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ABSTRACT
During the past decade, the concepts and applications of Internet
of Things (IoT) are pervasively propagated to the academia and
industries. The widely distributed IoT devices contribute to building
an effective smart urban surveillance system, which manages the
regular operations and handles emergencies. The real time moni-
toring uploads massive amounts of data to the backbone network
and requires prompt feedbacks. The recent rapid development of
“Edge Computing” (also called “Fog Computing” or Mobile Edge
Computing in different literature) aims at pushing the computa-
tion and storage resources from the remote data center to the edge
of network for reducing the burden of backbone and the comput-
ing latency. In this paper, we design a three-tier edge computing
system architecture to elastically adjust computing capacity and
dynamically route data to proper edge servers for the real-time
surveillance applications. A system prototype integrating Network
Functions Virtualization (NFV) and Software-Defined Networking
(SDN) is implemented in an OpenStack based virtualization envi-
ronment. Moreover, we introduce schemes of resource reallocation
and workload balance in urgent situations. Experimental results
of the prototype show the great potentials of using edge comput-
ing for future large-scale and distributed smart urban surveillance
applications.
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Figure 1: Surveillance applications using edge computing.

1 INTRODUCTION
Urbanization has become a fact for most developed countries and a
fast rising trend for developing countries all over the world. Accord-
ing to the urban population data from the United Nations (U.N.),
the number of cities that is greater than medium-size will increase
from 488 in 2014 to 662 in 2030 [7]. The urban population agglom-
eration, especially in megacities like New York, Beijing, and Tokyo,
are bringing challenges in fighting against ongoing emergencies
such as criminal activities. Fortunately, with the advancement of
Internet of Things (IoT) and its application in smart cities, a huge
quantity of terminal devices could be deployed around the build-
ings, streets, highways and factories for security surveillance [3].
In the state-of-the-art surveillance system, the distributed moni-
tors capture images and videos and send a large volume of data to
the remote servers or data centers. These “big data” from the city
surveillance system potentially brings problems including backbone
network congestion, lack of close-by computing power for real-time
analysis and decision making, and increasing complexity of system
management. Such traditional architecture is not scalable when the
number of the devices and the traffic are constantly increasing. It
faces significant challenges for the future smart city applications
that require low backbone bandwidth consumption and latency in
tracing criminal, recognizing moving cars and other fast reaction
tasks.

We envision a better surveillance system empowered by the IoT
and edge computing technologies. In such a new system architec-
ture, the large amount of video data do not have to be uploaded
through the backbone network and processed remotely. Instead,
these real-time video streams are analyzed locally by the nearby
edge cloud servers. As illustrated in Fig. 1, the edge clouds deployed
in local areas serve various surveillance use cases concurrently
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under the management of an application controller. For example,
a pedestrian flow detection and prediction application could be
deployed to help reduce the occurrence rate of crowd accidents and
crisis such as stampede in large festivals and events. The city law
enforcement and emergency organizations could get alerts before
illegal events, act quickly during incidents and tracking escaped
criminals. In short, a smart and well-organized monitoring system
with balanced computing resource empowered by the IoT and edge
computing technologies would be a priceless assistance for city
security.

The main contributions of this paper include:
(1) We propose and build a novel elastic real time surveillance

system architecture on the top of a geographically distributed edge
cloud platform. In the new system, computing and data processing
tasks are carried out by the elastic dynamically launched Virtualized
Network Functions (VNFs) on the edge servers instead of deploying
expensive, static, and physical Closed Circuit Television (CCTV)
servers. Benefits include cost reduction, scalability, flexibility and
rich functional components. The edge servers resources can be
dynamically allocated and adjusted based on the actual workload
of the surveillance application to avoid waste and maximize the
utilization efficiency.

