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Abstract—Traditional methods for identifying and mitigating
cyber attacks are becoming inadequate due to ever-increasing
volumes of network traffic, the complexity of modern cyber
threats, and the use of encryption to protect payloads. This
paper presents CyberMALT, a novel approach designed to address
these challenges through machine learning-assisted analysis of
traffic metadata, which provides valuable insights into network
behavior without examining payloads. Our proposed solution
utilizes a two-stage approach. First, we employ unsupervised
machine learning techniques to study typical network behavior.
This initial stage allows CyberMALT to establish a baseline
understanding of typical traffic characteristics, enabling it to
identify deviations indicative of potential threats. Leveraging this
knowledge, CyberMALT computes an anomaly score for each
observed traffic instance, thereby pinpointing suspicious activity
for further investigation. In the second stage of processing, these
identified anomalies undergo a comprehensive analysis to classify
the types of attacks accurately and efficiently and rule out false
positives. By leveraging machine learning for traffic metadata
analysis, CyberMALT offers a proactive and adaptive solution
for cyber threat detection and classification. Our experiments
demonstrate the effectiveness of CyberMALT in identifying and
classifying diverse cyber threats while minimizing false positives,
thus enhancing the security posture of networked systems.

I. INTRODUCTION

With the increasing complexity of cyber threats and the
ever-growing volumes of network traffic, traditional meth-
ods of cyber threat detection and mitigation are proving to
be inadequate. The rise of encrypted [1] and voluminous
payloads [2] has further complicated conventional inspection
methods, making it challenging to effectively identify and
address a wide range of cyber threats. Traditional methods also
need to filter features in order to increase their ability to detect
anomalies in the network [3]. To tackle these challenges, we
present CyberMALT, a novel approach that leverages machine
learning to analyze traffic metadata, offering a robust solution
for cyber threat detection and classification.

The core idea behind CyberMALT is to focus on traffic
metadata rather than payloads, allowing for the detection of
anomalies in network behavior without the need to decrypt
or deeply inspect payload content. This method not only
preserves privacy but also enhances the efficiency of threat
detection. Our approach involves a two-stage methodology. In
the first stage, CyberMALT employs unsupervised machine
learning techniques to learn typical patterns of network be-
havior. By establishing a baseline understanding of normal

traffic characteristics, the system can detect deviations that
may indicate potential threats. Each observed traffic instance
is then assigned an anomaly score, pinpointing suspicious
activity for further investigation. The second stage involves
a comprehensive analysis of potential anomalies to identify
false positives and accurately classify the types of attacks. This
two-phase approach ensures that CyberMALT not only detects
but also classifies diverse cyber threats efficiently, minimizing
the number of false positives and enhancing the security
posture of networked systems. Our experiments demonstrate
the effectiveness of CyberMALT in identifying and classifying
various cyber threats, showcasing its potential to significantly
improve cyber threat detection and mitigation compared to
traditional threat detection methods.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related work. Then, Section III
details the proposed solution, and Section IV presents our ex-
perimental evaluation. Finally, Section V concludes the paper,
summarizing our findings and discussing potential future work.

II. RELATED WORK

Network Intrusion Detection Systems (NIDS) play a critical
role in network security, monitoring traffic for potential threats.

A. Traditional Intrusion Detection

Traditional intrusion detection methods can be classified
into signature-based and anomaly-based detection. Signature-
based systems, such as Snort [4], rely on predefined rules
and patterns to identify known threats. They compare network
traffic against a database of attack signatures and generate
alerts upon finding matches. These systems are effective at
detecting known attacks due to their accuracy and low false
positive rates. However, they cannot detect new or evolving
threats (zero-day attacks) as they rely on known signatures.

Anomaly-based detection establishes a baseline of normal
network behavior and flags deviations as potential threats.
These methods may use statistical or rule-based techniques
rather than machine learning [5]. They monitor network
parameters such as traffic volume, connection patterns, and
protocol usage to detect anomalies. While these systems can
identify novel attacks, they often produce higher false positive
rates, as unusual but legitimate behavior may be flagged.
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Heuristic-based methods add another layer of detection by
using expert-defined heuristics to identify suspicious activi-
ties [6]. Their effectiveness depends on the quality and breadth
of the heuristics, making them suitable for specific scenarios.

B. ML-Based Intrusion Detection

In [7], the authors employed various supervised learn-
ing models for intrusion detection, using the CIC-IDS2017
Dataset [8] for testing and achieving excellent results over-
all. The models included GaussianNB, BernoulliNB, Deci-
sion Tree, KNN, Logistic Regression, SVM, SGD, and Ran-
dom Forest. In [9], unsupervised learning models such as
expectation-maximization (EM), k-means, and self-organizing
maps (SOM) were evaluated for anomaly detection. The
study showed that supervised learning techniques generally
outperform unsupervised ones. Among unsupervised methods,
EM performed best but only achieved 60% accuracy.

The work in [10] used an unsupervised autoencoder model
to detect attacks by learning normal behavior and assign-
ing anomaly scores. If the score exceeded a threshold, an
attack was predicted. Lower thresholds improved detection
but increased false positives, while higher thresholds reduced
false positives at the cost of detection accuracy. Other stud-
ies highlight the effectiveness of deep learning in intrusion
detection. For example, [11] combined a Convolutional Neu-
ral Network (CNN) with the Sigmoid Pigeon Optimization
Algorithm for feature selection, achieving high accuracy. In
[12], a transformer-based transfer learning method was used
to enhance attack detection. The process included extracting
detailed attack data, balancing the dataset with SMOTE, and
employing a hybrid CNN-LSTM model for classification.

Although these methods are effective, they can be compu-
tationally expensive. Our research focuses on improving clas-
sification accuracy without additional deep learning models,
emphasizing accurate true positive detection. By simplifying
the feature selection process, we achieve high accuracy with
lower computational costs, demonstrating that complex pres-
election, as in [11], is unnecessary for our approach.

