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ABSTRACT The selfishness and randomness of users in the mobile crowd sensing network could cause
them unwilling to participate in sensing activities and lead to lower completion rates of sensing tasks.
In order to deal with these problems, this paper proposes a novel incentive mechanism based on a new
auction model for mobile crowd sensing, which consists of two consecutive stages. In the first stage,
a novel Incentive Method based on Reverse Auction for Location-aware sensing (IMRAL) is proposed to
maximize user utility. By introducing a task-centric method to determine the winning bids, it can provide
higher user utility and higher task coverage ratio. To ensure the truthfulness of IMRAL, we design a
unique payment determination algorithm based on critical payment for the incentive platform. In the second
stage, we propose a user-interaction incentive model (UIBIM) to cover the situation that a user may
drop out of the sensing activity. This new incentive model includes a dynamic double auction framework
prompting users’ interaction and a user matching algorithm based on a bipartite graph. The proposed new
mechanism achieves the goal of improving task completion rates without increasing the cost of the incentive
platform. The simulation results show that comparing with other solutions, such as a truthful auction for
location-aware collaborative sensing in mobile crowdsourcing and incentive mechanism for crowdsourcing
in the single-requester single-bid-model, IMRAL can achieve better performance in terms of average user
utility and tasks coverage ratio, and the UIBIM can significantly improve task completion rates.

INDEX TERMS Mobile crowd sensing, incentive mechanism, task coverage, double auction.

I. INTRODUCTION
With the rapid development of wireless communication and
sensor technology and the rapid spread of smart terminals,
smartphones and tablets have integrated powerful computing
and sensing modules such as GPS, accelerometers, gyro-
scopes, microphones, and cameras. These technologies allow
people to perceive and obtain information about their sur-
roundings at anytime, anywhere. A large number of mobile
crowd sensing (MCS) systems [1] based on sensing informa-
tion are also emerging. Typical examples include BlueAer [2]
for providing a fine-grained 3D PM 2.5 concentration distri-
bution, Ear-Phone [3] for creating noisemaps, andVTrack [4]
for providing traffic information. All these applications are
MCS systems that perform data collection tasks by a large
number of participants.

The associate editor coordinating the review of this manuscript and
approving it for publication was Songwen Pei.

In MCS applications, it is necessary to attract more users
to participate in the sensing tasks to collect the required
data of MCS applications. Therefore, whether there are ade-
quate users taking part in the sensing tasks has a critical
impact on the quality of services of such systems. However,
in reality, there are several problems that may hinder users’
participation. First, the usage of smartphone sensors brings
human concerns on privacy. Second, it may increase cost
to the participants in transmitting the sensing data to the
MCS server. Finally, the consumption of computation/energy
resources could also affect users’ willingness to contribute
their data. To overcome these problems, incentive mecha-
nisms are crucial to stimulate users to join in MCS sensing
activities [5]. Normally, the incentive mechanisms can be
divided into three categories: incentive mechanisms based on
entertainment [6], [7], reputation credit [8], [9], and money.
For these three types of incentives, Reddy et al. [10] pointed
out that the effect of incentive mechanisms based on money
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is better. The money reward methods are mainly based on
the game theory, among which the most important is auc-
tion mechanism, such as reverse auction, combined auction,
multi-attribute auction. In general, designing a reasonable
incentivemechanism based on auctionmodel should consider
four characteristics including individual rationality, truthful-
ness, social welfare, and computation efficiency. In short,
the main work of an incentive mechanism should focus on
how to encourage participants with money or entertainment
rewards, encouraging them to join the sensing tasks.

However, due to the selfishness and uncertainty of a par-
ticipant’s activity, the design of the incentive mechanism of
MCS based on the auction model is highly complicated. The
selfishness lies in the fact that users’ smart terminals are lim-
ited by various resources such as the processing power of the
device, storage space and battery energy, which makes them
generally unwilling to participate in the sensing activities
without compensation. In the incentive mechanism, crowd
sensing encourages users to participate in sensing tasks by
paying a certain amount of money to users. However, in the
current incentivemechanism [11]–[18], more consideration is
focused on maximizing the benefit of the crowd sensing plat-
form, and the benefit of the participants are not prioritized,
which makes the participants cannot be effectively motivated
to join in the sensing tasks. From the perspective of a user,
the incentivemechanism designed tomaximize a user’s utility
may play a more efficient role.

The uncertainty lies in the fact that, a participant may
drop out of an on-going sensing task because of the random
movement or some emergency situation, which may make
the task to be unfinished. The works presented in [15]–[19]
assumes that the users selected to perform the sensing task
can complete the sensing task, that is, the task coverage is the
same as the task completion. However, in the case of users’
random exit during the sensing process, most of the incentives
are work in a preventive manner, that is to encourage users
stay in the system as long as possible, and they do not consider
how to deal with the situation after users exiting. The situation
in which a user randomly exits during the sensing process is
ignored.

In order to solve the above problems, this paper proposes
an incentive mechanism of MCS network based on auction
model to divide the users’ incentive mechanism into two
stages. In the first stage, in order to ensure the truthfulness
of the incentive mechanism, and to make participants stay
in the system as long as possible, we proposed an incentive
method based on reverse auction. This method maximizes
users’ utility on the premise that the platform budget is
feasible, and improves the sensing enthusiasm of user and
task coverage. Furthermore, considering the issue of lower
task completion rate that is caused by the users’ uncertainty,
we propose an incentive model based on users’ Bidirectional
interaction. The model improves the task completion rate
without increasing the budget cost of the platform by allow
the drop-out participants in stage 1 can resell their sens-
ing tasks to new users according to the double interaction

incentive mechanism in stage 2, which can improve the task
completion rate as possible without increasing budget of
sensing platform. Specifically, the main contributions are
summarized as follows:

1. In the stage 1, we design a novel incentive mecha-
nism named IMRAL (incentive method based on reverse
auction for location-aware sensing) based on reverse auction
to encourage users to participate in sensing activities. In the
IMRAL,we prove that thewinner selection under certain cov-
erage conditions in NP problem, and proposes a task-centric
winner selection algorithm to improve user utility and task
coverage. The computational complexity of the algorithm is
polynomial time. Furthermore, in the compensation payment
stage, we adopt a compensation-based payment algorithm
based on the critical price. According to the task performed
by the user, the user is rewarded with a time-shared rule to
improve the user’s utility.

2. In order to cope with the situation that the crowd sens-
ing platform needs to recruit users due to the user quit in
the middle of the sensing task, we propose a new incentive
mechanism UIBIM (user interaction incentive model) based
on user interaction model, which allows the drop-out users to
resell their sensing tasks to new users In UIBIM, we design a
dynamic double auction mechanism, and for the user match-
ing problem in a single time period, we propose a user match-
ing algorithm based on bipartite graph, which achieves the
goal of improving the task completion rate without increasing
the platform cost.

