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Abstract—Internet of Things (IoT) devices capture and process
sensitive personally identifiable information such as e.g., camera
feeds/health data from enterprises and households. These devices
are becoming targets of prominent attacks such as Distributed-
Denial-of-Service (DDoS) and Botnets, as well as sophisticated
attacks (e.g., Zero Click) that are elusive by design. There
is a need for cyber deception techniques that can automate
attack impact mitigation at the scale that IoT networks demand.
In this paper, we present a novel cloud-based active defense
approach viz., “CICADA”, to detect and counter attacks that
target vulnerable IoT networks. Specifically, we propose a multi-
model detection engine featuring a pipeline of machine/deep
learning classifiers to label inbound packet flows. In addition,
we devise an edge-based defense engine that utilizes three
simulated deception environments (Honeynet, Pseudocomb, and
Honeyclone) with increasing pretense capabilities to deceive the
attacker and lower the attack risk. Our deception environments
are based on a CFO triad (cost, fidelity, observability) for
designing system architectures to handle attacks with diverse
detection characteristics. We evaluate the effectiveness of these
architectures on an enterprise IoT network setting with a scale of
thousands of devices. Our detection results show ≈73% accuracy
for the low observability attack (Zero Click) corresponding to the
BleedingTooth exploit that allows for unauthenticated remote
attacks on vulnerable devices. Furthermore, we evaluate the
different deception environments based on their risk mitigation
potential and associated costs. Our simulation results show that
the Honeyclone is able to reduce risk by ≈88% when compared
to a network without any defenses.

Index Terms—IoT security automation, attack detection, ma-
chine learning, cyber deception, active defense

I. INTRODUCTION

With the growing network of enterprise IoT, WiFi-enabled
smart devices have the potential to greatly improve the quality
of life for consumers [1]. Voice-activated speakers, smart
fridges, smart lights, and other such smart devices have
created a new IoT ecosystem. In 2018, eMarketer reported that
23.1% of United States enterprise networks actively used smart
devices, predicting an increase to 46.5% by 2023 [2]. However,
with the addition of smart devices, IoT security loopholes have
arisen that can be exploited by attackers. For example, Philips
recently discovered that their IoT interface for interacting with
patient medical data had security flaws that exposed databases
containing sensitive records [3].

Given that smart devices typically use custom protocols,
there are added challenges to secure related IoT systems and
prevent threats from adversaries [4]. Moreover, if the threats
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are evolving and dynamic, IoT systems may be incapable of
effective defense due to the use of prevalent static defense
measures such as e.g., passwords, encryption or firewalls. In
order to secure IoT networks at large-scale and automate
their defense in an evolving threat landscape, new active
defense mechanisms are direly needed. These active defense
mechanisms need to have the ability to effectively handle
prominent (relatively easy to detect) attacks such as the DDoS
and Botnets. At the same time, they also need to handle
sophisticated (relatively hard to detect) attacks such as e.g.,
Zero Click [5], where attackers can inject code into a network
packet or figure out a way to exploit a network function to
take control of a device [6]. Lastly, they need to be practically
usable in terms of cost and fidelity (or capabilities) depending
on the risk factors involved in different attacks on a given IoT
system configuration, and level of pretense desired.

In this paper, we propose a Cloud-based Intelligent Clas-
sification and Active Defense Approach viz., “CICADA” to
defend IoT systems using decoy environments that implement
the “defense by pretense” paradigm of active defense [7] [8].
The goal of CICADA is to offload the burden of security from
the resource-constrained smart devices to cloud computing
resources. Our CICADA approach involves attack classifica-
tion using a multi-model detection engine featuring a pipeline
of machine/deep learning classifiers to label inbound packet
flows. In addition, our approach focuses on selection of a
pertinent decoy environment to redirect attack traffic based
on the attack observability, in order to effectively deceive the
attacker and lower the attack risk on an actual production
environment with legitimate user traffic.

