complexity of the distributed approach. Thus, the

usage of centralized setting might be less preferred especially

in large scale Edge-IoT systems. However, the centralized set-

ting has better convergence speed as the distributed setting

requires more time to run the team Markov game on multiple

servers to reach joint resource allocation policy.

VI. CONCLUSION

In this paper, we investigated the resource allocation problem

in Edge-IoT network, which consists of multiple distributed edge

servers and heterogeneous IoT applications.We proposed a novel

application utility based model to allocate resources to multiple

applications that maximizes the application utility considering

many factors such as servers load, capacity, and applications’

requirements. The proposed model maintains fairness in resource

allocation at maximum level and this was evaluated using the

envy-freeness feature. We developed an enhanced centralized

online Q-learning scheme for resource allocation in which a dedi-

cated controller is exploited to gather network state information

and learns how to achieve an effective resource allocation policy.

The developed scheme comprises a unique method to expedite

the learning convergence with less computation in comparison

with the typical Q-learning through approximation of the Q-

value. In addition, we proposed a distributed cooperative online

Q-learning approach where each edge server acts as a learning

agent. The learning agent takes advantage of other servers’

resource allocation policies if it encounters the same state sce-

nario. The distributed online Q-learning improves the resource

allocation process and converges to better application utility.
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