(2) The system architecture coherently integrates Network Func-
tions Virtualization (NFV) and Software-Defined Networking (SDN)
to guarantee the smooth operation on the hardware resource vir-
tualization and the programmable virtual networks and entities
configuration [8]. A group of Virtual Machines (VMs) or VNFs
launched in the distributed edge cloud servers work together for a
specific surveillance task, and they are configured, monitored, and
managed effectively by the SDN controller.

(3) We implement a prototype of the proposed architecture and
perform a series of case studies to demonstrate and evaluate the
system performance of the elastic edge cloud management and
dynamic resources allocationwhen the system tracksmobile objects
that randomly move across different cloud areas.

(4) We demonstrate the feasibility and effectiveness of the pro-
posed system architecture through a series of preliminary experi-
ments.

The rest of this paper is organized as follows. Section 2 briefly
introduces the current related work on city monitoring and edge
computing. Section 3 is the system design and the model of the pro-
posed elastic urban security surveillance system. Second 4 explains
the key implementation processes and issues. Second 5 presents the
experiments and analysis results. Finally, the conclusion follows in
Section 6.

2 RELATEDWORK
With the advancements in IoT and related technologies, more and
more city scale surveillance solutions are developed and tested by
academia.

The concept of real-time city is introduced by Rob Kitchin [6]
drawing researchers’ attention on how many digital devices are
instrumented in the cities and how the mass of data is utilized to
serve the city governance. Considering the data offloading from
cameras to the data center, Zhou et al. [12] proposed a meshed
network based on the routes of public buses, where the nearest bus
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Figure 2: System Architecture.

stop acts as a node to upload video data. To fully take advantages
of video analysis results, Shao et al. [11] constructed a solution to
collaboratively monitor ongoing events according to the previous
evidence and current information in a spatial-temporal manner.

Facing the challenges of low latency andmassive data processing,
edge cloud or edge computing shows great potentials for large scale
video applications. Two seminal studies about edge computing
efforts are: fog computing built on the deployment of self-organized
devices like sensors on the network edge [4]; and cloudlet as micro
data center distributed based on the specific applications to push
computing power close to the customers, such as AR/VR video
processing [10]. Moreover, The applications of edge computing
are explored under the background of IoT and some use cases are
studies to verify its superiority [9]. For example, A UAV surveillance
system is designed to performs multi-target tracking by uploading
real-time video to the nearest fog node [5].

3 SYSTEM DESIGN
Utilizing edge computing and SDN technologies, our surveillance
system design aims at elastically monitoring regular and urgent
security events in urban areas with low latency and backbone
bandwidth consumption, where the cameras are deployed to form
a dense and connected network. Fig. 2 illustrates the system ar-
chitecture and relations between the functional components. The
architecture consists of three tiers from top to bottom: application
tier, edge computing tier, and data tier.

The applications tier contains three components. The applica-
tion owners provide the detailed specification of required resources
for data processing and storage of various tasks. The application
providers collect information and plan resources allocation and
configurations. Meanwhile, the system managers monitor the run-
ning status of the applications and deal with the useful feedbacks
from the below tiers to determine the following task arrangements.

The edge computing tier include edge cloud nodes and SDN com-
ponents. Specifically, the SDN northbound interface communicates
with upper tier while the southbound interface enables connections
between SDN controllers and virtual computing entities (VNFs).
The edge cloud consists of a controller node and a number of com-
pute nodes. The VMs or VNFs are loaded on the compute nodes to
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provide computing power for the surveillance applications. More-
over, SDN controller configures and manages the VMsâĂŹ flow
tables based on OpenFlow protocol to intelligently route the data
packets among the physical compute severs.

In the data tier, the terminal monitors collect and dynamically
upload real-time video source data to the nearest available compute
nodes. Each device is assigned with IP address and carries two
attributes to its upper-level server: video resolution and location
coordinates. From a global perspective, the density of monitors
determines the geographical distribution of the compute nodes
since the computation and storage resources on the edge servers
should satisfy the requirements of different applications in a specific
area.

