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power intelligent UAV systems; and third, several UAV applications in surveillance and monitoring, ranging from basic tasks
to highly intelligent operations are explored. Finally, the survey concludes by discussing emerging research challenges and
outlines a guiding road map for future research of highly interdisciplinary and emerging areas in UAV-based systems for
surveillance and monitoring.

Additional Key Words and Phrases: UAVs; Drones; Surveillance and Monitoring; Intelligent and Active UAV Systems.

∗Corresponding Author

Authors’ Contact Information: Tazeem Ahmad, Information Sciences and Technology, George Mason University, Fairfax, Virginia, United
States; e-mail: tahmad7@gmu.edu; Alicia Morel, Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri,
United States; e-mail: ace6qv@mail.missouri.edu; Nuo Cheng, Information Sciences and Technology, George Mason University, Fairfax,
Virginia, United States; e-mail: ncheng5@gmu.edu; Kannappan Palaniappan, Electrical Engineering and Computer Science, University
of Missouri, Columbia, Missouri, United States; e-mail: pal@missouri.edu; Prasad Calyam, Electrical Engineering and Computer Science,
University of Missouri, Columbia, Missouri, United States; e-mail: CalyamP@missouri.edu; Kun Sun, Information Sciences and Technology,
George Mason University, Fairfax, Virginia, United States; e-mail: ksun3@gmu.edu; Jianli Pan, Information Sciences and Technology, George
Mason University, Fairfax, Virginia, United States; e-mail: jpan22@gmu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7341/2025/8-ART
https://doi.org/10.1145/3760389

ACM Comput. Surv.

https://orcid.org/0000-0002-1716-7486
https://orcid.org/0000-0002-1766-5370
https://orcid.org/0009-0002-8226-4183
https://orcid.org/0000-0003-2663-1380
https://orcid.org/0000-0002-7666-5389
https://orcid.org/0000-0003-4152-2107
https://orcid.org/0000-0003-4881-5711
https://orcid.org/0000-0002-1716-7486
https://orcid.org/0000-0002-1766-5370
https://orcid.org/0009-0002-8226-4183
https://orcid.org/0000-0003-2663-1380
https://orcid.org/0000-0002-7666-5389
https://orcid.org/0000-0003-4152-2107
https://orcid.org/0000-0003-4881-5711
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3760389
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3760389&domain=pdf&date_stamp=2025-08-13


2 • T. Ahmad et al.

1 Introduction

Unmanned Aerial Vehicles (UAVs) or drones are compact aerial vehicles designed for operation without an
onboard human pilot. These UAVs can either be operated remotely or function autonomously and they have
gained signiicant momentum due to their adaptability to diverse and complex scenarios. For instance, they
have been employed in applications such as agriculture, search and rescue operations, surveillance systems, and
mission-critical services. This is largely attributed to their technological and practical advantages, including their
high mobility, the ability to extend wireless coverage, and access to areas that are otherwise unreachable [1]. In
addition, these vehicles can come equipped with advanced imaging technologies, including high-resolution or
infrared cameras. Global Positioning Systems (GPS) and various types of sensors can be integrated within UAVs
to enhance their capabilities. Moreover, these UAVs can perform simple or complex surveillance and monitoring
tasks due to their ability to ly high, covering large and diicult-to-access areas while reducing mission costs and
potential casualties [2]. To understand the classiication of UAVs, Figure 1 illustrates two main groups. Based on
the lying hardware, UAVs are mainly classiied as ixed-wing, ixed-wing hybrid, single-rotor, and multi-rotor [3].
In addition, UAVs can be classiied with diferent levels of autonomy. The drone autonomy is the system’s ability
to operate without direct human decisions based on a set of predetermined commands that are dictated for
each operation. Autonomous classiication can be leveled based on the involvement of the pilot in controlling
the vehicle. These can be described as Level 0 - No Automation, Level 1- Low Automation, Level 2 - Partial
Automation, Level 3 - Conditional Automation, Level 4 - High Automation and Level 5 - Full Automation [4].
These main classiications are important for selecting the right UAVs based on rotor type, wing coniguration, and
light endurance, ensuring optimal performance for speciic tasks. It also aims in mission planning by highlighting
autonomy levels, human involvement, and automation, which inluence network design, communication needs
and helps tailor UAV systems to diverse applications.

It is worth mentioning that within these classiications, recent UAVmodels are enhanced with advanced sensors,
Artiicial Intelligence (AI), and edge computing, thereby providing improved features, decision-making, and
strategic planning capabilities. Their proiciency in onboard and cloud-based data processing allows for real-time
face recognition and movement detection, adapting their location and light paths intelligently to environmental
conditions [5]. This autonomy can also enhance their efectiveness in surveillance and monitoring tasks. In
this context, the concept of the Internet of Drones (IoD) emerges as a networking architecture that exploits
the interplay between UAVs and wireless communication technologies. The networked drones within the IoD
can unlock disruptive scenarios across diverse applications. However, to fully leverage their potential, accurate
modeling techniques are necessary to capture the complexities of UAV features, wireless communications, and
networking protocols [6]. In the following, we describe the diferent applications, and further explain UAV
classiication, and characteristics.
Surveillance: Surveillance is a systematic method for observing people, places, objects, or environments, and
serves various purposes including information collection, activity detection, law enforcement, and research [7].
It can involve human observers, cameras, or other technologies, and ranges from individual monitoring of homes
to large-scale urban surveillance by government entities. With the integration of Internet of Things (IoT) devices,
surveillance techniques have evolved signiicantly [8]. The incorporation of AI, cloud, and edge computing has
enhanced capabilities like object recognition, event, anomaly detection, and automated decision-making [9].
Thereby, this evolution is making surveillance increasingly prevalent across diverse industries and applications.
Monitoring: In urban areas, the growing need for surveillance combined with monitoring is driving technological
advancements aimed at enhancing service eiciency, sustainability, and strengthening public safety and security.
For instance, in smart cities, video surveillance and analytics play a crucial role in real-time traic low control
management, pollution reduction, and improving transportation eiciency [5]. Networked cameras, combined
with video analytics, are also useful in remote areas or in natural events like looding, where they are used for
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UAV CLASSIFICATION
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Fig. 1. This figure illustrates a detailed classification of UAVs by rotor type, wing configuration, flight endurance, and typical

applications. It also highlights varying levels of autonomy, human involvement, and degrees of automation, alongside specific

use cases categorized by rotor and wing types.

monitoring environmental conditions to detect potential safety hazards. Similar to the surveillance process, the
monitoring process also involves the real-time gathering and analysis of data to enhance the eiciency of a
particular system or process. It is usually performed for industrial, commercial, and infrastructure maintenance
purposes [10]. Advanced monitoring techniques exploit data processing and computing to make real-time
decisions and bring automation to the process being monitored. The implementation of AI-powered surveillance
and monitoring systems facilitates predictive maintenance, anomaly detection, and automated responses, resulting
in improved system scalability, adaptability, and eiciency. Although the characteristics of advanced monitoring
are similar to surveillance in terms of real-time data collection and analysis, there are several crucial diferences
between them. Table 1 describes typical diferences between surveillance and monitoring practices. Surveillance
is characterized by continuous observation across broad environments or multiple subjects, typically for security,
behavioral analysis, or intelligence purposes. This approach frequently involves the collection of sensitive personal
data, raising substantial privacy and regulatory concerns. On the other hand, monitoring focuses on periodic or
real-time tracking of speciic system parameters or processes, often aimed at optimizing performance, ensuring
operational integrity, or detecting malfunctions. Monitoring activities are generally small-scale, target speciic
devices or systems, and involve less sensitive, operational data, thus posing fewer privacy concerns. Based on the

Table 1. Key characteristics distinguishing surveillance from monitoring, highlighting diferences in data collection methods,

scale, focus, data sensitivity, and privacy implications.

Characteristic Surveillance Monitoring

Data Collection Continuous observation over time Periodic or real-time tracking of speciic parameters
Scale Broad, large-scale deployments across areas/subjects Focused, small-scale targeting speciic systems
Objects Multiple subjects or environments Speciic systems, processes, or devices
Data Sensitivity High potential for sensitive, personal data Typically operational or technical, less personal
Privacy/Security Signiicant privacy concerns, regulatory implications Minimal privacy issues, focused on system integrity

deployment of sensors for data collection, analysis and decision making, we can categorize the surveillance and
monitoring systems as either passive or active [11, 12]. The characteristics of active and passive surveillance and
monitoring are summarized in Figure 2, and can be described as follows:
Passive Surveillance and Monitoring: Passive surveillance and monitoring mainly refers to the collection
of data with ixed or non-real-time deployment or observing patterns. This can involve cameras, microphones,
or other sensors that are deployed in a pre-scheduled manner. The decision-making of the devices are typical
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Fig. 2. Distinction between passive and active surveillance and monitoring methods. Passive approaches involve collecting

data without the subject’s awareness, while active methods involve the subject being aware they are being monitored. Both

can be applied for surveillance (observation for security or information gathering) and monitoring (data collection for system

optimization).

inactive and non-real-time. In such a process, most devices are ixed at a location to keep collecting required
data. Decisions are made later based on the collected data. This type of surveillance and monitoring can have
many objectives such as recording the movement of objects (vehicles or people), detecting smoke, or surveying
an area for changes in land use over time [13]. The main characteristics of passive surveillance and monitoring
include passivity, non-cooperativity, and limited connectivity. The passive surveillance and monitoring systems
work in the background without interfering with the events being monitored. Some examples of these systems
include the collection of environmental data (temperature, humidity, and atmospheric pressure), monitoring of
infrastructure, health monitoring, network monitoring, and inventory monitoring.
Active Surveillance and Monitoring: Active surveillance and monitoring, in comparison, refers to the active
engagement of the surveillance or monitoring agents to decide the data collection process dynamically and based
on the real-time needs of the surveillance agents. For example, equipped with proper detection algorithms, the
surveillance or monitoring agents may actively adjust the data collection focus or schemes and re-orient more
resources to certain areas or objects of interests. If surveillance or monitoring agents involve moving ground
vehicles or UAVs, then the deployment of the surveillance and monitoring can be adjusted lexibly in real time.
Monitoring, on the other hand, involves the periodic or real-time tracking of speciic system parameters or
processes, with a focus on optimizing performance, ensuring operational integrity, or detecting malfunctions.
While monitoring may overlap with surveillance in certain contexts, it is generally more focused on system
functionality and less on individual behavior or security. Integrating intelligence with sensors brings activeness
to surveillance and monitoring operations by enabling real-time data collection, processing, and facilitating
prompt decision-making. As another example, in the context of traic monitoring, deep learning methods can
be employed to train cameras to autonomously detect events like accidents or criminal activities. This allows
authorities to respond quickly by dispatching aid to the afected areas. Further, analyzing real-time and historical
traic data allows authorities to predict peak times of traic and prepare accordingly. UAVs play a crucial role in
enabling active surveillance and monitoring. Several key factors such as the lexibility of UAVs, advancements in
AI and ML techniques, and the development of communication technology support the UAVs to easily collect,
store, process, and analyze the data to make decisions during the operations.
In this survey, we introduce a novel categorization of surveillance and monitoring systems based on two

dimensions: activeness and intelligence. Unlike traditional passive/active distinctions, we propose three categories:
semi-active (periodic checks), active (real-time engagement), and proactive (anticipating and preventing events).
These dimensions are interrelated, and we discuss how they inluence UAV capabilities in surveillance.
Individually Semi-active Surveillance and Monitoring: These types of surveillance and monitoring involve
UAVs with limited or conditional activeness. These UAVs are assigned speciic tasks, such as reaching a location
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Fig. 3. Applications of UAVs in intelligent active surveillance and monitoring based on their intelligence level (degree

of autonomy and decision-making capabilities) and activeness level (frequency of interaction with the environment);

