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Abstract—The emerging Internet of Things (IoT) is facing
significant scalability and security challenges. On one hand, IoT
devices are “weak” and need external assistance. Edge computing
provides a promising direction addressing the deficiency of cen-
tralized cloud computing in scaling massive number of devices.
On the other hand, IoT devices are also relatively “vulnerable”
facing malicious hackers due to resource constraints. The emerg-
ing blockchain and smart contracts technologies bring a series
of new security features for IoT and edge computing. In this
paper, to address the challenges, we design and prototype an
edge-IoT framework named “EdgeChain” based on blockchain
and smart contracts. The core idea is to integrate a permis-
sioned blockchain and the internal currency or “coin” system to
link the edge cloud resource pool with each IoT device’ account
and resource usage, and hence behavior of the IoT devices.
EdgeChain uses a credit-based resource management system to
control how much resource IoT devices can obtain from edge
servers, based on predefined rules on priority, application types,
and past behaviors. Smart contracts are used to enforce the rules
and policies to regulate the IoT device behavior in a nondeniable
and automated manner. All the IoT activities and transactions are
recorded into blockchain for secure data logging and auditing.
We implement an EdgeChain prototype and conduct extensive
experiments to evaluate the ideas. The results show that while
gaining the security benefits of blockchain and smart contracts,
the cost of integrating them into EdgeChain is within a reasonable
and acceptable range.

Index Terms—Blockchain, edge computing, EdgeChain, fog
computing, Internet of Things (IoT), scalability, security, smart
contracts.

I. INTRODUCTION

IT IS predicted that the emerging Internet of Things (IoT)
will connect more than 50 billion smart devices by the year

2025 [1]. It will inevitably change the way we live and work
with smart houses, workspaces, transport, and even cities on
the horizon. However, such trends create significant scalability
and security challenges. First, the IoT devices are relatively
weak and most of their data are sent to remote clouds to
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be processed. Examples include the majority of the smart
phones applications and smart home devices, such as Google
Home and Amazon Echo. But the existing centralized cloud
computing model is very difficult to scale with the projected
massive number of devices due to the large amount of gener-
ated data and the relatively long distance between IoT devices
and clouds. Second, the IoT devices are relatively vulnerable
and could be relatively easily controlled by malicious hackers
to form “botnet” for various attacks [2], [3]. This is aggra-
vated by the fact that most of the cheap IoT devices are with
very limited security capabilities, and very poor or even no
technical upgrading or maintenance services, though recently
Google’s Android Things 1.0 [4] started pushing this.

Edge computing1 [5]–[9] is an emerging direction to provide
solutions for the IoT scalability issue. It pushes more comput-
ing, networking, storage, and intelligence resources closer to
the IoT devices, and provide various benefits, such as faster
response, handling big data, reducing backbone network traf-
fic, and providing edge intelligence. Typical benefited IoT
applications include emergency response, augmented real-
ity (AR), video surveillance, speech recognition, computer
vision, and self-driving.

Many works have also been devoted to IoT security.
Traditional general-purpose security solutions are not suit-
able to run on the IoT devices due to the capability con-
straints [32]. A typical compromise is to use lightweight
IoT security protocols [13]–[18]. Perimeter-based security
through firewall [19], [20] does not require running addi-
tional software on IoT devices but cannot prevent internal
attacks and has been proved ineffective in securing billions
of weak devices. Compared with perimeter-based trust, zero-
trust approaches [21]–[23] are proved to be more effective
and seem promising. Direct or indirect system-level secu-
rity approaches, which do not put intensive security-related
loads on IoT devices and do not assume the IoT devices
being well-maintained, and if enabled with a zero-trust or
trustless capabilities, are much needed. Blockchain [24], [25]
combined with smart contracts [26], [33] enable a trust-
less environment and are recently attracting more attention
due to unique features, such as data/transactions persistence,
tampering resistance, validity, traceability, and distributed fault
tolerance. Limited efforts have been made applying them
into decentralized IoT and edge computing systems, and two
typical work are Xiong et al. [27], [28] using game theory and

1Edge computing is also often referred as “fog computing,” “Mobile Edge
Computing,” or “Cloudlet” in different literature, despite slightly different
definitions and scopes. We use edge computing or edge cloud in this paper.
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Fig. 1. EdgeChain position in the multitier edge-IoT system network
topology.

Chatzopoulos et al. [31] focused on computation offloading.
In comparison, our research focus is not on consensus mech-
anism and mining. Instead, we use permissioned blockchain
and smart contracts as carrying vehicle, and our major focus is
to provision resources for various IoT applications and control
and regulate IoT devices’ behavior.

In this paper, we seek a fundamentally different approach to
tackle these key challenges collectively through a blockchain-
based and resource oriented edge-IoT framework named
EdgeChain. The EdgeChain’s position in the multitier edge-
IoT system is illustrated in Fig. 1. As we can see that
EdgeChain locates between the edge cloud platforms and the
various IoT applications that are launched in the shared infras-
tructure. It means that EdgeChain can run on different edge
cloud platforms, such as HomeCloud [46] or Cloudlet [9].

The core EdgeChain idea is to integrate a permissioned
blockchain and the internal currency or coin system to link
the edge cloud resource pool with each IoT device’ account
and resource usage, and hence behavior of the IoT devices.
EdgeChain uses a credit-based resource management system
to control how much resource IoT devices can obtain from
edge servers, based on predefined rules on priority, application
types, and past behavior. Smart contracts are used to enforce
the rules and policies to regulate the IoT device behavior in a
nondeniable and automated manner. All the IoT activities and
transactions are recorded into blockchain for secure data log-
ging and auditing. As a short summary, the major contributions
of the EdgeChain framework include the following.

1) A new EdgeChain framework integrating permissioned
blockchain and smart contracts capabilities.

2) An internal currency or coin system linking the edge
cloud resource pool with IoT device accounts and
resource usage behavior.

3) A credit-based resource management system to control
how much resources IoT devices can obtain from edge
servers.