The working processes of the system can be briefly summarized
into the following key steps:

(1) Collecting application requests: For a specific surveil-
lance scenario, the requirements vary on different parameters in-
cluding video resolution, processing frequency, task location, com-
puting complexity and storage space. The system manager deter-
mines and sends the application requests through SDN northbound
interfaces.

(2) Translating requirements: After receiving the detailed re-
quests from the upper level, SDN controller translated them to the
expression of system behaviors and the corresponding data flow
control configurations.

(3) Orchestrating configurations: In addition to the network
routing, the edge control node performs resource orchestration to
satisfy the requirements of computing power for specific surveil-
lance tasks. The configurations are expressed by templates in the
form of text file as executable code to describe the resource assign-
ments including IP addresses, bandwidth volumes, computer node
flavors, security group and etc.

(4) Launching VM or VNF instances: The VNF instances are
launched on the in distributed compute nodes to flexibly utilize the
hardware resources. The parameters for VNFs are retrieved from
the orchestration file to specify CPU capacity, memory space and
floating IP addresses. Each VNF is presented as an independent
computing entity and preloaded with environments for a specific
application.

(5) Routing data flow: The network organization of compute
nodes and routers follows the SDN routing strategies transmitted
from the southbound interface. By implementing the required net-
work topologies, the source data uploaded from the lower tier would
be forwarded to the optimal edge nodes through virtual switches
(vSwitch).

(6) Capturing video: The source video stream is captured and
uploaded by the monitors deployed in each corner of city. Once an
urgent event happens, their coordinates would be used to assign
new data routing and offloading destinations.

By carrying the above six steps, the real-time surveillance system
could concurrently support different monitoring tasks.

Within the architecture design, we have four key designs to
enhance the efficiency of surveillance which distinguish our system
from other existing solutions:

a. Virutalized computing service provisioning

We use the VMs or VNF instances as the basic units to provide
computing services for video surveillance tasks. Video analyzing al-
gorithms run on the VNF instances launched on the physical servers.
With such a method, independent workspace can be set up by
launching different virtual instances to avoid possible communica-
tion interference among different applications such as license plate
recognition and face detection. Moreover, through hardware virtual-
ization, a physical machine could be virtualized into a reusable pool
of resources such as virtual CPU (vCPU), RAM memory space and
bandwidth. During the regular surveillance, applications only take
a part of resources. However, reserved computation would be acti-
vated to offer a higher performance in emergency mode. In addition,
the GuestOS images that are pre-installed with software and execu-
tion environment for different kinds of surveillance applications
are stored as the snapshots on the compute nodes. Launching from
the prepared images reduces the time gaps between the starting
and the ready-to-use status.

b. Flexible data flow control
Another key feature by implementing edge computing is flexible

data flow control. First, resources can be assigned to the VNFs to
exactly suit the specific latency and frequency requirements on data
collection and video analysis . Second, when an emergency occurs,
the related applications would be pushed for higher priority for
resources. The system tries to allocate more computing power and
bandwidth by spawning new VMs. Third, the matching relationship
between a camera and its edge node is not fixed so that the camera
could upload data to another edge server in order to obtain lower
latency or computing resource if the original node is overloaded.

c. Dynamic resource orchestration through northbound interfaces
We use the edge cloud control node as the orchestrator to deploy

and deliver the surveillance applications on the edge cloud plat-
form. Through the northbound interfaces, the orchestrator turns
the high-level service-level agreements (SLAs) among the applica-
tion owners, application providers, and the application managers
into detailed resource allocation schemes and commits them into
detailed application implementation. A typical example method
is the Heat orchestrator in OpenStack [2]. More advanced orches-
trating method such as an "intent" based method would be more
effective in implementing the applications at the edge cloud. During
the whole lifetime of the surveillance applications deployed in the
edge cloud, the orchestrator will closely monitor the application
resource status and application topology. The surveillance applica-
tion can be scaled up or down by the orchestrator depending on
the different modes the application needs to work in.