This illustration helps to identify the right UAV for specific tasks by considering the level of automation and interaction

required [14].

or following an object. These devices can also be outitted with intelligence for obstacle avoidance, enabling them
to identify and avoid objects in their trajectory. This feature becomes particularly vital when a UAV operates at
low altitudes, whether it be in indoor or outdoor environments.
Individually Active Surveillance and Monitoring: In the case of individually active surveillance and mon-
itoring, one or more UAVs are individually deployed for the operations. These UAVs are capable of making
individual decisions based on their onboard intelligence and sensors. These UAVs can decide their own path
during the operation, ly autonomously, and make decisions about the given target. These UAVs are mostly used
in vision-based applications.
Collaborative Active Surveillance and Monitoring: In collaborative surveillance, UAVs are increasingly de-
ployed in swarms, enabling cooperative missions through shared data and communication. These UAVs display
diferent levels of autonomy. Some operate independently within a multi-agent system, responding to environmen-
tal changes and shared data. Others follow a hierarchical model, where primary UAVs lead and secondary UAVs
follow their directives. This collaboration enhances mission eiciency, reducing time and expanding coverage
area compared to solitary UAV operations.
Proactive and Predictive Surveillance and Monitoring: These methods of surveillance and monitoring entail
the use of UAVs outitted with sensors, edge computing technology, and learning-based algorithms to proactively
predict and detect occurrences or irregularities in a monitored area. These UAVs operate cooperatively, collabo-
rating to share the data they collect. Learning models then process this data, discerning patterns and making
predictions about forthcoming events. These predictive insights empower proactive decision-making during
operations.

Our Survey Motivation: UAVs have emerged as a valuable tool for surveillance and monitoring, drawing the
attention of numerous researchers. Despite this growing interest, there is a lack of comprehensive and systematic
surveys on this topic. Existing reviews on UAVs primarily focus on speciic areas such as civil applications,
deployment, security, and miscellaneous applications [15ś19]. Authors in [15] survey the UAVs’ civil applications
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in wireless coverage, remote sensing, civil infrastructure inspection, search and rescue operations, surveillance
and monitoring, and precision agriculture. Authors in [16] and [17] review the security threats, related issues,
and diferent attacks in UAV applications. In [18], authors analyze bio-inspired algorithms for the deployment
and routing in UAV-based Flying Ad Hoc Networks (FANET). Yazdi et al. in [19] provide the classiication of
UAVs based on their size, range, rotor, and aerodynamics, and then discuss UAV-enabled services and applications
including UAV-enabled mobile edge computing architectures. While these existing works have covered various
aspects of UAV systems and applications, a critical gap remains in the comprehensive exploration of UAVs’
surveillance and monitoring capabilities in the literature. This gap is particularly concerning given the diverse
levels of intelligence and activeness required for efective UAV-based surveillance and monitoring.
Our Survey Contributions: To bridge this gap, we present a comprehensive survey aimed at enhancing the
understanding of the key factors involved in UAV-based intelligent active surveillance and monitoring. The key
contributions of this survey are outlined as follows:

• To the best of our knowledge, this survey is the irst to comprehensively examine the role of UAVs in intelligent active
surveillance and monitoring. We provide an in-depth analysis of the key enabling technologies, architectures, and
applications driving this ield, along with the associated research challenges and future trends.

• We introduce innovative dimensions of activeness and intelligence to categorize and analyze UAV systems. This
dual-dimensional approach distinguishes our survey from existing literature and provides a systematic understanding
of UAV capabilities in surveillance and monitoring. It is important to note that while activeness and intelligence are
distinct, they are interdependent to some extent, as noted in our analysis of their relationships.

• This survey presents a unique classiication system for UAV applications in surveillance and monitoring, structured
around the introduced dimensions of activeness and intelligence. This classiication ofers novel perspectives on UAV
deployment in various surveillance tasks, ranging from basic monitoring to complex, intelligent operations, with an
emphasis on how diferent levels of activeness and intelligence interact in practice.

• Beyond the current state-of-the-art, this survey identiies potential synergies between emerging technologies, such as
AI, edge computing, LLMs, and UAV systems. We discuss how these advancements can further enhance the activeness
and intelligence of UAVs, ofering key insights and directions for future research in intelligent UAV-based surveillance
and monitoring.

Visual Summary and Structural Overview: Figure 3 provides a comprehensive categorization and visual
summary of various UAV surveillance and monitoring applications based on the two new dimensions of activeness
and intelligence levels. Speciically, the X-axis of the igure represents diferent levels of UAVs’ activeness during
the mission, ranging from passive to proactive. The Y-axis represents the varying levels of required intelligence
in UAVs for mission completion, from low to high. Central to the igure are the main surveillance and monitoring
applications strategically positioned in a cluster based on their corresponding x- and y-coordinates. This visual
representation clearly illustrates that the more activeness we need, the higher intelligence at UAVs is required,
and the more complex and demanding the application becomes. The irst cluster closer to the origin encompasses
simple applications of data collection where the activeness of the UAVs is passive or mostly determined by
the human controller. In the second cluster, individually semi-active UAVs exhibit fundamental intelligence in
applications like path following or collision avoidance. A set of low intelligence such as object detection and
recognition, as in the third cluster, is required for UAVs to work actively and individually for applications like
traic congestion detection, human detection, or disease detection in smart agriculture. Medium intelligence as
shared decision-making is required at collaboratively active UAVs in the fourth cluster for large-scale surveillance
and monitoring of natural disasters, transportation, multiple targets, and crowds. Highly complex applications in
the ifth cluster such as air traic management and war-related tasks require UAVs to be proactive and show
full autonomy with high intelligence of predictive decision-making capabilities. A comparative summary of this
survey’s scope and coverage in relation to existing UAV and SAGINs/ground-aerial network studies is provided
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Fig. 4. Detailed structure of the survey. A comprehensive categorization and visual summary of various UAV surveillance and

monitoring applications based on the two new dimensions of activeness and intelligence levels.

in Table 2, emphasizing the unique integration of activeness and intelligence dimensions that distinguish this
work from prior surveys.

Table 2. Comparison of this survey with representative prior works. (✓= Addressed; ✗= Not addressed; Partial = Partly

addressed.)

Study Focus Area Application Scope Activeness Intelligence SAGIN Focus Architecture

Fahlstrom et al. (2022) [20] UAV systems classiication General UAV applications ✗ ✗ ✗ ✓

Lu et al. (2023) [21] UAV routing in SAGINs Routing and connectivity ✗ Partial ✓ ✓

Xiao et al. (2024) [22] 6G SAGIN architecture Communication & resources ✗ ✗ ✓ ✓

Our Work UAV surveillance/monitoring Activeness-Intelligence mapping ✓ ✓ Partial ✓

The organizational structure of this survey is as follows: In Section 2, we discuss the key enabling techniques
and architecture. Section 3 covers the diferent applications of smart UAVs for surveillance and monitoring.
Section 4 brings forward recent research problems in active surveillance and monitoring and their solutions.
Section 5 explains the future direction as well as the synergy with emerging technologies. Finally, we conclude
this survey in Section 6. The structure of the survey is illustrated in Figure 4.

2 Key enabling techniques and architectures

To enhance the intelligence of UAV-based surveillance and monitoring, several key enabling technologies
and techniques have played a important role. These include Artiicial Intelligence (AI), Machine Learning
(ML), Edge Computing, Cloud Computing, and Color Mapping techniques. Together, these technologies enable
advanced data processing, decision-making, and real-time analysis. A summary of these critical technologies and
techniques along with relevant architectures for eicient UAV-based surveillance and monitoring is presented
in Table 3. Following this overview, each technique and architecture is further detailed. In addition, to evaluate the
efectiveness of UAV systems for surveillance and monitoring, it is essential to consider several key performance
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and Quality of Service (QoS) criteria. These criteria provide a common framework for comparing diferent
architectures, technologies, and applications. A summary of the primary evaluation criteria is presented in
Table 4, providing readers with a structured lens for assessing UAV system designs. Each of these criteria
inluences the architectural choices and enabling technologies discussed in this section. For instance, centralized
architectures may face higher latency and energy costs but achieve better data fusion, while decentralized systems
may prioritize scalability and robustness at the expense of integration complexity.

Table 3. Key enabling technologies, techniques, and architectures for UAV-based surveillance and monitoring, including AI,

ML, edge and cloud computing, and color mapping.

Technique/Architecture Subsections

2.1 AI and Genetic GA

Object Detection, Recognition, and Terrain Analysis

Unsupervised and Reinforcement Learning-Based Capabilities

Genetic Algorithms and Time Dependent Traveling Salesman Problem (TSP) Capabilities

2.2 Cloud and Edge Computing
Roles of Edge and Cloud Computing

Synergistic Roles of Edge and Cloud Computing

2.3 Dynamic Pattern Characterization Colormap or Heatmap-Based Technique

2.4 UAV Architectures for Surveillance and

Monitoring

Architecture Based on Cooperation

Independent or Non-Cooperative Architecture

Cooperative Architecture

Architecture Based on Control and Data Processing Location

Table 4. Key evaluation criteria for UAV research, outlining essential performance metrics such as communication delay,

energy eficiency, coverage, and resilience, which are critical for ensuring efective and scalable UAV operations across diverse

mission scenarios.