3. We compare and analyze the IMRAL mechanism pro-
posed in the first stage and the TRAC mechanism in [13] and
the IMC-SS in [18] in terms of user average utility, platform
utility, task coverage and task completion rate. Furthermore,
we use the task completion rate and platform cost to analyze
the effectiveness of UIBIM. The experimental results show
that the incentive method IMRAL proposed in the first stage
can effectively improve the task coverage and the enthusiasm
of users to participate in sensing, and the incentive method
based on user interaction that proposed in the second stage
can effectively improve the completion rate of sensing tasks.
If your paper is intended for a conference, please contact
your conference editor concerning acceptable word processor
formats for your particular conference.

II. RELATED WORK
Incentive mechanism for mobile crowd sensing mainly
include three types, which are entertainment games, rep-
utation values and compensation payments. Entertainment
means that sensing tasks are turned into playable games to
attract participants. For example, in order to establish a WiFi
coverage map in a certain area, the paper [7] designed an
outdoor game called Treasure, in which game players carry
mobile devices equipped with GPS andWiFi to participate in
the game. In this game, the game player needs to pick up the
virtual coins scattered on the game area, then upload the coins
to the server to obtain the game points. The better network
connection the more possibility of collecting and uploading
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coins successfully. In this way, the player is encouraged to
find a place with a strong WiFi coverage signal, and a WiFi
coverage map of an area is established and updated by the
player’s mobility. The incentive methods based on the repu-
tation values refer to the user obtaining a certain reputation
value by performing the sensing task, such as satisfaction,
social status and etc. On the other hand, the platform can also
select users of high quality to perform sensing tasks based
on the user’s reputation value. In order to solve the problem
of network performance degradation caused by the unwill-
ingness of selfish nodes in the opportunity network to for-
ward messages, Bigwood and Henderson [9] have proposed
an incentive mechanism for opportunistic networks named
IRONMAN (incentives and reputation for opportunistic net-
works using social networks) to encourage users to participate
in message forwarding to improve network performance. The
incentive method based on compensation payment refers to
using money to compensate the sensing cost of a user to moti-
vate the user to participate in the sensing. Reddy et al. [10]
pointed out that the incentive effect of the incentive method
using compensation payment is often more effective than the
non-monetary incentive method.

In order to stimulate user’s participation, in [14], a profit
maximizing auction mechanism has been proposed. The goal
of the mechanism is to maximize the profit of the platform,
while motivating smartphone users to participate in auctions
at real cost to ensure the truthfulness of the incentives. In [20],
in order to encourage users to participate in sensing and max-
imize the benefits of the platform, an auction mechanism is
proposed to motivate users to participate. In this mechanism,
the platform only pays for the most contributing users, not all
participants, and the compensation is not a fixed value, but
a function of the maximum contribution of all participants.
Zhao et al. [21] have considered the scenario in which a user
submitted the bid to the platform at the time of arrival, and
maximized the utility of the platform under budget constraints
by selecting an appropriate subset of users in each time
period. In [22], in order to encourage users to complete a
set of binary marking work under certain budget conditions,
they cluster the markers collected by continuous Bayesian
method and design an incentive mechanism based on the
reverse auction model. The sensing platform selects a winner
according to the difficulty level of a task and the completion
quality of the worker, and pays the user according to the
aggregated user bidding. Thus, the final platform can achieve
a higher utility within a certain budget. Luo et al. [23] have
presented an auction mechanism for multiple cooperative
tasks to minimize the server’s payment under the condition
that the server earns the targeted value. However, most of
the above research work is aimed at maximizing platform
utility. The user’s utility is not fully considered, resulting the
enthusiasm of users to participate in sensing is low.

In response to the user’s random exit, Jaimes et al. [16]
designed an incentive mechanism based on multiple rounds
of reverse bidding to encourage users to participate in sensing
plans that require continuous and periodic sampling. The

mechanism not only considers the user’s bid and also consid-
ers the user’s location when selecting a user. The experimen-
tal results show that the mechanism can achieve an optimal
budget utilization while ensuring that the sensing area is
covered and that there are enough users for each round of
auction. In [24], it is pointed that in participatory sensing,
it is crucial to motivate users to engage in sensing activities
for a long time. In order to motivate users to participate in
sensing activities for a long time, they design an incentive
mechanism based on VCG (Vickrey clarke groves) auction
model and use this mechanism to select users online. The
mechanism pays the participants’ compensation according to
the time period, and realizes the long-term incentive. In [17]
, in order to minimize the platform payment while ensuring a
high participation rate, Lee and Hoh used the reverse auction
mechanism to select the lowest bidder among the partici-
pants as a winner. They introduced the concept of virtual
participation points to avoid the situation that a participant
would exit the auction if he/she is repeatedly failed in the
previous auction rounds. Depending on the different number
of requesters and providers, Zhang et al. [18] have con-
sidered three different models: SS-Model (Single requester,
Single bid), SM-Model (Single requester, Multiple bid) and
MM-Model (Multiple requester,Multiple bid). However, they
fail to consider that the winners may exit during the sensing
process. Among them, SM-Model is the general form of SS-
Model, and MM-Model considers two kinds of competition
modes: competition between multiple groups of crowd sens-
ing platforms and competition among multiple users. How-
ever, most of the above studies assume that the user who wins
the task will be able to complete the task and upload the data.
It does not consider that a winner may exit the sensing task
under a random probability during the execution of the task.
This situation causes the sensing task to be interrupted and
the task completion rate to decrease. In the above case, if the
platform recruits a new participant to continue the unfinished
sensing task, it is necessary to pay the newly recruited users,
which ultimately leads to an increase in the sensing cost of
the platform.

III. PROBLEM DEFINITION
A. RELATED DEFINITION
The framework of our proposed incentive mechanism is
shown in Fig.1. In the first stage, we aim to improve the user
utility and task coverage through the reverse auction incentive
model. In IMRAL, we leverage the task-centric algorithm to
select winner in our auction model, and pay winners based
on critical price to make them stay in the system as long as
possible. Considering there may be some participants exiting
the sensing tasks, which will make their sensing tasks unfin-
ished, causing a low task completion ratio. If the platform
to recruit new users, the budget will be increased. In this
case, we propose to allow these participants to resell their
unfinished tasks to new users based on double auction among
them. In this model, we construction bipartite graph model to
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FIGURE 1. The incentive framework based on auction model.