4) A resource-oriented and smart contracts-based policy
enforcement method to regulate the IoT device behavior.

5) A prototype implementation and experimentation to
validate and evaluate the EdgeChain ideas.

Our latest EdgeChain accomplishments have been included
in two provisional patents we recently filed [29], [30]. Note

Fig. 2. EdgeChain vision: the problem space and solution space.

that EdgeChain is still an ongoing project and some of
the work are still in progress. We will discuss the status
accordingly in the following sections. The rest of this paper
is organized as follows. In Section II, we discuss several
key approaches and designs of EdgeChain. We present the
EdgeChain framework and functional modules in Section III.
Section IV is about the key processes and workflows. In
Section V, we discuss the prototype and evaluation. Section VI
is the related work, while the conclusions and future work
follow in Section VII.

II. EDGECHAIN KEY APPROACHES AND DESIGNS

In this section, we discuss some key EdgeChain design
considerations. Fig. 2 shows the overall EdgeChain vision
including the problem space and the solution space.

A. Permissioned Blockchain

Blockchain networks can be generally categorized into per-
missionless or public blockchain, and permissioned or private
blockchain [33]. Permissionless blockchain, such as Bitcoin
network is a peer-to-peer decentralized network. It is usu-
ally not controlled by any private organization and the whole
network runs on broad consensus of all the members in the
network. The tradeoff is relatively lower transaction process-
ing throughput and higher latency. Permissioned blockchain,
however, is not a pure peer-to-peer network. The stakeholders,
such as the application owners of this type of blockchain will
have a more controlled and regulated environment, and higher
transaction throughput. The consensus mechanisms used for
permissionless and permissioned blockchain are also different.

The EdgeChain system uses a permissioned blockchain
since the major goal is to support miscellaneous distributed
IoT applications that generally have owners and customers.
The system stakeholders need more control and higher
throughput and performance. For permissioned blockchain,
it is also not necessary to run very resource-intensive
proof-of-work (PoW) algorithms for consensus because sybil
attacks cannot happen. It also removes the necessity of
economic incentive for mining, which is usually very
resource-consuming in the Bitcoin network. More effective
but less resource-intensive consensus protocols are available
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and a typical example is practical byzantine fault tolerance
(PBFT) [34] for such an environment.

In EdgeChain, the mining work is only done by the edge
servers that have more resources than the IoT devices. It
is never done by the resource constrained IoT devices. The
mining is much less resource intensive compared with permis-
sionless blockchain network. In other words, the edge servers
will be in charge of monitoring the transactions, creating, and
appending new blocks when new transactions happen. The IoT
devices in EdgeChain are only blockchain and smart contracts
clients. If they are EdgeChain-aware devices and installed with
blockchain and smart contracts software, they are able to inter-
act with the edge servers and get resources and assistance for
their tasks through procedures, such as cloud offloading [35].
If they are legacy devices and do not need resources from
the edge servers, then they do not even need to install the
blockchain and smart contracts software. The EdgeChain is
totally transparent to them, but still can create blockchain
accounts and manage these IoT devices from the back end.

B. Credit-Based Resource Management

EdgeChain uses an internal currency or coin system enabled
by blockchain to link the edge resource pool with the IoT
device accounts and resource usage behavior. EdgeChain con-
sists of a novel credit-based resource management system
where each IoT device is created a blockchain account and
given an initial amount of credit coins. The credit coin bal-
ance determines the device’s ability to obtain resources from
the edge servers. Generally speaking, the device with a larger
balance is afforded quicker and faster access. The edge server
records credits and debits and provides the necessary resources
requested by the IoT device based on a set of rules that
takes predefined priority, application types, and past behavior
into account. As an ongoing research effort, we are design-
ing detailed intelligent resource provisioning mechanism at the
edge clouds for the quality of experience (QoE) of multiple
applications and heterogeneous devices.

In fact, we observe that this resource credit management
mechanism not necessarily has to be implemented by the
internal currency system. The edge server can maintain a tra-
ditional credit score system and decide how to grant resources
to different devices. However, by utilizing the internal cur-
rency system, EdgeChain can gain a series of intrinsic security
benefits coming with blockchain. For example, all the coin
transactions are automatically logged into the secure and
unmodifiable database on blockchain, and it is good for future
auditing purposes. Also, it enables smart contracts that could
facilitate nondeniable and automated execution of the schedul-
ing rules and policy enforcement in the edge-IoT systems. All
these new benefits are not possible without the blockchain and
the internal currency system.

C. Resource-Oriented, Smart Contracts-Based Policy
Enforcement, and IoT Behavior Regulating

EdgeChain controls the IoT devices based on their behav-
ior and resource use instead of their locations which results
in better security control. This overcomes limitations in exist-
ing Edge-IoT solutions which are usually “perimeter” based
security, i.e., deploying a firewall or a filtering system between

Fig. 3. Simple example of a standalone EdgeChain box deployment in smart
home.

the internal and external network and by default trusting the
users and nodes “inside” the network. If internal IoT devices
were hacked and turned to botnet, it is hard to control them.

EdgeChain uses a resource-oriented, smart contracts-based,
and indirect security scheme for IoT behavior regulating and
auditing. EdgeChain adopts an indirect system-level secu-
rity approach, which means that we do not require the IoT
devices to run resource-intensive security software. Instead,
EdgeChain monitors, controls and regulates the behavior of
IoT devices based on their resource usage and activities. Based
on the application types, priority, device’s past behavior, the
preprogrammed smart contracts enforce the resource policy
automatically. It means that if some IoT devices were compro-
mised and controlled by hackers for malicious activities, such
as behaving erratically, making continuous resource requests
that are out-of-line with its profile or application intent, or
initiating denial of service attacks, the smart contracts will
execute automatically based on the preprogrammed policies.
It will be very soon the device’s currency account will run out
of balance, through which EdgeChain will be able to quickly
identify, control, and contain malicious nodes or devices in
the network without requiring them actually to be involved
in specific security procedures. EdgeChain can easily take
further measures, such as putting the devices into the black-
list or blocking the specific devices for further actions. Since
smart contracts are based on blockchain, all the activities are
recorded into the blockchain. Thus, it is very difficult for
any malicious nodes to cause sustained damage or run away
with no traces. As an ongoing research effort, we are design-
ing intelligent methods to learn the devices’ history behavior
pattern based on the data logged in the blockchain to more
accurately identify and recognize potential malicious behavior.