Criterion Deinition Relevance

Latency Delay in data/control transmission Vital for timely mission response and real-time ops
Reliability Success rate of task completion Ensures mission safety and dependability
Energy Power use per task/mission Limits endurance and light range
Throughput Efective data rate Impacts video and high-data-rate tasks
Coverage Area that can be monitored/covered Deines operational reach
Scalability Ability to handle more UAVs/traic Enables large-scale/swarms
Robustness Resistance to failure/disruption Ensures operation in harsh conditions

2.1 Artificial Intelligence (AI) and Genetic Algorithms (GA)

AI and GA techniques encompass a wide spectrum of tasks in UAV-based surveillance and monitoring, ranging
from basic light management to advanced decision-making. These techniques are essential in empowering UAVs
to autonomously and eiciently execute complex tasks. Supervised learning algorithms, the foundation of object
detection and recognition in UAV lights, are meticulously trained on labeled data. This training process equips
them with the essential knowledge to accurately identify speciic objects or classes of interest during real-time
operations [23, 24]. Various unsupervised learning algorithms can also assist UAVs in anomaly detection [25], and
clustering tasks in surveillance and monitoring applications. Thus, these algorithms can analyze large datasets
from UAV-captured images and videos, recognizing regularities and identifying anomalies, while also grouping
similar instances without the need for labeled data. In addition, network edge orchestration can utilize both
oline and online learning-based approaches to achieve pertinent selections of network protocols and video
properties in multi-drone-based video analytics [26].
For UAVs to conduct surveillance and monitoring operations in an active and intelligent manner, they need to
possess speciic capabilities that can be categorized as follows:
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Object detection, recognition, and terrain analysis: Object detection and recognition are crucial in UAV
surveillance and monitoring, enabling UAVs to autonomously identify and categorize objects. Convolutional
Neural Networks (CNNs) play a signiicant role in image recognition and processing for identifying objects,
people, or scenes in aerial images. CNN’s layered architecture, based on trained data, recognizes patterns and
features with high accuracy [27]. Similarly, terrain and geographic analysis are essential, utilizing Support Vector
Machines (SVMs) for classifying land covers and identifying roads, buildings, and other geographic features in
complex environments [28].
Prediction and Forecasting: Prediction and forecasting capabilities in surveillance and monitoring empower

UAVs to not only predict the future positions and states of observed objects but also to proactively adapt to
dynamic environmental changes. Long Short-Term Memory (LSTM) algorithms are useful in forecasting or
predicting the movement of objects during surveillance and monitoring. LSTMs can analyze sequences of images
or sensor data to predict future positions or states of observed objects [29].
Unsupervised learning-based capabilities: Unsupervised learning is highly efective for identifying unusual
patterns or anomalies in data, which is crucial for surveillance and monitoring. Unsupervised learning involves
training the model with unlabeled and categorized data. The unsupervised learning-based algorithms enable the
following capabilities in UAVs.

Pattern Recognition and anomaly detection: Pattern recognition involves identifying regularities or patterns in
UAV collected data during the surveillance and monitoring. Autoencoders are efective in detecting anomalies or
changes in environmental patterns, such as unexpected landscape changes or areas afected by environmental
degradation [30]. They learn to reconstruct normal data and can detect anomalies by identifying data points that
have high reconstruction errors.
Clustering or grouping: Clustering algorithms help in identifying patterns and structures in data that are not

explicitly labeled. In surveillance and monitoring, this is crucial for understanding and categorizing various
elements within the data, such as diferentiating between types of vehicles, crowds, or geographical features. The
clustering algorithm can also simplify the collected data by segmenting it into more manageable groups. This
makes it easier to analyze and interpret the data
Reinforcement learning-based capabilities: Unlike supervised or unsupervised learning, reinforcement learn-
ing techniques do not use pre-existing data to make decisions. These techniques consider UAVs as training
agents to make sequences of decisions through trial and error. In this process, UAVs receive rewards for desirable
outcomes and penalties for undesirable ones. Over time, the UAV develops a strategy or policy that maximizes
these rewards, leading to the maximized cumulative reward [31]. Reinforcement learning-based algorithms enable
the following capabilities in UAVs:
Optimal Path Planning and Collision Avoidance: Reinforcement learning optimizes UAV path planning and

collision avoidance. DQN algorithms guide UAVs in learning eicient routes, considering distance, time, energy,
and safety [32]. Simultaneously, these algorithms enable UAVs to identify and avoid obstacles, updating strategies
based on action outcomes to ensure safe operation [33].

Autonomous decision-making: Reinforcement Learning (RL) algorithms, such as policy gradient methods, equip
UAVs with the capability to independently make decisions. This is based on the data they gather and their
accumulated learning experiences, eliminating the necessity for continuous human oversight. These methods
are beneicial for autonomous decision-making as they allow the UAV to learn complex behaviors based on the
cumulative reward, considering both immediate and future actions.

Cooperative decision-making: In scenarios involving multiple UAVs, reinforcement learning such as Multi-agent
Reinforcement Learning (MARL) enables UAVs to coordinate or compete with each other. It allows each UAV to
learn its policy while considering the presence and possible actions of other agents [34, 35].
Genetic Algorithm (GA) and Time-Dependent Traveling Salesman Problem (TDTSP) Capabilities: The
use of UAVs for crowd control and monitoring applications highlights the need for intelligent and adaptable
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surveillance strategies. Several works [36] have investigated distributed target monitoring using models suited to
the dynamic nature of crowd surveillance, often framed as instances of the Time-Dependent Traveling Salesman
Problem (TDTSP). As part of this broader optimization landscape, Genetic Algorithm (GA) heuristics have been
explored to address the visit-oriented TDTSP [9], ofering scalable solutions for enabling UAVs to periodically
monitor groups of moving targets that simulate pedestrian motion in crowded environments.

2.2 Cloud and Edge Computing Technologies

The convergence of edge and cloud computing technologies has transformed modern computing, reshaping
how data is processed, stored, and accessed across various industries [37]. Edge computing, characterized by its
proximity to data sources, facilitates delay-sensitive and real-time processing and analysis of data. This capability
is crucial for applications involving geo-distribution, mobility support, location awareness, content perception,
and parallel processing in distributed IoT systems. A series of existing works have been done in efectively
allocating and managing edge resources to better serve future IoT applications [38ś42]. In the case of UAVs edge
computing empowers applications like obstacle avoidance, navigation, event detection, and target tracking by
playing critical roles as follows:
Roles of Edge Computing: Edge computing allows UAVs to process collected data onboard or at the edge server,
depending on the requirements. Two important beneits of edge computing are as follows: Real-time Processing:

Edge computing brings computational power closer to the data source for immediate analysis. With the extensive
resources of edge servers, UAVs data can be analyzed as it’s generated. Processing data locally or near the UAV
minimizes the time required to transmit data to a centralized server and receive a response [43]. This reduction
in latency is crucial for applications like surveillance, where quick decision-making is essential [44].

Architecture Support and Management: Edge computing is instrumental in supporting and managing diferent
architectures of UAV groups in surveillance and monitoring applications. Managing UAV groups involves coordi-
nating actions, optimizing communication, and ensuring eicient resource usage. Edge computing facilitates
communication and information sharing among UAVs within a group. Collaborative decision-making is enabled
by exchanging processed data, allowing UAVs to work together in real-time. Cloud computing, essential in modern
technology, ofers scalable resources, on-demand services, and advanced data management, enhancing sectors
like automation, IoT, and healthcare with fast, secure, and cost-efective solutions. It utilizes remote servers
for tasks like intensive image and video analysis, playing a crucial role in UAV applications. The roles of cloud
computing in UAV applications can be given as follows:
Roles of Cloud Computing: Cloud computing plays a signiicant role in enhancing UAV-based surveillance
and monitoring by ofering scalable, centralized processing and extensive storage capabilities. Cloud computing
provides the following crucial capabilities for UAV operations:

Data Storage and Remote Access: Cloud computing enables UAVs to oload captured data to centralized cloud
storage. This technology allows secure storage and access to large volumes of data, such as high-resolution
images and videos, from anywhere.
Data Integration and Analysis: Cloud computing ofers a centralized platform for integrating data collected

from multiple UAVs, enabling comprehensive analysis and insights. Cloud servers provide high-performance
computing resources, facilitating complex analytics and data fusion that may be challenging on individual UAVs
due to resource constraints.
The incorporation of cloud and edge computing technologies into UAV-based surveillance and monitoring systems
signiicantly enhances UAV capabilities. The explicit and synergistic roles of edge and cloud computing are
discussed as follows:
Synergistic Roles of Edge and Cloud Computing: While edge and cloud computing each have their merits,
their synergy ofers signiicant beneits. The integration of these technologies in UAV surveillance and monitoring
can strike a balance between real-time responsiveness and in-depth data analysis [45]. This synergy ensures that
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UAVs can swiftly respond to immediate challenges while also handling complex analytical tasks. Edge computing
reduces the need to transmit large volumes of raw data to the cloud by selectively sending only the most relevant
information. This not only conserves bandwidth but also enhances the overall responsiveness and eiciency of
the UAV system [46]. By providing a centralized hub for advanced analytics and long-term data retention, cloud
computing complements the real-time responsiveness of edge computing, creating a collaborative and adaptive
system for UAV-based surveillance and monitoring. The dynamic allocation of processing tasks between edge
and cloud computing ensures an optimal balance that adapts to changing mission requirements and scenarios.

2.3 Dynamic Patern Characterization

Colormap or heatmap-based technique: In UAV-based surveillance and monitoring, color maps or heatmaps
are commonly used to visualize the results of automated analysis. While the underlying systems rely on raw data
and algorithms to make decisions, heatmaps serve as an efective tool for interpreting complex data and providing
human-readable representations of dynamic patterns of objects and events [47]. These techniques graphically
represent information using colors, where warmer colors denote higher values and cooler colors indicate lower
values. Heatmaps simplify the interpretation of large and complex datasets by highlighting patterns and trends in
a way that is easy to understand. Heatmaps are invaluable in intelligent surveillance and monitoring applications
by providing an intuitive way for human analysts to identify areas of interest, potential threats, and regions
requiring further monitoring. They are instrumental in generating density maps, indicating the concentration
of people, vehicles, or other objects in a speciic area, which can help identify congested regions and facilitate
low optimization decisions. For instance, as demonstrated in Figure 5, heatmaps can visually represent crowd
density in a surveyed area at a speciic time. In predictive analytics, heatmaps help visualize the results of UAV
data analysis, ofering predictions and trend forecasts [48].

Fig. 5. Crowd density mapping through a heatmap.

2.4 UAV Architectures for Surveillance and Monitoring

The architecture of UAV systems for surveillance and monitoring is shaped by the level of cooperation among
UAVs, as well as the locations for control and data processing. In various applications, the architectures of these
systems are inluenced by the scale of operations, accessibility of computing resources, and data processing
strategy. The main architectures of UAV systems in surveillance and monitoring applications and their key
techniques are summarized in Table 5 below.
Architecture based on cooperation: UAV deployment in surveillance varies with operation scale. For small-
scale tasks, a single UAV is preferred for its cost-efectiveness and ease of management. In contrast, large-scale
operations beneit from multiple UAVs working in a swarm, enhancing collective decision-making and data
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sharing. Depending on the level of cooperation among UAVs, deployment architectures can be categorized as
either independent (non-cooperative) or cooperative.

Table 5. Summary of UAV architectures and associated techniques in surveillance and monitoring.