III. PROPOSED SOLUTION

The proposed framework, illustrated in Fig. 1, consists of
three modules: Preprocessing, Anomaly Detection, and the
Classification. The Preprocessing Module takes network flows
as input, each containing metadata derived from capturing and
aggregating packets exchanged during TCP sessions. We argue
that a flow’s destination address and port are crucial for threat
detection, as normal traffic patterns vary by service type. For
instance, normal traffic to an FTP server differs significantly
from that to a web server, and traffic to different web servers
on the same network can also vary. Our solution relies on this
key observation to achieve more granular anomaly detection
and reduce false positives.

A. Preprocessing

The Preprocessing Module performs several steps to ensure
data integrity and usability. These steps include handling
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Fig. 1. Architecture of the proposed framework.

empty or otherwise unusable values to improve data quality
and removing constant attributes to facilitate effective feature
normalization. Data normalization, achieved through min-max
normalization, prepares the dataset for model training. Flows
are sorted based on timestamps – to enable sequential analysis
– and grouped into small sets of consecutive flows for further
processing – to reduce the sensitivity to small variations in
normal traffic. Thus, the dataset can be modeled as a sequence
W = 〈w0, w1, . . . , wn〉 of sets of network flow records falling
within fixed-size temporal windows, as illustrated in Fig. 2.

0 Δt 2Δt 3Δt

w1 w2 w3

Fig. 2. Example of flow record grouping and indexing.

B. Training & Detection

We adopted an autoencoder-based approach to identify
anomalies in network traffic. The preprocessed flows are split
into training and testing sets, with the training set containing
normal traffic (e.g., data collected on Monday in the case of
the CIC-IDS2017 dataset [8] used in our evaluation).

Recognizing that different types of network services exhibit
distinct traffic patterns and are uniquely mapped to specific
ports, we group data flows by their destination ports during
training. This allows the autoencoder to learn a tailored model
for each type of service, enhancing its ability to identify
network traffic anomalies accurately.

The Anomaly Detection Module evaluates flow groups
against the model learned during training. The reconstruction
error from the autoencoder is used as the anomaly score.
However, traffic anomalies are not necessarily an indicator of
malicious behavior because (i) normal behavior may exhibit
a great level of variance over time and across settings, and
(ii) other events, including software and hardware failures or
unusual workloads might lead to anomalies in network traffic.
To capture the temporal nature of anomalies, while limiting
the sensitivity of the approach, anomaly scores are calculated
for each fixed-size temporal window using a sliding window
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technique, where both the pace and the size of the window are
tunable parameters. To reduce the processing time and without
loss of generality, we set the window size and the pace to the
same value ∆t, i.e., consecutive windows do not overlap.

To leverage the relative nature of anomaly (i.e., a pattern’s
anomalousness depends on context), we use a threshold to con-
vert anomaly score sequences (pairs of temporal windows and
anomaly scores) into anomalous traffic segments. To consider
the distinct traffic patterns of different network services, the
threshold function, τ : P → R+, maps port numbers to distinct
thresholds. Each port’s threshold is set based on the statistical
properties of its anomaly score distribution, commonly as
τ(p) = µp+k·σp, where k controls the sensitivity. To prioritize
recall over false positives, we select lower k values.

Before feeding data to the autoencoder for testing, the
Detection Module groups flows in each window w ∈ W
based on their source IP, destination IP, and destination port
to study the traffic behavior on each network link with respect
to the expected behavior for the specific service running on
the destination port. Eq. 1 defines the set of flows in window
w ∈ W that share the same source IP s ∈ S, destination IP
d ∈ D, and destination port p ∈ P .

w(s, d, p) = {f ∈ wi | f.s = s ∧ f.d = d ∧ f.p = p} (1)

Each set of flows w(s, d, p) is fed into the autoencoder to
obtain the corresponding reconstruction error. Since this error
increases for data that deviates from normal patterns, we use
the reconstruction error as the anomaly score. Formally, the
anomaly score is defined as a function α : W ×S×D×P →
R+ that maps a window w and a triple (s, d, p) to a real
number α(w, s, d, p), calculated as the Root Mean Squared
Error (RMSE) between the autoencoder’s inputs and outputs,
as defined by Eq. 2:

α (w, s, d, p) =

√√√√ 1

m
·
m∑
i=1

(yi − xi)2 (2)

where m = |w(s, d, p)| is the number of flow records in
w(s, d, p), xi is the feature vector of the i-th flow record, and
yi is the corresponding reconstructed output. If w(s, d, p) = ∅,
we set α (w, s, d, p) = 0.

If the anomaly score for a set w(s, d, p) exceeds the thresh-
old τ(p), it is marked as anomalous; otherwise, it is marked
as normal. A lower threshold improves recall but increases the
risk of false positives, while a higher threshold reduces false
positives but may result in missed detections.

For fixed values of s, d, and p, α defines a mapping from
windows w ∈ W to corresponding values of the anomaly
score, as illustrated by the conceptual example of Fig. 3, where
anomalous data points (i.e., windows with an anomaly score
above the threshold) are represented by red dots and normal
data points are represented by green dots.

Before feeding this data to the Classification Module, we
perform an additional level of data aggregation based on
the observation that anomalies corresponding to cyber attacks
may extend beyond a single temporal window if the attack
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Fig. 3. Using a threshold to identify anomalous windows and group windows
into events, with g = 3.

duration is larger than ∆t. To do so, we use algorithm
getEvents(W,α, τ, s, d, p, g) (Algorithm 1), which identifies
anomalous events as sequences of one or more consecutive
windows in W , with consecutive events separated by at least
g windows with an anomaly score below the port-specific
threshold τ(p). Intuitively, consecutive anomalous data points
are likely part of the same malicious event, even when inter-
leaved with a few data points with below-threshold scores. A
malicious event is considered to have ended after at least g
windows with scores below the threshold.