D. Evolutionary and Backward Compatible Approach

We realize the fact that there are a large number of cheap
IoT devices that may have very limited security capabilities
or are being very poorly maintained and barely upgraded.
Though the Google’s Android Things 1.0 [4] has just been
released trying to work on this, it still has a long way to
go. There are some extremely incapable IoT devices, such
as narrowband IoT devices. It may be infeasible to run even
the most lightweight blockchain client software. We classify
these devices as legacy devices which are EdgeChain-unaware.
The other type of devices are relatively capable enough to
install with blockchain and smart contracts software and act
as a blockchain client. We classify them as nonlegacy devices.
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TABLE I
MODULES IN THE EDGECHAIN FRAMEWORK

Nonlegacy devices are able to interact with EdgeChain directly
and request resources and assistance from the edge servers.
Legacy nodes are unaware of the existence of and incapable
of working with edge servers.

The EdgeChain framework adopts an evolutionary and
backward compatible approach allowing legacy or extremely
incapable IoT devices to work in the new paradigm with-
out assuming them to install new blockchain software or to
be updated regularly. The EdgeChain system level capability
enables measuring, monitoring, and controlling resource usage
of both current and previously installed IoT devices. This goal
is achieved through a proxy that works between the legacy
IoT devices and the blockchain and smart contract modules,
through which the blockchain and smart contracts run trans-
parently to the legacy devices. The proxy sniffs the activities
of the legacy nodes and creates blockchain accounts for them
just as for nonlegacy nodes. In such case, EdgeChain only
monitors the behavior and take necessary action if detecting
malicious activities. It will not involve allocating edge server
resource for the devices. Through the proxy, the legacy IoT
devices are not required to know anything about blockchain
and smart contracts but they can still be monitored, managed,
and controlled by the new Edge-IoT framework. Even if they
are compromised by hackers, their malicious behavior can be
identified and damages can be contained.

E. Standalone Deployment Versus Distributed Deployment

Another important advantage with EdgeChain is the ability
to be tailored to the need of the intended application. This
allows it to be deployed in both stand-alone modes, such as
in a smart home as well as distributed modes, such as a smart
campus or smart city scenario. Fig. 3 shows a simple example
of a standalone EdgeChain box that is deployed in a smart
home. In larger scale use cases and applications, such as smart
campus and smart cities, multiple such EdgeChain boxes could
work in a fully distributed environment, in which cases the
distributed boxes work together and share the blockchain and
smart contracts data. The edge servers are also able to offload
and handover workloads with each other in busy situations.
The edge servers can also run appropriate incentive or gaming
algorithms associated with their resource pool and blockchain
coin accounts to optimize specific goals in revenue, cost, or
service latency.

III. EDGECHAIN FRAMEWORK AND

FUNCTIONAL MODULES

In this section, we discuss the overall EdgeChain frame-
work and functional modules. The overall system framework

Fig. 4. EdgeChain framework and functional modules.

is shown in Fig. 4. We can see that the EdgeChain sits between
the IoT devices and the edge servers listening to messages
and performing corresponding tasks which include device reg-
istration and device requests processing. Along the message
path, the key modules of EdgeChain include IoT Proxy, smart
contracts interface, smart contracts, blockchain server, and
application interface. We discuss these modules in a bit more
details.

The Table I summaries the modules, their technologies and
usage in our framework.

A. IoT Proxy

As we discussed in Section II-D, the major function
of the IoT Proxy module is to accommodate the legacy
devices and facilitate their interactions with the blockchain
and smart contracts modules. The proxy listens and sniffs
the legacy nodes’ activities and creates blockchain accounts
for them. Registration is done for them in the same way
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as nonlegacy nodes so that the IoT behavior regulating and
auditing functions work for them as well. Thus, all their
activities are recorded in blockchain as nonlegacy nodes. In
contrast, the nonlegacy devices can interact with smart contract
directly and get can get accounts created themselves through
the smart contracts interface. Implementing this proxy server
function requires appropriate sniffing software and we are cur-
rently investigating the most effective open-source tools for the
EdgeChain project purposes.

B. Smart Contracts Interface

When the IoT activities occur, such as registration, com-
municating between IoT devices, requesting edge server
resources, or sending data to outside servers on the Internet,
preprogrammed, and deployed smart contracts will be trig-
gered to automatically perform corresponding operations and
enforce the predefined management rules or policies. Smart
contracts interface builds a bridge between the IoT applica-
tions and the smart contracts. In our implementation, we utilize
the Javascript-based APIs, named Web3 protocol, to create
the smart contract instances for IoT devices. Smart contract
instances can call the functions and perform the rules that were
encoded in the contracts on behalf of the specific IoT devices.

C. Smart Contracts

The smart contracts, as the containers of all the rules
and policies, consist of two main modules in the EdgeChain
system. First, we build a digital currency system whose token
are virtual coins to represent the trust levels of IoT devices or
their quotas of edge resources they can get. Since every IoT
device is bound with a blockchain account, it will be assigned
with a certain amount of coins based on its history behavior
and resource type. For example, if a device keep behaving
well without any malicious actions, it will receive more coins
to pay for more service resources. Otherwise, the device may
be penalized by being charged more coins to receive the same
services or never being rewarded. Second, a module of policy
management maintains all the rules that were determined at
the time of their creation. The policies can be divided into two
types: 1) rules to analyze behavior of IoT devices and handle
harmful ones and 2) resource allocation policies to dynamical
assign resource to the requests and schedule tasks.