Using a CFO triad (cost, fidelity, observability) for design-
ing the system architectures for the deception environments,
we handle attacks with low (e.g., Zero Click), medium (C&C,
Portscan, Man-in-the-Middle) and high (DDoS, Botnet) ob-
servability characteristics. The ‘Honeynet’ decoy environment
represents the lower end of the CFO triad factors, whereas
the ‘Pseudocomb’ and ‘Honeyclone’ represent the middle and
higher end of the CFO triad factors, respectively. The multi-
model detection engine in CICADA comprises an ensemble
of various ML/DL based models that cover different levels of
threats in order to identify attacks based on their observability
and feed relevant information to a defense engine that im-
plements the active defense methods using the decoy environ-
ments. We assume that - with decreasing order of observability,
the cost of employing effective deceptive defense methods (as
given by a cost model) rises, and so does the required fidelity
to lower the risk (obtained by performing a risk assessment)
of threats on an enterprise IoT system.
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We implement and evaluate our CICADA using a realistic
enterprise IoT network testbed built on the Amazon Web
Services (AWS) cloud platform. For our experiment purposes,
we consider: a) real-world datasets such as the Aposemat
IoT-23 [9] from Stratosphere Labs, and an IoT Network
Intrusion Dataset [10] collected from IEEE Dataport, and
b) simulated dataset for low observability traffic, repurposed
from the GHOST-IoT [1] dataset’s benign Bluetooth encounter
traffic. Through our experiment results, we show how CI-
CADA enables attack detection for various attack observability
levels using ensemble and binary models built using multi-
layered neural networks and classifiers such as Random Forest,
Extra Trees with high accuracy. Furthermore, we evaluate the
different deception environments based on their risk mitigation
potential and associated costs, and show how the three de-
coy environments (i.e., Honeynet, Pseudocomb, Honeyclone)
perform relatively to handle an attack, when compared to a
network without any defenses.

The remainder of the paper is organized as follows. Sec-
tion II presents the related work. Section III describes our
active defense methodology. Section IV discusses the perfor-
mance evaluation of CICADA system implementation on an
enterprise IoT network testbed. Section V concludes the paper.

II. RELATED WORK

Intrusion Detection Systems (IDS) have emerged as a solu-
tion to the problem of smart device security within large-scale
IoT-based networks [11]. Authors in [12] explain the current
challenges that these IoT IDS face and how ML can be applied
effectively in a detection model. Both [13] and [14] propose
packet-level IDS models for IoT networks that are similar to
the models we use in our work that uses multiple models, each
with a certain targeted purpose.

The attack surface within large IoT-based networks is large
and ever increasing as more sectors adopt smart devices with
high inter-connectivity [11]. Research works such as [15],
[16] highlight the presence of massive attack surfaces and the
increasing amount of data being generated from modern smart
devices. With the inclusion of AI-based attack methods by
threat actors, numerous attacks can be generated in a very short
amount of time [17]. Above prior works are mostly limited to
botnet malware, such as the popular “Mirai” botnet and its
variations, or other well-known attacks: DDoS, MITM, C&C.

Active defense, or the use of offensive tactics to outsmart
the attacker for example, by using honeypots [18] and/or
redirection/containment [19] can improve the security of a
system indirectly by deflecting attackers away from a legiti-
mate system. Active defense methods can slow down a hacker
and make cyber attacks more difficult to carry out [20], by
increasing the attack budget. In the case of attacker-defender
games, as highlighted in [21], when the attacker does not
realize deception is apart of the defender’s defense strategy,
security is increased without extra resource expenditure. This
reasoning makes sense due to the fact that deception is only
effective when the attacker is able to be deceived.

Novelty of our work lies in cloud-based intrusion detection
of various attacks based on observability for modern and
sophisticated attacks such as Zero Click attacks (low observ-
ability) which are not studied in depth in prior works. We also
consider mapping of different deception environments given
attack observability and provide pertinent decoy environment
architectures to deceive attackers.
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Fig. 1: Overview of CICADA residing on edge network with deception
capabilities and AI engine for cyber detection and defense.

