Computer Networks 68 (2014) 166-186

Contents lists available at ScienceDirect

puter
Computer Networks (%E’fy,rks

journal homepage: www.elsevier.com/locate/comnet

Application delivery in multi-cloud environments using @CmssMark
software defined networking

Subharthi Paul **!, Raj Jain*!, Mohammed Samaka

52 Jianli Pan®!

2 Washington University in St. Louis, School of Engineering & Applied Science, Department of Computer Science & Engineering, Bryan Hall, CB 1045, 1

Brookings Drive, Saint Louis, MO 63130, USA

b University of Qatar, College of Engineering, Computer Science and Engineering Department, P.O. Box 2713, Doha, Qatar

ARTICLE INFO

ABSTRACT

Article history:

Received 5 June 2013

Received in revised form 4 November 2013
Accepted 4 December 2013

Available online 22 February 2014

Keywords:

Application delivery

Layer 7 traffic steering
Cloud computing

Software defined networks
Service centric networking
Middleboxes

Today, most large Application Service Providers (ASPs) such as Google, Microsoft, Yahoo,
Amazon and Facebook operate multiple geographically distributed datacenters, serving a
global user population that are often mobile. However, the service-centric deployment
and delivery semantics of these modern Internet-scale applications do not fit naturally into
the Internet’s host-centric design. In this service-centric model, users connect to a service,
and not a particular host. A service virtualizes the application endpoint, and could be rep-
licated, partitioned, distributed and composed over many different hosts in many different
locations. To address this gap between design and use, ASPs deploy a service-centric net-
work infrastructure within their enterprise datacenter environments while maintaining a
(virtual) host-centric service access interface with the rest-of-the-Internet. This is done
using data-plane mechanisms including data-plane proxying (virtualizing the service end-
point) and Layer 7 (L7) traffic steering (dynamically mapping service requests to different
application servers and orchestrating service composition and chaining). However, deploy-
ing and managing a wide-area distributed infrastructure providing these service-centric
mechanisms to support multi-data center environments is prohibitively expensive and dif-
ficult even for the largest of ASPs. Therefore, although recent advances in cloud computing
make distributed computing resources easily available to smaller ASPs on a very flexible
and dynamic pay-as-you-go resource-leasing model, it is difficult for these ASPs to leverage
the opportunities provided by such multi-cloud environments without general architec-
tural support for a service-centric Internet. In this paper, we present a new service-centric
networking architecture for the current Internet called OpenADN. OpenADN will allow
ASPs to be able to fully leverage multi-cloud environments for deploying and delivering
their applications over a shared, service-centric, wide-area network infrastructure pro-
vided by third-party providers including Internet Service Providers (ISPs), Cloud Service
Providers (CSPs) and Content Delivery Networks (CDNs). The OpenADN design leverages
the recently proposed framework of Software Defined Networking (SDN) to implement
and manage the deployment of OpenADN-aware devices. This paper focuses mostly on
the data-plane design of OpenADN.

© 2014 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +1 (773) 679 7723.
E-mail address: spaul@wustl.edu (S. Paul).

1 Tel: +(314) 935 6160, Fax: +(314) 935 7302.

2 Tel: +974 4403 4240, Fax: +974 4403 4241.

http://dx.doi.org/10.1016/j.comnet.2013.12.005

1389-1286/© 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2013.12.005&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2013.12.005
mailto:spaul@wustl.edu
http://dx.doi.org/10.1016/j.comnet.2013.12.005
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

S. Paul et al./ Computer Networks 68 (2014) 166-186 167

1. Introduction

In this paper, we address the problem of application
delivery in a multi-cloud environment. All enterprises,
including banks, retailers, social networking sites like Face-
book, face this problem. The enterprises are what we call
Application Service Providers (ASPs) that want to deploy,
manage, and delivery their applications over third party
computing infrastructure leased from multiple Cloud Ser-
vice Providers (CSPs) located all over the world. The Inter-
net Service Providers (ISPs) provide the network
connecting the users, ASPs, and CSPs. We describe the
problem in two steps. First, we explain how the problem
is handled in a private data center and then how it be-
comes more complicated with the emergence of cloud
computing.

1.1. Service partitioning in a datacenter

The Internet’s host-to-host application delivery model
does not naturally map to the service-centric deployment
and delivery semantics of modern Internet-scale applica-
tions. In this service-centric model, users connect to a ser-
vice, and not a particular host. A service virtualizes the
application endpoint, and could be replicated, partitioned,
distributed and composed over many different hosts.
However, in-spite of this, the Internet has successfully
sustained the proliferation of services, without any funda-
mental changes to its architecture. This has been
achieved by introducing service-centric deployment and
delivery techniques within the enterprise infrastructure
boundaries while maintaining a standard host-centric
application access interface with the rest of the Internet.
Initially, load balancers were introduced to support ser-
vice replication over multiple hosts. A load balancer is a
data plane entity that intercepts service requests in the
data plane and dynamically maps it to the least loaded
server that can serve the request. Although interposed
in the application’s data plane, the load balancer actually
makes its mapping decision only on the end-to-end con-
nection setup control messages (e.g., TCP SYN, flow setup
over UDP, etc.) that are exchanged between the two
end-hosts (in the host-centric design) to setup their
transport/application layer connection state. Therefore,
since the underlying communication protocols in the data
plane are still host-centric, the load balancer needs to
masquerade itself in the middle, using network address
translation (NAT). A number of other DNS (domain name
system) related techniques can be used to allow service
replication. However, what is more difficult is service
partitioning. Service partitioning is required to optimize
the performance of a service by partitioning a monolithic
service into smaller service components. Services may be
partitioned based on:

Application content: For example, hosting video, images,
user profile data and accounting data for the same ser-
vice on separate server groups.