D. Blockchain Server

In our implementation, the smart contracts are deployed
and distributed on the blockchain. The blockchain server pro-
vides blockchain service where the IoT devices connect to
it as clients. Two functions are performed on the blockchain
server. First, the server executes the smart contracts by col-
lecting the transactions among devices and generating the new
blocks to run the code embedded in the contracts. Seconds,
all the activities in our system are recorded on the blockchain
by automatically logging device information, requests and
other activities on blocks. This process is also called “min-
ing” in the permissionless blockchain. However, as discussed
in Section II-A, the EdgeChain mining process is a lot less
resource intensive due to the possible usage of more effective
consensus mechanism, such as PBFT [34] and no need for
PoW mechanism.

E. Application Interface

The application interface bridges the communication
between blockchain server and edge cloud servers. After the
interaction with smart contracts and blockchain, there are two
possible outcomes: 1) the requests are either rejected due
to limited balance in their accounts or malicious behavior
identified or 2) the requests are accepted and granted with per-
mission to receive extra edge resource from the edge servers.
If a request is granted, then the IoT device continues to push
up the request to the edge server for corresponding resources.
Once confirming that there are still enough resources, the edge
servers will interact with the smart contracts of resource allo-
cation policies to permit the requests and schedule the service.
With the final permission, the IoT devices can interact with
the IoT applications running on the edge servers directly. For
example, resource-intensive works, such as face recognition
from the video streams can be offloaded to the edge servers for
faster processing. In this case, application interface first opens
the channels between smart contracts and the edge cloud to
trigger resource provision according to the execution results
from smart contracts. Then the granted IoT devices receive
the edge service and the resource is delivered through the
interface. We implemented these functions using the Node.js
frameworks to listen to the events on the channels and establish
communications for IoT devices and edge cloud accordingly.

Note that in terms of delay and time cost, it is true that
smart contracts and blockchain operations are not for free and
it could take a certain amount of time to finish. The good
news is that registration is usually a one-time operation for
a specific device. For resource request with the edge servers,
after the initial request is granted, the resource provisioning
and interactions happen directly between IoT devices and edge
servers which will not cause further delay. We conduct very
detailed evaluation and experimentation in Section V.

F. Edge Resource Provisioning

Once the IoT devices are granted with resources and their
accounts are with enough balance for the requested resources,
the edge cloud will provision resources in computation,
memory, storage, networking, and intelligence accordingly.
Since the application may have various requirements for com-
puter capability, bandwidth, latency, and privacy, individual
virtual machines work as the basic units to meet the specific
resource requests. For example, for the video stream-based
face recognition application example we mentioned, the edge
servers could spawn and launch additional virtual machines to
process the video stream and get the face recognized. If not
sufficient resource available from this edge server, EdgeChain
can coordinate with neighbor edge servers to get additional
resource. Additional incentive mechanisms and dynamic pric-
ing schemes using game theory or auction can be useful to
optimize certain goals in revenue or cost. The IoT devices
accounts will be charged accordingly based on the service
amount and quality they receive.

IV. EDGECHAIN KEY PROCESSES AND WORKFLOWS

With all EdgeChain framework and modules, we will
discuss the critical processes and workflows in this section.
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Fig. 5. Blockchain implementation workflow.

A. Blockchain Deployment

Blockchain implementation can be performed in a dis-
tributed way on the edge servers and user devices, and
get synchronized across these nodes. We begin by installing
blockchain software on the edge server, nonlegacy devices,
and the IoT Proxy. Our blockchain is built on the Ethereum
platform [47] which is initialized by default to sync with a live
public network. However, our EdgeChain system is currently
developed for the experimental purpose, so we configure it for
use on a private network on campus.

Fig. 5 shows the workflow of blockchain deployment. The
blockchain begins with creating a “genesis” block, which holds
configuration information, such as the hash value of blockhead,
timestamp, and difficulty of block mining. It is worth noting
that the amount of difficulty makes a significant influence on
the mining speed and then on the global system performance
since the mining process is realized by solving a PoW problem
with a certain difficulty. Given that only the edge server is per-
mitted to do the mining job, there is no need for a rigorous
PoW mechanism to solve the consensus problem. Therefore,
our EdgeChain system sets the difficulty to a reasonable low
level to balance between over quick mining to avoid stor-
age waste and efficiency of packing transactions. To further
reduce the resource consumption of the edge server, we imple-
ment an auto-mining function only occurring when there exist
unconfirmed transactions.

To sync with one another, all devices must have the same
genesis block. The initialization process will provide each
node with same genesis configuration. Next, a primary account
must be created for each node and public keys are assigned
for unique identification. The account gives each node a
blockchain address with which it can interact with other
nodes and smart contracts. To isolate our system from other
public or private blockchains, all nodes are set “no discov-
ery” so they cannot connect to other peers without explicit
addresses. Such isolation secures the devices from being
hooked by external attackers. Thus, each node maintains a
specific whitelist called “enode addresses” which contains the
public keys, IP addresses and network ports of the edge server
and some dependent IoT devices. Adding the enode addresses
to each node’s configuration will allow syncing to occur. Upon

Fig. 6. Smart contracts implementation workflow.

completion of the above steps, each node is ready to launch.
They will begin seeking friend nodes, syncing and shortly be
prepared for use.

B. Development and Deployment of Smart Contracts

The proper development of smart contracts guarantees the
correct execution of management rules. In our EdgeChain
system, the key functional operations including device reg-
istration and edge resource allocation are enforced by the
corresponding contracts. We deploy smart contracts following
the workflow in Fig. 6. When developing a smart contract on
the blockchain, it is important to run thorough tests because
once deployed, a contract can only be redeployed and lose
any data associated with the previous version. Such a rede-
ployment would migrate the contract to the new location and
the users may be outdated with an unsupported contract. After
deployment, smart contracts are assigned with addresses and
treated as normal accounts on blockchain. In order to interact
with them, a user must have a copy of the correct address to
create an instance as an interface utilizing remote procedure
calls protocol. The edge server is the performer to execute
the functions in the contracts when the IoT devices are the
initiators to trigger them.