The algorithm takes as input the set of windows W , the
anomaly score function α, the threshold mapping τ , a source
IP s, a destination IP d, a destination port p, and the minimum
gap g between distinct anomalous events, and returns a set E
of anomalous event. The set of events E and the variable
current event, which is used to track an individual event
instance, are initialized as empty sets and the count of con-
secutive data points with scores below the threshold is set to 0
(Lines 3-5). The algorithm iterates over each window w ∈W
(Lines 6-23). If the anomaly score α(w, s, d, p) is above the
threshold τ(p), the window w is added to the current event
and the count of consecutive data points below the threshold is
reset (Lines 8-9). Otherwise, if the score is below the threshold
and current event is not empty (i.e., the algorithm is tracking
an anomalous event), the algorithm evaluates whether count
has already reached the maximum gap g. If not, window w is
added to current event and count is incremented (Lines 12-
13). Otherwise, if count has reached g, current event is
trimmed to remove the tailing data points with anomaly scores
below the threshold, and current event and count are reset
(Lines 16-19). Finally, if the algorithm is tracking an event
when the last window is processed, current event is trimmed
and added to the set of events.

C. Classification

In the final stage of the proposed framework’s processing
pipeline, the Classification Module processes the set E of
events identified by the Anomaly Detection Module. Its pri-
mary objective is to distinguish between false positives and
true positives and classify the true positives based on the
nature of the threat. To achieve this, the Classification Module
performs a detailed analysis of the events’ characteristics to
identify similarities and differences, grouping the events into
clusters, with each cluster representing similar types of threats.
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Algorithm 1 getEvents(W,α, τ, s, d, p, g)
1: Input: the set of windows W , the anomaly score function α, the anomaly score

threshold mapping τ , the source IP s, the destination IP d, the destination port p,
and the minimum gap between events g.

2: Output: the set of anomalous events E.
3: E ← ∅ . Initialize the set of events
4: current event← ∅ . Initialize the current event
5: count← 0 . Count of consecutive points with below-threshold scores
6: for w ∈ W do
7: if α(w, s, d, p) ≥ τ(p) then
8: current event← current event ∪ {w}
9: count← 0 . Reset the count

10: else
11: if current event 6= ∅ ∧ count < g then
12: current event← current event ∪ {w}
13: count← count+ 1
14: else
15: if current event 6= ∅ then
16: current event← trim(current event)
17: E ← E ∪ {current event}
18: current event← ∅
19: count← 0
20: end if
21: end if
22: end if
23: end for
24: if current event 6= ∅ then
25: E ← E ∪ trim(current event)
26: end if
27: return E

The process starts with feature extraction from the identified
events, creating compact representations that capture key infor-
mation for clustering. A clustering algorithm is then applied to
group events based on underlying patterns, effectively isolating
false positives and accurately classifying true positives. The
features extracted for each anomalous event e ∈ E include the
following. The Anomaly Score Count (a count) represents
the number of windows w ∈ e with anomaly scores exceeding
the threshold. The Largest Anomaly Score (a max) is the
highest anomaly score among windows w ∈ e. The Mean
Score (a mean) is the average anomaly score of windows
w ∈ e with scores above the threshold. The Median Score
(a median) represents the median anomaly score of windows
w ∈ e that exceed the threshold. Lastly, the Standard
Deviation (a stdev) is the standard deviation of anomaly
scores for windows w ∈ e with scores above the threshold.

We use the conceptual example in Fig. 3 to demonstrate how
to calculate these features for the identified anomalous events.
In this example, there are three events E = {e1, e2, e3}, with
e1 = 〈w2, w3, w4, w5, w6〉, e2 = 〈w9, w10, w11, w12〉, and
e3 = 〈w18〉. Table I shows how the value of all the features
are computed for these 3 events.

We use algorithm clusterEvent(E,K,D) (Algorithm 2) to
compute the event features and perform classification, utilizing
the K-means elbow method to determine the optimal number
k of clusters. The algorithm takes as input the set of anomalous
events E, a set K of candidate values for the optimal number
of clusters k, and a family D of distance metrics, returning a
mapping optimal clusters that associates each metric with
an optimal set of clusters based on that metric.

For each event e ∈ E, a feature vector is computed
(Lines 7-13), followed by feature normalization (Line 15).
The algorithm iterates over the family D of distance metrics

and the set K of candidate values of k. We applied K-
means clustering using two distance metrics – Euclidean and
Manhattan – to validate the clustering of anomalous events.
For each metric and value of k, K-means determines a set of
k clusters (Line 18) and calculates the corresponding inertia
(Line 19), which sums the squared distances between each data
point and its centroid. Using the elbow method, the optimal
value of k is identified as the point where the rate of decrease
for the inertia slows sharply, thus forming an elbow in the
curve (Line 21). Finally, the set of optimal clusters for each
metric is added to optimal clusters (Lines 22-23).

Algorithm 2 clusterEvent(E,K,D)
1: Input: the Set of anomalous events E, the set of candidate values for the optimal
k, K, and the family of distance metrics D to use for clustering.

