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Abstract—Network intrusion detection plays an important role
in the Internet of Things systems for protecting devices from
security breaches. Facing challenges of the rapidly increasing
amount of diverse network traffic, recent research has employed
end-to-end deep learning-based intrusion detectors for automatic
feature extraction and high detection accuracy. However, deep
learning has been proved vulnerable to adversarial attacks that
may cause misclassification by imposing imperceptible pertur-
bation on input samples. Though such vulnerability is widely
discussed in the image processing domain, very few studies
have investigated its perniciousness against network intrusion
detection systems (NIDS) and proposed corresponding defense
strategies. In this paper, we try to fill this gap by proposing
Def-IDS, an ensemble defense mechanism specially designed for
NIDS, against both known and unknown adversarial attacks. It
is a two-module training framework that integrates multi-class
generative adversarial networks and multi-source adversarial
retraining to improve model robustness, while the detection
accuracy on unperturbed samples is maintained. We evaluate
the mechanism over CSE-CIC-IDS2018 dataset and compare its
performance with the other three defense methods. The results
demonstrate that Def-IDS is able to detect various adversarial
attacks with better precision, recall, F1 score, and accuracy.

Index Terms—Network intrusion detection, adversarial at-
tacks, deep learning

I. INTRODUCTION

With the accelerating expansion in the number of Internet
of Things (IoT) devices and the scale of computer networks,
threats of network intrusions have severely grown in the past
decade. By attacking vulnerable devices and network facilities,
cybercriminals are able to compromise the confidentiality of
communication, the availability of network services, and the
integrity of data. According to Cisco’s 2020 Annual Cyber-
security Report [1], the average cost of a security breach
is $3.92M per company. The critical IoT infrastructures and
services, such as public healthcare, transportation and power
grid, are at risk of disruptive adversaries including malware,
spam, sandbox evasion, abusive uses of cloud services, and
botnet-based Distributed Denial of Service (DDoS) attacks
[2]. In order to defend IoT security, deep learning-based
network intrusion detection systems (NIDS) have been ap-
plied recently to identify malicious instances from massive
and heterogeneous IoT traffic [3]. Deep learning outperforms
the traditional signature-based and machine learning-based
solutions at detection accuracy and scalability, because of

its unique advantages such as feature extraction, non-convex
optimization, and end-to-end learning model [4], [5].

Though deep learning is promising to build advanced in-
trusion detectors, researchers have found that deep neural
networks (DNN) are vulnerable to adversarial attacks and
thus the detectors can be compromised [6]. Specifically, the
adversarial attacks add minor manipulation on the input sam-
ples, called adversarial examples, to mislead the detectors to
misclassification. These attacks occur in the DNN deployment
phase without tampering any model parameters. Adversarial
examples exist due to two main reasons [7]: 1) The gap
between the learned and the optimal model decision boundary
commonly exists, due to the difference between training data
and real data distribution. 2) The high degree of model
linearity in neural networks is another weakness because it
allows adversarial examples to be produced through gradient
sign methods near the manifold of the training data. For the
NIDS, if adversarial examples are found, the deep learning-
based detectors can be severely compromised. As illustrated
in Fig.1, an adversarial example (marked as red dots) from
certain intrusion class but outside the learned model boundary
would be misidentified as normal traffic, and vice versa.
Such false negative or false positive detection results would
dramatically increase the false alarm rates and undermine the
NIDS function.

In the NIDS domain, some research works have investigated
the adversarial attacks against deep learning-based intrusion
detection [8], [9], [14], [15], but very few defense methods
were proposed [21]–[23]. There are three main difficulties to
design an effective defense. First, how does it mitigate the
threat of various known attacks and new emerging attacks?
Second, how does it maintain the high detection accuracy on
clean inputs while the robustness is improved? Third, how
to keep the functionality of IoT network traffic features in
order to make sure the intrusions valid? Unfortunately, the
existing defense methods are constrained by: 1) low detection
accuracy and high deployment cost against limited known
attacks, as well as no consideration of emerging unknown
attacks; 2) degraded detection accuracy on unperturbed inputs;
3) ignoring the preservation of feature attributes and adopting
the outdated datasets such as KDD99 and NSL-KDD.

In this paper, we propose a novel ensemble adversarial
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Fig. 1. Adversarial examples located between the real intrusion decision
boundary and the decision boundary learned by deep learning model.

retraining-based defense mechanism, named Def-IDS, to en-
hance the robustness of deep learning-based intrusion detectors
against adversarial attacks. Our work has three key merits in
handling the three constraints: 1) it resists both known and
unknown attacks while guaranteeing the intrusion detection
accuracy; 2) it enables efficient one-time retraining for the
multi-class detector rather than costly retraining for every
intrusion class; 3) it adopts a recent benchmark dataset without
compromising the functionality of traffic features. To achieve
the above merits, our contributions include:

• We design a two-module ensemble mechanism that in-
tegrates both generative adversarial networks and ad-
versarial retraining techniques. The integration not only
preserves the intrusion detector’s accuracy on the clean
samples, but also significantly improves the robustness
against adversarial attacks.