match the buyers and sellers in a single time period, and its
computational complexity is in polynomial time order. In the
crowd sensing system, there is a crowd sensing platform that
selects user sets from multiple users to meet the coverage
requirements of the sensing tasks. Papers [13] and [18] give
the relevant definitions below:
Definition 1: 0 = {τ1, τ2, · · · , τm} is used to denote the

sensing tasks’ set. For each τi ∈ 0, Let si represents the start
time to perform the task, di is the deadline, before which the
sensed data must be submitted, ti is the time required for a
user to complete the task τi, and Vi denotes the sensing task
values. The sensing task value is a private information of the
platform. In addition, we have di − si ≥ ti, which means that
the required time to complete the task should not exceed the
valid time of the task.
Definition 2: U = {u1, u2, · · · , un} is used to denote

smartphones users which are interested in performing sensing
tasks. Each user ui ∈ U submits the task-bid pair Bi =
(0i, bi) to the platform, in which 0i (0i ⊆ 0) is a subset of
sensing tasks that are reported by the user ui, and bi is called
bid of the subset of task 0i which is a reserved price that user
ui wants to sell its service.
Definition 3 (Task Coverage):Let numi denotes the number

of winners for a task τi, the task τi is covered if and only if
numi ≥ 1. In addition, numi = 1 denotes that the task τi is
performed by only one user.
Definition 4 (Sellers): U s

=

{
us1, u

s
2, · · · , u

s
β

}
is used to

denote sellers in stage 2 in Fig.1, who want to participate in
sensing activities.
Definition 5 (Buyers): Ub

=
{
ub1, u

b
2, · · · , u

b
α

}
is used to

denote buyers in stage 2 in Fig.1, who drop out of a sensing
task in stage 1.

The description of some symbols is shown in
Table 1.

TABLE 1. Description of some symbols.

B. AUCTION MODEL
1) INCENTIVE METHOD BASED ON REVERSE AUCTION
As shown in Fig. 1, in the first stage, in order to improve
the enthusiasm of a user’s participation in sensing tasks, and
considering the situation where the user may randomly exit
the sensing activities, we present an incentive method based
on reverse auction model to motivate users to participate. The
interaction process between the platform and users is shown
in Fig. 2, the concrete steps are as follows.

1. The platform advertises the description of a sensing
tasks’ set 0 = {τ1, τ2, · · · τm}, each task τi ∈ 0 has its
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FIGURE 2. The interaction between the platform and smartphone users.

corresponding attributes, including the task start time si,
he task deadline time di, the time ti required by the user to
complete the sensing task τi, and the value Vi of the task
τi. The time period from a task’s start time si to a task’s
deadline di is the valid time of task, and the value is not
less than the time ti, that is, di − si ≥ ti. The sensing task
value V = {V1,V2, · · · ,Vm} is the private information of the
platform, and the sensing tasks are related to the location, that
is, each task needs to be completed at a specific location.

2. Let U = {u1, u2, · · · , un} be a user set, and a user
can decide whether or not to participate in a sensing task,
which we represent them as dormancy or bidding situations
respectively. For convenience, we consider a user as dor-
mancy situation when the user is unwilling to participate in
a sensing task. Therefore, we introduce the sensing task 0.
When a user is in dormancy situation, it means that the user
selects the sensing task 0, and the corresponding utility of that
user is 0. User ui who made the bid submits the task bid pair
Bi = (0i, bi) according to his or her location. 0i(0i ⊆ 0) is
the subset of tasks reported by a user, and bi is the bid for a
user to report the subset of the task, that is the price that user
ui is willing to provide the data service.
3. According to the task bid pairB = ∪ui∈UBi submitted by

all users, the crowd sensing platform selects the user subset
S ⊆ U as the winner of the task to satisfy the sensing task
coverage requirement.

4. Each winner performs the sensing tasks in its winning
bids and sends the sensing data back to the platform.

5. According to whether a winner ui has completed task τi
or not, each winner ui is paid an amount of money pi for its
winning bid bi.

a: USER NODE UTILITY MODELING
The cost of a user’s participation in a task is determined
by factors such as energy loss caused by the provision
of services, network bandwidth resource consumption, and
potential privacy threats. The cost of user ui participating
in a sensing task is ci (0 < ci ≤ bi), which is the private
information of that user.

The utility of user ui is the difference between the money
pi obtained by participating in the sensing task and its sensing
cost ci, which is defined as follows.

∼
u i =

{
pi − ci, if ui ∈ S
0, otherwise

(1)

b: CROWD SENSING PLATFORM UTILITY MODELING
The utility of the crowd sensing platform is the difference
between the total value v(S) of the tasks completed by all
the winners and the total compensation payments to all the
winners. The definition is as follows.

u0 = v (S)−
∑
ui∈S

pi (2)

2) USER-INTERACTION BASED INCENTIVE MODEL
As shown in Fig. 1, in the second stage, some selected users
may drop out of a sensing task randomly, which results in low
task completion ratio. When the random dropping happens,
more users need to be recruited for the uncompleted sensing
tasks to maintain the task completion rate and the service
quality for MCS applications, which could increase the cost
of the MCS platform and data redundancy.

In order to improve the task completion rate without
increasing the budget cost of the platform, this paper estab-
lishes the interaction model between users to motivate users
to conduct transactions and prompt the task to be completed.
The specific interaction process is shown in Fig. 3. There
are three interactive entities in this model, buyers ub ={
ub1, u

b
2, · · · , u

b
α

}
that are composed of buyer ubi ∈ u

b, sellers

us =
{
us1, u

s
2, · · · , u

s
β

}
that are made up of seller usj ∈ us,

and crowd sensing platform. The interaction process of the
interaction entity is as follows. First, the seller usj ∈ us

broadcasts the task requirements. After knowing the specific
requirements of the task, the buyer ubi ∈ u

b submits a sensing
task. As the seller and user randomly arrives and leaves,
a dynamic system is formed. Then, we design a user matching
strategy to determine winning buyers and winning sellers.
The winning buyers will recommend the winning sellers to
the platform, and after the sellers complete the sensing task
and upload the sensing data to the platform, the platform pays
the buyers. Finally, the winning buyers pays the compensa-
tion pi to the winning sellers.

FIGURE 3. User-interaction model.

Assuming that the total time period for user transactions
is T , and t = 1, 2, 3 · · · ,T . Each user has its own specific
type of sensing θi = (ai, di,wi), ai and ai are arrives time
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and leaves time of a user respectively, and assuming that
a user’s maximum arrival-departure interval is I , which is
called maximum waiting patience. For a buyer, wi = bi
is buyer’s bid, indicating that the buyer ubi ∈ ub does not
purchase the sensing data higher than this price. For a seller,
wj = sj is the asking price, indicating that the seller sells
the sensing data no less than the asking price. Therefore,
the buyer’s utility can be expressed as u

(
ubi
)
= bi − pi and

the seller’s utility can be expressed as u
(
usj
)
= pj − sj.

C. PROBLEM FORMULATION
1) REVERSE AUCTION BASED INCENTIVE METHOD
In the first stage, this paper considers designing an incentive
mechanism with the goal of maximizing a user’s utility on
the constraint of limited budget of a sensing platform. The
formalized representation of this problem is as follows.