Type Architecture Technique / Technology References

Based on Cooperation
Non-Cooperative Architecture Machine Learning (ML) [49]

Cooperative Architecture Deep Reinforcement Learning [50]

Based on Centralization

Centralized Architecture Edge/Cloud Computing [51, 52]

Decentralized Architecture
ML at the Cloud [53]

Machine Learning (ML) [54]

Hybrid Architecture
ML and Cloud Computing [55]

Cloud Computing [56]

Independent or non-cooperative architecture: In UAV-based surveillance, the independent architecture involves
UAVs operating solo, using only their sensors for tasks like monitoring or IoT data collection [49]. This architecture
allows for semi or full-activeness in UAVs, suitable for simple monitoring tasks. Semi-active UAVs mostly focus
on basic navigation and obstacle avoidance, while fully active ones leverage machine learning for basic object
detection, displaying moderate intelligence.
Cooperative architecture: In cooperative architecture, UAVs work together, coordinating movements and sharing
information to enhance eiciency and efectiveness in operations like rescue, environmental monitoring, and
disaster response [57, 58]. This collaboration increases surveillance coverage and decision-making eiciency,
allowing UAVs to adjust deployment and behavior dynamically, and improving system performance and reliability.
Architecture based on control and data processing location:Depending on the control structure and location of
data processing, UAV architectures for surveillance andmonitoring can be categorized as centralized, decentralized,
or hybrid. Figure 6 illustrates these architectures and their distinctions in UAV connectivity with a control
center or backbone UAV. The choice between these architectures depends on factors such as deployment scale,
mission complexity, latency requirements, connectivity reliability, and computational capacity. Centralized
architectures are typically suited for small to medium UAV leets with reliable communication and centralized
processing, supporting pre-planned missions with less need for local autonomy. In contrast, decentralized
architectures are preferable for large-scale or dynamicmissions requiring fast, local decision-making and resilience
to communication disruptions, since they distribute control and processing across UAVs. Hybrid architectures
combine these approaches, balancing centralized oversight with decentralized lexibility.

(a) (b)
Control center UAV Backbone UAV

(c)

Fig. 6. Illustration to show distinctions of: (a) Centralized architecture; (b) Decentralized or ad-hoc architecture; (c) Hybrid

architecture.

The centralized architecture in UAV surveillance uses a central control station (like a ground station or cloud
server) to manage UAVs [52]. This station processes data from multiple UAVs, optimizing task allocation and
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system performance. While it simpliies management, this approach can incur high communication costs and
delays in large-scale operations, and centralizing data creates a potential single point of failure. In a decentralized
or ad-hoc UAV architecture, each UAV operates with a degree of autonomy, capable of making independent
decisions [53]. This architecture typically involves a small group of UAVs, with one designated as the backbone
UAV, acting as a communication relay between the ground station and other UAVs. This setup, efective in
unpredictable environments, enhances system resilience and processing speed by allowing simultaneous data
tasks. However, it faces challenges in data integration and security due to decentralized processing and local
storage [54]. The hybrid architecture combines the elements of centralized and decentralized UAV systems, where
UAV groups use ad-hoc communication within each group, and backbone UAVs connect directly to a central
station for group-speciic data transfer. The central station, with its powerful computing resources, performs
complex data analysis, extracting valuable insights. Additionally, backbone UAVs from diferent groups can
communicate ad-hoc, with only one connected to the ground station [55]. The hybrid architecture combines the
beneits and drawbacks of centralized and decentralized systems. It processes data onboard and then at a central
server, cutting communication costs and improving UAV response time. This approach provides wider coverage,
vital for intelligence and analysis. However, its semi-centralized structure may limit eiciency in remote areas
and slow down processing compared to fully decentralized systems [59]. Also, reliance on a control center may
reduce the robustness inherent in decentralized architectures.

3 Applications of smart UAV surveillance and monitoring

The growing intelligence of UAVs has transformed surveillance and monitoring operations, enabling tasks that
previously required human intervention. Given the new capabilities of real-time data analysis using AI/ML
algorithms, these UAVs can autonomously perceive, decide, and adapt to dynamic changes in their environment.
This section categorizes surveillance applications based on UAV intelligence levels. Table 6 presents a content
outline of the section to illustrate the diferent levels of intelligence in UAV-based surveillance and monitoring
applications.

Table 6. Applications of smart UAV surveillance and monitoring.

Applications based on UAV intelligence levels Examples

3.1 Smart UAV Surveillance and Monitoring Air Quality Monitoring, Water Quality Assessment, Gas Leak Detection

3.2 Fundamental-Intelligence Applications Pre-decided Path Following Applications, Obstacle-avoiding Applications

3.3 Low-Intelligence Applications Simple Object Detection, Recognition, and Action-taking Applications

3.4 Medium-Intelligence Applications Shared Decision-making Applications, Swarm-based Applications, Colormap/Heatmap-based Applications

3.5 High-Intelligence Applications Proactive Applications

Table 7 provides an overview of intelligence and applications of UAV systems, and details various critical
dimensions, their functionality and implementation along with relevant references.

Smart Agriculture Traffic Management Delivery Disaster Response

Fig. 7. A visual illustration of the vision of UAVs across diverse surveillance and monitoring applications, mapping example

tasks onto intelligence and activeness levels for intuitive understanding.
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Table 7. Intelligence and applications.

Level of

intelligence

Level of

activeness

Intelligence

type
UAV applications

Techniques /

Technologies
Reference

Air quality monitoring Wi-Fi, Bluetooth [60ś62]
Manually
controlled

Passive
Sensory data
collection

Water quality assessment Wi-Fi, Bluetooth [63, 64]

Gas leak detection Wi-Fi, Bluetooth [65]

Pre-decided path
following

Path following based environmental monitoring
Computer vision,

waypoint
navigation

[66, 67]

Basic
intelligence

Individually
semi-active

Inspection of power lines and transmission towers
Computer vision,

waypoint
navigation

[68]

Obstacle
avoidance

Aerial monitoring of manufacturing fault in civil infrastructure
Computer vision,

waypoint
navigation

[10, 69]

Collision avoiding indoor monitoring
Edge computing,
CNN, YOLO

[70ś72]

Small-scale traic congestion detection
Edge computing,
CNN, YOLO

[73ś75]

Low
intelligence

Individually
active

Simple object
detection,

recognition and
action

Growth monitoring and disease detection for smart agriculture CNN [76ś78]

Trapped human detection and activity recognition in remote areas YOLO 3, YOLO 5 [79ś82]
Large-scale transportation monitoring and management CNN [83]

Semi-autonomous large-scale remote patrolling and searching for
rescue operations

Edge computing,
YOLO 3

[84, 85]

Medium
intelligence

Collaborative
Shared

decision-making,
semi-autonomy

Sustained detection and monitoring for natural disaster incidents
in remote areas

Edge computing,
YOLO 3

[86]

Swarm-based target tracking
DRL, Genetic
algorithms

[87ś89]

Swarm-based persistent crowd monitoring
Bayesian method,
CNN, heatmap

[90ś92]

Adversary swarm counterattack with trajectory prediction and
position detection in defense applications

LSTM, SBLSTM,
RNN, DRL

[93ś95]

High
intelligence

Proactive

Predictive
decision making

and full
autonomy

Predictive decision making for autonomous drone-based delivery
systems in dynamic environments, i.e., adjusting light paths

based on traic, obstacles or weather

LSTM, GMM,
DRL

[96ś98]

Predictive deployment of UAVs for real-time monitoring of traic
congestion and accident detection in urban environments

LSTM, CNN, DRL [99]

As illustrated in Figure 7, UAVs are deployed across a wide range of surveillance and monitoring applications,
with each application requiring a speciic combination of intelligence and activeness levels to achieve mission
goals. UAV operational roles range from simple data collection and environmental monitoring to more complex
tasks such as smart agriculture, traic management, delivery services, and disaster response, each demanding
appropriate technological capabilities for efective deployment. It is important to note that the intelligence levels
in Table 7 relects not only speciic technologies but also their integration, deployment context, and the scope of
autonomy they enable.

Intelligence level classiication is determined not only by the listed technologies or algorithms, but also by their
operational integration, deployment context, and functional role. For example, YOLOv3 and edge computing,
while representing low intelligence in isolated detection tasks, may be categorized as medium intelligence when
integrated into collaborative, adaptive, or distributed decision-making systems.

3.1 Manually-controlled or No-intelligence Applications

In surveillance, manually controlled UAVs primarily serve as sensor carriers, gathering data eiciently. These
cost-efective UAVs operate remotely via Bluetooth or Wi-Fi, and are suited for basic environmental monitoring.
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Air quality monitoring: In air quality monitoring applications, sensor-equipped UAVs can be manually piloted
to the desired location to monitor the air or detect the source of pollution in the air. The equipped sensors can
collect data on diferent parameters like particulate matter (PM2.5 and PM10), gases (ozone, nitrogen dioxide, etc.),
and meteorological data (temperature, humidity, and wind speed). These data can be processed at the ground
station and create a spatial map of air pollution levels in diferent areas [60, 61].
Water quality assessment: Hyperspectral and multi-spectral cameras are powerful tools for water quality
assessment [100, 101]. These cameras can be mounted on UAVs to be transported to the desired water body
for the detection of parameters such as turbidity, chlorophyll concentration, dissolved organic matter, and
algal blooms. This information is crucial for monitoring water pollution and identifying potential sources of
contamination [63]. Additionally, with the help of thermal infrared (TIR) sensors, UAVs can detect cold water
areas over groundwater-dominated riverscapes [64].
Gas leak detection: UAVs equippedwith specialized gas sensors play a crucial role in the detection and localization
of gas leaks from pipelines, storage tanks, or industrial facilities [65]. This capability allows for rapid response,
which is essential in preventing potential environmental hazards. The deployment of UAVs for gas detection
also addresses a signiicant safety concern by eliminating the need for direct human contact with gas leaks.
These remotely piloted UAVs can eiciently cover large areas and access hard-to-reach locations, making them
indispensable tools for ensuring the safety and environmental compliance of such facilities.

3.2 Fundamental-intelligence Applications

As depicted in Figure 3, fundamental intelligent UAVs employed in surveillance and monitoring applications
typically possess fundamental capabilities such as path following and obstacle avoidance, without involving
complex decision-making. In these applications, the UAVs operate in a semi-active manner, individually following
given instructions. Some of the main surveillance and monitoring applications of UAVs utilizing fundamental
intelligence are categorized as follows:
Pre-decided path following applications: Pre-decided path-following surveillance and monitoring applications
are those where the light path is already decided and UAVs are given the information of waypoints and no-ly
zones. During surveillance and monitoring, UAVs follow these pre-decided paths to ly during the missions. Some
of these applications are as follows:
Path following based environmental monitoring: Simple environmental monitoring applications require basic

intelligent UAVs for aerial photography and videography. In these applications, localization mapping and path
planning are performed before UAV deployment with the help of area maps, obstacles, and no-ly zone information.
Deining a speciic path for UAVs to follow ensures that the UAVs cover the desired area or target systematically and
eiciently while reducing the target revisit time and workload [102]. Proper path planning in these applications
can reduce the number of UAVs required for mission completion as well as the energy consumption [67].