• In the first module, we propose a multi-class generative
adversarial networks (MGAN)-based dataset enhance-
ment method. It enhances the original training dataset
by simultaneously oversampling the multi-class intrusions
in order to reduce the gap between training and real
data distribution. We extend the generative ability of the
original GAN from a single class to multiple classes for
cost efficiency. By applying the enhanced dataset into
the training process, the intrusion detector is more robust
against both known and unknown adversarial attacks.

• In the second module, we propose a multi-source adver-
sarial retraining (MAT) model. It retrains the detectors
with various types of adversarial examples in order to
further smooth the decision boundaries and deceases the
adversarial data space. MAT not only resists the specific
adversarial attacks but also partially transfers resistance
against one attack to another.

• We implement the state-of-the-art adversarial attacks and
evaluate the performance of our mechanism using CSE-
CIC-IDS2018 dataset [10]. Experiments show that Def-
IDS achieves significant robustness improvement and is
a competitive defense strategy.

The rest of the paper is organized as follows. Section II
discusses the recent research on deep learning-based NIDS
adversarial attacks and defense attempts. Section III analyzes
threat model of adversarial attacks. In section IV, we describe
the proposed ensemble defense mechanism. Section V presents
the mechanism implementation and the evaluation results.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

Recent research has exposed the vulnerability of DNN
to adversarial attacks, and most of the studies focused on
the attacks against the models for image processing tasks.
Currently, limited works conducted experiments to launch
adversarial attacks and proposed defense methods in the NIDS
domain.

For the attack methods, Warzynski et al. [8] attempted to
use Fast Gradient Sign Method (FGSM) attack [11] against
the intrusion detector which was built with a three-hidden-
layer neural network. The results showed that the detector
was seriously compromised as all perturbed test examples
were misclassified as legitimate. Wang et al. [9] investigated
four popular white-box attacking algorithms and employed
them on a two-hidden-layer feed (FNN) with dropout function.
The evaluation showed that the attacks were able to impose
perturbations on different features with different efficiency.
However, neither of these two works considered the perturba-
tion constraints of functional features. Lin et al. [14] proposed
to generate adversarial examples in the black-box setting
against NIDS using the generative adversarial networks (IDS-
GAN) where only the non-functional features were utilized to
inject malicious perturbations. Yang et al. [15] tested two more
black-box attacks including substitute model [16] and ZOO
[17], where the latter achieved better effect but required more
computation. However, these two works generated attacks
based on the outdated datasets and placed no constraints on
perturbation magnitude.

For the defense strategies, Usama et al. [21] briefly men-
tioned using the adversarial retraining for resisting IDS-GAN
attack. However, the work lacked detailed discussion how
to implement and configure the retraining. Besides, their
method proposed to build one GAN model for one class
of intrusions which would cause high computation overhead.
Ibitoye et al. [22] analyzed the attack success rate on FNN and
self-normalization neural network (SNN). FGSM and Basic
Iteration method (BIM) attacks were implemented on the IoT
botnet dataset. Even though their experiments demonstrated
that SNN had better robustness than FNN, but the overall
detection rate of adversarial examples was still less than 60%.
Pawlicki et al. [23] introduced an extra adversarial attack filter
working independently with the intrusion detector to differen-
tiate between adversarial and non-adversarial examples. Our
proposal is different to this work because we aim to improve
the robustness of intrusion detector directly.

To the best of our knowledge, there are very limited works
for improving the robustness of deep learning-based NIDS in
order to mitigate the impact of adversarial examples. Different
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from the existing works, our ensemble mechanism is a cost-
efficient and effective defense method against both known and
unknown attacks, while the intrusion detection performance is
preserved on the clean samples.

III. ADVERSARIAL ATTACK THREAT MODELS

In this section, we first analyze the vulnerability of deep
learning-based intrusion detection. Then the adversarial attack
model is introduced from the aspects of attack formulation,
taxonomy, and attack algorithms adopted in our study.

A. Vulnerability

Adversarial attacks utilize two main vulnerabilities of deep
learning models: 1) inaccurate approximation to the real
distribution; and 2) linearity of neural network models. Corre-
spondingly, the attacks either search for adversarial examples
indirectly near the decision boundaries or generate the exam-
ples directly based on the parameters of models.