Maximize
∑
ui∈S

pi −
∑
ui∈S

ci s.t.
∑
ui∈S

pi ≤ B (3)

where B represents the payment budget of the platform,
assuming that its task budget B is not greater than the total
value v(S) of all tasks completed by the winners.
As can be seen from the above, there are two problems that

need to be solved in the reverse auction incentive method: (1)
determine the successful auction users, who can maximize
the task coverage while minimizing social costs; (2) design a
reasonable payment method to encourage users to bid truth-
fully, and to encourage them stay in the system as possible as
they finish their sensing task.

a: WINNER SELECTION PROBLEM(WSP)
Given a set of users U = {u1, u2, · · · , un}, the platform
selects a subset of users S(S ⊆ U ) as winners to minimize
the sum cost of users and cover all the sensing tasks.

min
∑
ui∈S

ci s.t. ∪
ui∈S

0i = 0 (4)

Theorem 1: The winner selection problem (WSP) is NP
hard.

Proof: In order to prove that this problem is
NP-hard, the concept of weighted multiple set cover prob-
lem (WMSCP) is introduced first. This problem has been
proved to be NP-hard problem by Yang and Leung [25].

An Instance of WMSCP: There are n subsets {Y1,Y2, · · · ,
Yn} of the base elements set E = {e1, e2, · · · , em}, and a
positive integer k as well as a positive-integer-valued m-tuple
(w1,w2, · · · ,wm).The question is whether exists a subset
ei(ei ⊆ E) of size k , such that every element ei is covered
for at least wi times.
Next, we change the instance of WMSCP to an instance of

our problem. Let 0 be the set mapping to E , where there is
a task τi ∈ 0 for each ej ∈ E . Corresponding to each subset
Yi ∈ Y , user ui ∈ Y can do the task set 0i, which contains
tasks mapping to the elements in Yi. If every element ei is
covered for wi times, the mapping tasks τj is done by multiple

users with the size of wj. This shows that the WMSCP can be
reduced to the WSP in a linear time. So, the winner selection
problem is NP-hard.

b: PAYMENT DETERMINATION PROBLEM (PDP)
Consider how to ensure the truthfulness of the incentive
method when the user exits the sensing task with random
probability. Myerson [26] proved that if an auction mecha-
nism is true, it must satisfy two conditions, that is, the selec-
tion rule is monotonous and the winner’s reward value is a
critical price. Monotonicity means that if a user becomes a
winner with the bid bj, then the bid b′j < bj can still be the
winner. The critical price means that if the bid price bj of a
user is higher than the critical price pj, the user will not be the
winner.

Namely, for each user ui, let Bi = (0i, bi) denote the
truthful bid, and Bi′ =

(
0i, bi′

)
denote the untruthful bid. The

payoffs of the user ui for the truthful bid and the untruthful
bid are ui(Bi) and ui

(
Bi′
)
, respectively. Therefore, the PDP

problem is to design a payment scheme that satisfies the
following conditions:

ui (Bi) ≥ ui
(
B′i
)

(5)

2) USER-INTERACTION BASED INCENTIVE MODEL
In the second stage in Fig. 1, for the case that a selected user
drops out of a sensing task, we propose a user-interaction
based incentive model to improve the task completion ratio
without increasing the cost of the platform. In this model,
the user (namely buyer) who drops out of a sensing task in the
first stage can resell the unfinished task to a new user (namely
seller) through double auction, which can improve the task
completion rate without increasing the platform budget cost.

The process focuses on designing a reasonable double
auction mechanism while solving the user matching problem
in a single time period. Therefore, an auction mechanism
should be designed to maximize economic efficiency while
the design mechanism needs to satisfy the computational
efficiency, that is, the result of the usermatching can be output
in the polynomial time.

a: SINGLE TIME PERIOD USER MATCHING PROBLEM
Since the design of the incentivemechanism needs tomeet the
conditions of computational efficiency, the matching result in
a single time period should be output in the polynomial time.
In a single time period t , the purpose is to match buyers and
sellers with the goal of maximizing the task completion rate.
We express the purpose as follows.

Max (
∑
ubi ∈G

yi) (6)

s.t. xij ∈ {0, 1} ∀ubi , u
s
j (7)

0 ≤
∑

i:(ubi ,u
s
j )∈G

xij ≤ 1, ∀ubi (8)

0 ≤
∑

j:(ubi ,u
s
j )∈G

xij ≤ 1, ∀usj (9)
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yi =

{
1, ∀ubi , usj xij = 1

0, otherwise
(10)

G = {(ubi , u
s
j ) : ai ≤ dj, aj ≤ di,

∃t, s.t.ubi ∈ B(t), u
s
j ∈ S(t)} (11)

Equation (6) indicates that the goal of the incentive in stage
2 is to complete as many sensing tasks as possible to improve
the task completion rate. In equation (7), when xij = 1,
it means that the buyer ubi and the seller u

s
j are matched well;

otherwise, xij = 0. Equation (8) indicates that any one of
the buyers can match at most one seller within the period t .
Similarly. Equation (9) means that each seller can match at
most one buyer within the period t . When yi is set to 1,
it means that task owned by ubi is allocated; otherwise yi = 0.
Equation (11) indicates that in any period t, in order to ensure
the validity of the match between the buyer ubi and the seller
usj , it is necessary to ensure that the arrival time of ubi is earlier
than the departure time of usj , and the arrival time of usj is
earlier than the departure time of ubi . B(t) and S(t) denote
the set of buyers and the set of sellers who arrive in period
t respectively.

We consider a multi-user matching problem as a one-to-
one matching problem of bipartite graph (V ,E), where V
denotes the buyers and sellers, and an edge exists between
a buyer and a seller if and only if a seller has bid on the tasks
held by a buyer. The user matching problem can be better
described by the integer programming method. Due to the
constraints of constraints (8), (9), and (10), (6) can be simpli-
fied to the 0-1 programming problem. The 0-1 programming
problem has been proved to be NP-hard [27]. Therefore,
the user matching problem is NP-hard.

IV. IMRAL
In this section, to improve the willingness of a user to partici-
pate in a sensing task, and deal with the case that awinnermay
exit randomly during a sensing task, we present a reverse auc-
tion based incentive mechanism for location-aware sensing
in MCS( IMRAL). The IMRAL consists of two parts: winner
selection and payment scheme.