III. ACTIVE DEFENSE METHODOLOGY

A. CICADA Architecture

The CICADA operates at the cloud for offloading security
from resource-constrained smart devices as shown in the
Figure 1. Any traffic (relating to both benign and attack traffic)
that tries to access the underlying IoT-based network passes
through a server/gateway. The related network traffic is then
analyzed by our Detection Engine (DE) that is part of the
collective AI Engine to detect possible cyber attacks. If the
binary classifier within our DE classifies packets as benign,
then the benign traffic is forwarded to a legitimate network
segment. Whereas, once the traffic is classified as malign, the
traffic is further analyzed in depth by the ensemble network
to classify the flow as a specific threat. This aids an Active
Defense Engine (ADE) to identify the suitable type of decoy
environment (Honeynet, Pseudocomb or Honeyclone) to use
depending on the observability of the attack type enabled
through Lambda (λ) functions and load balancers.

In order to design our ADE, we consider how much realism
does a decoy environment needs to possess, for it to be: (a)
beneficial to the defender in terms of attack impact mitgation,
and (b) also cost-effective. Traditional static security-based
environments with e.g., passwords or firewalls could be a low-
cost solution for mitigating simple attacks but they do not pro-
vide enough evidence to counter more sophisticated/modern
attacks. Similarly, near-replica environments could provide
a complex environment capable of causing a threat actor
to reveal their attack details but the cost and maintenance
requirements might be too high for consistent/parallel imple-
mentation. In order to provide a comparative measure between
deception environments, we developed a methodology, similar
to [8], to be able to map them based on the environment’s
individual cost, fidelity, and observability. Each of these factors
are mapped out as a CFO Triad, and we have established three
environments for different levels of observability. They are:

a) Honeynet: Environment with the lowest cost, re-
quiring relatively less computation, networking and storage
resources. This environment is designed to handle high ob-
servability attacks such as DDoS and Portscan.

b) Pseudocomb: Uses more resources than a Honeynet,
but at an added cost. They tend to provide minimalistic realism
of the actual operating environment to balance all three factors.
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c) Honeyclone: Honeyclone is a near-replica of the ac-
tual environment with the highest fidelity and observability at
the expense of high cost. The cost of maintaining a Honey-
clone is high because the data stream, computational resources,
and infrastructure are designed to mirror a legitimate user
traffic system in terms of realism.

B. Detection Engine
The detection engine in CICADA features a pipeline of

ML/DL classifiers to label inbound packet flows.
1) Feature Selection: We separated individual text files

from each data set into different subsets: easy, medium, and
hard - based on the attack’s observability characteristics. DDoS
and Botnet (Mirai, Okiru) traffic varies largely from benign
traffic and thus they make up the Easy subset. These attacks
have pronounced signatures such as an excessive number
of packets sent at a time or specific port communications
that give away the malicious intent with a fewer number
of features being observed. More covert attacks such as
Man-in-the-Middle, portscanning, and command-and-control
transmissions have obfuscated movements in the network, and
hence they comprise the Medium subset. These attacks have
features that can overlap with benign traffic in some scenarios
but require more observed features to be correctly labeled as
malicious. Modern, sophisticated intrusions such as Zero Click
attacks, that use protocol-specific vulnerabilities to gain access
can appear indistinguishable from benign traffic, and hence
these attacks make up the Hard subset.

2) Model Details: The Detection Engine (DE) included in
our CICADA is a multi-model method to classify incoming
network traffic based on packet-level analysis. The DE consists
of a neural network binary classifier that first classifies the
traffic as ‘benign’ or ‘malicious’. The binary classifier is a
8-layer (6 hidden layers) deeply connected neural network
that takes the 8 input feature values through a MinMax scalar
function and then feeds them through layers with 32 nodes, 64
nodes, 24 nodes, and consecutive dropout layers, and finally an
output layer of 1 node. This node outputs a value with sigmoid
activation that is either 0 or 1 based on the inbound network
flow is either ‘benign’ or ‘malicious’. Dropout layers were
added with a 0.2 drop rate to prevent over-fitting of the model
on the training set. Parameters like epochs and batch size were
refined using the hyperparameter tuning methods. The binary
classifier uses 320 epochs and a batch size of 64021 (equal to
the full size of the training set). ‘Malicious’ classified flows
are pipelined in our ensemble multi-class model to determine
the inherent type of threat.