Inspection of power lines and transmission towers: Regular monitoring of transmission towers and power lines
is crucial to ensure the reliability and safety of these critical infrastructure components. Basic intelligent UAVs
ofer a safer alternative to humans for these monitoring jobs. They can be deployed to ly along predetermined
light paths that cover the entire length of power lines and monitor multiple transmission towers in a single
mission. The sensors equipped at UAVs can collect the data during monitoring which can be used to identify any
maintenance needs [68].
Obstacle-avoiding applications: Path-following UAVs, typically reliant on GPS and IMU, encounter challenges
in environments lacking GPS. Vision-based methods such as SLAM and VO allow for navigation through image
analysis [103]. Additionally, obstacle avoidance is crucial for enhancing the safety and efectiveness of UAV
missions. UAVs with basic intelligent systems can autonomously navigate and avoid obstacles, with several
applications based on these capabilities outlined in subsequent sections.

ACM Comput. Surv.



16 • T. Ahmad et al.

Aerial monitoring of manufacturing fault in civil infrastructure: Vision-based solutions enable UAVs to avoid
obstacles in their light path. A primary application is the aerial monitoring of faults in civil infrastructure
or civil infrastructure health monitoring. UAVs equipped with high-resolution cameras and sensors make it
possible to conduct comprehensive inspections of bridges, buildings, pipelines, and other critical structures for
the identiication of manufacturing defects, such as structural weaknesses, cracks, or material inconsistencies,
which might otherwise go unnoticed [10].

Collision avoiding indoor monitoring: Collision avoiding indoor monitoring by UAVs combines sensors and
algorithms, using LiDAR, ultrasonic sensors, and computer vision for safe navigation [104]. This technology is
crucial for eicient monitoring in places like warehouses or indoor events and allows for automated inspection
and data gathering where traditional methods fall short [70, 72].

3.3 Low-intelligence Applications

UAV-based Low-intelligence surveillance and monitoring involves simple decision-making on object detection
and recognition. Individual UAVs in these applications utilize diverse machine-learning algorithms to detect
objects and adjust their light strategies. The following section outlines some key applications of this category.
Simple object detection, recognition, and action-taking applications: Object detection and recognition
applications typically operate on a small scale, employing a single UAV with onboard intelligence to achieve their
objectives. These UAVs function independently, making detection decisions and planning tracking trajectories.
These applications hold signiicance in diverse ields, and the following examples provide speciic instances of
applications involving object detection and tracking.

Small-scale traic congestion detection: Integrating intelligent UAVs into traic object detection and tracking is
helpful in many aspects. Utilizing ML approaches, these UAVs can assess the number of vehicles on a speciic
road and detect occurrences of traic congestion. In a centralized architecture, the ground station can also use a
Convolutional Neural Network (CNN) with You Only Look Once (YOLO) algorithms to compute vehicle density
based on captured data [73, 74]. Similar to the detection of vehicles, UAVs can also be deployed to detect roads
for tracking path design in traic monitoring [75].
Growth monitoring and disease detection for smart agriculture: The deployment of intelligent UAVs in smart

agriculture has increased in recent years due to their lexibility and the capability to collect image data of crops [76].
Their roles include fertilizer application, seeding, crop and soil monitoring, disease detection, improving harvest
quality, and preventing yield loss [77, 105]. ML techniques like CNN or SVMs analyze leaf images for disease,
guiding precise pesticide application [78].
Trapped human detection and activity recognition in remote areas: Human activity recognition is key in UAV

surveillance, aiding in tasks like search and rescue and traic management by identifying activities such as falls
or walking [79]. During the COVID-19 pandemic, it was vital for monitoring social distancing [106]. CNNs, RNNs,
and YOLO algorithms, trained on diverse activity datasets, efectively detect human activities in UAV footage [81].
The YOLO V5 framework, enhanced by GAs, improves detection from high altitudes [82].

3.4 Medium-intelligence applications

A medium level of intelligence in UAVs can be referred to as a moderate degree of cognitive capabilities and
decision-making capacity embedded within the UAV systems as illustrated in Figure 3. Equipped with AI
and ML, these UAVs process information, make decisions and work together in large-scale operations. They
share data, collaboratively plan, and execute tasks, enhancing coverage, eiciency, and scalability. Some key
medium-intelligence UAV applications are as follows:
Shared decision-making Applications: By incorporating AI, and edge computing technologies, UAVs are
capable of processing data in real-time. This enhances their efectiveness in various surveillance and monitoring
applications as follows:
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Large-scale transportation monitoring and management: Collaborative intelligent UAVs excel in extensive
transportation monitoring, with speciic regions allocated to each UAV for data collection. Traic low and
optical low theories can be employed to accurately estimate traic low parameters from the collected data [83].
Furthermore, these UAVs can deliver multimedia content to vehicles, caching and updating it as per demandc̃iteal-
hilo2021. They also ofer communication and computation services, enhancing vehicle connectivity [107].
Semi-autonomous large-scale remote patrolling and searching for rescue operations: Medium intelligent UAVs

boost the efectiveness of large-scale patrolling and SAR missions with their speed, mobility, and cost-eiciency.
They navigate diicult terrains using advanced sensors and cameras, ofering a budget-friendly alternative to
manned aircraft. These UAVs use ML algorithms to detect victims in emergencies such as sea accidents and forest
ires, with models identifying humans through mobile signals or IoT devices [84]. Thermal imaging and networks
like YOLOV3 enhance survivor detection in thermal images [108].

Sustained detection and monitoring for natural disaster incidents in remote areas: Ensuring sustained detection
and monitoring in remote natural disaster scenarios is of paramount importance. In remote natural disasters
like forest ires, UAVs are crucial for ire detection and tracking, crucial for evacuation and rescue eforts [86].
Disaster areas often face the challenge of disrupted wireless networks due to infrastructure damage, leaving
trapped individuals without the means to request help. To address this issue, intelligent and collaborative UAVs
can step in, ofering temporary communication services.
Swarm based applications: Aerial swarms utilize distributed and cooperative capabilities to manage both
individual and collective movements of UAVs. In a swarm, UAVs collaborate to achieve shared goals or perform
speciic tasks, drawing inspiration from the collective behavior of social insects like ants or bees. These swarms,
equipped with ML algorithms, process data and make decisions onboard, reducing dependence on ground stations
and improving eiciency [109]. The applications of swarms in surveillance and monitoring are outlined below.
Swarm-based target tracking: Swarm-based target tracking uses multiple UAVs to analyze sensor data for

comprehensive environmental understanding [110]. This involves searching and tracking targets in static or
dynamic conditions. In Single or multiple dynamic target-tracking applications, the swarm strives to maintain
high-quality tracking for individual targets while simultaneously tracking a larger number of targets. The
heatmaps-based approach is helpful in such applications to show the probability of moving targets in a given
area [88]. Detection of multiple targets of an unknown number is a much more challenging task than that of a
known number where the swarm needs to explore the entire environment to complete the task [89].
Cooperative mapping: In cooperative mapping, UAV swarms collaborate to collect and share data, producing

detailed maps more eiciently and accurately than single UAVs. This approach allows simultaneous coverage
of diferent areas, resulting in comprehensive maps of large regions. Such collaborative mapping is crucial for
disaster assessment, urban planning, and archaeological exploration.
Colormap/heatmap based applications: Multi-UAV applications are evident in large-scale surveillance and
monitoring scenarios such as crowd monitoring at public events, concerts, festivals, and sporting events. In these
applications, multiple UAVs are equipped with high-resolution thermal imaging cameras to collect the image
data. At the ground station or the edge side, color mapping software can be applied to generate color maps or
heatmaps that depict the density of objects in various monitored areas. This information proves valuable for
identifying potential safety hazards, like overcrowding in speciic zones, and aids in crowd management and
evacuation planning. The utilization of color mapping brings signiicant advantages to the following applications.

Persistent crowd monitoring: Color mapping signiicantly improves UAV swarm-based crowd monitoring. Using
the Bayesian method, UAVs combine multiple data sources into heatmaps for clearer insights [90ś92]. The
Multiview CNN algorithm further aids in real-time crowd detection by integrating RGB inputs with generated
heatmaps [91, 111]. This method helps identify crowd locations, guiding UAVs to optimize light plans for better
coverage or avoid crowded zones.
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UAV-assisted uniform area coverage for cooperative mapping: Cooperative UAV mapping aims for a consistent
environmental portrayal, facing eiciency and energy challenges due to coverage overlap. Color mapping
techniques ensure even coverage, minimizing these issues. Several studies have explored the diverse applications
of heatmaps with UAVs in cooperative mappings like uniform delivery path selection and eicient area scanning
with optimized energy use, underscoring heatmaps’ utility in enhancing UAV eiciency [112, 113].

3.5 High-intelligence Applications

High-intelligence surveillance and monitoring applications require proactive UAVs with predictive decision-
making. These applications are highly complex and lie in the topmost cluster in Figure 3. Proactive applications:
With the recent developments and implementation of AI and ML techniques such as DRL, recurrent neural
network (RNN), and LSTM, the UAVs become potentially capable of predicting the locations of targets or events
and proactively planning the actions to be taken. Some important proactive applications are discussed as follows:

Adversary swarm counterattack with trajectory prediction and position detection in war tasks: In war scenarios,
where UAV swarms can serve as a medium of attack, predicting UAVs’ trajectories becomes crucial for efective
counteraction. RNN and LSTM algorithms, specialized in capturing temporal data characteristics, prove highly
adept at predicting UAV trajectories. As demonstrated by [93ś95], this capability extends to civil aviation systems,
aiding air traic control in collision avoidance among UAVs. To address the challenge of countering adversary
UAV swarms, the work in [93] emphasizes the signiicance of precise position detection. The authors utilize the
Neural Relational Inference (NRI) model and mapping table within their framework to predict swarm trajectories.
In a complementary approach, the authors of [94] introduce a Sequential Model with Stacked Bidirectional
and Unidirectional LSTM (SBULSTM) to predict UAV trajectories. Unlike traditional LSTMs, the bidirectional
LSTM in this model leverages future information to enhance current information prediction, enabling UAVs to
autonomously navigate complex space environments, avoiding obstacles, and ensuring safe and smooth light.