A. THE TASK-CENTRIC WINNER SELECTION ALGORITHM
Theorem 1 illustrates that it is very difficult to solve the
winner selection problem. Therefore, it is reasonable to
find a solution with lower computational complexity, which
has practical significance. Reference [28] demonstrates that,
when the number of users participating in a same sensing
task increases, diminishing marginal effect caused by data
redundancy becomes more serious. For example, when mul-
tiple mobile phones simultaneously collect data about the
noise level in an area, one or two mobile phones is sufficient
to collect the data to estimate the noise level in the area.
In contrast, allowing more mobile phones to collect data will
not improve the accuracy efficiently, but will increase data
redundancy and social costs.

Algorithm 1 Task-Centric Winner Selection Algorithm
Input: set 0 = {τ1, τ2, · · · , τm} of sensing tasks, set V =
{V1,V2, · · · ,Vm} of sensing tasks, set B = ∪ui∈UBi of all
submitted bids.
Output: set S of winning bids, the tasks set 0′′ covered by
all winners, b1/v1 and bL/vL for τi ∈ 0′′.
Initialization: S ← φ, 0′′← φ;
1: According to Bi = (0i, bi), compute the tasks set
0′
(
0′ ⊆ 0

)
submit by all users, the number of users bid

ni and the bidding users set Uτi ;
2: for all τi in 0′ do
3: if (ni = 1) then
4: if (bi ≤ vi) then
5: S = S ∪ {ui}, 0′′ = 0′′ ∪ {τi};
6: end if
7: end if
8: if (ni ≥ 2) then
9: Sort bi/vi for all ui ∈ Uτi and the list is denoted by R;
10: b1/v1 denotes the head of R, bL/vL denotes the tail of
R;
11: if b1/v1 ≤ 1 then
12: S = S ∪ {u1};
13: 0′′ = 0′′ ∪ {τi};
14: end if
15: end if
16: end for
17: return s, 0′′, b1/v1, bL/vL

In addition, when the sensing task value is constant,
the more users participating in the same task, the less reward
each user can receive. This paper considers the marginal
diminishing effect of sensing data collection, assuming that
each task is performed by one person. In order to improve user
utility and task coverage, we propose a task-centric winner
selection algorithm in the user selection phase. For each task,
the user with the smallest ratio of the bid to the total value
of the reported tasks is selected as a winner to perform the
sensing task.

The basic idea of the task-centric winner selection algo-
rithm is as follows. Let ni denotes the number of users bidding
for task τi. When ni = 1, and bi ≤ vi, where vi is the sum of
tasks value for bid bi, which means that there is only one user
willing to bid for task τi and the bidding price bi is lower than
the task value vi. In this case, we will select that user as the
winner to perform task τi; when ni > 1, which means there
are more than one users willing to perform τi, these users are
sorted according to the value of bi/vi. Which is,

b1/v1 ≤ b2/v2 ≤ · · · ≤ bL/vL (12)

if b1/v1 ≤ 1 and bi/vi is the smallest, we select the user
ui as a winner for task τi. The pseudo-code of task-centric
winner selection algorithm is shown in Algorithm 1.
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B. COMPENSATION PAYMENT ALGORITHM BASED ON
CRITICAL PRICE
After selecting the winner set, the winners perform the task
and upload the data according to the tasks they have won.
The platform pays for a user according to the user’s task
completion status. Concerned to the situation that a user may
drop out of a sensing task, we have proposed the payment
method which considers two situations: a user completes the
task normally and a user quits during the sensing process.
In order to ensure the truthfulness of the incentives and
encourage users to participate for a long time, we use the
concept of critical payment in [26] to propose a compensation
payment algorithm based on critical price.

We use the time-shared rule to reward a user according to
the user bid and the task performed by the user. Specifically,
a user’s payment function is as follows.

pi = bi +
x∑

k=1

Tτi (13)

where x is the number of tasks wined by user ui, Tτi denotes
the task rewards for τi and is computed as follows:

Tτi =

{
Vi (bL/vL − b1/v1) , if1ti = ti
Vi(bL/vL − b1/v1)(1ti/ti), if1ti < ti

(14)

where ti is the time to complete task τi, 1ti denotes the time
to perform the task τi by user ui. If the bidder of task τi has
only user ui and the bid is successful, when we calculate Tτi ,
we use bi/vi instead of bL/vL − b1/v1 in (14). When a user
performs a certain task, there are only two possible situations,
one is that the user completes the task normally, and the other
is that the user quits halfwaywhen performing the task.We let
p denotes the probability of a winner who completes the task
normally, thus q = 1 − p is the probability winner dropping
out of a participated sensing task, which follows Bernoulli
distribution. That is, X = 1 represents that the user completes
the task normally when performing a certain task, and the
probability is p, and X = 0 represents that the user quits
halfway when performing a certain task, and the probability
is q = 1 − p. The pseudo-code of compensation payment
algorithm based on critical price is shown as Algorithm 2.

C. THEORETICAL ANALYSIS
A feasible and effective bidding mechanism needs to satisfy
the following characteristics: computational efficiency, indi-
vidual rationality, budget feasibility, and truthfulness (that is,
incentive compatibility) [22]. The first three characteristics
are the basic conditions for guaranteeing the viability of the
mechanism, and the truthfulness can eliminate the user’s con-
cerns about market manipulation. In this subsection, we ana-
lyze IMRAL from four aspects: computational efficiency,
individual rationality, budget feasibility and incentive com-
patibility.
Lemma 1: IMRAL is computationally efficient.
Proof: In Algorithm 1, the complexity of the for loop

(line 2-16) is O(m), and the computational complexity of the

Algorithm 2 Compensation Payment Algorithm Based on
Critical Price
Input: set S of winning bids, the task set 0′′ covered by the
winner, the minimum value b1/v1 and the maximum value
bL/vL of the ratio of the bid price reported to the user for
any task τi ∈ 0′′ and the total value of the task report.
Output: critical payment pi.
Initialization:, pi ← 0, 0′′′ ← φ, 0′′′ denote the tasks set
completed by all winners;
1: for all τi ∈ 0′′ do
2: Calculate vi according to function (14);
3: if 1ti = ti then
4: 0′′′ = 0′′′ ∪ {τi}
5: end if
6: Compute v0′′′ =

∑
τi∈0′′′

Vi, it represents the total value of

the winning set to perform the task;
7: end for
8: for all ui ∈ S do
9: Count the tasks that user ui wins, and the total number x
of tasks, Calculate pi according to function (13);
10: Compute P =

∑
ui∈S

pi;

11: end for
12: if P > v0′′′ then
13: S ← φ, pi← 0;
14: else S ← S, pi← pi;
15: end if
16: return pi

sorting operation (line 9) is O(nlogn). Therefore, the total
computational complexity of algorithm 1 is O(mnlogn), that
is, the time complexity of Algorithm 1 is in polynomial
time order. In Algorithm 2, the complexity of the first for
loop (line 1-7) is O(m). The complexity of the second for
loop (line 8-12) is O(n). Consequently, the computational
complexity of Algorithm 2 is O(n), that is, the time com-
plexity of Algorithm 2 is in polynomial time order. Therefore,
the time complexity of IMRAL is in polynomial time order,
and IMRAL is computationally efficient.
Lemma 2: IMRAL is individually rational.
Proof: If a user ui fails to bid, and pi = 0, ci = 0, then