First, the inaccurate approximation means that the classifica-
tion boundaries of the trained models are not 100% equivalent
to the expected boundaries in the real data distribution. Such
a gap may result from data and model: 1) the size of the
training dataset may not be sufficient to present all patterns of
real distribution. Moreover, the class imbalance in the dataset,
if existed, would cause decision bias; 2) the model structure
and related hyperparameters configuration affect the learning
ability of models, including choice of layers number, activation
functions, and optimization algorithms.

Second, the linearity of neural networks can be leveraged to
produce adversarial examples in high-dimensional input data
space. Assuming that an adversarial example is xadv = x+ η
and the amount of perturbation is η, the linearity magnifies the
effect of small perturbation to a large deviation that is enough
to change the decision of the classifier. Even if the single ηi
on each data feature is minor, the magnitude of the cumulative
η will increase to n · ηi in n-dimensional space. Thus, a large
dimensionality leads to a substantial change in the output of
the end-to-end model. Though many neural networks employ
non-linear activation functions such as rectified linear unit
(ReLU), they still behave linearly because the models are
trained in linear ways to obtain the gradient-based loss during
model optimization [11].

B. Adversarial Attack Model

1) Attack Formulation: We denote the deep learning-based
classifier by C, as the attack target. The classification results of
adversarial example xadv and original data x are represented
with C(xadv) and C(x) respectively. The optimization goal of
adversarial attacks is formulated as:

max
‖xadv−x‖p≤ε

|C(xadv)− C(x)| (1)

where ‖·‖p is the metric of distances in p-norm. In order to
guarantee that an adversarial example is still in its original
class, the difference between xadv and x is constrained by
‖xadv − x‖p ≤ ε, where the limitation of perturbation size is
ε. In NIDS domain, adversarial perturbation needs to preserve

the functionality of network traffic. Therefore, ε should be
small enough for not changing the traffic pattern but xadv is
misclassified by the classifier C.

2) Taxonomy of Adversarial Attacks: The adversarial attack
methods can be categorized by the knowledge of the target
models into white-box and black-box attacks. First, white-box
attacks assume that the adversary knows all the parameters and
configurations of DNN model, such as architecture, network
weights, and activation functions. Thus, the same model is
rebuilt by the adversary to find effective ways to generate
perturbed samples. Second, black-box attacks assume that
the adversary has no knowledge of the model except the
inputs and the corresponding outputs. A synthetic dataset is
collected, and a substitute model is trained to approximate the
targeted model. Researchers [6] have found that the adversarial
examples can transfer between similar model architectures for
the same classification purpose. Such transferability allows
the adversary to apply the adversarial examples against the
substitute model to the victim model.

In this paper, we use black-box attacks since the intrusion
detector are usually confidential in practice.

3) Attack Algorithms: We adopt four cost-efficient adver-
sarial attacks to evaluate the defense performance of our
proposal.

First, we adopt Fast Gradient Sign Method (FGSM) [11],
which is a relatively less computation-intensive attack. It
utilizes the linear behavior of neural networks to perform
gradient descent in order to direct how the clean samples
should be manipulated. The optimal perturbation is computed
using back-propagation algorithm.

Second, we adopt Basic Iterative Method (BIM) [18]. It
extends the FGSM by performing gradient calculation multiple
times with small step size. In each iteration, the value of
perturbation is clipped to avoid large change on traffic features.

Third, DeepFool [13] is implemented to find the closest
path from the original data point to the decision hyperplane.
The projection to the hyperplane determines the minimal
perturbation used for generating adversarial examples.

Fourth, Jacobian-based Saliency Map attack (JSMA) [12]
is implemented, which utilizes the sensitive features of x
that can make most significant changes to the classification
result. Saliency map is built to understand the mapping relation
between inputs and outputs.

For the readers who are interested in the principles of the
above attack algorithms, we refer them to the works [11]–
[13], [18]. The details of their usage for launching adversarial
attacks are introduced in the next two sections.

IV. PROPOSED DEF-IDS DEFENSE MECHANISM

A. Mechanism Overview

In this section, we introduce a novel ensemble defense
mechanism against adversarial attacks. The goal is to mitigate
the misclassification rate of adversarial examples as much
as possible. Fig. 2 shows the rationale of our mechanism.
We utilize the upper bound and lower bound to characterize
the robustness degree of a DNN model and show how our
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Fig. 2. The upper bound and the lower bound that characterize the robustness
degree of a NIDS model against adversarial examples.

mechanism differs from the existing methods. The area under
the bounds is the data space that adversarial examples may
exist. Specifically, the upper bound is the ideal robustness
defined by a theoretical proof. A model with upper-bound ro-
bustness can correctly classify the adversarial examples within
a quantifiable guarantee for whatever known or unknown
attacks. In this case, the theoretical proof guides the model
training process to narrow down the gap between model and
true decision boundaries into a certain level. However, there
is no widely accepted proof method yet [6]. Correspondingly,
the lower bound is defined by adversarial examples generated
from the known attacks. The deep learning models trained with
these adversarial examples are resistant to the related attacks.
The lower bound would be raised when new attacks emerge.
The existing defense method [21] for NIDS is built on the
lower bound aiming at identifying a known adversarial attack,
but the defense against the other attacks located between the
upper bound and the lower bound is still missing.