2: Output: the mapping, optimal clusters, of metrics to sets of clusters.
3: optimal clusters← ∅ . Optimal Clusters for each distance
4: features← ∅ . Features extracted from each event
5: inertias← ∅ . Set of var. {Calculate Inertia(Clusters,d),k)}
6: for e ∈ E do
7: a count← |{w ∈ e | α(w) > τ(p)}|/τ(p)
8: a max← maxw∈e α(w)
9: a mean← avgw∈e | α(w)>τ(p)α(w)/τ(p)

10: a median← medianw∈e | α(w)>τ(p)α(w)/τ(p)
11: a stdev ← stdevw∈e | α(w)>τ(p)α(w)/τ(p)
12: vector ← {a count, a max, a mean, a median, a stdev}
13: features← features ∪ vector
14: end for
15: features← normalize(features)
16: for d ∈ D do . Iterate over metrics
17: for k ∈ K do . Iterate over candidate k values
18: clusters← k-means(features, k, d)
19: inertias← inertias ∪{(k, computeInertia(clusters))}
20: end for
21: optimal k ← findElbow(inertias)
22: clusters← k-means(features, optimal k, d))
23: optimal clusters← optimal clusters ∪ {(d, clusters)}
24: end for
25: return optimal clusters

Once the optimal value of k is identified for each of the
distance metrics, we expect to obtain two types of clusters after
clustering the set E of anomalous events: clusters of the first
type are expected to include false positive events, and clusters
of the second type are expected to include attack instances
with similar features. Since datasets of traffic flows typically
contain much more normal traffic than attack traffic, setting
the threshold τ to prioritize recall over precision can lead to a
high rate of false positives. Consequently, clusters of the first
type may be larger and more numerous, while clusters of the
second type may be fewer and smaller.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of our evaluation.
These results demonstrate that the proposed approach ef-
fectively decomposes the complex task of traffic metadata
analysis into two manageable sub-problems, ensuring accu-
rate identification of malicious traffic while minimizing false
positives. To evaluate the approach, we used the Canadian
Institute for Cybersecurity Intrusion Detection Systems 2017
(CIC-IDS2017) dataset, a comprehensive collection of network
traffic data designed for cybersecurity research, particularly
focusing on intrusion detection. The dataset, created by the
Canadian Institute for Cybersecurity at the University of
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TABLE I
EVENT FEATURES

Feature Event e1 Event e2 Event e3
Anomaly Score Count 3 4 1

Largest Anomaly Score α(w2) α(w10) α(w18)

Mean Score α(w2)+α(w5)+α(w6)
3

α(w10)+α(w11)+α(w12)+α(w13)
4 α(w18)

Median Score Median(α(w2), α(w5), α(w6)) Median(α(w10), α(w11), α(w12), α(w13)) α(w18)
Standard Deviation Stdev(α(w2), α(w5), α(w6)) Stdev(α(w10), α(w11), α(w12), α(w13)) 0

Algorithm 3 analyzeData(W,α, g,K,D)
1: Input: the set of windows W , the anomaly score function α, the minimum gap

between events g, the set of candidate values for the optimal value of k, K, and
the family of distance metrics D to use for clustering.

2: Output: a mapping of metrics to sets of clusters.
3: E ← ∅
4: for (s, d, p) s.t. ∃f(f.s = s ∧ f.d = d ∧ f.p = p) do
5: E ← E ∪ getEvents(W,α, s, τ, d, p, g)
6: end for
7: return clusterEvents(E,K,D)

New Brunswick, contains traffic data captured in a controlled
environment to simulate various types of cyber-attacks and
normal activities.

CIC-IDS2017 includes both benign and malicious traffic
generated from modern attack tools, saved as PCAP files. The
CICFlowMeter tool [13] generates bidirectional network flows
and extracts over 80 statistical features, including duration,
packet counts, byte counts, and packet lengths. These features
are calculated separately for forward and backward traffic.
Data in the CICIDS2017 dataset was captured from July 3–7,
2017, with simulated attacks – Brute Force FTP/SSH, DoS,
Heartbleed, Web Attack, Infiltration, Botnet, and DDoS –
occurring from Tuesday to Friday [8], [14].

We processed the CIC-IDS2017 network flows as described
in Section III-A, indexing them into 20-second windows
(∆t = 20s). Normal traffic captured on Monday was used
to train the autoencoder to model benign traffic on ports 80,
21, and 22. The observed attacks include FTP-Patator, SSH-
Patator, DoS Slowloris, DoS SlowHTTPTest, DoS Hulk, DoS
GoldenEye, web brute force attack, XSS attack, SQL injection,
DDoS, and port scan. For each window from Tuesday to Fri-
day, flows were grouped by their source IP, destination IP, and
port, forming sets w(s, d, p). For each triple (s, d, p), anomaly
scores α were computed for all windows w ∈W using Eq. 2.
Algorithm getEvents was then applied to identify anomalous
events, using g = 30 in our evaluation. After identifying
anomalous events for all triples (s, d, p), we applied algorithm
clusterEvent to cluster these events. The complete process
is outlined in Algorithm analyzeData (Algorithm 3).

Figs. 4 and 5 show the computed anomaly scores for all
triples (s, d, p) on ports 21 and 80, respectively. All anomaly
scores have been normalized by dividing the result of Eq. 2 by
the threshold τ(p), enabling comparisons of anomalies across
different ports. A window w is considered anomalous if its
normalized score exceeds 1.

Setting a relatively low threshold maximizes recall at the
cost of a higher false positive rate, which is mitigated during
the clustering stage. The only undetected attack is the web
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friday_BENIGN_21_192.168.10.15-192.168.10.50
friday_BENIGN_21_192.168.10.17-192.168.10.50
friday_BENIGN_21_192.168.10.19-192.168.10.50
friday_BENIGN_21_192.168.10.51-185.170.48.239