Application context: For example, different service API
(Application Programming Interface) calls requiring

different processing time and resources sent to different
server groups.

User context: e.g., service access from different user
devices (smart phones, laptops, and desktops), user
access network capability (wired vs. wireless) being
served differently.

Service partitioning improves performance, resilience,
and also enables more efficient use of computing resources
by allowing each service partition to scale independently
through replication. For example, certain partitions may
need to be replicated more than others owing to their high-
er resource requirements, criticality, popularity, etc. Data-
plane proxying and L7 (Layer 7) traffic steering techniques
are used to support service partitioning within enterprise
environments. Data-plane proxying, unlike a network-
layer load balancer, terminates L4 (TCP) connections and
acts as a virtual application endpoint, thus allowing the
service to maintain a standard host-centric interface for
service access. The data-plane proxy then applies L7 traffic
steering policies on each application message and indepen-
dently routes them to a different application servers host-
ing the different service partition.

Also, in modern enterprise environments, different L3-
L7 middleboxes provide several application delivery func-
tions including message/packet filtering and monitoring
(firewalls, intrusion detection, access control), message/
packet transformation (transcoders, compression, SSL off-
load, protocol gateways) and application delivery optimi-
zation (WAN optimizers, content caches). Some of these
services are message-level (L4-L7) and hence need to be
implemented as data-plane proxies, whereas others are
packet-level and may be deployed as network services. Dif-
ferent messages for the same service may need to be
steered differently through a different set of middleboxes
depending on the message context. Therefore, approaches
that pre-establish an end-middle-end path through expli-
cit control plane signaling such as in [1] are not sufficient.
Instead a more dynamic approach of L7 traffic steering is
required that enables context-aware service chaining
where each message may be directed through a different
sequence of middlebox services.

Therefore, data-plane proxying and L7 traffic steering,
which we generically refer to as Application Policy Rout-
ing (APR), are the key techniques underlying intelligent
enterprise fabrics that allow enterprises to support ser-
vice-centric application deployments over a host-centric
Internet design. Although not directly related to L7 traffic
steering, but the application-level context needed to make
APR decisions also informs the QoS requirements of deliv-
ering the message over the network. If the underlying net-
work provides differentiated data transport services, such
services may be invoked more efficiently (at per-message
granularity rather than to all messages of the flow) and
accurately.

1.2. Service partitioning in multi-cloud environments
Modern Internet-scale services are increasingly under

pressure to move out of their centralized single datacenter
environments to distributed multi-datacenter environ-

168 S. Paul et al./ Computer Networks 68 (2014) 166-186

ments to be able to serve their global user populations
more efficiently and reliably. However, for services to mi-
grate to multi-data center environments a globally distrib-
uted middle-tier data plane proxy infrastructure providing
APR services needs to be deployed. Enterprises that already
operate multiple datacenters have this problem. For exam-
ple, Google operates multiple datacenters across different
geographical locations. Also, it operates a private WAN
infrastructure [2] to connect its datacenters and also to
connect to the end users as shown in Fig. 1. The Google
WAN peers with user ISPs. At these POPs, Google probably
operates L7 proxies to intercept user requests and route
them to the datacenter best suited to serve the request. Till
now, multi-datacenter environments were only accessible
to a few large Application Service Providers (ASPs) who
could also (probably) afford to setup their own distributed
data-plane proxy infrastructure.

Cloud computing brings new opportunities to deploy-
ing and delivering modern Internet-scale online services
and distributed applications in general. Application Service
Providers (ASPs) can easily lease computing resources from
third-party cloud providers under a flexible pay-as-you-go
leasing arrangement. This allows ASPs to dynamically add
or remove computing resources to their applications,
allowing them to handle variable load patterns more effi-
ciently and cheaply. However, providing service partition-
ing over third-party cloud infrastructures connected via
public Internet is very challenging.

With cloud computing, opportunities to distribute
applications across multiple geographical locations exist
for smaller ASPs. In-fact multi-cloud environments provide
a more dynamic application deployment environment
compared to a multi-datacenter environment; partly be-
cause of the server virtualization technology in clouds
and partly because of the pay-per use dynamic service
deployment model offered by cloud providers. However,
these smaller ASPs cannot fully leverage the opportunities
offered by multi-cloud environments without a distributed
data plane proxy infrastructure similar to Google, which
they cannot afford owing to the high cost of owning and
maintaining such an infrastructure. Also, it defeats the pur-
pose why they adopted cloud computing in the first place.

Our proposed solution — OpenADN (Open Application
Delivery Networking) [3,4] - allows ASPs to share a distrib-
uted data plane proxy infrastructure providing shared

L7

ﬁ Proxy
E; Network ;q
\ 3 e

Google
Data Center #1

Google
Data Center #2

. 9 I

Proxy

Fig. 1. Google WAN and Proxy infrastructure.