Therefore, we propose an ensemble retraining mechanism
that aims at approximating the upper bound against both
known and unknown adversarial attacks. The mechanism con-
sists of two complementary modules, as presented in Fig. 3.
In the first module, we design a cost-efficient multi-class
generative adversarial network (MGAN)-based method that:
1) generates mimic samples for multi-class intrusions using
a single GAN model; 2) augments training dataset near the
model decision boundary to reduce the learning gap; 3)
improves the overall model robustness without engaging any
specific adversarial attack algorithms. In the second module,
we create a multi-source adversarial retraining (MAT)
method to further improve the model robustness by integrating
the adversarial examples from various attacks into the training
process as the regularization of decision boundary. We find
that the robustness against one attack is also partly effec-
tive on other attacks. Therefore, the multi-source adversarial
examples-based retraining achieves better performance than
the single source.

By combining the two modules, the proposed
“MGAN+MAT” approach significantly enhances the defense
ability of the NIDS model. It remedies more adversarial data

adversarial 
examples

Enhanced Classifier

Original Clean Data

mimic 
samples

!

!"#$

Ensemble Retraining Mechanism

Multi-source
AT

Multi-class
GAN

Module 2Module 1

!%"&

Fig. 3. Framework of the proposed Def-IDS ensemble retraining mechanism.

space than the lower boundary. In addition, it tackles the
fitting bias occurred in the existing works. This bias severely
degrades the detection performance on clean data once the
adversarial examples are employed in the retraining. Our
mechanism achieves good detection accuracy on both clean
data and adversarial examples.

B. Module 1: Multi-class GAN-based Retraining

Since the regular training of classifier C is performed on
the limited training dataset, it is feasible to improve the
generalization of the model in the testing environment with
more real-distributed samples. However, in practice, there may
be no access or too expensive to get more labeled data.
Besides, the increasing types of intrusions make the data
collection more costly. To solve these limitations, we propose
a novel GAN framework to learn the data distribution of all
classes of traffic in one model. The trained MGAN is able to
generate new samples that could be regarded as the perturbed
data but still belongs to the original classes. Then, we use the
augmented dataset to retrain the intrusion detector.

We first introduce the principles of the original GAN model
[19] and then redesign it for our use. Its unique advantage
is generating high-quality mimic samples by learning the
distribution of a given dataset in the adversarial setting. GAN
contains two components: a generator model (G) and a dis-
criminator model (D), which mutually improve each other in
a competitive minimax game. The generator implicitly learns
the underlying data distribution without directly seeing training
data and produces mimic samples to cheat the discriminator.
Meanwhile, the discriminator learns the class boundary based
on the real data and tries to identify the fakes sent from the
generator. The model can be formulated as follows. Let z be
the latent variables in the manifold of G in low dimensionality,
x be the real traffic samples, and x′ = G(z) be the output of
G and generated sample. The optimization goal of G is to
minimize the possibility of x′ being recognized, formulated
as log(1 − D(G(z))). On the other hand, the optimization
goal of D is to maximize the recognition rate for both x and
x′, formulated as log(D(x))+ log(1−D(G(z))). Overall, the
optimization of the whole model is defined as:

min
G

max
D

Ex∼px [log(D(x)] + Ez∼pz [log(1−D(G(z)))] (2)
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Fig. 4. Multi-class GAN (MGAN)-based retraining with augmented dataset.

where px is the real data distribution and pz is the feature space
distribution learned by G. With such an adversarial setting, G
tends to explore mimic data near the class boundary in order to
fool D. The generated data is potentially unknown adversarial
examples against the intrusion detector.

However, the original GAN cannot meet the requirement
that a single model learns multi-class traffic distribution and
generate class-specific samples. It is because the discriminator
model is a binary classifier only identifying fake or real data.
If using the original GAN, we have to train an individual
model for every intrusion class, which will cause too much
overhead. In order to build a multi-class model, we integrate
two variant techniques: AC-GAN [20] and SGAN [24]. The
former introduces the function of class sampling into the gen-
erator for producing samples with specified labels. The latter
transforms the discriminator to a multi-class classifier with an
extra Softmax layer to predict the probability distribution of a
sample over various labels. Through such integration, we are
able to train single MGAN model to sample new data among
all traffic classes. In detail, our retraining design for detector
C is shown in Fig. 4. During the training phase, the generator
learns the distribution of different classes and the discriminator
offers both classifications results and fake or real judgment.
Assuming that the true label of x is yx and the target label of
G is yz , the optimization goal is redefined as:

min
G

max
D

Ex∼px [log(D(x, yx)]+Ez∼pz [log(1−D(G(z, yz)))]

