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ABSTRACT

Conventional diagnosis using polysomnography (PSG) on breath-

ing disorder is expensive and uncomfortable to patients. In this

paper, we present a low-cost portable and wearable multi-sensor

system to non-invasively acquire a subject’s vital signs, and leverage

various machine learning methods on features extracted from Elec-

trocardiogram (ECG) and Blood oxygen saturation (SpO2) signals

to detect breathing disorder events. Our preliminary predication

accuracies on 110 clinical patients is 90.0%.
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1 INTRODUCTION

Breathing disorder is a common medical issue during sleep. It con-

sists of obstructive apnea, central apnea, hypopnea, etc., which
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independently or synergistically impact the subject’s breathing

behaviors. To diagnose these symptoms of a patient, the regular

clinical method relies on the usage of expensive PSG equipment

with multiple electrode patches attached to the body. A clinical

specialist then manually identify these disordered breathing events

across the entire sleep recording using his/her expertise on vital

sign analysis [2].

To investigate the relationship of vital signs and breathing dis-

order, previous researches exploit the information of ECG and/or

SpO2 signals but on limited datasets [1, 6]. Meanwhile, even though

some prior works also state good performances of apnea detec-

tion using breathing signals, those experiments are well controlled

[4, 7]. In the clinical environment, the breathing signal quality is

sensitively impacted by a subject’s unpredictable posture changes

(sitting, lying, standing, etc.), body motions, or speaking. As a result,

motion artifacts frequently occur on the breathing signals. Fig. 1b

shows an example of the ECG, SpO2, and breathing signals of a

subject. The breathing disorders happen where the ECG and SpO2

signals have a large variation (green rectangles). However, some

motion artifacts at the end margin of the first disorder event (dot-

ted ellipse) might mislead the breathing disorder determination.

In this paper, we present a low-cost wearable multi-sensor system

for numerous actual patients, and apply various machine learning

methods on the ECG and SpO2 signals, in order to not only reliably

obtain the necessary vital signs in hospital wards [3], but to have a

proficient-like capacity of detecting the breathing disorder events.

2 HARDWARE

We present our wearable multi-sensor vest, SensEcho, which has

three electrode patches for single-lead ECG signal monitoring at a

200 Hz sampling rate, and has two sensing wires for the chest and

abdomen breathing monitoring at a sampling rate of 25 Hz. A wrist

oximeter communicates with SensEcho using Bluetooth, whose

sampling rate is 1 Hz. In addition, an ultra-low power, 3-axis digital

accelerometer component ADXL345 with a 25 Hz sampling rate

is embedded in the vest. SensEcho provides the capacities of local

data storage and low-power WiFi-based uploading to the database

cloud. Fig. 1a depicts the main board of SensEcho.
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(a) Hardware design of
SensEcho
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(b) ExampleRR interval, SpO2, and breathing sig-
nals of a patient

Polysomnography
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(c) Actual experiment set-up in the
clinical hospital
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(d) Confusion matrix of the sleep apnea
levels

Figure 1: SensEcho’s hardware, example signals, experiment set-up, and clinical results

3 PRELIMINARY EVALUATIONS

A public sleep database [5] is used at first. This database consists

of the PSG monitoring of 6,600 patients in the U.S., including the

records of breathing disorder event durations manually determined

by clinical specialists. We construct 53 features from ECG signals,

and 33 features from SpO2 signals according to [6]. To align those

disorder events with our feature space, we map all of disordered

breath events into one-minute time chunks to construct a time se-

quence with a binary label of łnormal breathingž and łbreathing dis-

orderž [1]. If a breathing disorder event happens, the corresponding

time chunks of this event span are labeled with łbreathing disorderž.

All features are then calculated inside every one-minute chunk. For

example, a one-hour-long recording is transferred to a matrix of 60

× 87 (53 + 33 + 1 label). 80% of patients are randomly split out for

the training set, on which five-fold cross-validation is performed for

hyper-parameter search, and the data of the remaining 20% patients

tests the trained model. Table 1 lists the minute-level prediction

accuracies on this database using three machine learning methods.

As we can see, SpO2 signals act as a more significant role than ECG

signals to independently estimate the disordered breaths, and the

combination of Random Forest and the features of ECG & SpO2

outperforms all others.

The Apnea Hypopnea Index (AHI) is used to indicate patients’

apnea levels. In every hour, the amount of manually identified

breathing disorder events are summed as an AHI score. AHI score

could be commonly divided to four levels [4]. No apnea: AHI < 5;

Mild: 5 ≤ AHI < 15; Medium: 15 < AHI ≤ 30; and Severe: AHI >

30. We train and validate the prediction model of AHI using the

database and the methods discussed above. The accuracy is 87.42%.

This model is then tested on the 110 actual patients at Department

of Respiration in Chinese PLA General Hospital, with wearing

SensEcho for their breathing monitoring (Fig. 1c). Fig. 1d presents

the confusion matrix of preliminary prediction accuracies of them.

The overall accuracy is 90.0%, and the average AHI error is 2.0930.

The previous results of 37 patients presented in [4] have the overall

accuracy of 86.5%, and the average AHI error of 1.9. Considering

the larger amount of patient database we have, our competitive

results demonstrate that SensEcho is a promising wearable solution

for breathing disorder detections.

We are currently enrolling more patients to build up our patient

sleep database, and are designing advanced algorithms to involve

Table 1: Prediction results of the public sleep database [5]

Methods Adaboost Logistic Random Forest

Accuracy

ECG features only

0.7468 0.7872 0.8490

SpO2 features only

0.8154 0.8334 0.8655

ECG & SpO2 features

0.8337 0.8729 0.8998

breathing and accelerometer signal information to further improve

the prediction accuracy.
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