Fig. 4. Results for traffic to Port 21
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DoS-PortScan-DDoS-Web-Attack-80
thursday_Web Attack_80_172.16.0.1-192.168.10.50
friday_PortScan_80_172.16.0.1-192.168.10.50
friday_DDoS_80_172.16.0.1-192.168.10.50
wednesday_DoS_80_172.16.0.1-192.168.10.50
tuesday_BENIGN_80_192.168.10.15-178.255.83.1
tuesday_BENIGN_80_192.168.10.9-178.255.83.1
tuesday_BENIGN_80_192.168.10.12-178.255.83.1
tuesday_BENIGN_80_192.168.10.16-178.255.83.1
tuesday_BENIGN_80_192.168.10.14-178.255.83.1
tuesday_BENIGN_80_192.168.10.8-162.208.20.178
tuesday_BENIGN_80_192.168.10.9-50.63.243.230
tuesday_BENIGN_80_192.168.10.5-178.255.83.1
tuesday_BENIGN_80_192.168.10.9-23.50.75.27
tuesday_BENIGN_80_192.168.10.8-178.255.83.1
tuesday_BENIGN_80_192.168.10.14-23.50.75.27
tuesday_BENIGN_80_192.168.10.16-23.50.75.27
tuesday_BENIGN_80_192.168.10.8-23.50.75.27
tuesday_BENIGN_80_192.168.10.15-72.21.91.29
tuesday_BENIGN_80_192.168.10.51-178.255.83.1
tuesday_BENIGN_80_192.168.10.9-23.60.139.27
tuesday_BENIGN_80_192.168.10.17-178.255.83.1
tuesday_BENIGN_80_192.168.10.16-50.63.243.230
tuesday_BENIGN_80_192.168.10.9-72.21.91.29
tuesday_BENIGN_80_192.168.10.14-72.21.91.29
tuesday_BENIGN_80_192.168.10.5-23.50.75.27
tuesday_BENIGN_80_192.168.10.15-50.63.243.230
tuesday_BENIGN_80_192.168.10.15-23.50.75.27
tuesday_BENIGN_80_192.168.10.16-72.21.91.29
tuesday_BENIGN_80_192.168.10.8-72.21.91.29
tuesday_BENIGN_80_192.168.10.5-72.21.91.29
tuesday_BENIGN_80_192.168.10.19-178.255.83.1
tuesday_BENIGN_80_192.168.10.15-23.60.139.27
tuesday_BENIGN_80_192.168.10.12-72.21.91.29
tuesday_BENIGN_80_192.168.10.12-23.50.75.27
tuesday_BENIGN_80_192.168.10.12-50.63.243.230
tuesday_BENIGN_80_192.168.10.51-23.50.75.27
tuesday_BENIGN_80_192.168.10.8-23.60.139.27
tuesday_BENIGN_80_192.168.10.12-23.60.139.27
tuesday_BENIGN_80_192.168.10.5-8.43.72.112
tuesday_BENIGN_80_192.168.10.14-195.88.54.110
tuesday_BENIGN_80_192.168.10.19-23.50.75.27
tuesday_BENIGN_80_192.168.10.5-63.251.98.12
tuesday_BENIGN_80_192.168.10.51-50.63.243.230
tuesday_BENIGN_80_192.168.10.17-23.50.75.27
tuesday_BENIGN_80_192.168.10.14-50.63.243.230
tuesday_BENIGN_80_192.168.10.17-72.21.91.29
tuesday_BENIGN_80_192.168.10.12-8.27.240.125
tuesday_BENIGN_80_192.168.10.5-23.61.187.27
tuesday_BENIGN_80_192.168.10.14-72.167.239.239
tuesday_BENIGN_80_192.168.10.5-96.16.193.174
tuesday_BENIGN_80_192.168.10.15-69.172.216.111
tuesday_BENIGN_80_192.168.10.14-195.142.105.15
tuesday_BENIGN_80_192.168.10.8-72.167.239.239
tuesday_BENIGN_80_192.168.10.5-23.15.4.11
tuesday_BENIGN_80_192.168.10.9-72.167.239.239
tuesday_BENIGN_80_192.168.10.5-72.167.239.239
tuesday_BENIGN_80_192.168.10.15-72.167.239.239
tuesday_BENIGN_80_192.168.10.8-50.63.243.230
tuesday_BENIGN_80_192.168.10.15-23.61.187.27
tuesday_BENIGN_80_192.168.10.19-50.63.243.230
tuesday_BENIGN_80_192.168.10.16-23.60.139.27
tuesday_BENIGN_80_192.168.10.16-72.167.239.239
tuesday_BENIGN_80_192.168.10.12-23.15.155.27
tuesday_BENIGN_80_192.168.10.5-23.60.139.27
tuesday_BENIGN_80_192.168.10.5-192.73.243.115
tuesday_BENIGN_80_192.168.10.51-72.21.91.29
tuesday_BENIGN_80_192.168.10.14-23.60.139.27
tuesday_BENIGN_80_192.168.10.17-50.63.243.230
tuesday_BENIGN_80_192.168.10.5-108.161.188.138
tuesday_BENIGN_80_192.168.10.17-23.61.187.27
tuesday_BENIGN_80_192.168.10.12-72.167.239.239
tuesday_BENIGN_80_192.168.10.5-50.63.243.230
wednesday_BENIGN_80_192.168.10.16-178.255.83.1
wednesday_BENIGN_80_192.168.10.14-178.255.83.1
wednesday_BENIGN_80_192.168.10.12-178.255.83.1
wednesday_BENIGN_80_192.168.10.8-162.208.20.178
wednesday_BENIGN_80_192.168.10.8-178.255.83.1
wednesday_BENIGN_80_192.168.10.9-178.255.83.1
wednesday_BENIGN_80_192.168.10.15-162.208.20.178
wednesday_BENIGN_80_192.168.10.15-178.255.83.1
wednesday_BENIGN_80_192.168.10.19-178.255.83.1
wednesday_BENIGN_80_192.168.10.17-178.255.83.1
wednesday_BENIGN_80_192.168.10.8-23.50.75.27
wednesday_BENIGN_80_192.168.10.12-50.63.243.230
wednesday_BENIGN_80_192.168.10.16-72.21.91.29
wednesday_BENIGN_80_192.168.10.19-113.29.189.10
wednesday_BENIGN_80_192.168.10.14-72.21.91.29
wednesday_BENIGN_80_192.168.10.9-72.21.91.29
wednesday_BENIGN_80_192.168.10.8-72.167.239.239
wednesday_BENIGN_80_192.168.10.15-192.229.211.40