(3)
In order to obtain an optimized generator, the ideal stop

criteria is that the dual models reach a Nash Equilibrium [19]
where neither G or D can improve by changing any param-
eters of neural networks. However, since the optimization
is based on stochastic gradient descent, the learning loss
of G and D would oscillate and the explicit equilibrium is
hard to determine. A commonly used solution is to define
a fixed number of training iterations, but it is not accurate
enough. Therefore, we define a stop indicator T based on
the moving average calculated by a series of values after
each training iteration. The values are extracted from the loss
function of G that measures its current generative ability:
Gloss = σ(D(G(z)), ytarget). σ is the cross-entropy between

the discrimination result of generated data and the target
class. T is formulated as T = 1

m

∑m
i Gloss i, where m is

the number of the latest iterations. If a moving average is
lower than a pre-defined threshold TH , MGAN is deemed
in a steady status and the generator becomes approximately
optimal.

After obtaining the generator, we retrain the intrusion clas-
sifier C with newly generated samples to smooth the decision
boundaries and improve the generalization capability of real
data distribution. For preserving the functionality of traffic
samples, we filter out the functional features and use the non-
functional features to generate new samples. Specifically, we
first find the nearest data point d(x′) in the original training
dataset only based on the generated functional features. Then
we replace the non-functional features of d(x′) with MGAN’s
generated non-functional features. In this way, the newly
generated samples are mixed with the original dataset to retrain
model C, whose configurations keep unchanged, including
neural network architecture, optimizer, and loss function.

C. Module 2: Multi-source Adversarial Retraining

Multi-source adversarial retraining is the process that trains
the detector C explicitly with multiple kinds of adversarial
examples. It helps the detector resist the related attacks and
potentially be more robust to the other. The robustness is
improved because the retraining mitigates the adversarial data
space and softens the decision boundary.

In order to perform the retraining for the NIDS model,
we ensure the following three essential prerequisites. First,
the perturbation on a traffic sample is distributed among the
non-functional features, where the perturbation magnitude is
constrained to a minor scale. Second, functional traffic features
such as network protocol cannot be perturbed. Third, the valid
adversarial attack methods should be time-efficient to generate
adversarial examples. For example, C&W [25], Boundary [26],
and One-Pixel [27] attacks are either costly or change only one
feature, which are infeasible for adversarial retraining. In our
study, we implement the four attacks, as described in Section
III, in the black-box setting and perturb only non-functional
features. Meanwhile, the perturbation constraint is set to 2%
of the original feature value.

Fig. 5 presents the workflow of adversarial retraining.
Specifically, the retraining inputs of the classifier come from
clean data x and multi-source adversarial examples xadv .
The classifier is optimized to assign correct labels y to the
adversarial examples. A substitute model S is first trained with
the clean data to achieve the same performance as classifier
C. Then attacks are performed on the substitute S to generate
adversarial examples. The retraining of C utilizes the xadv
from S that also compromise C. We observe the retraining on
one specific attack can also help resist the other three attacks,
though the effect is limited. Such a phenomenon will be further
evaluated in the next section.
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Given the above description, we define the objective of the
adversarial training as:

min
‖xadv−x‖p≤ε

E [λL(C(xadv), y) + (1− λ)L(C(x), y)] (4)

In this case, the loss function of C involves the prediction
error of both clean and adversarial data, where λ is the weight
adjusting ratio. Through adversarial training, we proactively
defend the intrusion detector to mitigate the threat of multiple
adversarial attacks. It is worth noting that this idea is extensible
to future emerging attacks against NIDS.

D. Ensemble Adversarial Retraining

To maximize defense ability against adversarial attacks, we
combine MGAN and MAT modules together. The baseline
classifier C is improved by the enhanced dataset and proac-
tively resists adversarial examples. As illustrated in Fig. 3,
our ensemble retraining consists of three data sources: 1)
mimic data xgan from MGAN; 2) adversarial examples xadv
obtained from multiple attacks; 3) the original clean data
x. Therefore, we define the overall optimization goal of the
ensemble retraining as:

minE[w1L(C(x), y) + w2L(C(xgan), y)

+w3L(C(xadv), y)]
(5)

where a constraint exists (w1 + w2 + w3) = 1.
To sum up, the ensemble mechanism is represented by a

four-step training process summarized in Algorithm 1. Such
retraining methodology explores the potential adversarial data
space, and then utilize them to fine tune of the model deci-
sion boundary. The evaluation of robustness improvement on
intrusion detection task is discussed in the next section.