Our ensemble model is the latter part of CICADA’s multi-
model detection engine. The ensemble consists of a 8-layer (6
hidden layers) deeply connected neural network that uses 16,
64, 24 hidden layers, and an output layer of 5 (consisting 5
classes). This multi-class neural network also uses 320 epochs,
a batch size of 64021, and a MinMax scalar function on the
input values before classification. We also use Random Forest
and Extra Trees classifiers. These machine learning algorithms
were implemented with the sklearn python library [22]. The
hyperparameters for both sklearn algorithms were set to
the default except for the fields ‘max depth’, ‘max features’,
‘n estimators’, ‘class weight’, and ‘n jobs’. When a ‘Mali-
cious’ classified flow proceeds through the ensemble model,
the flow is sent to each algorithm in parallel and the pre-
diction of each flow is gathered. If the collective algorithm’s

predictions are unanimous or consensual, the flow is labeled
as the concurred classification. If the collective algorithm’s
predictions are non-consensual, the flow is not labeled as a
specific threat. This allows for more precise classification as
opposed to using only one multi-class model.

C. Active Defense Engine
Our Active Defense Engine (ADE) is designed with the goal

of intelligently routing network traffic based on the analysis
of the DE. If the network traffic coming-in is classified as
benign, the traffic will continue to the legitimate network as
intended. Once the DE classifies a packet as malicious, it
will continue to the ensemble of multi-class classifiers to be
analyzed and classified as a specific type of malware. There
is no opportunity for a packet to go to the IoT-based network
once it is classified as malicious. Once the packet is specified
based on what type of attack it is, the ADE will follow a
procedure to either get rid of the packet so it can not reach
the network or send it to a decoy environment for further
evaluation and reconnaissance. If the classified malware is a
singular occurrence or an intelligence gathering attack, then
the packet will simply get dropped and never make it to
the actual network. If the classified malware is deemed as
escalatable (i.e., attack is as a catalyst for more harmful
attacks), it will be sent to one of the three decoy environments
based on its observability so that more packet captures can
be performed to better understand how current threat actors
are infiltrating the IoT system, and to gather more data to
retrain the model. In the case that the malware can not be
classified by the classification model, the default response is
to send the traffic to a Pseudocomb so that more information
can be gathered on the attack to eventually classify it in a
future retraining event.

Herein, we discuss the cost and risk analysis we performed
on IoT systems that gives insight on how the usage of different
decoy environments can impact architecture choice for the
decoy environment.

1) AWS-based Cost Analysis: We calculate the baseline op-
erational cost for cloud/edge services for processing of traffic
and making decisions that considers the cost of deployment
of detection engine, analysis service, monitoring service, VPC
traffic mirroring, and storage that are given by Cd, Ca, Cm,
Ct and Cs respectively. Following this, the total operational
cost is given by:

Coperation = Cd + Ca + Cm + Ct + Cs (1)

Cd is based on the Sagemaker cost for N number of data
analysis notebooks per scientist, which is also given by:

Cd = N ∗ s ∗ ci (2)

where n is the number of notebooks, s is the number of
scientists and ci is the cost of instance type. The Ca is given
by:

Ca = qn ∗ d (3)

where qn is number of queries, and d is the amount of data
scanned per query. Cm is based on usage of the CloudWatch
service for monitoring metrics such as CPU usage, memory
usage, etc., and is calculated as:

Cm = mn ∗ λn + λr ∗ λn + an ∗ ca (4)

where, mn is the number of metrics, λn is the number of AWS
Lambda functions, λr denotes the number of requests made
on those Lambda functions, an is the number of alarms and
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ca is the cost per alarm. Ct defines the cost for VPC traffic
mirroring, and is given by:

Ct = tn ∗ h ∗ csh (5)

where tn is the traffic mirroring sessions, h is the hours per
day and csh is the cost per session-hour. Lastly, Cs gives the
storage requirement for the operation of CICADA.