(hence cheap) APR services available to these ASPs. Ope-
nADN is designed to allow third-party infrastructure pro-
viders such as ISPs and CDNs (Content Delivery
Networks) to offer such a service to smaller ASPs. Also,
ASPs can lease distributed computing resources from mul-
tiple-cloud providers, allowing them to cater to distributed
user populations and make their applications more resil-
ient against infrastructure failures and network load
conditions.

1.3. Contribution and plan

The key contribution of this paper is the design of a new
session-layer abstraction for the Internet’s networking
stack called OpenADN. It extends previous extensible ses-
sion-layer design ideas [5] to provide an integrated ap-
proach addressing all three aspects of application
deployment, delivery and access.

Application deployment: OpenADN is designed to sup-
port next generation service-centric application deploy-
ments including service partitioning, service
replication, service chaining and service composition;
over third-party leased resources from cloud and
multi-cloud environments allowing the deployment to
dynamically instantiate/move/remove application
instances over geographically distributed sites to opti-
mize for cost, user experience, resilience, etc.
Application delivery: OpenADN provides a standard pro-
grammable interface though which ASPs may specify
separate APR (Application-level Policy Routing) policies
for each application-level flow. This allows the ASP to
optimize application delivery for a given application
deployment scenario that include parameters such as
short term load variations, intermittent failures, user
access location and user context (e.g., wired vs. wire-
less, smart phone vs. laptop) by steering the application
traffic to the right cloud, the right application servers,
through the right set of performance and security mid-
dleboxes, and accessing the right QoS services from the
underlying network link.

Application access: OpenADN provides a new service-
centric application access primitive which is aware of
service-centric deployment requirements including ser-
vice partitioning, service replication, service chaining
and service composition. Also, OpenADN is designed
to handle dynamicity in service access as a result of
user and server mobility and interim failures requiring
redirection of the application traffic.

Some initial ideas on the OpenADN architecture were
presented in [3,4]. In [3] we tried to justify the need for
an OpenADN-like architecture through a specific use-case
example of mobile application delivery over distributed
cloud environments while in [4] we tried to make a more
general case for the need of a generic and open application
delivery networking platform to leverage the opportunities
provided by distributed cloud infrastructures. In this paper
we present the design of the OpenADN architecture in
much more detail and also present an initial prototype
implementation as a proof-of-concept of the design.

S. Paul et al./ Computer Networks 68 (2014) 166-186 169

In the rest of this paper, we will see how the OpenADN
design achieves these goals. We present a high-level archi-
tecture of OpenADN in Section 2, followed by a bit of back-
ground into the service-centric deployment techniques
used currently within enterprise environments and their
limitations in Section 3. In Section 4, we discuss how the
OpenADN architecture addresses these limitations fol-
lowed by the detailed design of OpenADN in Section 5. In
Section 6, we present the implementation approach and
an initial proof-of-concept implementation of an OpenADN
proxy, followed by related work in Section 7, a short dis-
cussion on the deploy-ability of OpenADN in Section 8, fu-
ture work in Section 9, and discussion and conclusions in
Section 10.

2. OpenADN: High level architecture

In this section, we present the high-level design of Ope-
nADN, which provides a new session-layer abstraction for
the network stack. There are two types of OpenADN enti-
ties that constitute an OpenADN-enabled application
deployment and delivery scenario.

Application-data Visible Entities (ADV): ADVs are Ope-
nADN-aware entities that have visibility (and access)
to application-level data. They include ASP-trusted
entities including end-users and ASP-owned middle-
boxes, application servers, storage nodes, etc. capable
of doing processing, filtering, and transformation on
application-level data in addition to the functions in
the OpenADN-layer.

Application-data Blind Entities (ADB): ADBs are Ope-
nADN-aware entities that do not have visibility into
application-level data. They include third-party Ope-
nADN proxies that are restricted to only perform func-
tions in the OpenADN layer and such middlebox
processing functions that do not require visibility into
the application-level data including several data com-
pression and other WAN optimization functions.

The distinction between ADBs and ADVs is important
since the ASP may need infrastructure support from ISPs
without compromising the privacy of application-level
data. For example, a bank may not want ISP’s to look at
the data and determine whether it is a read or write and
so to which cloud the message should be steered to. In gen-
eral, ASPs would like to keep control over ADVs while del-
egating ADBs to ISPs.

Fig. 2 presents a high-level view of service access over
OpenADN. A service in OpenADN is a virtual entity repre-
senting a set of access policies, including both, statically
specified policies (for example mapping a user request to
the right service partition) and dynamically determined
policies (for example mapping a user request to the least
loaded application server or middlebox). To access the ser-
vice, OpenADN exposes a new OpenADN session primitive
to applications. An OpenADN session is an application-
neutral, logical communication channel between a user
and a service. The user accesses the service (Service X) over
this logical channel through OpenADN messages.

Middleb
User OpenADN Session /- ladieboxes
(logical channel) - that Intercept
<&>{SerV|ceX '/- M || 2!l messagesin
! Vlrtual/ the session
» =II Service

Partitions

Cloud
Datacenter

——————

Proxy A

Service X
Access Point

\
N\,

\\ Serwce X
M, 1, M, , M, ;, - Packet —Level Middleboxes
M, »; - Message—Level Middlebox

Datacenter

Fig. 2. Service access over OpenADN.