∼
u i = 0. If a user ui is successful, and pi = bi +

x∑
k=1

Tτi ,

ci ≤ bi, then
∼
ui ≥ 0. The user utility is not less than zero,

satisfying individual rationality.
Lemma 3: IMRAL is budget feasible.
Proof: Lines 13 to 15 of the compensation payment

algorithm guarantees that the task will be started in the case
that the compensation is paid should not greater than the total
value of the completed tasks. At this time, the platform’s
utility is greater than or equal to 0, otherwise the task fails to
start, and the platform’s utility is 0. Therefore, the mechanism
is balanced in budget.
Lemma 4: IMRAL is incentive compatible.
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Proof: According to [26], it is pointed out that the auc-
tion mechanism must satisfy both monotonicity and critical
price when it meets the truthfulness. Here, we prove it from
monotonicity and critical price.

Monotonicity: Since bi/vi is sorted from small to large,
assuming that the user ui becomes a winner in bid bi. When
the user bids with b′i ≤ bi, since vi does not change, user ui
can also be a winner. Critical price: Assume that the number
of user participating in the bidding task τi is not less than 2,
and a user ui becomes the winner in the bid bi, then the
payment is pi = bi + Tτ i . If a user ui bids with a value
greater than bi, and bi > bi + Tτi , thus Tτi < 0. Because

Tτi =

{
Vi (bL/vL − b1/v1) , if1ti = ti
Vi (bL/vL − b1/v1) (1ti/ti) , if1ti < ti

. Then the

user ui will not be able to win the task τi. Therefore, if a user
uses a value greater than pi as the bid price, it will not become
a winner. Therefore, the mechanism satisfies the incentive
compatibility characteristic.

In summary, IMRALmeets computational efficiency, indi-
vidual rationality, budget feasibility, and incentive compati-
bility.

V. USER-INTERACTION BASED INCENTIVE MODEL
In order to improve the sensing task completion rate with-
out increasing the platform budget cost, based on the user
interaction model, we design a dynamic incentive method
based on two-way auction. The method facilitates as many
user transactions as possible in a limited period of time to
maximize the sensing task completion rate.

A. DYNAMIC DOUBLE AUCTION INCENTIVE METHOD
In order to motivate users to participate and ensure that tasks
are completed as many as possible, we propose a dynamic
incentive method based on two-way auctions. The incentive
execution process of this method is illustrated in Fig. 4.
In order to adapt to the situation of the user’s dynamic arrival,
we divide the incentive method into an auction module and
a survivor module. Among them, the main function of the
auction module is to make a reasonable match between the
buyer and the seller. Themain function of the survival module
is to make the buyer and seller users have a greater chance
of matching successfully in a limited total auction period.
The core idea to design the survival module is that if the
user does not win in the period t − 1 and the departure time
is greater than t − 1, then the user can continue to bid in
the period t . The dynamic double auction incentive method
has two core algorithms: online auction algorithm and user
matching algorithm.

The based idea of online auction algorithm is as follows.
Assume the total auction period is T , and t = 1, 2, 3 · · · ,T ,
during each period t , the dynamic double auction method
first forms a set of buyers B(t) and a set of sellers S(t).
In the auction stage, the winning buyers set BW (t) and the
winning sellers set SW (t) are selected according to a rea-
sonable matching rule. For users who have not entered the

FIGURE 4. The Incentive execution process of dynamic double auction.

winning set and whose departure time di is greater than t ,
they can enter the next cycle as survivors. According to [29],
let SNTB (t) denote a buyer-survivor in the time period t , and
SNTs (t) denote a seller-survivor in the period t . If they are
not survivors in the period t , add them to the set h(t).

B. USER MATCHING ALGORITHM BASED ON NODE
DEGREE AND EDGE WEIGHT
In order to ensure a high task completion rate, the buyer nodes
are arranged in ascending order of nodes, and the nodes with
low degree arematched first. Every edge in the bipartite graph
has a positive weight, and it can be computed asW = bi− sj.
In order to maximize social welfare, a user with the largest
weight and no less than 0can be a winners. Let B(t) and S(t)
denote the set of buyers and seller users arriving in period t
respectively.|B(t)| and |S(t)| denote the number of buyers in
user set B(t) and the number of seller in user set S(t), where
BW (t) and SW (t) denote the set of winning buyers and the set
of winning sellers in time t respectively. The user matching
algorithm based on node degree and edge weight is shown in
Algorithm 3.

After the users matched successfully, a reasonable pricing
mechanism needs to be designed to motivate users to par-
ticipate. In order to ensure the truthfulness of the incentive,
in the transaction, the transaction price can be calculated as
pi = pj =

(
bi + sj

)
/2.

C. ANALYSIS OF DYNAMIC INCENTIVE ALGORITHM
In this subsection, we conduct the theoretical analysis and
prove that the dynamic incentive algorithm satisfies the prop-
erties of individual rationality, incentive compatibility, and
computational efficiency.
Lemma 5: The dynamic incentive algorithm achieves indi-

vidual rationality.
Proof: For each buyer ubi ∈ Ub, if a buyer fails in an

auction, then the utility of the buyer will be zero. If he wins,
then the utility of the buyer can be calculated as u

(
ubi
)
=

bi−
bi+sj
2 =

bi−sj
2 ≥ 0. Therefore, the utility of buyer ubi ∈ U

b

is u
(
ubi
)
≥ 0. In summary, for any buyer, the dynamic incen-

tive algorithm proposed in this paper is individual rational.
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Similarly, we can prove for any seller that the dynamic incen-
tive algorithm is individual rational.
Lemma 6: The dynamic incentive algorithm satisfies the

property of incentive compatibility.
Proof: An incentive algorithm is incentive compatible

if and only if it meets the following two conditions: (1) The
task allocation rule is monotone; (2) Each winner is paid or
obtained a critical payment.