The smart contracts specify various permissions to different
devices where the edge server owns the higher authority to
access all the functions but the IoT devices are only limited
to some basic functions. Such a setting reduces the impact
even if some weak devices are hacked to perform malicious
activities. To help engage the legacy nodes into the system, a
proxy is deployed in order to fulfill their interaction requests.
Other than the direct interaction launched by the nodes, smart
contracts are also able to indirectly interface with the outside
world by triggering “events” which are watched by application
interfaces running on the edge server or other nodes on the
network. Upon noticing an event of an application, some
smart contract can be automatically triggered to execute the
predefined tasks. For example, after the edge server finishes
serving one user requests, the related service data like service
time would be recorded on blockchain by executing a specific
contract.

C. Device Registration on Blockchain

Registration is the first step to engage the IoT devices
to be managed and monitored in the EdgeChain system. As
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Fig. 7. Devices registration workflow.

illustrated in Fig. 7, the registration starts from determining
the type of devices. If there are legacy devices lacking the
capability to run blockchain, the proxy can create accounts
for each device and register the device specifications stored in
the registration smart contracts. If there are nonlegacy devices,
they can interact with contracts directly to save their attributes
by sending transactions.

The registered information makes decisive effect on the
request admission introduced in the next section. Specifically,
the device specifications partially reference the manufacturers
usage description (MUD) [48] files which list the activities and
communications allowed for IoT devices. Such specifications
contain input/output data type, requests of edge resources,
MAC address, IP address, network port, communication pro-
tocol, and indication flags. Besides, each device registers a
unique account address to join blockchain. Upon registration,
the edge server will verify the above information and take
control of the modification rights of registration data. More
parameters will be appended, such as priority, coin balance,
credit, and requests timestamp to benefit device management.
As a summary, Table II represents the key device attributes
we defined in the registration database which include all the
devices key information, value units, and examples. Edge
server and IoT devices have different authorities to modify the
registry. The attributes marked with “*” can only be updated
by the edge server. The other basic attributes are filled up
during the first registration process initialized by IoT devices.

D. IoT Behavior Regulation and Activities Management

The IoT behavior regulation and activities management is
the core function of our EdgeChain system for IoT scalability
and security. In this section, we explain the critical designs
in the following order: detailed workflows, edge resource
allocation algorithms and behavior management scheme.

1) IoT Behavior Regulation Workflow: EdgeChain not only
regulates the activities among IoT devices but also provides the
extra edge computing service to boost the resource-intensive
applications. When the activities or the requests from IoT
devices are received, they are treated differently based on the
type of devices, either legacy or nonlegacy devices. Legacy
devices have no request for the support of edge cloud to han-
dle the additional workload. Nonlegacy devices could request
to obtain edge resource and services under the enforced rules

TABLE II
REGISTERED DEVICE ATTRIBUTES

of smart contracts. The detailed workflow is shown in Fig. 8
and discussed below.

For a legacy device, the blockchain server monitors its
data flow to other IoT devices or outside network through
a sniffer deployed on the IoT gateway, such as a WiFi router.
During the work process, its activities or behaviors, such as
network port and data destination, are logged on blockchain.
Then the smart contracts start analyzing the behavior of the
device by matching the above observation with the regis-
tered attributes. Based on the analyzing results, the blockchain
server will choose to keep monitoring the normal behavior.
Or it will trigger the smart contract to block any malicious
legacy devices and update flags in their registration files. Their
future activities will be detected and blocked automatically
without performing behavior analysis again. Finally, the exe-
cution results of the related smart contracts will be stored on
blockchain automatically.

For nonlegacy devices, they may send service requests
for additional resources for resource-intensive applications,
such as virtual reality (VR) gaming. Once received, the
requests are recorded on blockchain in the form of trans-
actions. Next, the resource allocation contracts are executed
by the edge server to retrieve the attributes of the devices
and analyze the resource requirements in the service requests.
If the devices are found to attempt malicious behavior, they
will be penalized by reducing their coin balance, lowering
credit points and even blocking service for all future requests.
If the devices behave normally, the edge cloud will first
check the remaining available resource before further process
the requests. If the resource pool is exhausted, the requests
is rejected and logged. Otherwise, smart contracts perform
the resource allocation strategy based on the device types,
request details and payable coins. After obtaining the deci-
sions, the edge server starts to schedule the service for the
devices immediately. In the meantime, coins will be charged
from the devices’ account when the edge service begins.
Again, the decisions and coin exchanges are all recorded on
blockchain.

2) Resource Allocation Based on Pricing Mechanism: In
this specific instance, our optimization goal of resource alloca-
tion is to maximize the acceptance rate of user requests. In this
case, the currency system plays as the connector among edge
server, IoT devices and blockchain by linking edge resource
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Fig. 8. IoT activities management workflow.

with coins. Our proposed currency system is built on a pricing
mechanism to decide: 1) the ordering of the requests may be
served and 2) the specific service fee.

The price of a resource request dynamically changes accord-
ing to the following environmental parameters.

1) Total amount of edge resources.
2) Current available edge resources.
3) Requested edge resource.
4) Application priority.
Considering the QoE requirements, we categorize the prior-

ity of IoT applications into four levels, from highest to lowest:
1) urgent monitoring: patient monitoring and people crowd
sensing; 2) latency sensitive tasks: VR and AR; 3) reliable
data transmission: bank transactions and privacy transferring;
and 4) tolerant tasks: light control and sensors-based passive
monitoring.