wednesday_BENIGN_80_192.168.10.14-23.50.75.27
wednesday_BENIGN_80_192.168.10.8-162.208.22.34
wednesday_BENIGN_80_192.168.10.12-72.21.91.29
wednesday_BENIGN_80_192.168.10.8-72.21.91.29
wednesday_BENIGN_80_192.168.10.16-23.50.75.27
wednesday_BENIGN_80_192.168.10.12-23.61.187.27
wednesday_BENIGN_80_192.168.10.9-50.63.243.230
wednesday_BENIGN_80_192.168.10.51-178.255.83.1
wednesday_BENIGN_80_192.168.10.16-72.167.239.239
wednesday_BENIGN_80_192.168.10.9-23.61.187.27
wednesday_BENIGN_80_192.168.10.8-192.229.211.40
wednesday_BENIGN_80_192.168.10.5-72.21.91.29
wednesday_BENIGN_80_192.168.10.9-23.50.75.27
wednesday_BENIGN_80_192.168.10.5-178.255.83.1
wednesday_BENIGN_80_192.168.10.14-23.61.187.27
wednesday_BENIGN_80_192.168.10.15-72.21.91.29
wednesday_BENIGN_80_192.168.10.16-50.63.243.230
wednesday_BENIGN_80_192.168.10.9-23.60.139.27
wednesday_BENIGN_80_192.168.10.17-23.50.75.27
wednesday_BENIGN_80_192.168.10.5-50.63.243.230
wednesday_BENIGN_80_192.168.10.8-174.129.238.86
wednesday_BENIGN_80_192.168.10.16-23.61.187.27
wednesday_BENIGN_80_192.168.10.8-50.63.243.230
wednesday_BENIGN_80_192.168.10.5-23.61.187.27
wednesday_BENIGN_80_192.168.10.14-50.63.243.230
wednesday_BENIGN_80_192.168.10.9-211.233.74.132
wednesday_BENIGN_80_192.168.10.19-113.29.190.10
wednesday_BENIGN_80_192.168.10.15-23.50.75.27
wednesday_BENIGN_80_192.168.10.12-23.60.139.27
wednesday_BENIGN_80_192.168.10.19-117.53.117.16
wednesday_BENIGN_80_192.168.10.14-72.167.239.239
wednesday_BENIGN_80_192.168.10.19-23.50.75.27
wednesday_BENIGN_80_192.168.10.17-72.21.91.29
wednesday_BENIGN_80_192.168.10.12-72.167.239.239
wednesday_BENIGN_80_192.168.10.9-72.167.239.239
wednesday_BENIGN_80_192.168.10.12-23.50.75.27
wednesday_BENIGN_80_192.168.10.8-104.97.73.166
wednesday_BENIGN_80_192.168.10.8-23.61.187.27
wednesday_BENIGN_80_192.168.10.19-50.63.243.230
wednesday_BENIGN_80_192.168.10.19-103.27.148.71
wednesday_BENIGN_80_192.168.10.19-27.0.237.143
wednesday_BENIGN_80_192.168.10.5-64.238.147.53
wednesday_BENIGN_80_192.168.10.17-23.61.187.27
wednesday_BENIGN_80_192.168.10.15-162.208.22.34
wednesday_BENIGN_80_192.168.10.19-61.251.98.135
wednesday_BENIGN_80_192.168.10.15-72.167.239.239
wednesday_BENIGN_80_192.168.10.15-50.63.243.230
wednesday_BENIGN_80_192.168.10.12-63.251.98.12
wednesday_BENIGN_80_192.168.10.17-50.63.243.230
wednesday_BENIGN_80_192.168.10.19-120.50.136.181
wednesday_BENIGN_80_192.168.10.51-23.60.139.27
wednesday_BENIGN_80_192.168.10.9-1.31.173.11
wednesday_BENIGN_80_192.168.10.15-23.61.187.27
wednesday_BENIGN_80_192.168.10.12-8.43.72.32
wednesday_BENIGN_80_192.168.10.15-23.60.139.27
wednesday_BENIGN_80_192.168.10.19-72.21.91.29
wednesday_BENIGN_80_192.168.10.15-23.54.187.27
wednesday_BENIGN_80_192.168.10.19-23.61.187.27
wednesday_BENIGN_80_192.168.10.9-23.15.155.27
wednesday_BENIGN_80_192.168.10.19-211.233.74.132
wednesday_BENIGN_80_192.168.10.51-23.50.75.27
wednesday_BENIGN_80_192.168.10.8-23.60.139.27
thursday_BENIGN_80_192.168.10.15-178.255.83.1
thursday_BENIGN_80_192.168.10.5-178.255.83.1
thursday_BENIGN_80_192.168.10.14-97.64.84.112
thursday_BENIGN_80_192.168.10.16-178.255.83.1
thursday_BENIGN_80_192.168.10.14-178.255.83.1
thursday_BENIGN_80_192.168.10.12-178.255.83.1
thursday_BENIGN_80_192.168.10.8-178.255.83.1
thursday_BENIGN_80_192.168.10.9-178.255.83.1
thursday_BENIGN_80_192.168.10.16-61.251.165.12
thursday_BENIGN_80_192.168.10.9-23.60.139.27
thursday_BENIGN_80_192.168.10.19-178.255.83.1
thursday_BENIGN_80_192.168.10.17-178.255.83.1
thursday_BENIGN_80_192.168.10.5-23.60.139.27
thursday_BENIGN_80_192.168.10.5-50.63.243.230
thursday_BENIGN_80_192.168.10.9-50.63.243.230
thursday_BENIGN_80_192.168.10.12-23.50.75.27
thursday_BENIGN_80_192.168.10.15-23.50.75.27
thursday_BENIGN_80_192.168.10.15-61.251.165.12
thursday_BENIGN_80_192.168.10.15-23.60.139.27
thursday_BENIGN_80_192.168.10.8-72.21.91.29
thursday_BENIGN_80_192.168.10.15-72.21.91.29
thursday_BENIGN_80_192.168.10.12-72.21.91.29
thursday_BENIGN_80_192.168.10.9-72.21.91.29
thursday_BENIGN_80_192.168.10.5-72.21.91.29
thursday_BENIGN_80_192.168.10.14-72.21.91.29
thursday_BENIGN_80_192.168.10.14-50.63.243.230
thursday_BENIGN_80_192.168.10.16-23.60.139.27
thursday_BENIGN_80_192.168.10.5-23.50.75.27
thursday_BENIGN_80_192.168.10.14-23.60.139.27