We first show that the task allocation rule is monotone.
Assuming that there are n (n ≥ 2) sellers bid for a task which
is owned by the buyer ubi , and the seller wins the sensing task
with usj . If Sj =

(
aj, dj, sj

)
bids with S ′j = (a′j, d

′
j , s
′
j), where

aj ≤ a′j ≤ t , d ′j ≤ dj and s′j < sj, since bi does not change,
a seller usj can also win a task.Secondly, we show that each
winner is paid or obtained a critical price. If the seller usj wins

with sj, its obtain is pj =
bi+sj
2 . If usj bids with sj > pj, then

sj >
bi+sj
2 , and sj > bi, Thus, usj cannot win. Therefore,

each seller gets a critical price. And so on, each buyer pays a
critical price.
Lemma 7: The dynamic incentive algorithm is computa-

tionally efficient.
The complexity of the sorting operation (line 1) in algo-

rithm 3 is O(|B(t)| log |B(t)|), the complexity of the for
loop (line 2 to line14) is O(|B(t)||S(t) log |S(t)|). There-
fore, the total computational complexity of algorithm 3 is
O(|B(t)||S(t) log |S(t)|). According to the analysis of the time
complexity of Algorithm 3, the time complexity of the online
auction algorithm is O(T |B(t)|(|B(t)| + |S(t)| log |S(t)|)).
Therefore, the dynamic incentive method can output results
in a polynomial time order.

VI. PERFORMANCE EVALUTION
In this section, we first introduce the comparison method
used in the experiment. Then, the experimental setup and
evaluation metrics are given to evaluate the performance of
our proposed incentive mechanism. Finally, we analyze the
experimental results.

A. BASELINE METHODS
To effectively evaluate the performance of IMRAL, we com-
pared the performance of our proposed mechanism IMRAL
with the TRACmechanism proposed in [13] and the IMC-SS
mechanism proposed in [18].

1) TRAC [13]
This mechanism is a typicalMCS incentive mechanism based
on reverse auction model. In the mechanism, the participants
bid for multiple sensing tasks according to their location and
sensing range, and the platform selects the users with low
total bids as the winners.

2) IMC-SS [18]
This incentive mechanism based on MCS is based on
SS-Model. This mechanism assumes that each winning
provider will complete the task and the platform selects the

winner based on the number of bids and tasks reported by the
user.

In order to effectively illustrate the effectiveness of the
user interaction-based incentive method, we compare the
process of recruiting users through UIBIM and recruiting
users through the IMRALmechanism to complete unfinished
tasks. And use the task completion rate and platform cost to
illustrate the effectiveness of UIBIM.

B. SIMULATION SETTINGS
To verify the validity and feasibility of the IMRAL mech-
anism, we design a simulation experiment. Table 2 shows
the basic parameter settings in the simulation experiment.
To evaluate the impact of n, we fix m = 100. Similarly,
to evaluate the impact of m, we fix n = 100. Furthermore,
some participants in stage 1 will drop out of the sensing task,
here we set the dropping-out possibility q = 0.2. We also
make the assumption that if a winner exits during sensing,
the sensing task is unfinished, here we set the completion
ratio 1ti/ti, which represents the actual sensing time of a
participant divided by the total sensing that the participant
should stay in the system, is uniformly distributed in the
range of [0,1]. That is, when a participant quits in stage 1,
the sensing task is unfinished, and it is difficult to compute
how much of the task the participant has finished, therefore,
we consume the task completing ratio is randomly distributed
in the range of [0,1].

TABLE 2. Simulation parameter settings of IMRAL.

Then, in order to verify the validity and feasibility of the
dynamic incentive method based on double auction, we also
design a simulation experiment. The experimental parameters
are shown in Table 3. The key factors affecting the effective-
ness of the dynamic incentive method include: the number of
buyers, the number of sellers, waiting for patience I , and the
arrival rate λ. We assume the total auction period T = 100.
The buyers’ bidding and sellers’ asking price are uniformly
distributed in the range of (0, 5], the arrival probability of
a user follows the Poisson distribution. We compare the
simulation results under different buyers, sellers, maximum
patience, and arrival rate. The default settings of maximum
patience and arrival rate are set to 6 and 10 [28].

The experimental scenario of the UIBIM mechanism is
that the platform release 100 sensing tasks, and there are
100 users in our MCS system interested in the tasks. First,
a user is encouraged to participate in the sensing through the
IMRAL mechanism, and then the platform will recruit users
to complete unfinished tasks using the IMRAL mechanism
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TABLE 3. Simulation parameter settings of UIBIM.

and the UIBIM mechanism respectively. When encouraging
users to participate in tasks that have not been completed,
this paper compared the simulation results of the number of
bidding users to {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For
the UIBIMmechanism, we set the user’s arrival rate to 10 and
a user’s maximum waiting patience to 6.

C. EVALUATION METRICS
First, we compare the IMRAL mechanism with TRAC and
IMC-SS in terms of average user utility, platform utility, task
coverage, and task completion rate. Secondly, we evaluate
the dynamic incentive methods proposed in the second phase
of this paper from two aspects: system efficiency and social
welfare.

1) AVERAGE USER UTILITY
The average user utility is defined as the ratio between the
total utility of all winners and the number of winners, which

is defined as:

∑
ui∈S

pi−
∑
ui∈S

ci

|S| , where |S| is the number of winners.

2) TASKS COVERAGE RATIO (R)
R = cov

m , where cov is the number of tasks covered by
winners, and m denotes the total number of tasks.

3) TASK COMPLETION RATE(γ )
The task completion rate γ is defined as the ratio of the
number of tasks com completed by all the winners to the total
number of tasks m, which is computed as: γ = com

m .

4) PLATFORM UTILITY
Platform utility is an important assessment indicator for
assessing incentives that are budget feasible. It is computed
according to (2).

5) SYSTEM EFFICIENCY
The system efficiency µ is defined as µ = |B

w
|

α
, where |BW |

denotes the number of winning buyers, and α means the total
number of buyers.

6) SOCIAL WELFARE
Social welfare is the sum of the utility of all partic-
ipants. It is computed as

∑
ubi ∈u

b,usj∈u
s

(u(ubi )+ u(u
s
j )) =∑

ubi ∈B
W ,usj∈S

W

(bi − sj).

D. NUMERICAL RESULTS AND ANALYSIS
1) AVERAGE USER UTILITY
Fig. 5 shows the average user utility of IMRAL, TRAC and
IMC-SS, respectively. The impact of m is shown in Fig. 5
(a). For IMRAL, we observe that when the number of tasks is
small, the competition between users is stronger, resulting in
fewer winners. At this time, the task payment is concentrated
on a small number of users, therefore, the average user utility
is higher. As the number of task increases, users’ choices are
more extensive. The above situation will lead to a decrease
of user in competition, resulting in an increase in the number
of winning users. Since the total value of tasks that can be
completed by the users tends to be stable, the average utility
of user decreases. From Fig. 5 (b), it shows that, as the
number of user increases, the number of tasks that can be
completed by a user is improved, and the increase in the total
task payment causes the average utility of a user to increase.
Comparing IMRAL to TRAC and IMC-SS, the payment of
TRAC mechanism and IMC-SS mechanism is only related
to the number of bid and task. Due to the cumulative effect
of task payment in IMRAL, users can get a relatively higher
task compensation, which increases the degree of willingness
of users to participate in sensing tasks.