d. Elastic surveillance modes
Considering the various application purposes, our system can

work elastically in two modes: normal monitoring mode and emer-
gency surveillance mode. In the normal mode, multiple monitoring
tasks work smoothly to complete periodic video processing at a
relatively low frequency and event prediction function owns higher
priority in the resource pool. However, when an emergent event
occurs like tracing criminals, the frame rates of video capturing
increase and image analysis for some particular objects turn to
high-priority tasks. Meanwhile, the network bandwidth allocation
would be reconfigured to boost the performance of event areas.
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4 SYSTEM IMPLEMENTATION
In this section, we present the prototype implementation details
and discuss its advantages in handling the emergency surveillance
situations.

4.1 Edge Cloud Platform
We choose OpenStack as the basic edge cloud platform for the
surveillance application. The video surveillance application is de-
ployed and delivered on the edge cloud prototype which controls a
cluster of compute, network and storage resources. The OpenStack
based Infrastructure as a Service (IaaS) cloud computing platform is
open source and rapid-developing, which consists of several key ser-
vices including computing (Nova), networking (Neutron), identify
(Keystone), orchestrating (Heat), imaging (Glance), object storing
(Swift), and other extension projects. The edge cloud could be set
up effectively with various scales and capabilities using OpenStack.

Our prototype implementation consists of five key OpenStack
services, as illustrated in Fig. 2. Specifically, Keystone provides the
authentication API to identify the users and VMs to access the
system resources. The administrator also obtains rights to launch
and modify the virtual network topology after the identity verifi-
cation. Nova manages the computing resource pool through the
virtualization technologies. VMs spawned by Nova support various
kernel formats such as qcow2, iso, vdi, docker, etc. Neutron takes
responsibility to build no bottleneck, flexible and dynamic network
configuration. Swift provides the storage of object file system that
can fast distribute data among the compute nodes, such as video file
and operating system snapshots. Heat works as an orchestrator to
specify and commit resource for the new applications by executing
the configuration templates. From the perspective of system archi-
tecture, Nova and Neutron client services run on the compute nodes
and the other service are administered by the control node. It is
worth noting that a dedicated big-data architecture is needed from
the application providers to meet the Service Level Agreements
(SLAs) of the applications for more advanced surveillance systems
with various data types.

4.2 Compute Unit
The Virtual Machines (VMs), as the VNF entities, launched on the
edge server provide computing service for video processing, as the
basic compute units. Before initiating and spawning a VM from
an OS image, the system should assign the stack flavors including
bearer network, communication protocols, security group, volumes,
storage space and more configurations. Heat is an orchestration
engine of OpenStack to gather the flavors and generate templates of
a set of configurations. Through Heat-API component, the system
administrator could create a stack from a template and launch VMs
to be ready for user applications. In addition to stack configuring,
image snapshotting is performed to provide ready-to-use compi-
lation environments and effectively reduces VM launching time.
To adjust the data flow of a specific VM instance, the Nova flavor
could be assigned with bandwidth limits by the traffic shaping tool
– tc to modify the inbound and outbound transmission.

Target

Camera
Area 1

Area 2

Area 4

Area 3

Figure 3: Tracking mobile targets.

4.3 Network Configuration
The network structure is managed by Neutron service which con-
trols the communication protocols, firewall rules, security groups,
routing policies and floating ip pools. We construct the network of
the surveillance system with VPN technology, where all the VMs
for the same tasks are in the same VLAN even if located at different
geographical areas. Each VM owns a virtual IP in the VLAN domain
and can be associated with a public floating IP to be accessible from
the Internet. The network of VMs is called provider network that
offers computing service for user applications. Besides the provider
network, the connected control node and compute nodes compose
the management network, which performs software package in-
stallation, DNS, NTP and NAT in order to transmit data packets to
the correct VMs and ports.