In the physical view (bottom part of Fig. 2), this channel
maps to a set of OpenADN L7 traffic steering proxies (Proxy
A, B, and C) that enforce the service access policies. These
OpenADN proxies may be ADBs operated by a third party.
All other entities shown in Fig. 2, including the user, mid-
dleboxes and application servers, are ADVs. Among these,
Proxy A is user-facing and serves as the channel ingress/
egress location for the user. To access Service X, the user
needs to setup a L4 connection with this proxy. The user
forwards all OpenADN messages (application message
with an application-neutral OpenADN header) over this
connection to Proxy A.

Proxy A applies L7 traffic steering policies (also referred
to as Application Policy Routing or APR policies) to route
the message. In the example shown in Fig. 2, Service X is par-
titioned into 2 partitions X.P; and X.P,. Each partition has a
middlebox service associated with it. Also, middlebox ser-
vices, My ; and My, may be security middleboxes such as
stateful firewalls or intrusion detection systems (IDS) that
need to reconstruct the application session to detect secu-
rity threats and hence need to intercept all traffic belonging
to an OpenADN session for Service X. Therefore, on receiving
an OpenADN message from the user, Proxy A will first send it
through My ; followed by My, and then decide which ser-
vice partition the message needs to access and accordingly
forward it to either Proxy B or Proxy C. To do so, the user’s
L4 connection is spliced dynamically (at per-message gran-
ularity) to a pre-established L4 connection (multiplexed)
with the next-hop OpenADN proxy. Also, each middlebox
and application servers may be replicated and instantiated
at different locations (on different cloud datacenters).

OpenADN uses several SDN (Software Defined Net-
working) concepts. SDN is, therefore, explained briefly
next.

2.1. Using SDN framework for application delivery

SDN is an approach towards taming the configuration
and management complexities of large-scale network

170 S. Paul et al./ Computer Networks 68 (2014) 166-186

(TTTTETEE 1
,Control Plane!

Network
""" Switch

Distributed Control

Network Network
Control App 1 Control App N f
i

Northbound API’s

) N !

______ fommmem

1
B A A U N Southbound API's

Logically Centralized Control with SDN

Fig. 3. Logically centralized control with SDN; Northbound and Southbound interfaces.

infrastructures through the design of proper abstractions.
SDN proposes a separation between the network control
and data planes (Fig. 3). This would allow the control plane
to be logically centralized, making it easier to manage and
configure the distributed data plane components (switches
and routers) involved in the actual packet forwarding. To
implement this separation, SDN needs to design a basic
abstraction layer interposed between the control plane
and the data plane.

Therefore, the SDN design needs to implement at least
two sets of APIs - Northbound APIs and Southbound APIs.
The Northbound APIs would allow different control plane
applications to be written over the SDN controller, in a
manner similar to different user-space applications written
over traditional operating systems. The SDN controller ab-
stracts the details of the underlying distributed resources
(network switches and routers) that implement the net-
work and provide a clean standard interface (and a virtual
view) to the control applications. The Southbound APIs are
needed to provide a generic interface between the control-
ler and the actual data plane switches and routers. Net-
work devices implementing the Southbound APIs can
become part of the SDN controlled network infrastructure.
Presently, the most popular Southbound API set is the one
proposed by the OpenFlow standard [6].

As shown in Fig. 4, the OpenADN design extends the
SDN framework to add support for application delivery.
Currently, most of the momentum in SDN design is focused
on developing proper northbound and southbound
abstractions for managing packet-switching network de-
vices. In OpenADN, we are developing new extensions to
Southbound APIs to manage and configure L7 traffic steer-
ing (or APR) policies in OpenADN-aware data-plane de-
vices including middleboxes, application servers and
proxies. In contrast to packet-switching network devices,
these new APIs have support for enforcing policies at the
granularity of packets, messages and sessions. Also, new
Northbound APIs need to be specified that will expose a
uniform configuration interface through which the Ope-
nADN data plane entities may be configured. A distinct fea-
ture (and also a challenge) of the OpenADN Northbound

API design is that unlike the network controller, the design
of the application delivery controller may span across
more than one ownerships where the data plane infra-
structure may belong to an ISP that may be shared and
individually configured by multiple ASPs - each with dif-
ferent APR policies.

3. Current approaches to application delivery in data
centers

Application delivery in general and L7 traffic steering in
particular includes the following four functional
components:

1. Data plane proxying: L7 traffic steering runs over a data
plane proxy that poses as the virtual service endpoint to
intercept all application traffic.

2. Message classification: The proxy needs to classify the
application-level messages based on classification rules
specified over application-level metadata.

3. Application Policy Routing (APR): Based on the result of
the classification, APR policies are applied on the mes-
sage to bind it to a workflow consisting of (optionally)
a set of middlebox services (L3-L7) and a service
endpoint(s).

4. Message switching: The message is switched through the
components in the workflow.

There are three current approaches for these compo-
nents as explained below:

1. Consolidated hardware platforms: These include mono-
lithic, high-capacity, specialized hardware-based data
plane proxies commonly called Application Delivery
Controllers (ADCs) [7-9]. As shown in Fig. 5, ADCs pro-
vide a vertically integrated solution in which the same
hardware device provides both, L7 traffic steering
(APR functions) and middlebox functions. The proxy
allows the ADC to serve as a virtual service endpoint,
thus allowing it to intercept all application traffic from
a given user. The control specifies the rules to extract

S. Paul et al./Computer Networks 68 (2014) 166-186 171

ASP, OpenADN
Controller

ASP, OpenADN
Controller

< Appl. Routing
.\\\\ Policies
1. N.etworkllnformatlon \\\-{ ‘{,
2. Virtual View
Application Delivery 3
Controller =
Z 0
Qs
Network (72} g
Controller o
(7
OpenADN ‘
— A==
ey |
OpenADN Proxy Proxy OpenADN
TCP/UDP TCP/UDP
Data Link —_ —_— E Data Link

End Host Network Server

Fig. 4. Extending SDN to L3-L7 devices using OpenADN.