V. EVALUATION

In this section, we first introduce the preprocessing of the
benchmark intrusion dataset and the evaluation metrics. Next,
we build a baseline intrusion detector and launch various
adversarial attacks against it. Then we implement the proposed
ensemble mechanism and measure its defense ability. Finally,
the mechanism cost is estimated to validate its applicability.

A. Dataset and Metrics

1) Dataset Pre-processing: We employ CSE-CIC-IDS2018
dataset [10] published by Canadian Institute for Cybersecurity
(CIC) for evaluation. Compared to the outdated KDD-99

Algorithm 1 Ensemble Defense Mechanism of NIDS Classi-
fier for Improving Robustness against Adversarial Attacks.
Require: Deep neural network classifier C, original intrusion train-

ing dataset x, and adversarial attack types n.
Ensure: Trained classifier C with enhanced robustness against un-

known and known adversarial examples.
BEGIN
Step 1: Implement baseline classifier
Initialize the classifier with model parameters θ.
Train the classifier with original dataset x, get a baseline classifer
Cbase.
Step 2: Generate new samples from multi-class GAN
Initialize the generator G and the discriminator D in MGAN
framework.
while Training stop indicator T > stop criteria threshold TH do

Train G and D by mutually updated Min-Max optimization .
end while
Generate a new set of mimic samples xgan with optimized G.
Step 3: Obtain adversarial examples from multiple attacks
for (attack type i=1 to n) do

perform adversarial attack algorithms i to generate the adver-
sarial examples xadv i.

end for
Aggregate a new set of adversarial examples xadv .
Step 4: Ensemble retraining
Retrain Cbase with new combined dataset with x, xgan, and xadv .
END

and NSL-KDD datasets, it is up-to-date with comprehensive
attacks implementation and more balanced data. Besides,
features in the CIC dataset are numeric, continuous, and non-
functional. This dataset contains normal network traffic and
seven classes of intrusions, including Brute-force, Heartbleed,
Botnet, DoS, DDoS, Web attacks, and infiltration of the
network from inside. CIC extracts 80 features from the packet-
level and flow-level traffic such as number, size, and duration.

For our experiments, we preprocess the dataset in three
steps. First, since the values of features are in different scales,
we perform Min-Max standardization on the features to rescale
them in the range [0, 1]. Second, there exist four features (dst
port, protocol, flow byts/s, flow pkts/s) with too many empty or
infinity values and one feature (timestamp) unrelated to traffic.
So we drop these five features to keep the dataset consistent
and clean, where 76 features in total are reserved. Third, we
divide the datasets into training, validation, and testing part in
the ratio (8:1:1) by randomly sampling in normal and intrusion
samples.

2) Evaluation Metrics: The detection performance on ad-
versarial examples and clean samples are measured by four
metrics: Precision, Recall, F1 score, and Accuracy. Taking
intrusion as positive class and normal traffic as negative class,
we define the metrics as follows:

Precision indicates how many correct classifications in the
all results that are identified as intrusions: P = TP

TP+FP .
Recall presents the proportion of correctly identified intru-

sions over all true intrusions, formulated as: R = TP
TP+FN .

F1 score is the harmonic mean of precision and recall,
which is effective measurement, formulated as: F1 = 2·P ·R

P+R .
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TABLE I
DEFENSE ABILITY OF BASELINE CLASSIFIER Cbase .

Attacks Precision Recall F1 score Accuracy
FGSM 0.324 0.46 0.38 0.413
BIM 0.398 0.525 0.452 0.425
DeepFool 0.425 0.412 0.418 0.434
JSMA 0.354 0.312 0.331 0.328

Accuracy refers to the percentage of correctly classified
normal traffic and intrusion samples over the total results:
Acc = TP+TN

TP+TN+FP+FN .
where True Positive (TP) is the number of intrusion samples

that are correctly classified; False Positive (FP) is the number
of normal samples misclassified as intrusion; False Negative
(FN) is the number of intrusion samples misclassified as
normal; True Negative (TN) is the number of normal samples
that are correctly classified.

B. Baseline Detector Implementation

1) Detector Implementation: We implement a baseline
classifier Cbase as the detector to identify intrusions from
normal traffic. Cbase is constructed by four sequential layers,
including one input layer, two hidden layers and one output
layer (76-128-64-8). The hidden layers are fully connected
layers with the ReLU activation function. The output layer
adopts Softmax function for multi-class traffic classification.
To build the testbed, we employ Keras library with Tensorflow
backend [28] as deep learning platform and Ubuntu 18.04
operating system running on a desktop with 3.6GHz CPU and
16GB RAM. To train the model, we adopt Adam optimizer,
0.001 learning rate, 20 training epochs, 5000 mini-batch size,
and categorical cross-entropy loss function. During the training
process, ten-time cross validations are performed and the
average metric value are calculated. After the training, the
Cbase is evaluated using the test dataset.