4.4 Elastic Resource Allocation
In the elastic surveillance application for smart cities, when emer-
gency events happen, the computing resources are reallocated to
handle the emergency. Due to the mobility of the objects being
tracked, the data offloading and processing should be elastic to
ensure that all pieces of evidence or clues are recorded and filtered
within acceptable latency. For our surveillance system, a dynamic
algorithm is proposed to adjust VM resources to deal with the
tracking scenario, as illustrated in Fig. 3.

(1) VMs launching adjustment
In our algorithm, the city is presented as a two-dimension map,

where each place has a coordinate. When the police need searching
for or tracking a criminal P , the location can be estimated or deter-
mined, and denoted by (Px , Py ). The real-time object tracking needs
the collaboration of nearby monitors in the cycle coverage with the
center point (Px , Py ) and the radius R. Moreover, we add a margin
Rp to the radius to compensate the service delay because of VM
launching time. In this case, not only the launching delay, but also
coordinate error is corrected. It is worth noting that the value Rp
should be in direct proportion to the movement speed of the moving
targets. In the emergency surveillance area, the involved n monitors
are denoted by C1:n = {C1,C2, ...,Cn } with the dynamically chang-
ing value n. Correspondingly, the required computing amounts for
monitors are V1:n = {V1,V2, ...,Vn }. In addition, we hold a list of m
edge nodes E1:m = {E1,E2, ...,Em }. Assuming that Ni monitors are
located in the service space of the edge node Ei , the total required
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amount of computing resource is:Wtot−i =
∑Ni
k (Ck ×Vk ). The

current available resource of Ei isWcur−i , so that the system still
need:

Wr eq−i =Wtot−i −Wcur−i =

Ni∑
k

(Ck ×Vk ) −Wcur−i (1)

Then assuming the computing power provided by one VM is Vvm ,
the number of VMs to be launched on the node Ei is:

Nlaunch =
Wr eq−i

Vvm
=

∑Ni
k (Ck ×Vk ) −Wcur−i

Vvm
(2)

In the case thatWtot−i ⩽Wcur−i , the system owns enough power
to meet the current requirements. Nterm VMs could be terminated
to release resources for other applications:

Nterm =
Wcur−i −Wtot−i

Vvm
(3)

Whenever the system launches new VMs or terminates VMs, such
decision is determined by the tracking location and the number of
related monitors: (Px , Py ), Ni ⇒ Nlaunch or Nterm .

(2) Edge nodes work balance
Because of the limit of the available resource pool including

vCPU, RAM and storage, the requests to launch new VMs on
the edge node may not be satisfied. In this case, a part of video
data should be uploaded to the nearby second-suitable edge node.
Based on the node list E1:m , we maintain a list of the communica-
tion delay between the monitor Ci and the edge nodes: Li−1:m =
{Li−1,Li−2, ...,Li−m }. When the resource shortage occurs, some
workload of the monitors initially bound to Ei would be transferred
to another node with the lowest delay. In order to guarantee the
effectiveness of the surveillance system, the monitors located away
from tracking center (Px , Py ) are chosen based on the order of their
distances from far to near, denoted by the Euclidean distances:

D (P ,Ci ) =
√
(Px −Ci−x )2 + (Py −Ci−y )2 (4)

where (Ci−x ,Ci−y ) is the monitor coordinate.
If the required computing resource decreases because of the

object mobility, the system cancels the workload transfers and the
original nodes will continue serving the applications.

5 EXPERIMENTATION AND RESULTS
To validate and evaluate the proposed system architecture and
prototype implementation, we conduct a series of experiments.

5.1 Experiment Testbed
The experiment testbed is built with four desktops, one router, one
switch, a number of Raspberry Pi 3 Model Bs with camera mod-
ules v2. In the testbed, one desktop acts as the control node that
manages the other three desktops as the computer nodes. The desk-
top configurations are Intel i7 quad-core processor 3.2GHz, 16GB
RAM, 1TB storage and two NICs with Ubuntu 16.04 LTS operating
system. The router is used to create VLAN for the communication
between desktops and offers accesses via NAT method to divide
the experimental network into two parts: management intranet for
and provider extranet. Meanwhile, the desktops and router connect
to the provider network via the switch to obtain internet service.