Predictive deployment of fully autonomous UAVs for sustained monitoring: Fully autonomous UAV-based sustained
monitoring introduces a transformative approach to continuous surveillance and monitoring. UAVs equipped
with state-of-the-art sensors and imaging capabilities become indispensable assets for these applications. They
navigate complex environments, avoiding obstacles autonomously while adhering to optimized light paths [114].
Leveraging advanced ML techniques these UAVs play a pivotal role in optimizing deployment strategies [97].
Through predictive modeling of cellular traic and precise determination of service areas using LSTM and
Gaussian mixture models (GMM), UAVs ensure eicient and seamless communication experiences [96]. In the
context of wireless communication, the implementation of DRL algorithms plays a crucial role in predicting
signal handovers, contributing to the seamless communication experience crucial for sustained monitoring [98].
These comprehensive strategies emphasize the signiicant impact of ML algorithms in not only optimizing UAV
deployment for sustained monitoring but also in fortifying communication reliability [114].
Autonomous air traic management systems with predictive traic density estimation: Predicting air traic

density is a critical component of unmanned aircraft system traic management (UTM). With the help of these
predictions, UAVs can ensure safe operations especially when conducting beyond line of sight missions. By
analyzing historical and real-time data, UTM systems can forecast air traic density in speciic regions and
corridors. Considering the future UTM for delivery applications, a CNN and encoder-decoder LSTM framework
can be used to predict the air traic of UAVs with dynamic low structures and airspace [99]. This information
allows UAVs to adjust their light paths or schedules to avoid congested areas, reducing the risk of mid-air
collisions and enhancing overall airspace safety.
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Fig. 8. Key research problems associated with intelligent and active UAV-based surveillance applications.

4 Key research problems and solutions in UAV-based intelligent in active surveillance and monitoring

This section discusses the research problems and the challenges associated with the intelligent and active
surveillance applications of UAVs. It also describes the technical limitations of UAVs and explores the current
research eforts to overcome these challenges. Figure 8 summarizes the main research problems related to UAVs
in intelligent and active surveillance applications.

4.1 Autonomous Navigation

Autonomous navigation is crucial for intelligent UAVs, allowing them to operate without human help. They use
techniques like localization, mapping, path planning, and collision avoidance to safely navigate and perform
tasks. UAVs incorporate collision prevention, and in collaboration, they share data for mapping and employ
path-planning algorithms for eicient, safe routes [115]. The research problem of autonomous navigation can be
divided into the following three sub-problems.
Localization andmapping: Accurate UAV localization in intelligent surveillance systems is essential for efective
navigation. Localization and mapping together are the main components of a UAV navigation system. Mapping
creates a 2D or 3D environmental layout, highlighting obstacles and features, while localization pinpoints the
UAV’s location and direction. This process is more complex for UAVs due to three-dimensional space and potential
GPS unreliability in challenging environments like indoors or areas with signal obstructions [116]. To overcome
these challenges, vision-based methods combining IMU and camera data have emerged. Notably, Visual SLAM
(VSLAM) constructs an environmental model while locating the UAV, ofering precise indoor navigation [103].
Visual Odometry (VO), using image sequences to estimate motion, suits outdoor navigation but may falter in
dynamic settings.
Path planning: In UAV-based surveillance and monitoring, path planning plays a critical role in enabling the
UAV to navigate eiciently and efectively through a given area [117]. To ensure safe and eicient navigation,
path planning is typically integrated with collision avoidance. Collision avoidance is often referred to as łlocal
path planningž while path planning is referred to as łglobal path planningž. Global path planning generates
optimal routes considering the entire environment as one, while local path planning deals with changes in
the environment at the moment of detection, performing collision-avoidance maneuvers accordingly [118]. In
surveillance and monitoring applications, dynamic environmental changes such as sudden weather changes,
object movements, or terrain alterations can make path planning challenging. Another aspect of path panning
is performance optimization-based path planning which involves inding the optimal path for a UAV based
on diferent performance metrics such as latency, power consumption, and distance. One more aspect of path
planning is covert trajectory planning which involves inding a path for a UAV that minimizes its visibility and
detection by potential threats or adversaries [117].
Collision-avoidance: Collision avoidance is critical for UAV-based surveillance to ensure safe light. It involves
two phases: perception using sensors like LIDAR and radar, and action through strategies such as geometric,
optimized, force-ield, and sense-and-avoid methods [119]. These strategies use velocity, location, obstacle
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parameters, and real-time detection to maintain safe distances and ind eicient paths. Machine Learning (ML)
techniques help UAVs avoid collisions with both stationary and moving objects by predicting their locations and
movements through methods like RNN-based predictions [120] and the TEXPLORE Reinforcement Learning
algorithm [121]. While these techniques often rely on simulations with point-like dynamic obstacles, real-world
situations may difer. To address this, [122] introduced a Neural Network Pipeline (NNP) for collision prediction
and an Object Motion Estimator (OME) using optical low to detect and predict moving objects’ paths in video
feeds. In summary, UAV-based collision avoidance is complex due to the need to avoid both environmental
obstacles and swarm members while optimizing performance. ML-driven systems enable UAVs to navigate
challenging environments by proactively identifying and avoiding potential collisions.

4.2 Formation Control

Formation control is one of the main aspects of the implementation of UAV swarms. In swarms, formation refers
to the geometric arrangement or spatial coniguration of multiple UAVs relative to each other. The essential
autonomy of UAVs including perception and execution highly depends on the formation control framework [123].
The research problems in formation control can be divided as follows:
Leader selection and sensor placement: Leader selection is a critical aspect of formation control for UAVs. In
a swarm, a leader is a UAV that controls the group formation and the other UAVs. The leader can be selected
in several ways, depending on the speciic application and requirements. In simple applications, typically the
UAV with the highest performance characteristics is selected as the leader. Another approach is to have the UAVs
in the formation decide the leader through a consensus algorithm. The authors in [124], show that improving
the selection of the swarm leader can enhance the performance of the particle swarm optimization (PSO)
algorithm. Along with optimal leader selection, choosing the optimal number of leaders is also critical in large
UAV groups [125].
Trajectory and motion planning for swarms: Trajectory and motion planning are crucial for the efective
operation of intelligent UAV swarms. Trajectory planning determines the optimal path, waypoints, speed, altitude,
and orientation for UAVs to follow. In contrast, motion planning determines the actions required for the UAV
swarms to navigate through the environment and achieve their goals. Trajectory and motion planning consider
various constraints such as obstacles, energy consumption, and mission objectives [126]. Eicient trajectory
and motion planning lead to reduced mission time, increased success rate, improved safety, and reduced energy
consumption [127, 128]. In order to plan the trajectory and the motion of the intelligent UAV swarms, a centralized
approach can be adopted to optimize the overall performance of the swarms. However, it comes at the cost
of intensive computation and isn’t suitable for large swarms. Instead, a decentralized approach can be used
where each UAV in the swarm plans its trajectory and motion based on local information and communication
with nearby UAVs. This approach is scalable and adaptable to changing environments, but it may not be able to
optimize the overall performance of the swarm.

Recently, bio-inspired algorithms for trajectory and motion planning for UAV swarms are being used showing
better performance in complex environments. PSO is one of the most used bio-inspired algorithms in this ield
[129]. The authors in [130] use the PSO algorithm to design the 3D trajectory of a UAV swarm for surveillance.
Their design includes a multi-objective itness function following energy consumption, light risk, and surveillance
area priority to evaluate the trajectories generated by the planner. In [131], the authors modify the PSO algorithm
by developing a novel hybrid particle swarm optimization algorithm, namely, SDPSO that can quickly plan higher
quality paths for UAVs in comparison to other bio-inspired algorithms such as dynamic-group-based cooperative
optimization (DGBCO), gray wolf optimizer (GWO), and two-swarm learning PSO (TSLPSO) algorithms.
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4.3 Power and Energy Management

Large-scale surveillance and monitoring applications require UAVs with extended light endurance. The primary
limitation of UAVs in these applications is high energy consumption. While advancements in battery technology
have improved UAV light times, they still fall short for applications like extensive surveillance and monitor-
ing [132]. To mitigate these limitations, some solutions have emerged. Solar charging, for instance, involves
equipping UAVs with onboard solar panels to convert sunlight into electrical energy [133], [134]. This stored
power can then support both light and sensor operations. However, solar-powered UAVs are subject to restrictions
as their output is inluenced by factors like cloud cover, atmospheric conditions, and sun angle. Additionally, the
solar panels add weight and cost to the UAVs, making them less versatile for all applications [135]. Wireless Power
Transfer (WPT) technology presents another promising solution for extending UAV endurance. Using lat coil
couplers, similar to mobile phone chargers, WPT can recharge UAVs without requiring them to actually land at a
base for charging but lying closer to it. This approach enhances the autonomy of UAVs and supports charging
other devices. Yet, WPT technology brings its own set of challenges, including the need for precise hovering
control, energy-eicient electronic devices, and the potential for electromagnetic interference with onboard
equipment [136ś138]. Eicient path planning is another means of managing power in UAV-based surveillance and
monitoring. By optimizing light paths and deploying charging stations in the mission area, UAVs can minimize
energy consumption and mission duration [139]. Furthermore, ground mobile charging stations, such as cars and
buses, are being integrated into UAV operations, allowing for a dynamic approach to UAV battery management by
synchronizing UAV and mobile charging station networks. These innovations represent signiicant steps toward
enhancing UAV endurance and operational eiciency [140].