_ c o
= s .
& a § . Service Service Service
2 o113 Middlebox
g g & Functions N T 4
SIlF
Control Enterprise Service Bus
APR Service Binding, Messaging, Protocol Switching, Security, Failover,
Rules . Load Balancer, Management, Monitoring, Routing, Transformation
Functions
Full Proxy

N

N N

Service Client Service Client Service Client

Fig. 6. Enterprise Service Bus (ESB).

2. Middleware platforms: Application platforms such as
Oracle’s Weblogic [10] or IBM’s Websphere [11] include
service integration middleware solutions, generically
called the Enterprise Service Bus (ESB) [12]. An ESB pro-
vides an indirection middleware layer (Fig. 6) through

Enterprise Data Center

Fig. 5. Consolidated hardware platform.

application-layer context from the application-layer which loosely coupled service components can be inte-
messages and then apply APR policies to steer the mes- grated. L7 traffic steering is the underlying mechanism
sage through the right set of middlebox functions to implement such integrations and is done using for-
(deployed as modular plugins in the ADC device) and warding over SOAP (Simple Object Access Protocol)
finally forward it to the right application server. There- routing headers using HTTP (most commonly) as the
fore, the ADC consolidates all the four L7 traffic steering underlying transport. SOAP headers are plain text (thus
functions on a single hardware device. increasing the message size) and are placed deep inside

the application layer. Also, it may be noted that, to

172 S. Paul et al./ Computer Networks 68 (2014) 166-186

make dynamic APR decisions such as selecting a suit-
able (available and least loaded) instance of a replicated
service or to determine the services that need to be
chained to a particular message context, the ESB has
to implement a content/context based router with load
balancing capabilities. All messages in the SOA deploy-
ment will need to access this infrastructure component
of the ESB. This component could be a bottleneck for the
platform. An ESB provides an indirection middleware
layer to which all services connect. The ESB appears like
a single component to services, but unlike an ADC it is a
distributed architecture consisting of two types of com-
ponents: (1) content/context-based routers - consoli-
dating data-plane proxying, message classification and
APR functions, and (2) message transformation/filtering
components - each configured to forward the message
to the next-hop in the workflow, thus doing distributed
message switching.

3. Non-integrated approach: In this approach, L7 traffic
steering is deployed as just another middlebox (e.g.,
Content Based Router [13]) service in the group of L3-
L7 services deployed in the enterprise environment,
and provide support only for service partitioning/replica-
tion. Network services are chained through ad-hoc net-
work configuration techniques [14] and message-level
middleboxes are chained using static configurations.
There is no support for context-based service chaining
techniques and message-level middleboxes are chained
using static configurations. There is no support for con-
text-based service chaining.

3.1. Limitations of current approaches

There are several limitations of current approaches.

3.1.1. L7 traffic steering functions

None of the current approaches interface with the
underlying network to access differentiated data transport
services. Also, the ESB platform is primarily designed to
serve as a message middleware layer and hence does not
have support for integrating packet-level network services.

Virtual
Appliances

llllll

Applications

App. Service Provider
ASP

Generlc Vlrtual Machmes

Cloud Service Provider
CSP

(a) Over the Cloud (OtC)
performance-constrained software virtual appliances

3.1.2. General deployment issues

The ADC-like integrated hardware devices are easy to
manage and configure, however they are expensive and
difficult to scale-out. ESB-like platforms are also easy to
manage but some components such as the Content-Based
Router may become bottlenecks since they need to process
all application traffic. In the non-integrated approach, each
component may be scaled independently by adding more
instances, but such solutions are difficult to manage.

3.1.3. Cloud deployment issues
We consider two cloud deployment scenarios: single-
cloud and multi-cloud.

3.1.3.1. Single-cloud-datacenter environments. There are
two ways to provide ADC-like proxying solutions in cloud
datacenters - Over-the-Cloud (OTC) and Under-the-Cloud
(UTC). In the OTC approach (Fig. 7a), the ADC is deployed
as a virtual appliance over a generic virtual machine and
administered completely by the ASP. The problem with
this approach is that monolithic ADC proxy designs pro-
vide both, L7 traffic steering and middlebox services. Map-
ping this monolithic design over a virtual appliance will
have serious performance issues. Without hardware-opti-
mized designs (e.g., efficiently distributing different func-
tions over different processor cores), each ADC virtual
appliance will impose a high and non-deterministic (as a
result of application-level processing diversity) overhead
for all application traffic. In the UTC approach (Fig. 7b),
the cloud provider provides ADC proxying as a service to
the ASP. There are two problems with this approach. First,
physical ADCs are expensive and their cost is amortized
over handling large volumes of application traffic. So, a
physical ADC will need to be virtualized and shared by
multiple ASPs. Owing to application diversity (e.g., applica-
tion traffic classification take different time based on the
complexity of the rules), it is difficult to virtualize an
ADC and share it across multiple ASPs. Also, each ASP will
need to have different configurations for the middlebox
services and hence these services cannot be shared effec-
tively. The second problem is that the ADC will need to
have full access to application-level data. ASPs may not
be comfortable sharing their data with the CSP.