2) TASKS COVERAGE RATIO
Fig. 6 demonstrates the tasks coverage ratio of IMRAL,
TRAC and IMC-SS. From Fig.6, it shows that the task

FIGURE 5. The average user utility under different numbers of tasks and
users. (a) n = 100, 10 ≤ m ≤ 100. (b) m = 100, 50 ≤ n ≤ 500.
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FIGURE 6. The tasks coverage ratio under different numbers of tasks and
users. (a) n = 100, 10 ≤ m ≤ 100. (b) m = 100, 50 ≤ n ≤ 500.

coverage under IMC-SS is slightly lower than the task cover-
age under IMRAL, and when the number of users is close to
or smaller than the number of tasks, the task coverage under
TRAC is lower. The main reason is that TRAC chooses users
who have low bids greedily and report a large number of
tasks during the winner selection stage. In the compensation
payment phase, TRAC needs to find a user who includes the
user set of the paid user, and completes the payment to the
winner. When the number of users is close to or smaller than
the number of tasks, it is difficult to find users who meet the
requirements to pay the winner.

The above situation causes the user fail to pay, and thus the
task coverage is low.

Combined with user utility and task coverage, we can draw
the conclusion that users in IMRAL are more motivated than
users in TRAC and IMC-SS.

3) TASK COMPLETION RATE
Fig. 7 is a comparison of the sensing task completion rate.
Both TRAC and IMC-SS assume that the task coverage is
equivalent to task completion, therefore, we also consider
the task completion rate is the same as its task coverage.
However, IMRAL considers the situation that a sensing task
may not be completed due to the user’s random drop-off.
Fig. 7 (a) shows when the number of users is 100, the task
completion rate under three mechanisms increases as the

FIGURE 7. The task completion ratio under different numbers of tasks
and users. (a) n = 100, 10 ≤ m ≤ 100. (b) m = 100, 50 ≤ n ≤ 500.

increase of the number of tasks. When the number of tasks
is between 10 and 60, the task completion rate under IMRAL
is lower than the task completion rate under TRAC and IMC-
SS. In Fig. 7(b), when the number of tasks is 100, with the
increase of the number of users, the task completion rate
under TRAC and IMC-SS approaches 100%. However, since
a user may quit during the execution of the task is considered
in the IMRAL, there are always tasks that uncompleted.

4) PLATFORM UTILITY
Fig. 8 is a comparison of the utility of the crowd sensing
platform. As can be seen fromFig. 8(a), with a certain number
of users, as the number of tasks increases, the platform utility
under IMRAL and IMC-SS increases. Compared to IMC-SS,
the platform utility of IMRAL is lower, and there are two
main reasons. First, the exit of a user may cause the task being
unfinished, resulting in a lower total value of the completed
task. Second, the compensation payment of a user is higher
under IMRAL incentive method, so the utility of the platform
is lower. Under TRAC, when the number of tasks increases,
the platform utility increases first and then decreases. The
main reason is that, when the number of users is close to or
less than the number of tasks, the task completion rate is low.
In Fig. 8(b), the platform utility of the three incentivemethods
is first increased and then stabilized. The reason is that as
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FIGURE 8. The platform utility under different numbers of tasks and
users. (a) n = 100, 10 ≤ m ≤ 100. (b) m = 100, 50 ≤ n ≤ 500.

the number of users increases, the task completion rate also
increases. When the task set is full, the platform utility will
not increase.

5) SYSTEM EFFICIENCY
The system efficiency is the ratio of the number of suc-
cessful buyers to the total number of buyers, reflecting the
sensing task completion rate. In Fig. 9, as the number of
sellers increases, more task supply lead to more choices.
For buyers, more demand can be met, making the system
more efficient. Finally, the growth rate of system efficiency
slows down and tends to be stable. The reason is that
when the number of sellers is fixed, which means that most
of the buyers have already completed the transaction, and
the additional sellers have contributed little to the system
efficiency.

As shown in Fig. 10, when the total number of buyer
and seller of the auction is 50, 100 and 150 respec-
tively, the system efficiency increases with the patience
of waiting for, because the higher waiting patience will
lead to more successful match between the buyers and the
sellers.

In Fig. 11, it can be seen that system efficiency increases
as the arrival rate increases. The reason is that a higher arrival
rate will result in more successful matching of the bid and the
asking price.

FIGURE 9. Impact of the number of users on system efficiency.

FIGURE 10. Impact of waiting patient on system efficiency.

FIGURE 11. Impact of arrival rate of the users on system efficiency.

6) SOCIAL WELFARE
Social welfare reflects economic efficiency. As shown
in Fig. 12, an increase in the number of buyers or the number
of sellers will lead to an increase in social welfare. The reason
is that as the arrival rate increases, more bids will be matched
to the asking price.

In Fig. 13, it can be seen that when the total number of
buyers and sellers of the auction is 50, 100 and 150 respec-
tively, social welfare increases as the patience of waiting for
increases. This is because higher waiting patience will lead to
more matching success between bid and asking price.

In Fig. 14, social welfare increases as the arrival rate
increases. The reason is that as the arrival rate increases,
the probability that the bidding matching an asking-price will
increase.
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FIGURE 12. Impact of arrival rate of the users on system efficiency.

FIGURE 13. Impact of arrival rate of the users on system efficiency.

FIGURE 14. Impact of arrival rate of the users on system efficiency.

VII. CONCLUSIONS
In the MCS network, due to the selfishness and randomness
of the users’ participation in the sensing activities, the enthu-
siasm of the user to participate and the corresponding task
completion rates are usually not high enough. To deal with
these problems, this paper proposes a novel incentive mech-
anism based on a new auction model. Firstly, from the user’s
perspective, in order to maximize user utility, and consid-
ering the randomly exit in the process of a sensing task,
this paper proposes an incentive method IMRAL based on
reverse auction. In this phase, we proposed a task-centric user
selection algorithm with polynomial time complexity. This
method can promote user participation and improve the sens-
ing task coverage rate. In addition, we also adopted a method
of compensation payment based on the proportion of time

sharing, which improves the user’s utility while ensuring the
truthfulness of the incentive. Secondly, this paper proposes
an incentive model based on user interaction. The model
improves the sensing task completion rate and social welfare
of user’s through a dynamic incentive method based on a
double auction and a user matching algorithm based on node
degree and edge weight. Finally, theoretical and experimental
analysis shows that the incentive mechanism of this paper can
improve the average user utility and task coverage, and can
enable the platform to achieve a higher task completion rate
under certain budget constraints. In the future work, we will
leverage the machine learning theory, such as clustering algo-
rithm [30] to preprocess the sensing data, and study how
to improve the quality (such as data accuracy, security) of
the sensing the sensing data. In addition, in order to provide
better insights, wewill further validate the effectiveness of the
proposed incentive mechanism using external crowd sensing
dataset.
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