We evaluate the detection performance using the pre-defined
metrics on both training and test sets. Cbase achieves 0.997
and 0.993 F1 score, respectively. The results show that Cbase
is a well-performed detector on the clean data.

2) Adversarial Attacks against Baseline Classifier: To im-
plement adversarial attacks, we use foolbox [29], an open-
source python library, to generate adversarial examples. The
attacks includes FGSM, BIM, DeepFool, and JSMA, as in-
troduced in Section III We randomly choose 2,000 samples
(500 for each attack) from the training dataset where 1,000
are normal traffic and the rest are intrusions. For remaining
the attributes of the original traffic samples, the size ε of per-
turbation is limited to 0.02 (2%) where the measure metric is
the mean squared error norm p = 2. By adding perturbations,
the baseline detector Cbase would misclassify the normal as
intrusions and vice versa.

We first train a substitute model Csub with two hidden-
layers (128-32) using training dataset. Without preknowledge
of the baseline model Cbase, we use Adam optimizer, 0.002
learning rate, 20 training epochs, 3000 mini-batch size, and
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Fig. 6. Neural network structures of generator and discriminator in MGAN .

categorical cross-entropy loss function. The trained Csub
achieves the similar detection ability with Cbase on the clean
set, with an average 0.987 F1 score on both normal and intru-
sion samples. Then, the Csub is attacked by the four adversarial
attacks to generate 2,000 valid adversarial examples (4×500)
with the perturbation constraint 0.02. Then, the adversarial
examples from the Csub are tested on the baseline model
Cbase. The attacking results are shown in Table I. Cbase is
compromised with less than 0.46 detection accuracy, which
means more than half of the adversarial examples succeed in
transferring from Csub to Cbase.

C. Def-IDS Defense Evaluation

1) Multi-class GAN-based Retraining: Multi-class GAN-
based retraining enhances the baseline detector with the mimic
new samples following the distribution of training data. Fig. 6
presents its implementation structure. Specifically, we con-
struct the generator with a five-layer neural network ((32,1)-
64-128-256-76), including two separate input layers for initial-
izing latent features and class label, three hidden layers with
ReLU activation functions for learning real data distribution,
and one output layer for producing samples in real data space.
The discriminator network consists of four layers (76-128-64-
(2,8)), including one input layer, two hidden layers with ReLU
activation functions, and two separate output layers for judging
fake/real sample and class label correspondingly. Dropout
function is used in the two hidden layers with rate = 0.2
to mitigate the overfitting during the training process. To
optimize the networks, binary cross-entropy and categorical
cross-entropy are used as loss functions for the real or fake
identification and intrusion classification, respectively. We use
Adam optimizer with learning rate 0.002 for both generator
and discriminator, and set the stopping threshold T based on
ten-time repeated experiments.

For obtaining the augmented dataset, we generate 10% more
samples for each class of the original clean data. The retraining
configurations remain same as the baseline. Then 2,000 adver-
sarial examples generated from black-box attacks are used to
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evaluate the defense ability of the new detector Cgan. Table II
shows the evaluation results. We find that Cgan is able to
resist more than 59% adversaries where the defense against
JSMA has most significant increment. However, none of the
metrics reach 0.8 that means MGAN-based retraining alone
is not robust enough. At least 28.7% adversarial examples are
unidentified in term of the best accuracy. The reason is that
the generated samples do not aim at any specific attack but
generally unknown attacks. In this way, Cgan’s model decision
boundary is tuned to be insensitive to micro perturbations.

2) Multi-source Adversarial Retraining: Multi-source ad-
versarial retraining proactively utilizes the adversarial exam-
ples during the training process to adjust model decision
boundary. For each of four attacks, we retrain a detector
Cat with (9:1) ratio of clean data and adversarial examples.
Specifically, we generate 500 valid adversarial examples from
each attack and aggregate them together. Then, the training
process follows the loss function 4 where parameter λ is
set to 0.9. For evaluation, we still use the black-box way to
generate another 2,000 adversarial examples based on Cbase.
As illustrated in Table II, the detection metrics over different
adversarial attacks increase range [0.91, 0.93]. Moreover,
even if retrained on only one attack, we find that Cat has
robustness improvement against the other attacks. As presented
in Table III, for example, Cat trained with FGSM only is found
able to achieve 0.846, 0.741, and 0.867 detection accuracy
against BIM, DeepFool, and JSMA respectively.