Next, we calculate the cost associated with creating the
decoy environment networks. Basing on the type of decoy
environments viz., Honeynet, Pseudocomb, and Honeyclone,
we identify the number of servers and Pseudocombs (because
a Honeyclone could have multiple Pseudocombs) to treat
as smart devices and different production servers on the
enterprise IoT-based network. The cost for setting these up
is given by:

Cdecoy = (pn ∗ ad ∗ vch ∗ vcpu) + (pn ∗ ad ∗mch ∗malloc) (6)

Here, the pn is the number of instances, ad is average
duration each instances are running, vcpu is the number of
vCPUs, malloc is the memory allocated to the servers. vch
and mch is the cost per hour of vCPU and memory allocation,
respectively.

The Honeyclone is a collection of different servers within
an enterprise which means that it will consist of a number
of interlinked Pseudocombs. The communication of different
services with each other occurs through API calls and regular
Internet traffic. We mirror the entire traffic of the production
environment into the decoy environment of Honeyclone. The
cost associated with this will be based on the number of
Pseudocombs and is directly related to size of the organization.
If cost of deploying a Pseudocomb for a certain service is given
by Pdecoy , the cost of deploying a Honeyclone is given by:

Hdecoy =

n∑
i=1

P i
decoy + Cload (7)

where Cload is the load generated across the different
services within the enterprise network and i ∈ 0, 1, 2...n for
n number of Pseudocombs.

2) CICADA Risk Assessment: We use the methodology
in the NIST risk assessment guideline [23] to calculate the
potential risk levels for various threats impacting an enterprise
IoT-based network being secured by CICADA defense archi-
tectures. The NIST methodology populates the impact values
and likelihood values for specific threats being considered.
The impact values are derived from assessed potential impact
resulting from a compromise of the confidentiality, integrity,
or availability for any information type due to security threats.
The likelihood values are a weighted factor based on a
subjective analysis of the probability that - a given threat is
capable of exploiting an exposed vulnerability. Following this,
the overall risk values are calculated for different CICADA
architectures by factoring the likelihood and impact scores,
which are finally normalized into a quantitative scale of 0-
10. These ranges for scales are: 9-10 indicating very high
risk, 7-8 indicating high risk, 4-6 indicating moderate risk,
1-3 indicating low risk, and 0 indicating very low level of
risk. We present the results of determining the risk levels for
different threat events described later in Section IV-D This
risk assessment guided us to catalog the different attacks to
associate them with choice of the decoy environment to handle
a given attack with an associated observability level along with
cost considerations.

IV. PERFORMANCE EVALUATION

In this section, we present evaluation results in terms of
detection engine’s accuracy. Following this, we present results
on cost analysis and risk assessment to help in choosing the
pertinent decoy environment for a given attack observability.
A. Trace Datasets

To have relevance to the IoT-based enterprise networks we
are studying, we utilized data sets such as Aposemat IoT-
23 [9] and IoT Network Intrusion Dataset [10] that contain
packet captures of malware intrusions within a simulated IoT-
based network along with benign traffic from common smart
devices, such as the Amazon Echo smart device, and Somfy
smart door lock. These data are the PCAP captures that contain
20 captures of malware executed in the aforementioned smart
devices along with 3 captures of benign smart device traffic
containing 760 million packets and 325 million labeled flows
over more than 500 hours.

As a dataset for Zero Click vulnerabilities that feature
low observability traffic, we repurposed the GHOST-IoT [1]
dataset’s benign Bluetooth encounter traffic to simulate traffic
expected from Bluetooth Zero Click vulnerabilities that have
been observed in the past (e.g., BleedingTooth, BadKarma,
BadVibes). This involved sampling entries from the set and
relabeling them to be malicious while keeping benign-like
feature characteristics. Further, we discarded any features that
contained a majority of null (NaN) values, or were specific to
the researcher’s collection method, or those that did not impact
the model’s decision making.

B. Detection Engine Performance

The binary classifier was trained with a 60% split of
the complete data set (i.e., benign traffic, easy/medium/hard
subsets) using 10-fold cross validation and then tested on
the remaining 40% to get cross validation results (along with
standard deviation of each fold) and test subset results. The
fitted binary classifier was also used to classify each subset to
get individual performance results based on observability.