Figure 4: Data flow size per second.

Figure 5: Processing speed for one video frame.

The video sources are provided by the Raspberry Pi and the camera
modules installed outside the buildings, whose video solution is up
to 1080P (1920x1080). With all the devices, we deployed OpenStack
with Newton version, which is the currently second newest and
relatively mature. On the each compute node, we launched three
VMs with public floating IPs for Raspberry Pi accessing.

5.2 Tests and Results
(1) Data volume

The volume of video data uploaded to the edge servers are esti-
mated using camera modules to record videos of different resolu-
tions in the common city scenes. The real-time video is simulated
so that the Pi camera uploads 16 frames of video per second to its
VM server. Assuming that the number of monitors deployed in a
typical big city like London is about 200,000, we estimate the data
size created in such a city per second for different resolutions, as
illustrated in Fig. 4.

The results show that thousand Gigabytes (GBs) of data for a
city-level application would flood into the network under the future
IoT and smart city environment. In this case, edge computing could
effectively prevent the congestion of backbone network and process
data at local areas.

(2) Data Processing and Transmit Latency
A face recognition application is implemented with OpenCV 3.2

[1] to test the processing speed of the video frames sent to the VM.
The recognition contains two steps: (1) detect the faces in the image;
(2) compare each face with the datasets already trained by the face
images of our target persons. The face detection is performed by
utilizing the Haar Cascade classifiers and the comparison by LBPH
face recognizer. The VM for testing is configured with four vCPUs,
4G RAM and 100 GB storage, while the Pi camera could capture 16
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Figure 6: Data propagation round-trip time to edge servers
and AWS.

Figure 7: The distribution of VMs launching time.

frames per second. Fig. 5 shows the execution time to process one
frame recorded in different resolutions. Because of the resolution
difference, the process time increases rapidly from average 3.5 ms to
32 ms with the increment of data size. However, such a performance
gap can be reduced by implementing more advanced algorithms.

Besides the processing time, the edge node deployed on the uni-
versity campus near the cameras could also save the propagation
time compared to the central cloud method. The edge node1 is
the nearest server to the experimental camera while the node3
is the farthest one. For comparison, we test the average commu-
nication delays to four Amazon AWS servers: US-East (Virginia),
US-East(Ohio), US-West(California) and US-West(Oregon). The ex-
perimental results, as shown in Fig. 6, verifies that edge computing
provides highly responsive cloud services for city surveillance with
low end-to-end latency and low jitter.

(3) Elastic Response
Since the workload of the user applications varies over time

and the analyzing requirements change in an emergency event,
the computing resources should be elastically adjusted quickly and
smoothly based on the task loads. We create an Operating System
(OS) snapshot of the ready-to-use OpenCV environment, which
loads the complete basic libraries and contribute libraries, and its
size is 7.8 GB. Then thirty VMs are launched concurrently to meet
the handle the urgent requests. Fig. 7 demonstrate that the VM
launch times are in minutes level ranging from 1 to 2 minutes.
The launching speed is acceptable for boosting the emergency
overloaded requests in short time.

6 CONCLUSION
In this paper, we proposed an IoT based elastic surveillance system
using Edge Computing paradigm to perform data processing near
the IoT devices in the smart city applications. A prototype for eval-
uating practical environment was implemented on a lightweight
OpenStack platform and VMs serves as the unit of computing. The
achievements of the elastic administration and resource allocation
are sustained by the geographically distributed computing nodes
and the reliable control node. We also discussed the methods for
adjusting system performance and balancing workload to meet
the regular and emergent requirements. The experimental results
demonstrated that the system is rapid, responsive, flexible, scalable
and easily configurable.
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