Applications

App. Service Provider

-
-
pim
-
=)
=)

Generic
Virtual Machines

Hardware
Appliances

Cloud Service Provider

(b) Under the Cloud (UtC)
virtualize hardware appliances among multiple tenants

Fig. 7. OtC and UtC approaches.

S. Paul et al./ Computer Networks 68 (2014) 166-186

3.1.3.2. Multi-cloud datacenter environments. For services to
migrate to multi-datacenter environments a globally dis-
tributed L7 traffic steering service needs to be deployed.
Smart, enterprise — owned private WANs such as the Goo-
gle WAN discussed in Section 1 are prohibitively expensive
to own and operate by smaller ASPs. Therefore, although
these smaller ASPs have similar opportunities to distribute
their application servers and middleboxes across multiple
cloud datacenters, they cannot afford a globally distributed
L7 traffic steering infrastructure. One approach is to pro-
vide L7 traffic steering as a shared (hence cheap) service
by a WAN provider (such as an ISP). The problem with pro-
viding such a service are the same as those discussed for
the UTC approach in a single cloud datacenter, with the
additional requirement that the service should be geo-
graphically distributed.

3.1.4. Architectural issues

L7 traffic steering is needed by both, the ASP domain; to
manage and deliver their service more efficiently, and the
user domain; to access value-added services and enforce
user policies. This calls for a generic platform independent
and application neutral L7 traffic steering solution that is
capable of enforcing both sender and receiver policies.

Our goal in designing OpenADN is to overcome the
above 4 issues. These issues are summarized in Table 1.

4. OpenADN architecture

OpenADN provides an application-neutral, standard-
ized, session-layer (message/session routing and forward-
ing) overlay over IP. It introduces a new protocol stack
with two new layers (Fig. 8) - L4.5 (message routing)
and L3.5 (packet switching, data-plane proxying, transport
connection splicing/multiplexing, etc.). We now describe
the functions of these layers in detail.

4.1. Layer 4.5 — OpenADN session abstraction

L4.5 (OSL or OpenADN Session Layer) provides a new
session-layer abstraction to applications. This layer ex-
poses two key primitives: OpenADN session and OpenADN
message. The OpenADN session is a logical channel be-
tween the user and the service (unlike host-to-host ses-
sions). Users can access the service over this logical
channel through OpenADN messages.

The channel may steer each OpenADN message inde-
pendently through a workflow consisting of a set of L3-
L7 services and endpoint application server(s). Note that
OpenADN does not simplify the implementation of L3-L7
service by providing any sort of common functional
abstraction. It only provides a common platform abstrac-
tion for easily managing and controlling the deployment
of these services. Some of the design requirements, issues
and solution approaches that need to be addressed include
the following:

4.1.1. Delegation
Just like the L3 interface (IP routing) in the current
Internet, using L4.5 the ASP may now delegate application

Table 1

Comparison of different L7 traffic steering techniques in enterprise environments and OpenADN.

Architectural Issues

Platform
Independent

o3 =
28
- el z z z >
589
»rd
kel =
3 5§39
° =5
Q z z = >83
= ST
= 2
= oY)
2
3 R . . >
@ g > > > o 4
>
b 3 lZo [1Zz (122 | 8
£ O~ 87T (877|887 |2
o o O So|eox |22 | 8F
g | 22 |25 (52T |85T 8¢S
¢ | 5= |58f |55z |52 |8y
s | 2 S - -
[°) @ I = c
=] > o a a9 ==
3 88
o 8o
o | 3 = = g
k<] @ Q <
S~ S 53 @
4e) = c ze
= o ® < ES
0 £ £ = |28
o 2 2 5
@ [} ‘€
[e] o o b
= c
H °E> k<]
H 2o z8
2 2 > > > z [>Og
b w g @z
£ S 3
o = <
€
>
2 o
& 2 S
- 2 S
E 5 o2 S
[° z Eg > > 2
@ © o a (=}
c S (2] =3
] (%] Q 3
U] (6] 2
F=
@
2988
Swes | z z z >
2050
" [
c =
S ~
e o 2 iz
S |8 O S 3
L |oz3® 32
o |[EBTYS 40
2 [§xsQ| > |22 | 2 >
S €8>8 o5
@ >ES 2 Bz
a °387 % 88
Q @ ==
£
o o
[2 >
= £ >g
~ o o |‘
o L] o
o €8 €c
> T .2 0 ®
g = > 528 | > >
o @ £3
oK =
5 a2
]
~o 2 ° z
= = Q
$5% £5 | £ 5|2
T e o] = -y <
3rg o3 o e P @
Q%o 7] o =3
o
<0 w ZE o

173

17

S

OpenADN Stack

L7: App.

L4.5: OSL

TCP/IP Stack
L7: App.