The ROC curve for binary NN is shown in Figure 2.
We compare the neural network with a baseline model as a
standard threshold of 0.5 probability for detecting a particular
type of network traffic. The predicted values from the binary
neural network model shows that these values are correctly
recognized up to the accuracy of 90%. The predicted values
show true positives upto 70% and then there are some values
that show a false positive, after which the model gradually
labels other packets in the true positive/false positive as each
packet information is introduced. The ideal situation is present
in the Multi-class Neural Network where the true positive rates
are up to 1.0 for Botnet attacks. The model correctly predicts
all of the packet information for Botnet attacks, gradually
decreasing the prediction accuracy based on the traceability of
these attacks. The threshold for Zero Click attacks settles at
76% as these attacks are highly elusive by nature. The decision
tree classifiers have a higher predictability in comparison
to neural network because the biases of each feature are
not assigned. Consequently, we use hyperparameter tuning to
improve configuration of these biases in the neural network.
From these results, we can see the benefits of performing
the hyperparameter tuning for setting the correct threshold for
biases. Note that the ensemble of multi-class classifiers were
trained and tested in the same manner but without the inclusion
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TABLE I: Cost analysis for deployment of CICADA Architecture for varying deception environment configurations

Capability AWS Service Specification Cost ($) per month
Honeynet Pseudocomb Honeyclone

Decoy IoT Network Fargate, EC2 1 server with 1 port, 1 pseudocomb, 10 pseudocombs respec-
tively; EC2 with 2 vCPUs and 4 GB memory allocation

72.09 1081.20 10812.00

Load Generator VPC, API
Gateway

Mirror load with 730 hours per session 109.50 1642.50 16425.00

Network Behavior
Analysis

CloudWatch,
VPC

Packet capture using mirroring filters and 15 analytical met-
rics for traffic entering, moving, and leaving server/s

N/A 1925.55 19255.50

Cross-service Load
Generator

VPC, API
Gateway

Mirror packets generated across different pseudocombs in an
organizational network 730 hour per session

N/A N/A 8760.00

Data Storage DynamoDB 150 GB of storage size per pseudocomb with 30% transac-
tional data excluding initial cost of $350

N/A 53.93 539.3

Honey Token SpaceSiren Limit cap of 10000 honey tokens to lure attackers per server
in use [24]

N/A 5 50

$2179.08 $56,498.16 $670,735.60

TABLE II: Detection engine performance for varying network data subsets
based on malware observability

Data Subset Binary NN Multi-Class NN RF ET
Test Subset 90.16% 96.39% 98.98% 98.39%
Easy Subset 99.99% 99.95% 99.99% 99.98%
Medium Subset 84.41% 86.12% 98.89% 93.71%
Hard Subset 74.33% 53.41% 87.93% 80.13%

TABLE III: Detection engine performance for 10-fold cross validation

Metric Binary NN Multi-Class NN RF ET
Avg Accuracy 90.01% 95.44% 99.01% 98.27%
Std Deviation (σ) 0.68% 1.94% 0.08% 0.58%

of benign traffic due to the assumption that benign traffic gets
filtered out by the binary classifier.

Table II shows the accuracy results for the models used in
our detection engine. The Table III shows the average accuracy
and the standard deviation for 10-fold cross validation of the
utilized dataset. As expected, high observability (Easy) attacks
that differ greatly from benign traffic were easily classified
with an accuracy of 99%+ by the binary classifier along
with every model within the ensemble. Medium observability
(Medium) attacks, with less variance from benign traffic,
lowered the accuracy of the models; by up to 15% for the
binary classifier. This makes sense because the malware looks
more like benign traffic in some cases and thus the models
will classify more entries as either false positives or false
negatives and lower the accuracy. The accuracy of medium
observability malware within the ensemble still lowers but not
as drastically as the binary classifier. The ensemble takes only
assumed malicious traffic and hence the difference between
entries is greater than, if benign traffic was also included.
This phenomenon is even more extreme within the low observ-
ability (Hard) subset where the malicious traffic is designed
to look identical to the benign traffic. The composition of
the hard subset is 77% benign and thus this result shows
that the Zero Click confuses the model into not accurately
discriminating between the two. When benign traffic is not
included in the ensemble models, the accuracy is better i.e.,
above 80% for two of the models, since the malware is being
compared to every other malware the model has been trained
on. Our detection engine performance evaluation shows that
we are able to detect highly sophisticated and evasive threat
i.e., Zero Click with an accuracy of ≈73%.
C. Defense Engine Performance