Table III shows the symbol notations used to calculate the
price. We first define the unit price of resource j for the
request i

Pi_j = α

ri_j
cj ∗ βLi . (1)

Then the total price for request i is defined as, where
cj ∈ [0, wj]

Pi =
M∑

j

ri_j ∗
[
α

ri_j
c_j ∗ βLi

]
= βLi

M∑

j

ri_j∗α
ri_j
c_j . (2)

TABLE III
PARAMETERS OF PRICING MECHANISM

The unit price depends on the application priority and avail-
able edge resources (1), while the total price also for a specific
request includes user’s resource requirements (2). Using the
dynamic pricing scheme, we propose a heuristic request admis-
sion algorithm as illustrated in Algorithm 1. The proposed
algorithm proceeds as follows. At the beginning of timeslot t,
the number of requests is N and the number of resource types
is M. For each request ri_j ∈ R, judge if any kind of left edge
resource ri_j is less cj. If yes, the request is rejected with-
out consideration in this timeslot. If there still have enough
resources, calculate the total price of the requests. After all
the requests are estimated, the one with the lowest price value
is accepted and added to acceptance queue. Then the amounts
of available resources C are updated. The rest of requests are
re-estimated in the next iteration. The algorithm continuous
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Algorithm 1 Request Admission Algorithm
Require: N requests {req1, req2, . . . , reqN} at time t, request

queue Q(t), current available amount of resources C =
{c1, c2, . . . , cM}, requested resource R = {ri_1, ri_2, . . . , ri_M},
priority of reqiLi .

Ensure: accept or deny request reqi

1: while there exists resource for at least one request do
2: for each reqi in the request queue arrived at timeslot t do
3: if ri_j > cj then
4: deny request reqi;
5: continue next iteration;
6: else if ri_j <= cj then
7: calculate the total price Pi;
8: end if
9: end for

10: accept reqi with minimal price Pi;
11: remove the accepted request from Q(t);
12: update the available edge resources C;
13: end while
14: EXIT;

until no request can be admitted. Assume the final acceptance
number of request is K, we can conclude the time complexity
is O[(N ∗ M + 1 + M) ∗ K] = O(N ∗ M ∗ K), where K < N.
Therefore, the algorithm can be solved in polynomial time.

3) Behavior Management Based on Credit System:
Behavior management aims at detecting the potentially mali-
cious activities or requests and taking action to avoid further
damage to the system. We propose a credit system to perform
the behavior management. Our credit system is distinguished
from other similar schemes in the IoT environment because the
credit affects resource allocation on the edge server instead of
the cooperations between IoT devices. On the other hand, the
credit is not directly related to price strategy for edge service
but make up the incentive or punishment scheme to restrict the
request activities. In this paper, we present our ongoing design
and the primary model to show how the behavior management
works. We consider the following features.

1) Resource Requests: The amount of resource requested
by devices indicates whether the devices work in the nor-
mal mode. Excessive resource requirements potentially
represent abnormal behavior and malicious attempts.

2) Price Threshold: Assume each device only runs one kind
of application and sends one kind of resource request, a
specific price threshold Pthres is set for this device which
means the maximal reasonable price. And the total price
for its current request is represented as Ptotal. If Ptotal
exceeds Pthres, the request is regard as potential bad
behavior so the device credit is reduced. Otherwise, the
request is regard as good behavior and credit increases.

3) Request Frequency: If a device continuously send
requests in an overhigh frequency, it tends to occupy
resource than the common use. So we reduce its credit.

4) Network Port: A device should communicate with the
edge server using the predefined network port in the
MUD file. Otherwise, some abnormal behavior happens.

5) Data Traffic Destination: A device usually has fixed
communication targets, so the strange destination indi-
cates the possibility the device is hacked or under
control.

Given the above features, the system monitors the behaviors
of IoT devices by comparing their normal activity patterns to
the incoming requests. If any feature is observed abnormal, the
credit value of the corresponding device will be reduced. Each
new registered device owns the same initial credits. With the
changes of the real-time credit values, we propose two kinds
of management actions: 1) if the credit of a device has already
been reduced to 0, it is blocked for any future activities and
2) otherwise, the device will get various coin returned based
on the credit changes. The equation is defined as follows:

Coinsreturn = Coinscharged + �Credit ∗ η (3)

where �Credit is the change of credit value and η is the
influence factors of changes.

We conclude that the ability to pay for edge service is
under the control of the credit system. The better man-
ner receives higher chance to obtain more resources. For
better evaluating abnormal behavior, we plan to implement
fine-grained machine learning-based behavior profiling and
anomaly detection methods in our future work.

V. PROTOTYPE AND EVALUATION

In this section, we first introduce our experimental testbed
built as the EdgeChain prototype. Then, we implement the key
functions to verify if it is feasible with acceptable performance
overhead. In the third part, two typical IoT applications in dif-
ferent service priorities are deployed on the EdgeChain system
to show the compatibility between blockchain and applica-
tions. Finally, we test the performance of the pricing-based
resource allocation system.

A. EdgeChain Prototype Environment Setup

The testbed includes the back-end edge cloud cluster
and the front-end IoT devices, proxy, and access point.
The edge cloud cluster is an OpenStack deployment includ-
ing, 4 high-performance Dell PowerEdge R630 rack servers,
1 high-performance Dell PowerEdge C730x rack server, and
1 high-performance Cisco 3850 switch. The front end consists
of several Raspberry Pi 3 Model B single board computers,
a Google AIY voice kit, a Google AIY vision kit, and a lap-
top. One desktop is configured as the proxy for legacy IoT
devices, and a high-performance Cisco WiFi Access Point, as
illustrated in Fig. 9

The detailed hardware and software configurations are as
follows. From the aspect of hardware, each OpenStack com-
pute node rack server is equipped with 18 independent CPU
cores and 256 GB RAM. The mining environment is set up
using one core and the rest of the processor cores are reserved
for the edge computing service. The miner can boost up to
3.5 GHz CPU, 8 GB RAM, and 1 TB storage. As the IoT
devices, a Raspberry Pi has 1.2 GHz CPU, 1 GB RAM, and
32 GB storage with several accessory modules including cam-
eras, sense hat, microphone and Google bonnet. The laptop has
2.2 GHz CPU, 4 GB RAM, and 256 GB storage. As for the
desktop proxy, 3.2 GHz CPU, 16 GB RAM, and 1 TB storage
are installed to manage the multiple blockchain accounts of
IoT devices.

Regarding the software, the edge server has installed with
CentOS 7 as the operating system, Go-ethereum as the
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Fig. 9. EdgeChain testbed.