L4:

! L4:
TCP/UDP |

TCP/UDP
L3.5 using L4 as Transport
L3.5: OST
L3.5 using L3 as Transport

L3: 1P L3: 1P

Fig. 8. TCP/IP protocol stack vs. OpenADN stack.

traffic (L7) steering to a third-party provider such as an ISP
or a CSP. This will allow OpenADN to address the issues of
cloud and multi-cloud deployments. A wide-area proxy
infrastructure operated by an ISP will allow the ASP to dis-
tribute its servers and middleboxes across multiple cloud
platforms and intelligently route application traffic to the
right service partition/instance through the required set
of middleboxes. Also, delegating to a CSP will allow an
ASP to deploy its services in a cloud datacenter using a hy-
brid approach (in contrast to pure OTC or UTC approach),
where the middleboxes and application servers are oper-
ated by the ASP while all application traffic is in-directed
through an intelligent traffic steering proxy operated by
the CSP in the aggregation tier. However, delegating APR
to a third-party creates the following two design
challenges:

1. Privacy: The message classification step in implement-
ing APR requires access to application-level data. The
ASP may not want a third-party (ISP), to have access
to its application data owing to privacy concerns.

2. Diversity: For a third-party, it is difficult to share an APR
proxy among multiple ASPs owing to the diversity of
application-layer message classification rules. Each
classifier will have different computational overhead
and so it will be difficult to share common resources.
A non-shared solution would be too expensive to be
feasible.

The OpenADN design addresses these issues by moving
message classification to the edge (Fig. 9); to ASP owned

ASP Controller over
ISP SDN Controller

APR Policies
PR

Control i [Classification b—w
; eta-tag:

SDN Abstraction 1

User/MB/Server $ISP/CSP APR Pro

Proxy
Layer 7 Traffic Steering in OpenADN:
Disaggregated Approach

,_
LY
<
@
2
~ >
3
fm
[9)
=+
(g}

Steering Functions

Fig. 9. Disaggregation of L7 traffic steering functional components in
OpenADN.

S. Paul et al./ Computer Networks 68 (2014) 166-186

L4.5 endpoints including user hosts, ASP middleboxes
and application servers. The result of these classifications
is recorded as meta-tags, which are fixed sized, flat identi-
fiers, and carried in the OpenADN message header. Thus,
each OpenADN message is routed at layer 4.5 by the
meta-tag, and the third-party APR proxies map these tags
to a workflow based on APR policies.

4.1.2. Deployment

Although moving message classification to the edge
makes it easier to delegate the APR proxy to a third party,
it still does not solve the following two deployment issues:

1. Cross-domain configuration: The APR proxy may be del-
egated to a third-party but the APR policies (meta-
tag — workflow mapping) needs to be configured by
the ASP based on its deployment policies and optimiza-
tion criteria. Therefore, the ASP will need to configure
the APR proxies owned and operated by the ISP. How-
ever, the ISP may not be comfortable to allow its infra-
structure to be configured by a third-party ASP or reveal
the internal deployment structure of its infrastructure.

2. Management complexity: Even if the ASP were allowed
to configure the ISP’s APR proxy infrastructure, it is dif-
ficult for them to select which APR proxies to configure
from a group of proxies, manage a distributed configu-
ration and make sure that their application traffic is
directed to the right APR proxy.

OpenADN addresses these two deployment issues with
the help of the Software Defined Networks (SDN) abstrac-
tion. The OpenADN APR function is disaggregated further,
as shown in Fig. 9, allowing the control plane and data
plane to be separated. The ASP is provided with a standard
APR policy configuration interface through which the ASP
control plane module can communicate its policies to the
ISP’s (using Northbound APIs) control plane that then pro-
grams its shared OpenADN data plane (using Southbound
APIs) accordingly. Here, the role of the SDN abstraction is
vital. SDN abstracts the distributed data plane deployment

ASP 1 ASP N
Controller Controller
%S 7~ ASP/ISP

. NSRS ARyl Aty
= al Interface

Shared OpenADN
N Proxy

T

Virtual Centralized OpenADN
Proxy Abstraction

Fig. 10. Virtualized Proxy abstraction using SDN.

S. Paul et al./ Computer Networks 68 (2014) 166-186 175

and presents a virtual view of a centralized, monolithic data
plane proxy to the control application (Fig. 10). This serves
two purposes. First, the ASP control plane module does not
have direct access to the data plane but has access to a vir-
tual view. Second, it is easier to write the control module
(for a logically centralized proxy) and this helps in manag-
ing the complexity.

4.1.3. Deploying scale-out architecture

L4.5 maps a meta-tag to a workflow. To implement a
scale-out architecture, each individual component in the
workflow needs to be scaled independently to match the
throughput requirements of the workflow. For example,
suppose for

Workflow W = {firewall, IDS, app.server type A}

a total throughput ‘xT’ is required; and the throughput
of each individual component (one indivisible unit which
may be physical/virtual) are as follows: firewall = T/2, IDS
=T, application server of type A = T/4. Therefore, W will re-
quire ‘x’ IDS’, ‘4x’ application servers and ‘2x’ firewalls to
satisfy the total throughput requirements. Therefore, in
addition to just mapping the meta-tag to a workflow, the
APR policies must also be able to distribute the load across
each individual component in the workflow.