3) Ensemble of Two Modules: To evaluate the robust-
ness of our proposed ensemble mechanism, we retrain a
classifier following the schema as introduced in Fig. 3.
According to equation 5, the weight parameter is set to
{w1 = 0.8, w2 = 0.1, w3 = 0.1} in order to make sure: 1) the
influence of re-sampled data xgan and adversarial examples
xadv on the decision boundary learning are equal; 2) the
training process mainly relies on the original clean data x
while xgan and xadv are used for adjusting the boundary. The
adversarial examples are generated in black-box way from
the four attacks. For each type of attacks, we generate 500
training examples and 500 evaluation examples separately.
Table II shows the ensemble mechanism Censem achieves the
best defense, 0.979 detection accuracy, better than any single
retraining modules.

4) Accuracy on Clean Data: We also test the detection
accuracy of Cgan, Cat and Censem on the clean intrusion
data. As shown in Table II, adversarial retraining alone does
harm the accuracy but the ensemble mechanism mitigates it
by introducing the MGAN module.

D. Comparison with Other Works

We compare our mechanism with other recent defense
methods proposed by Usama et al. [21], Ibitoye et al. [22],
and Pawlicki [23]. Their detection ability is tested over adver-
sarial examples that are generated in the same setting as the
evaluation of Censem. Fig. 7 presents the precision, recall, F1
score, and accuracy metrics of the four evaluated methods. The

TABLE II
DEFENSE ABILITY OF CLASSIFIERS Cgan , Cat , Censem .

Attacks Models Precision Recall F1 score Accuracy

FGSM
Cgan 0.775 0.535 0.633 0.628
Cat 0.933 0.912 0.922 0.927

Censem 0.978 0.967 0.972 0.974

BIM
Cgan 0.795 0.461 0.582 0.597
Cat 0.941 0.923 0.932 0.934

Censem 0.973 0.983 0.977 0.981

DeepFool
Cgan 0.808 0.517 0.626 0.642
Cat 0.934 0.918 0.926 0.931

Censem 0.989 0.976 0.984 0.983

JSMA
Cgan 0.793 0.705 0.746 0.713
Cat 0.931 0.917 0.924 0.923

Censem 0.981 0.977 0.978 0.979
Clean
Data (not
perturbed)

Cgan 0.998 0.996 0.997 0.998
Cat 0.965 0.978 0.971 0.963

Censem 0.998 0.997 0.998 0.998

TABLE III
DEFENSE ABILITY OF MAT-BASED CLASSIFIER Cat .

Attack-based
Retraining on

Adversarial Attacks Detection against
FGSM BIM DeepFool JSMA

FGSM 0.924 0.846 0.741 0.867
BIM 0.742 0.931 0.853 0.773
DeepFool 0.624 0.756 0.925 0.692
JSMA 0.745 0.812 0.743 0.914

results show that Def-IDS achieves the best and most stable
performance.
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Fig. 7. Performance comparison between Def-IDS and other defense methods
against adversarial examples.

E. Cost Estimation

At last, we measure the computation cost by time dur-
ing the retraining process. For testing, we generate 2,000
adversarial examples applied in adversarial retraining. Given
the training configuration and model architecture discussed
in the previous evaluations, the list of cost is reported in
Table IV. The training time of the baseline classifier is 12.86s
on average. The adversaries generation takes from 5.34s to
27.84s, where JSMA takes the most time and FGSM takes
the least. The training of MGAN takes 20.43s while the
sample generation uses negligible time. The final ensemble
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retraining takes 15.62s with the enhanced dataset. In total,
the whole ensemble mechanism takes 111.51s, where the
dataset generation occupies most of the time. Therefore, the
practical implementation of the mechanism should consider
the tradeoff between robustness and execution cost, especially
for the dynamically updated IDS.

TABLE IV
COMPUTATION TIME COST OF ENSEMBLE RETRAINING MECHANISM.

Operations Time (s)
Baseline Classifier Training 12.86
FGSM Advs Generation 5.34
BIM Advs Generation 16.15
DeepFool Advs Generation 13.27
JSMA Advs Generation 27.84
MGAN Training 20.43
Ensemble Retraining 15.62
Total 111.51

VI. CONCLUSION

In this paper, we designed and implemented an ensemble
defense mechanism that significantly improved the robust-
ness of deep learning-base network intrusion detector against
both known and unknown adversarial attacks. By novelly
integrating generative adversarial networks and adversarial
retraining technology, our mechanism fine tuned the decision
boundary of the detector to recognize multi-source adversarial
examples and preserve its detection accuracy on clean inputs.
The evaluation results demonstrated the effectiveness of our
mechanism using the CSE-CIC-IDS2018 benchmark dataset.
In the future, we plan to adapt the mechanism to real intrusion
detection systems and more adversarial attacks, especially for
IoT networks.
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