As discussed in Section III-C1, we look at the base oper-
ation cost for deployment of the Defense Engine and other
related services supporting the security mechanisms. For our
experimentation of a realistic enterprise IoT-based network,

Fig. 2: ROC for Binary NN classifying benign and malicious traffic.

we have shown the costs associated for deployment of our
three different deception environments in Table I. We used
AWS pricing calculator for cost estimation depicted in the
table for numerous associated AWS services. Decoy network
simulation costs vary based on the decoy environments to
be prescribed for attacks that have variable observability.
For our experiment, representation of decoy environment for
high observability attack such as DDoS is a port in an EC2
server. Pseudocomb represents a well-equipped server such as
a mail server with related services in computation, storage, and
memory. Recall, Honeyclone is a collection of Pseudocombs
representing various services within a network.

We can observe that the cost required for standing up
a fully-cloned decoy environment i.e., Honeyclone is much
higher than the other two architectures. However, the Honey-
clone choice helps in reducing the risk of sophisticated threats
by about 78% when compared to the Honeynet, and 40% when
compared to the Pseudocomb.
D. Risk Assessment Results

The threat risk is calculated by determining the likelihood
of occurrences of various data-action based threat events and
their impacts. The likelihood is a weighted risk factor based
on the probability that a threat event takes place. The impact
values are attained by assessing the magnitude of harm that
can be expected from the consequences of compromising the
confidentiality, integrity and availability of an IoT system and
its data. Therefore, the overall threat risk score is calculated by
factoring the likelihood and impact values scores, which are
normalized into a quantitative scale of 1-10. Impacts relating
to non-compliance costs, direct business costs and reputation
costs are added by assuming that they range from 1 to 30.
The threat risk levels are visualized in the heat map shown
in Figure 3, where the red grid color represents high risk,
green represents low risk and yellow color represents medium
risk. The data actions are: data access control (A, B, C),
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data storage (D, E, F), data visualization (G), data transfer
(H, I), data collection (J, K), and data fulfillment (L, M, N).
Example threat events are: A - Modification of access role
(escalation of privilege), B - Update operation on database
(data tampering), D - Unauthorized users having access to
the relational database to retrieve private data (information
disclosure), K - Overwhelming network with requests (denial
of service), L - Unlicensed users have access to critical
data/system (spoofing identity).
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Fig. 3: Risk assessment for various deception environments within
CICADA-protected enterprise IoT system.

Figure 3 shows the risk reduction for each of the decoy
environment type. Honeyclone is able to significantly reduce
the impact of attacks in the enterprise IoT network as opposed
to the Honeynet and Pseudocomb. Pseudocomb is also able to
perform well for specific service related access controls and
other data actions. For readability, the data point labels are
organized as left, center and right for Honeynet, Pseudocomb
and Honeyclone, respectively.

Fig. 4: Risk versus cost of deploying deception environments in CICADA.

We finally showcase the risk versus cost relation through
Figure 4. The cost amount and risk values are normalized
into scale of [1, 10]. We can see that the Honeyclone although
incurs high cost, it is able to significantly reduce the risk of
threat events for an enterprise IoT network by up to 88%,
when compared to a network with no defense mechanisms.

V. CONCLUSION

In this paper, we presented a centralized intelligent classi-
fication and active defense approach viz., “CICADA” for se-
curing smart enterprise IoT-based networks. CICADA features
a detection engine with a pipeline of machine/deep learning
classifiers to detect malicious network traffic packets from be-
nign, and then classify them into specific sophisticated threats

with varying observability. Our evaluation results showed that
CICADA is able to detect attacks with different observability
levels using ensemble of neural networks and classifiers, with
up to 73% accuracy for low observability attack such as
Zero Click. Lastly, we showed the cost analysis for deploying
various decoy environments, along with the assessment of
risks associated with the different decoy environments, with
up to 88% risk reduction via Honeyclone when compared to
a defenseless enterprise IoT-based network.
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