thursday_BENIGN_80_192.168.10.17-199.59.88.242
thursday_BENIGN_80_192.168.10.8-23.50.75.27
thursday_BENIGN_80_192.168.10.8-192.168.10.50
thursday_BENIGN_80_192.168.10.14-72.5.205.22
thursday_BENIGN_80_192.168.10.16-72.21.91.29
thursday_BENIGN_80_192.168.10.15-50.63.243.230
thursday_BENIGN_80_192.168.10.15-72.167.239.239
thursday_BENIGN_80_192.168.10.14-23.50.75.27
thursday_BENIGN_80_192.168.10.12-23.60.139.27
thursday_BENIGN_80_192.168.10.16-50.63.243.230
thursday_BENIGN_80_192.168.10.19-23.60.139.27
thursday_BENIGN_80_192.168.10.5-211.233.74.132
thursday_BENIGN_80_192.168.10.17-23.60.139.27
thursday_BENIGN_80_192.168.10.8-50.63.243.230
thursday_BENIGN_80_192.168.10.19-72.21.91.29
thursday_BENIGN_80_192.168.10.12-50.63.243.230
thursday_BENIGN_80_192.168.10.51-178.255.83.1
thursday_BENIGN_80_192.168.10.8-23.60.139.27
thursday_BENIGN_80_192.168.10.9-23.50.75.27
thursday_BENIGN_80_192.168.10.19-23.50.75.27
thursday_BENIGN_80_192.168.10.17-72.21.91.29
thursday_BENIGN_80_192.168.10.15-23.54.187.27
thursday_BENIGN_80_192.168.10.16-23.50.75.27
thursday_BENIGN_80_192.168.10.8-23.54.187.27
thursday_BENIGN_80_192.168.10.12-72.167.239.239
thursday_BENIGN_80_192.168.10.51-23.60.139.27
thursday_BENIGN_80_192.168.10.19-50.63.243.230
thursday_BENIGN_80_192.168.10.8-72.167.239.239
thursday_BENIGN_80_192.168.10.17-50.63.243.230
thursday_BENIGN_80_192.168.10.14-72.167.239.239
thursday_BENIGN_80_192.168.10.5-23.4.59.27
thursday_BENIGN_80_192.168.10.51-211.233.74.132
thursday_BENIGN_80_192.168.10.51-72.21.91.29
thursday_BENIGN_80_192.168.10.17-23.50.75.27
thursday_BENIGN_80_192.168.10.12-23.54.187.27
friday_BENIGN_80_192.168.10.12-61.251.165.12
friday_BENIGN_80_192.168.10.19-67.72.99.137
friday_BENIGN_80_192.168.10.15-178.255.83.1
friday_BENIGN_80_192.168.10.25-61.251.165.12
friday_BENIGN_80_192.168.10.12-178.255.83.1
friday_BENIGN_80_192.168.10.5-178.255.83.1
friday_BENIGN_80_192.168.10.9-178.255.83.1
friday_BENIGN_80_192.168.10.16-178.255.83.1
friday_BENIGN_80_192.168.10.14-178.255.83.1
friday_BENIGN_80_192.168.10.15-200.147.68.17
friday_BENIGN_80_192.168.10.9-50.63.243.230
friday_BENIGN_80_192.168.10.5-50.63.243.230
friday_BENIGN_80_192.168.10.5-23.61.187.27
friday_BENIGN_80_192.168.10.12-119.205.194.11
friday_BENIGN_80_192.168.10.9-72.21.91.29
friday_BENIGN_80_192.168.10.15-50.63.243.230
friday_BENIGN_80_192.168.10.5-72.21.91.29
friday_BENIGN_80_192.168.10.15-72.21.91.29
friday_BENIGN_80_192.168.10.8-178.255.83.1
friday_BENIGN_80_192.168.10.12-50.63.243.230
friday_BENIGN_80_192.168.10.14-72.21.91.29
friday_BENIGN_80_192.168.10.19-178.255.83.1
friday_BENIGN_80_192.168.10.16-72.21.91.29
friday_BENIGN_80_192.168.10.8-50.63.243.230
friday_BENIGN_80_192.168.10.8-72.21.91.29
friday_BENIGN_80_192.168.10.14-162.208.20.178
friday_BENIGN_80_192.168.10.14-50.63.243.230
friday_BENIGN_80_192.168.10.15-23.60.139.27
friday_BENIGN_80_192.168.10.12-72.21.91.29
friday_BENIGN_80_192.168.10.9-23.61.187.27
friday_BENIGN_80_192.168.10.17-178.255.83.1
friday_BENIGN_80_192.168.10.15-23.61.187.27
friday_BENIGN_80_192.168.10.8-23.61.187.27
friday_BENIGN_80_192.168.10.14-23.61.187.27
friday_BENIGN_80_192.168.10.5-23.60.139.27
friday_BENIGN_80_192.168.10.25-208.91.114.47
friday_BENIGN_80_192.168.10.16-23.61.187.27
friday_BENIGN_80_192.168.10.9-23.60.139.27
friday_BENIGN_80_192.168.10.12-23.61.187.27
friday_BENIGN_80_192.168.10.16-23.52.155.27
friday_BENIGN_80_192.168.10.16-50.63.243.230
friday_BENIGN_80_192.168.10.12-119.205.194.14
friday_BENIGN_80_192.168.10.15-23.52.155.27
friday_BENIGN_80_192.168.10.14-192.229.211.40
friday_BENIGN_80_192.168.10.5-23.54.187.27
friday_BENIGN_80_192.168.10.16-23.50.75.27
friday_BENIGN_80_192.168.10.19-50.63.243.230
friday_BENIGN_80_192.168.10.17-50.63.243.230
friday_BENIGN_80_192.168.10.12-23.60.139.27
friday_BENIGN_80_192.168.10.17-104.20.115.18
friday_BENIGN_80_192.168.10.16-72.167.239.239
friday_BENIGN_80_192.168.10.5-72.167.239.239
friday_BENIGN_80_192.168.10.12-23.52.155.27
friday_BENIGN_80_192.168.10.17-199.59.88.242
friday_BENIGN_80_192.168.10.9-23.52.155.27
friday_BENIGN_80_192.168.10.14-23.50.75.27
friday_BENIGN_80_192.168.10.12-23.50.75.27
friday_BENIGN_80_192.168.10.19-72.21.91.29
friday_BENIGN_80_192.168.10.14-23.60.139.27

