
MBM-IoT: Intelligent Multi-Baseline Modeling of
Heterogeneous Device Behaviors against IoT Botnet

Jianyu Wang
University of Missouri-St. Louis

St. Louis, Missouri, USA
jwgxc@mail.umsl.edu

Jianli Pan
University of Missouri-St. Louis

St. Louis, Missouri, USA
pan@umsl.edu

Abstract—Recent researches have applied various machine
learning models to detect IoT botnet attacks. However, the hetero-
geneity of IoT devices’ normal and attack behaviors was not well
addressed, which resulted in high false positive/negative detection
rates. To solve this issue, we propose a method that builds
individual behavior baselines for different types of devices with
a single Conditional Variational Autoencoder model, and then
detects attacks with even minor deviations from the baselines.
The evaluation results on the public N-BaIoT dataset show that
our method outperforms the others with accuracy higher than
99.9% while introducing limited extra computational cost.

Index Terms—IoT security, botnet attack detection, heteroge-
neous IoT devices, conditional variational autoencoder

I. INTRODUCTION

Due to computation resource constraints, many IoT devices
cannot afford strong on-host security mechanisms. Thus, they
expose various vulnerabilities to be compromised and con-
trolled as botnets that launch Distributed Denial of Service
(DDoS) attacks against other critical Internet facilities [1].

Recent researches have applied machine learning models to
learn the data distribution of IoT devices’ normal behaviors
and detect attacks as anomalies [2]–[5]. However, few works
have well addressed the challenges of increasing heterogeneity
of IoT devices, which degrade the detection accuracy. First, the
normal behavior patterns of IoT devices are distinct between
each other due to their specialized functions (e.g., voice
speakers and web cameras). Second, it is highly possible that
the attack behavior of one device is similar to the normal
activity of another device. Unfortunately, the existing works
usually assume a single data distribution for all devices, which
lead to suboptimal model learning.

In this paper, we propose a multi-baseline modeling scheme
(MBM-IoT) that employs a Conditional Variational Autoen-
coder (CVAE) [6] to build distinct behavior baselines for each
type of IoT devices efficiently in a single learning process.
Subsequently, we design a two-factor detection algorithm that
jointly utilizes reconstruction error (RE) and Kullback-Leibler
divergence (KLD) loss functions of CVAE to identify attacks
with even minor deviations from the learned baselines.

II. MBM-IOT BOTNET ATTACK DETECTION

MBM-IoT consists of two key designs: multi-baseline de-
vice behavior modeling and two-factor attack detection, as
shown in Fig. 1.
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Fig. 1: Overview of MBM-IoT.

A. Multi-Baseline Behavior Modeling

In order to build behavior baselines separately, we first
conduct device type labeling on the data collected from
different IoT devices. The type of a device is determined by its
functionality, such as smoke detectors, voice assistants, web
cameras, and etc. In this way, a behavior sample is profiled as
(x|k) = ([x1, x2, ..., xn]|k), where xi is feature values and k
is device type.

The modeling process is formulated as a multimodal distri-
bution learning problem, where each mode is the behavior data
distribution of one device type. Our goal is using one CVAE
model to learn behaviors of multiple types of devices in a joint
training process. The model inputs are x and k, and the output
is the reconstructed feature values x′ conditioned to k. The
learning objective of CVAE is to maximize the ensemble loss
function of reconstruction error (RE) and Kullback-Leibler
divergence (KLD) as below:

LCV AE(x, k) = E[logP (x|z, k)]−DKL(Q(z|x, k) ‖ P (z|k))

The first item E[logP (x|z, k)] is the expectation of log-
likelihood between x and x′, which encourages the decoder
of CVAE to reconstruct x from its latent space variable z
generated by the encoder. Maximizing E[logP (x|z, k)] is
equal to minimize the RE(x, x′), which is calculated by
mean square error. The second item DKL(·) represents KLD,
which estimates the divergence between encoder’s learned
distribution Q(z|x, k) and expected distribution P (z|k).
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Fig. 2: The experiments results of all the detection models: (1 − FNR) against ten botnet attacks (left five charts in the 1st
and 2nd rows), (1− FPR) on benign traffic (top-right), and training time (bottom-right).

B. Two-factor Attack Detection
Once the modeling is completed, we employ CVAE to

evaluate the abnormality of new behavior samples. Based on
their magnitude of deviations from benign baselines, RE and
KLD are jointly utilized as metrics. Relatively, RE is more
sensitive to macro deviations on features values, and KLD
can capture minor but systematic deviations. Thus, we propose
a two-factor detection algorithm as follows: (1) defining the
anomaly thresholds of RE and KLD for each device type based
on the training data: THRE = mean(RE)+3∗std(RE) and
THKLD = mean(KLD) + 3 ∗ std(KLD). (2) measuring
the new samples x’s RE(x) and KLD(x). (3) check if either
RE(x) or KLD(x) is larger than their thresholds. If yes, x
is detected as attack. Otherwise, x is benign.

III. EVALUATION OF DETECTION ACCURACY AND COST

We use the public N-BaIoT [4] dataset for evaluation, which
contains ten classes of botnet attacks collected from nine IoT
devices. False Positive Rate (FPR) and False Negative Rate
(FNR) are adopted as accuracy metrics, where FPR indicates
the proportion of benign samples predicted as attacks and
FNR is the proportion of attacks predicted as benign. The
performance of MBM-IoT is compared with five other meth-
ods, including three conventional machine learning models that
train a single IF, LOF, or one-class SVM model for all devices
(without differentiate device types) [2], and two Autoencoder
(AE)-based models that train a single model for all devices
(denoted as AE1) [3] or train one model per device (denoted
as AE2) [4]. All the experiments are done on a desktop with
a 3.6 GHz 4-core CPU and 16 GB RAM.

Fig. 2 shows the results, where the green (dash) and orange
(solid) lines indicate mean and median values, respectively.
We observe that CVAE performs the best against both benign
samples and the ten classes of attacks and (lower than 0.01
FPR and FNR in both cases). The other models either have big
variances of accuracy to detect different attacks (e.g., IF, LOF,
AE1), or are not capable of detecting some specific attacks like
BASHLITE TCP flooding with minor deviations from device

normal behaviors (e.g., SVM, AE1, AE2). Besides, the benign
traffic detection rates of the first four models are influenced by
behavior heterogeneity, while AE2 has weaker learning ability
than CVAE. Furthermore, the training of CVAE completes
within 107.62s, which indicates that our model does not
introduce much computation cost compared to other methods.

IV. CONCLUSION

In this paper, we proposed a novel IoT botnet attack detec-
tion method named MBM-IoT that addressed the challenges
of heterogeneous IoT device behaviors. First, we employed
CVAE to build individual baselines for different types of
devices. Then, we jointly utilized RE and KLD loss functions
to detect attacks with macro or minor deviations from the
baselines. Evaluation results demonstrated MBM-IoT’s supe-
rior detection accuracy and cost compared to five well-known
machine learning models over the public N-BaIoT dataset.
Future works include utilizing more behavior features and
more types of IoT devices to further validate the performance
of our method.
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