4.4 Emerging Atack Vectors in UAV Security

UAVs can play a vital role in modern surveillance and monitoring systems, but their deployment introduces
signiicant security and privacy challenges. These systems are vulnerable to a variety of sophisticated attacks,
targeting both their hardware and software. Ensuring the security and privacy of UAV systems is crucial for main-
taining operational integrity, protecting sensitive data, and preventing malicious exploitation. In the following,
we explore key attack vectors and the associated countermeasures:
Drone hijacking: One of the most direct threats to UAVs is unauthorized access, commonly known as drone
hijacking [141]. Attackers exploit vulnerabilities in communication protocols or authentication mechanisms
to gain control over the drone, enabling them to redirect its operations, steal it, or cause intentional crashes.
Hijacking attacks often involve spooing or jamming signals between the UAV and its ground control station.
Once communication is disrupted, attackers can inject malicious commands. Techniques to prevent hijacking
include implementing secure communication protocols (e.g., end-to-end encryption), real-time anomaly detection,
and hardware-based authentication such as tamper-proof modules [142, 143].
AI spooing and manipulation: UAVs increasingly rely on artiicial intelligence (AI) for decision-making and
real-time operations. However, this reliance introduces risks, as attackers can exploit vulnerabilities in AI models
to manipulate their behavior [144]. Adversarial attacks involve subtly altering sensor inputs, images, or other data
to mislead AI algorithms, potentially causing misclassiication of objects, navigation errors, or mission failure.
Enhancing adversarial robustness during AI model training, validating inputs through multi-sensor fusion, and
deploying secure AI frameworks can mitigate these risks [145].
Data exiltration: UAVs collect and transmit sensitive data, which makes them attractive targets for attackers
seeking unauthorized access. Protecting this data is critical to prevent breaches and misuse [146]. Attackers can
intercept unencrypted data streams or iniltrate UAV systems to extract sensitive information. This is particularly
critical in surveillance missions involving classiied or proprietary data. Countermeasures such as end-to-end
encryption of communications, secure onboard data storage, and network monitoring tools can mitigate the risk
of data breaches. Employing access control mechanisms further enhances data security [143].
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Deep packet inspection atacks: UAV communications are susceptible to interception and analysis through deep
packet inspection (DPI), enabling attackers to identify patterns or inject malicious payloads [147]. DPI attacks
target UAV communication networks by analyzing the metadata and content of transmitted packets to extract
information or disrupt operations. To address DPI risks, UAV systems can employ encrypted communication
protocols like TLS, regularly rotate encryption keys, and integrate anomaly detection systems to lag unusual
traic patterns [148].
Zero-day exploits: The complexity of UAV systems makes them susceptible to unknown vulnerabilities, known
as zero-day exploits [149]. These vulnerabilities, once discovered, can be exploited by attackers before developers
issue patches. Zero-day exploits often result from unpatched irmware or software laws, enabling attackers
to gain unauthorized control, disrupt operations, or access sensitive data. Proactive security measures include
rigorous code testing, collaboration with ethical hackers, regular updates, and an incident response plan to
address emerging threats [150].
Quantum cryptography threats: Advancements in quantum computing pose a long-term threat to traditional
cryptographic methods, potentially rendering current encryption standards obsolete [147]. Attackers leveraging
quantum computing power can break cryptographic keys used in UAV communication systems, compromising
data security. Adopting quantum-safe cryptographic algorithms and hybrid encryption methods ensures resilience
against quantum-based attacks. Forward-looking security protocols must integrate these advancements [148].
Wormhole atacks: UAV networks, particularly those utilizing lying ad-hoc networks (FANETs) or mobile
ad-hoc networks (MANETs), are susceptible to routing-based attacks, such as wormhole attacks. These attacks
disrupt the process of packet routing within the network. In a wormhole attack, the transmission of information
between UAVs and ground stations is manipulated in such a way that distant UAVs appear as neighboring UAVs
in the network. This misrepresentation signiicantly impacts the UAVs’ decision-making processes, including the
selection of the shortest routes even using the same routing [151].

5 Future directions and synergy with emerging technologies

The use of UAVs for intelligent surveillance and monitoring is anticipated to increase in the upcoming years,
and new technological developments are likely to emerge. The advancement of edge computing, AI, and ML
technologies will make UAVs smarter and more intelligent in terms of decision-making, signiicantly raising
the level of active surveillance and monitoring. Figure 9 highlights the key future directions for UAV-based
intelligent surveillance and monitoring.

FUTURE DIRECTIONS AND SYNERGY WITH EMERGING TECHNOLOGIESFault-tolerant and resilient architecture Communication and AISecurity and privacy LLMs and UAVs
Proactive and predictive decision-making

Fig. 9. Proactive and predictive decision-making, fault-tolerant and resilient architecture, communication and AI, security

and privacy and LLMs are considered as key emerging technologies to support the future research directions for intelligent

surveillance and monitoring.

5.1 Proactive and Predictive Decision-making

High intelligence brings proactiveness to UAVs enabling them to make predictive decisions. However, the current
landscape of predictive decision-making in UAVs faces challenges due to constraints in computational power, the
complexity of predictive models, and the dynamic nature of environments. To overcome this limitation in future
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surveillance and monitoring, the implementation of distributed machine learning, such as federated learning,
ensemble models, and online learning can allow multiple UAVs to collaboratively train a shared model while
maintaining data privacy and decentralization. These approaches facilitate collaborative training of a shared
model among multiple UAVs while preserving data privacy and decentralization. The incorporation of such
techniques is anticipated to empower future surveillance and monitoring systems to eiciently process vast
amounts of information in real-time, supporting predictive decision-making on a large scale. In the future of UAV
surveillance and monitoring, the integration of large-scale predictive decision-making holds signiicant potential
across a broad spectrum of applications, with some examples as follows:
Proactive transportation traic control with patern and congestion prediction: The vehicular traic
environment, characterized by its highly dynamic nature, can greatly beneit from advanced traic surveillance
and monitoring facilitated by distributed learning models. These models can predict upcoming traic low and
congestion on a large scale, spanning entire towns or cities. By foreseeing potential traic bottlenecks and
estimating the travel times of vehicles, these distributed learning models can proactively manage traic lows to
optimize transportation eiciency at a city-wide or regional level.
Early warning of natural disasters: Future UAV surveillance and monitoring can also be assisted by the
prediction and early warning of natural disasters such as wildires, loods, or landslides. By monitoring environ-
mental conditions, detecting anomalies, and analyzing patterns, UAVs can provide early alerts and predictions for
impending disasters. This can allow authorities to take proactive measures, initiate evacuation plans, and allocate
resources in a timely manner. The gathered air quality, water quality, and pollution-related data can help UAVs
to predict pollution trends and identify potential pollution sources. This can aid in environmental protection,
pollution prevention, and resource management.

5.2 Fault-tolerant and Resilient Architecture

Resiliency in architecture is paramount for the future of UAV surveillance and monitoring, especially when faced
with unpredictable and challenging environmental conditions. Harsh and dynamic elements such as temperature
luctuations, humidity, and unpredictable wind speeds can pose signiicant challenges to UAV deployments.
Moreover, during missions, unexpected external forces, heavy rain, or internal incidents may disrupt critical
software or hardware components, resulting in degraded performance or a complete inability to fulill their
tasks. To meet these challenges, future UAV-based surveillance and monitoring systems must be dynamic, auto-
adjustable, and resilient. They should be able to proactively predict faults and make changes on the ly to minimize
the impact of failures or disruptions, thereby reducing downtime and losses. This future fault-tolerant and resilient
architecture can be designed in the following ways:
Health and performance improvement through advanced fault prediction models: The development and
integration of advanced fault detection and prediction models like SVMs, random forests, CNNs, and RNNs in UAV
systems can help to predict faults in UAVs during surveillance and monitoring operations. The fault prediction
can enable proactive maintenance safeguarding them from health and performance deterioration. These fault
detection models can continuously analyze data from the UAV sensors in real-time to detect deviations from
normal operation patterns, which could indicate an impending failure. By reducing the likelihood of in-light
failures, these models can signiicantly enhance the safety and reliability of UAV operations. This is especially
crucial in applications where UAVs are used in hazardous environments.
Extending lifetime through strategic coordination and load balancing: The limited battery and compu-
tational power of UAVs pose a challenge to their operational eiciency. Excessive load from data processing
on UAVs can easily lead to the failure of their internal components. Load balancing and coordination in UAV
swarms are promising approaches to overcome this problem. The future architecture of UAV-based surveillance
and monitoring requires such techniques to automatically redistribute tasks among UAVs to avoid situations
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where components fail or compensate for the loss of a unit. Employing such techniques can ensure the overall
progress of the mission without signiicant degradation.

5.3 Integration of Future Communication and AI with UAV Systems

Maintaining complete communication in real-time during the surveillance and monitoring mission is the irst step
of a future communication system for UAVs. During the mission, communication issues include communication
delays or disturbances between UAVs or with external entities. In the future, the advancement of 6G and satellite
communication can play a pivotal role in reducing communication delay and enhancing the reliability of UAV-
based surveillance and monitoring communication systems. Some examples are discussed in the following:
Empowerment with 6G and beyond communications: 6G and beyond communications can empower UAV-
based surveillance and monitoring. The increased data transfer speeds and low latency of 6G can allow real-time
high-deinition video streaming from UAVs, providing more accurate and up-to-date information to operators.
This means better decision-making can be made in critical situations with quicker response times. Moreover,
the enhanced connectivity and network reliability of 6G can improve the communication between multiple
UAVs, enabling them to collaborate and cover larger areas more eiciently. The increased network capacity of 6G
can also support a greater number of UAVs operating simultaneously, allowing for broader coverage and more
efective monitoring of large areas, such as borders, disaster-stricken areas, or crowded events.
Expansion of global reach with satellite backup: To enhance surveillance resilience, future UAV systems
can leverage satellite communication, especially in remote areas lacking infrastructure such as oceans, deserts,
and mountains. Geostationary satellites (GEO) provide continuous coverage for long-duration missions (e.g.,
border patrol, oil spills, mountain search and rescue), while Low Earth Orbit (LEO) satellites support low-latency,
data-intensive operations. In urban settings, LEO satellites can serve as backup links during communication
disruptions. In satellite-UAV communication, UAVs establish Beyond-Line-Of-Sight (BLOS) links via onboard
SATCOM terminals operating at mission speciic frequencies. These links use mechanically steered or phased
array antennas to track satellite beams. Compared to ground-UAV communication, which uses low-latency,
high-bandwidth terrestrial links (e.g., LTE, 5G) satellite-UAV communication prioritizes global coverage but
faces higher latency, lower data rates, and challenges such as atmospheric attenuation, Doppler shift, and orbital
dynamics. Satellite links also require managing handovers and adaptive modulation to maintain reliable control
over long distances. Recognizing these diferences is critical for designing satellite-reliant UAV systems.
Enhancement of communication reliability with Dynamic Spectrum Allocation (DSA): In the upcoming
future, the utilization of UAVs for surveillance and monitoring will continue to expand. Unplanned spectrum
allocation in a growing population can result in signal interference and loss during missions, posing potential
threats to their success. To face these challenges, DSA schemes can ofer a promising approach. By dynamically
allocating spectrum resources, these schemes can mitigate the impact of increasing UAV on the spectrum, ensuring
eicient utilization and minimizing signal interference. To mitigate the efect of environmental change on UAVs,
these systems can feature environment-adaptive backbone UAVs equipped with state-of-the-art communication
capabilities. These backbone UAVs can intelligently position themselves to establish and maintain reliable
communication links, even in the face of challenging and dynamically changing environmental conditions.
Integration of AI-driven network slicing: Network slicing, a technique enabled by 5G and 6G networks,
allows for the creation of multiple virtual networks on a single physical infrastructure, each tailored to speciic
applications or services. In UAV operations, AI-driven network slicing could be used to allocate network resources
dynamically, ensuring that critical tasks, such as real-time video streaming or emergency communications, receive
the necessary bandwidth and low latency. Future research could investigate the development of AI algorithms
that optimize network slicing for UAVs, balancing the needs of various tasks and maximizing overall system

ACM Comput. Surv.