Fig. 5. Results for traffic to Port 80

attack, which exhibited a low anomaly score, likely due to its
host-based nature rather than being network-based.

In the classification phase, we computed features for each
anomalous event e ∈ E, as described in Section III-C.
Intuitively, analyzing multiple features of each anomalous
event aids in filtering out false positives. While many data
points in Figs. 4 and 5 exceed the threshold, only a few exhibit
characteristics of potential attacks, such as temporal persis-
tence and consistently exceeding the threshold. We applied
K-means clustering using two distance metrics: Euclidean and
Manhattan. The optimal number of clusters k for each metric
was determined using the elbow method.

We clustered the set E of anomalous events using k = 15
and assigned a numerical label to each cluster. Tables II and
III show the number of events assigned to each cluster. Each
cluster predominantly contains either benign or attack events.
If the majority of events in a cluster are benign, the flows
in that cluster are classified as benign; otherwise, they are
classified as part of attacks. For each cluster, we calculated
the purity, which measures the proportion of the majority class
(benign or attack) within the cluster.

These results confirm the promise of the proposed approach.
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TABLE II
CLUSTERING RESULTS USING THE EUCLIDEAN DISTANCE.

Euclidean
Label # Events Description Purity

4 510 FPs 100%
13 312 FPs & 3 PortScans 96%
0 264 FPs & 3 PortScans 98%
11 99 FPs & 4 PortScans 96%
2 57 FPs 100%
8 39 FPs 100%
7 25 FPs 100%
5 15 FPs 100%
9 9 FPs 100%
3 8 FPs 100%
14 7 FPs 100%
1 5 FPs 100%
10 4 DDoS, FTP-Patator, SSH-Patator, FP 75%
6 2 DoS Event & FP 50%
12 2 FPs 100%

TABLE III
CLUSTERING RESULTS USING THE MANHATTAN DISTANCE.

Manhattan
Label # Events Description Purity

0 510 FPs 100%
3 252 FPs & 2 PortScans 99%
8 247 FPs & 2 PortScans 99%
5 105 FPs & 4 PortScans 96%
10 86 FPs & 2 PortScans 97%
14 56 FPs 100%
11 49 FPs 100%
7 22 FPs 100%
13 9 FPs 100%
9 9 FPs 100%
1 5 FPs 100%
6 4 DDoS & FPs 75%
2 2 FTP-Patator & SSH-Patator 100%
4 1 DoS 100%
12 1 FP 100%

Although the anomaly detection stage generates numerous
false positives, the high purity levels indicate that the clus-
tering process effectively partitions false and true positives.
Notably, false positives are distributed across multiple clusters.
While it would be ideal to group all false positives into a
single cluster, this outcome is acceptable given the feature
spaces used for clustering. Small clusters are predominantly
composed of attack events.

We successfully separated DoS and DDoS attacks into
distinct clusters and grouped the two Patator attacks together,
as they target different protocols but represent the same type
of attack. Additionally, clustering with Manhattan Distance
provided better segregation of attack events into distinct
clusters, demonstrating the approach’s potential for accurately
identifying and grouping similar attack patterns.

V. CONCLUSIONS

In this paper, we introduced CyberMALT, a machine
learning-assisted framework for enhancing cyber threat de-
tection and classification through network traffic metadata
analysis. Our approach overcomes the limitations of traditional
methods, which often struggle with the increasing volume and
complexity of modern network traffic. CyberMALT employs a
two-stage process: an unsupervised learning phase to establish

baseline network behavior and detect anomalies, followed
by a classification phase to eliminate false positives and
identify specific attack types. Experiments using the CIC-
IDS2017 dataset showed that CyberMALT effectively detects
and classifies diverse cyber threats, such as FTP-Patator, SSH-
Patator, DoS, DDoS, and port scan attacks, with high recall and
acceptable precision. The clustering process further improves
detection by distinguishing true positives from false positives,
minimizing the misclassification of benign events. Further
details on this work are available in the companion GitHub
repository: https://github.com/maxalbanese/CyberMALT.

Future work will enhance the framework’s adaptability to
evolving threats by incorporating advanced machine learning
techniques and expanding the scope of metadata analysis.
We plan to extend CyberMALT to cover more attack types,
including those exploiting novel vulnerabilities and sophisti-
cated evasion tactics. Additionally, we aim to explore real-time
implementation and integration with existing network security
infrastructure for comprehensive, proactive defense.
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