Fig. 10. Storage of prerequisite software.

blockchain running framework, Solidity as the smart contract
development language, Truffle as the contract deployment tool,
and Node.js as the interface of interactions between IoT appli-
cations and blockchain. Except for the blockchain part, the
edge computing resources are virtualized using OpenStack
cloud platform which helps scale up or down the resource
pool flexibly. The edge service is provided in the form of vir-
tual machines to fit the variant specifications of user requests.
The Raspberry Pis have been installed with Raspbian operating
system and Go-ethereum to work in the light mode without
block mining function. The laptop is with MacOS and the
desktop installs Ubuntu 16.

In the testbed, the rack server works as the edge ser-
vice provider and the block miner solving PoW puzzle. The
Raspberry Pis and the laptop act as blockchain clients gener-
ating and sending transactions of resource requests to the edge
server. The desktop interacts with the blockchain on behalf on
the legacy devices as a proxy. Given the above installations, the
edge server works as a “full” blockchain node which stores all
the transactions, executes the predefined smart contracts and
mines new blocks. The IoT devices work as “light” blockchain
nodes which only store the transactions data. Fig. 10 shows the
storage requirements for the prerequisites software modules,
where Ethash is the PoW system used to mine blocks. We put
most of the computation work occurring on the blockchain to
the full node in order to reduce the overhead on the light nodes.

B. Overhead of Blockchain and Smart Contracts Operation

We evaluate the blockchain operation based on the two
primary functions: IoT devices registration and edge server

resource allocation to illustrate the extra overhead caused
by the block mining and the interactions of smart contracts.
The source of overhead can be divided into three aspects:
1) computation; 2) communication; and 3) storage.

1) Computation Cost of Mining Process on Edge Server:
We first evaluate the overhead of device registration in which
device specifications are loaded in the transactions signed by
their generators. Then the transactions are broadcasted to all
the other devices engaged in our system. Finally, these new
transactions are packed in the blocks and verified by the miner.
We observe the average usage of computation resource on the
edge server during mining and no mining, as illustrated in
Fig. 11(a). During the block mining, the edge server consumes
much higher CPU and memory resource to commit and packs
transactions into new blocks. In contrast, in the idle situation, it
only listens to coming transactions, such as mining new block
caused by new transactions thus consume much less CPU and
memory resource.

2) Communication and Storage Cost for Blocks
Synchronization: Given that blockchain is the fully dis-
tributed, each device is required to be synchronized with the
mainstream chain. The synchronization mechanism relies on
the automatic updates and leads to the communication and
storage overhead to the system, where the former results
from the data transmission and the later from the writing to
the local disk. In our system, the edge server maintains the
mainstream blockchain and other devices download the chain
data from it. In order to evaluate the synchronization delay
intuitively, we compare IoT devices to the edge server. Since
the edge server as the miner has more computing and band-
width resource than IoT devices, it completes the validation
and transmission of the new blocks faster. As illustrated in
Fig. 11(b), we find the average time to synchronize a new
block is 4.09 ms for edge server and 35.9 ms for IoT devices.
With higher delay, the IoT devices still meet the latency
requirements even for the real-time applications that response
time is less than 100 ms.

The average size of a block is 128.78 kB and each
block can store up to 208 device registrations. Fig. 11(c)
presents a sample of 50 blocks which have various sizes
ranging from 108 to 223 kB. Thus, the system will generate
around 1.8 MB blockchain data on average for 1000 devices’
registration.

3) Computation and Communication Cost of Smart
Contract Transactions: In addition to block mining and syn-
chronization, blockchain operation relies on the transactions
triggered by the smart contracts. Taking the resource request
transaction as an example, we evaluate the computation cost
and the interaction delay with smart contracts. The CPU and
memory usage are compared between the edge server and IoT
devices, as illustrated in Fig. 11(d). We observe that the reg-
ular transactions take a very low percentage of CPU resource
while the memory usage is little higher since the blockchain
client occupies 8% even in idle time. We also evaluate the
interaction delay of smart contracts which is significant to
guarantee system efficiency. Fig. 11(e) shows the completion
of one transaction is less than 50 ms. Such delay should satisfy
the latency requirement of the real-time applications.

We further discuss the possible impacts to the blockchain
overhead when a large number of IoT devices are connected
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(a) (b) (c)

(d) (e)

Fig. 11. Overhead of system operation. (a) Computation resource usage of the edge server for mining. (b) Delay to synchronize a block. (c) Block sizes.
(d) Computation resource usage for sending transactions. (e) Time to complete one transaction.

in the real production environment. For the miners located
at edge servers, it is expected that the computing resources
usage for mining, verifying, packaging, and storing new blocks
will increase, since many devices may generate more transac-
tions in one unit time. Meanwhile, network traffic between the
servers and distributed IoT devices will also increase. To avoid
overloading the servers, a specific server may be required to
cover only a number of IoT devices, or EdgeChain can launch
more VM as the miners to share the load of computation
and data traffic. As for the IoT devices, no extra overhead
is introduced to them since they work in the client (light)
mode where only relevant blocks are synchronized and the
transactions generated by one device are steady.

C. Overhead Comparison of Two Typical IoT Applications

To evaluate the feasibility and compatibility of the proposed
system, we compare blockchain overhead of two typical
Edge-IoT applications. We evaluate the face recognition and
the natural-language processing applications by testing the
computation and communication cost. Face recognition is
widely used in the security monitoring applications, such as
city surveillance, crowd control, and door guarding which is
latency-sensitive to achieve quick reaction. The typical appli-
cation of the natural-language processing or voice recognition
is the smart home assistant, such as Google Home and Amazon
echo.

For the face recognition, the Raspberry Pi captures video
frames with camera module in 1080p resolution and 60 Hz
frequency, uploads them to the edge server for image process-
ing and waits for the detection results in the form of location
coordinates of detected faces. With regard to the natural-
language processing, the Raspberry Pi records the human voice

TABLE IV
COMPARISON OF COMMUNICATION RATE

with a USB microphone, transfers it to the edge server, and
then the translated text is returned.