Future UAV/Drone Systems for Intelligent Active Surveillance and Monitoring • 25

eiciency. This approach could also facilitate the integration of UAVs into broader smart city infrastructure,
enabling seamless communication between UAVs and other IoT devices.
Development of Quantum communication channels: Quantum communication, with its potential for ultra-
secure data transmission, represents a promising future direction for UAV systems. Quantum key distribution
(QKD) could be used to secure communication links between UAVs and ground stations, protecting sensitive data
from eavesdropping or cyberattacks. Research in this area could focus on adapting quantum communication
technologies for use in UAV systems, including the development of lightweight, energy-eicient quantum
communication modules suitable for integration with UAV platforms. Additionally, hybrid systems combining
quantum and classical communication could be explored to provide both security and reliability in various
operational scenarios.
Real-Time adaptive communication protocols: As UAVs operate in diverse and dynamic environments, the
development of real-time adaptive communication protocols will be crucial to maintaining reliable connections.
These protocols could automatically adjust communication parameters, such as frequency, power, and modulation
schemes, in response to environmental changes, interference, or network congestion. Future research could
explore the use of AI and ML algorithms to develop adaptive protocols that optimize communication performance
in real-time, ensuring that UAVs remain connected even in challenging conditions. This approach could be
particularly valuable in mission-critical operations where uninterrupted communication is essential.
Utilization of High-Altitude Platform Systems (HAPS): High-altitude platform systems (HAPS), operating in
the stratosphere, could provide a novel communication infrastructure for UAVs, ofering wide-area coverage and
persistent connectivity. HAPS could act as aerial communication relays, bridging gaps in satellite and terrestrial
networks, particularly in remote or disaster-stricken areas. Future research could focus on integrating HAPS
with UAV systems to enhance communication reliability, exploring the potential for HAPS to serve as mobile
base stations that dynamically adjust their position to optimize coverage and reduce latency for UAV operations.

5.4 Emerging Techniques to Enhance Security and Privacy

The increased use of UAVs in surveillance and various applications has raised valid concerns about security.
One major worry is the potential misuse of UAVs for malicious purposes such as terrorism or spying. UAVs,
equipped with cameras, can capture images and videos, leading to worries about privacy violations, especially if
done without people’s consent. Additionally, there’s the fear that UAVs could be used to conduct surveillance on
sensitive areas or even carry harmful payloads like explosives. This has prompted a need for efective regulations
and security measures to prevent the unauthorized and potentially harmful use of UAVs. As these devices
become more commonplace, it is crucial to address both security and privacy concerns through regulations and
technological solutions to ensure responsible and safe use. To avoid these situations, new security algorithms for
UAVs could be developed when needed. Some example algorithms and technologies are as follows:
Microchip defense mechanism: UAVs, particularly those deployed in critical reconnaissance and surveillance
missions, carry sensitive information and data. These UAVs are vulnerable to attacks and can be captured
by adversaries, presenting a substantial security risk. Once captured, these UAVs can be reverse-engineered,
leading to the potential leakage of sensitive information. This risk increases as UAV designers often depend
on third-party intellectual property cores and outsourced elements in the design of integrated circuits (ICs),
potentially introducing security gaps at the chip level. Implementing chip-level security is a robust defense against
these threats. Integrating security features directly into the microchips that power and control UAVs, and store
their data, can signiicantly secure unauthorized access and the deciphering of encoded information. Microchip
defense mechanisms can encompass hardware-based encryption, self-destruct protocols, and authentication
mechanisms that deactivate the UAV’s functionality when tampering is detected. Such comprehensive security
has the potential to not only safeguard the conidential data collected by UAVs but also to protect their physical
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design and technological advancement from replication via reverse engineering. This approach can ensure a
higher level of security, maintaining the integrity of both the information and the technology within these critical
aerial assets.
Quantum key distribution (QKD): To safeguard the conidentiality of sensitive data, UAVs can employ Quantum
Key Distribution (QKD) during surveillance and monitoring missions to establish highly secure communication
channels. QKD enables the creation of encryption keys that are theoretically immune to decryption, ensuring
that data transmitted between UAVs and ground stations remains protected from eavesdropping and cyber
threats. By leveraging quantum principles, QKD can also detect any interception attempts, making it signiicantly
more resilient than traditional cryptographic methods. As quantum computing continues to advance, rendering
some conventional encryption techniques vulnerable, QKD ofers a future-proof security solution. This makes it
particularly well-suited for missions requiring the highest standards of data security, such as military operations,
critical infrastructure surveillance, and other high-stakes UAV applications.
AI-Driven privacy ilters: AI-driven privacy ilters can be integrated into future UAV-based surveillance and
monitoring missions. These ilters can automatically detect and redact any personally identiiable information
(PII) or sensitive data from images and videos captured during surveillance. Utilizing advanced machine learning
algorithms, these ilters can accurately identify human faces, license plates, and other sensitive information,
ensuring that individuals’ privacy is protected, and only relevant data is transmitted to the ground station.
Moreover, these AI systems can be trained to comply with various global data protection regulations, making
them adaptable to diferent legal frameworks. The integration of AI-driven privacy ilters addresses the growing
concerns about privacy in surveillance practices, striking a balance between the need for security and the
protection of individual rights.
Neural network-based intrusion detection: Future UAVs can be equipped with highly advanced neural network-
based intrusion detection systems. These systems continuously analyze network traic and communication
patterns to detect any suspicious activities or intrusion attempts. By employing deep learning techniques, these
neural networks can learn to identify subtle patterns and anomalies that indicate potential security breaches,
enhancing their detection capabilities. This capability ensures that the UAV’s communication channels and data
remain secure during missions. Additionally, these systems can adapt and update their detection strategies in
real-time based on new threats, ensuring robust protection against evolving cyber threats. The integration of
these advanced systems plays a critical role in safeguarding the integrity and conidentiality of the mission-critical
data being handled by UAVs.
Blockchain-based data integrity veriication: Blockchain technology can be a powerful tool in ensuring the
integrity and authenticity of data collected by UAVs. By leveraging a decentralized and immutable distributed
ledger, blockchain records each data entry as a unique block, which is cryptographically linked to the previous
block. This method makes it extraordinarily diicult for malicious actors to alter or tamper with the data without
detection. As each node in the blockchain network holds a copy of the ledger, any discrepancies between nodes
can be identiied and corrected, ensuring a high level of data trustworthiness. This capability is particularly
crucial in sensitive applications such as environmental monitoring, military operations, and disaster response,
where the accuracy and reliability of data are crucial.
Homomorphic encryption: Homomorphic encryption is an advanced cryptographic technique that allows
data to be processed while still encrypted, ensuring that sensitive information remains protected even during
computation. For UAV operations, where data is often transmitted and processed across various platforms,
homomorphic encryption ofers a robust solution to maintain conidentiality. Even if intercepted, the encrypted
data cannot be understood or misused by unauthorized parties. This method is particularly useful when UAVs are
used in scenarios that require the sharing of sensitive data with external entities, such as in collaborative research,
law enforcement, or medical supply deliveries. The ability to perform computations on encrypted data also means
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that insights can be derived without ever exposing the raw, sensitive information, signiicantly enhancing the
security and privacy of UAV data operations.
Secure boot and irmware updates: Secure boot and irmware update mechanisms are essential security features
that protect UAVs from malware, unauthorized software, and other security threats. The secure boot process
ensures that the UAV only loads irmware that is digitally signed and veriied, preventing malicious software from
being executed at startup. Similarly, secure irmware update mechanisms verify the authenticity and integrity
of the update package before applying it, safeguarding the UAV from potential vulnerabilities that could be
introduced through corrupted or malicious updates. These measures are critical in maintaining the operational
integrity of UAVs, especially in mission-critical applications where the reliability of the software is crucial. Regular
and secure updates also ensure that UAVs are protected against the latest security threats, maintaining their
resilience against evolving cyber threats.

5.5 Integrating large language models (LLMs) with UAVs for future applications

The fusion of LLMs with UAVs holds signiicant promise for advancing the capabilities of future surveillance
and monitoring systems. This integration can beneit future UAV-based surveillance and monitoring systems in
several ways.
Natural language interaction and intelligent decision support: LLMs can enable natural language interaction
between operators and UAVs. Operators can issue commands, ask questions, or receive status updates through
spoken or text-based communication, making the operation of UAVs more intuitive and user-friendly. LLMs can
also provide real-time, context-aware decision support to UAV operators. It can analyze the data being collected
by the UAVs and ofer insights and recommendations to guide operators in making informed decisions during
surveillance missions.
Emergency response and alerts: In future UAV-based surveillance and monitoring, advanced technologies,
including LLMs, can signiicantly enhance emergency response capabilities. While language models themselves
are not directly used for recognizing critical events or anomalies within data streams, they can play a pivotal role in
the subsequent stages of emergency response. Once a critical event is detected by specialized analytical algorithms,
language models can be employed to interpret and translate the technical indings into clear, actionable alerts.
These alerts can then be automatically communicated to operators or relevant authorities, facilitating prompt and
informed decision-making. Language models can assist in organizing information, generating detailed reports, or
even drafting initial response strategies based on predeined protocols.
Autonomous mission planning and adaptation: Integrating LLMs with UAVs could enable more sophisticated
autonomous mission planning and adaptation. By processing mission objectives expressed in natural language,
LLMs can generate detailed light plans that account for factors such as terrain, weather conditions, and potential
threats. During the mission, LLMs can dynamically adjust the plan in response to real-time data, optimizing the
UAV’s performance and ensuring mission success even in changing or unpredictable environments.
Enhanced object detection and classiication: LLMs, when combined with advanced image and signal pro-
cessing algorithms, can enhance the object detection and classiication capabilities of UAVs. By understanding
contextual information provided by LLMs, UAVs can prioritize certain objects or events over others, improving the
eiciency and accuracy of surveillance tasks. This capability could be particularly useful in complex environments
where identifying and tracking speciic targets are critical.
Collaborative multi-UAV operations: LLMs can facilitate the coordination and collaboration of multiple UAVs
working together on a shared task. Through natural language processing, LLMs can enable UAVs to communicate
with each other, share data, and make collective decisions. This approach can lead to more eicient use of
resources, improved coverage of large areas, and faster completion of missions. Research in this area could explore
the development of decentralized communication protocols and decision-making algorithms driven by LLMs.
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6 Conclusion

Due to their lexibility, cost-efectiveness, and support of IoT services, UAVs or drones have drawn great attention
in surveillance and monitoring applications. Furthermore, the development of related techniques and technologies
such as AI and ML has provided signiicant advancement to this ield in recent years. For instance, the enhanced
computational capabilities has enabled UAVs to tackle complex and intelligent applications, including active
surveillance and monitoring. In this survey, we studied the core concepts of UAV-based surveillance and monitor-
ing, and described the enabling technologies, architectures and applications within this area. We emphasized
various levels of UAV activeness and intelligence, and described how this technology can be adaptable through
state-of-the-art AI and ML techniques. Furthermore, we discuss emerging challenges and key research problems
and their solutions, and how these developments can inluence the UAV performance in diverse application
scenarios. Finally, we discussed emerging challenges and future directions, identifying gaps in existing literature,
providing ideas for future research. Through this survey, we have thus compiled a comprehensive resource for
researchers exploring this rapidly evolving ield involving challenges and opportunities in improving UAV-based
active surveillance and monitoring applications.
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