We first evaluate the computation cost of blockchain com-
paring with the two applications. Fig. 12(a) shows that the
blockchain has the lowest CPU usage compared with the two
applications. In addition, Fig. 12(b) shows the blockchain has
the highest memory usage but still in a low percentage when
working with other applications in parallel. Thus, the IoT
devices will not suffer from the overload problem. Second,
we evaluate the difference of communication data rate among
sending blockchain transactions, video and audio data on a
Raspberry Pi, as reported in Table IV. We observe that the reg-
ular transactions of resource requests bring very low overhead
to the I/O performance and overall network bandwidth.

In summary, we observe that the blockchain can support and
collaborate with the IoT application in a distributed and secure
way. The overhead is within a reasonable and acceptable range,
and the system is feasible to satisfy the requirements to build
a multiapplication EdgeChain platform for future demands.

D. Resource Allocation Performance of the Pricing Scheme

At last, we evaluate the resource allocation performance of
the proposed pricing scheme. The goal of resource allocation
is to improve the acceptance rate of use requests, which mainly
depends on the proposed pricing mechanism.
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(a) (b)

Fig. 12. Overhead comparison with IoT applications. (a) Comparison of CPU usage. (b) Comparison of memory usage.

(a) (b) (c)

Fig. 13. Resource allocation performance. (a) Influence of β value. (b) Acceptance comparison with constant β. (c) Acceptance comparison with resource
change.

TABLE V
SYSTEM PARAMETERS

We first evaluate the influence of α and β. α has no effect on
the performance since it determines the range of α[(ri_j)/c_j] is
located in [1, α]. In contrast, β adjusts the impact of applica-
tion priority where the high-priority requests are more likely to
be served. We do three random simulations and each one con-
tains 2000 iteration of random numbers of user requests with
different resource requirements. The system parameters are
set in Table V and the request parameters are set in Table VI.
Fig. 13(a) shows the best range of β is in [1.3, 1.4] and the
too large β will lead to decrement of acceptance rate since the
requests admission simply depends on the priority.

Second, we compare the acceptance rates among the pricing
mechanism, first-come-first-serve and multilevel scheduling
based on priority, where β = 1.35. Fig. 13(b) shows that
our proposed algorithm performs best. Then, we evaluate
the performance with the change of total edge resources, as
illustrated in Fig. 13(c). Starting from the configuration in
Table V, the amount of resources gradually decreases to lower
percentages. Our pricing algorithm performs better.

TABLE VI
REQUESTS PARAMETERS

VI. RELATED WORK

Due to the interdisciplinary essence of EdgeChain, related
work comes from different aspects, such as IoT, edge comput-
ing, blockchain, and smart contracts. A great amount of efforts
have been focused on these individual topics, thus, limited
by the space, we will not enumerate all the separate efforts.
Instead, we will focus on those directly or closely related work.

The most closely related work are Xiong et al. [27], [28]
in which the authors proposed a pricing scheme to maximize
the profit of the edge or cloud service providers by exploring
the Stackelberg equilibrium between the blockchain min-
ers and the service providers. Different to our objective
to support IoT applications, such a pricing scheme aims
to optimize the resource management on the cloud servers
to support the block mining of the distributed miners for
blockchain networks. It focuses on the blockchain running
costs. Chatzopoulos et al. [31] focuses on computation offload-
ing between devices themselves by using some incentive and
reputation schemes. They designed a truthful auction strat-
egy and a mutual reputation scheme for bidding the edge
service with a fix pricing mechanism for the unit resource.
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Sharma et al. [36] proposes a conceptual software-defined
edge nodes scheme using multilayer blockchain. Different
from these work, our research focus is not on blockchain
itself. Instead, we use blockchain as carrying vehicle to
provision resources for various IoT applications and con-
trol and regulate IoT devices’ behavior. More reviewing
articles [33], [37], [38], [40], [45] presented the overall future
prospects in combining blockchain and IoT.

Blockchain and smart contracts are being used to secure
many different areas and we will not enumerate them here, but
a few example efforts include securing smart home [39], secur-
ing 5G fog network handover [41], securing virtual machine
orchestration [42], securing access control in IoT [43], and
secure data provenance management [44].

Another thrust of related work is about edge computing
research. A large amount of existing work are either on spe-
cific applications, such as video analytics, vehicular network,
cognitive assistance, and emergency response, or very heavily
focused on optimizing specific targets, such as revenue, cost,
delay, or energy consumption associated with operations, such
as mobile edge offloading, service migration, virtual machines
chaining, placement, and orchestration. We will not list all of
these works but two good start reading points are [5], [6].

VII. CONCLUSION AND FUTURE WORK

In this paper, we discussed the design and prototype of
the EdgeChain framework which is a novel Edge-IoT frame-
work based on blockchain and smart contracts. EdgeChain
integrates a permissioned blockchain to link the edge cloud
resources with each IoT device’s account, resource usage and
hence behavior of the IoT device. EdgeChain uses a credit-
based resource management system to control the IoT deivces’
resource that can be obtained from the edge server. Smart con-
tracts are used to regulate IoT devices’ behavior and enforce
policies. With these new designs, all the IoT activities and
transactions are recorded into blockchain for secure data log-
ging and auditing. We implemented an EdgeChain prototype
and conducted extensive experiments which showed that the
cost for EdgeChain to integrate blockchain and smart contracts
are within reasonable range while gaining various intrinsic
benefits from blockchain and smart contracts. To the best of
our knowledge, EdgeChain is the first of its kind of incorpo-
rating blockchain in edge computing to provision resources for
various IoT applications and to control and regulate the IoT
devices’ behavior without overloading the devices with full-
scale security-related burdens. EdgeChain is still an ongoing
project and we are currently working on various issues within
the framework, such as IoT Proxy, intelligent resource pro-
visioning for multiple heterogeneous applications, and better
IoT device behavior regulations.
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