One possible approach is through a completely distrib-
uted control in which each component independently
makes the next-hop decision based on, either some infor-
mation about the global state (e.g., load, availability) of
the next hop components, or based on just local informa-
tion (e.g., simple hashing or weighted round-robin like
load-balancing of incoming traffic). But, SDN was specifi-
cally designed to avoid this complexity of distributed con-
trol. Also, the selection of the next hop needs to optimize
the total service time, that is, the time taken from the start
of a workflow till the finish, which includes the service
times of each component and the network delay. For
example, in a workflow consisting of three components,
A — B — C, when there are multiple instances of each, only
those instances form a valid (feasible) workflow path that
meet some criteria of the total service delay between ‘A’
and ‘C.

In OpenADN, we take a centralized control approach in
which the centralized OpenADN controller pre-computes
feasible workflow paths. Each path is flow-balanced (e.g.,
1 application server, ¥ firewall, and Y4 IDS) and also meets
the total service time criterion. Also, the path computation
is dynamic and paths may be updated based on dynamic
network information (congestion, network failures) and
also workflow component failures. Therefore, the work-
flow has many pre-computed paths with distributed in-
gress and egress, and each workflow component is pre-
configured with the next-hop information. Note that this
is very similar to a MPLS-like data plane with multiple
pre-computed label switched paths between an ingress
and egress as opposed to an IP-like data plane with per-
hop destination-based forwarding. Another very strong
motivation to make this design choice is that the compo-
nents in the workflow may be L4-L7 functions, therefore
requiring to communicate over a L4 connection. Dynamic
next-hop selection would require dynamically setting up

the L4 connection with the next-hop. Instead, in OpenADN,
the pre-configuration step can setup the L4 connection
with the next hop and multiplex traffic over it.

In OpenADN parlance, a workflow is called a segment
(for reasons, discussed next) and each valid workflow path
is called a segment stream. Therefore, in the data plane, for
each OpenADN message, a L7 traffic steering proxy makes
the following mapping: meta-tag — workflow (seg-
ment) —» workflow path (segment stream); further ex-
plained next.

4.1.4. Multi-segment

An OpenADN session does not consist of a single work-
flow but many smaller workflow segments concatenated
dynamically through APR policies. This is necessary to ex-
press the following APR policies:

Context-based L3-L7 service chaining: To understand
this, consider a simple workflow shown in Fig. 11. The
APR policy may dictate that all application traffic needs
to pass through the Firewall, and then depending on the
message context, is either forwarded to the Web-server
through an Application Protocol Gateway or to a DB ser-
ver through an Identity Verifier. To implement this con-
text-based service chaining, the workflow is
disaggregated into three separate segments as shown
in Fig. 11; All application traffic is sent over segment
1; at the egress of segment 1, based on the message
context (meta-tag), APR policies select whether to send
to segment 2 or segment 3.

Chaining stateful vs. stateless services: Another level of
complexity is added to the above example due to the
presence of stateful and stateless services. The firewall
is a stateful device and therefore all OpenADN messages
within an OpenADN session will need to access a partic-
ular stream of segment 1 for the lifetime of the session
(e.g., stream 1.2 in Fig. 11), whereas segments 2 and 3
are stateless and so each OpenADN message may be
sent through a separate segment stream for segments
2 and 3.

Sender and receiver policies: OpenADN needs to allow
both sender and receiver policies, and hence an Ope-
nADN session implicitly has at least two separate seg-
ments that need to be concatenated dynamically.

Each OpenADN message may carry multiple meta-tags
that are mapped to specific segment streams by APR prox-
ies. Initially, in the OpenADN session creation step, the user

Segment 2 _
1 ‘ ’
atewa N2
Y Web
Servers

Segment 1

S £
tream 3 , F &
treg Identity| .

31 Verifier {47

1
Segment 3 [o):

APR Proxy Servers

L 4.5 APR Policies

Fig. 11. Multi-segment, multi stream OpenADN session.

176 S. Paul et al./ Computer Networks 68 (2014) 166-186

sends a Session SYN packet that is bound to two root seg-
ment streams based on the User and Service IDs (note: not
meta-tag); (1) User ID — user-domain root segment
stream, and (2) Service ID — ASP-domain root segment
stream. The root segments consists of the L3-L7 services
that need to intercept all application traffic in the Ope-
nADN session (e.g., segment 1 in Fig. 11). For simplicity,
let us just consider how an OpenADN message is for-
warded in the ASP domain, After the session setup, all
data-plane OpenADN messages are sent over the root seg-
ment stream, by default, and at the egress of the root seg-
ment stream, APR policies are applied to map the meta-
tag to a segment stream of the next segment (either seg-
ment 2 or segment 3 in Fig. 11). If this new segment stream
comprises of stateful services, then this binding is saved for
the rest of the OpenADN session and stored at the user.
Subsequent OpenADN messages with the same meta-tag
carry this binding instead of the meta-tag. Therefore, a typ-
ical OpenADN message will carry a stack of labels compris-
ing of a mix of unbound meta-tags and bound segment
stream IDs.

4.2. Layer 3.5 - OpenADN segment transport

While L4.5 routes OpenADN messages over segment
streams based on APR policies, L3.5 (OpenADN Segment
Transport or OST) provides an overlay (over IP) packet-
switching layer to switch packets through the components
within a L4.5 segment stream. A L4.5 segment stream is
uniquely identified (within an ASP or user domain name-
space) by the 2-tuple <Segment ID, Stream ID>. Each com-
ponent (middleboxes, application servers and user hosts)
within this L4.5 segment stream needs to implement a
L3.5 interface. The L3.5 interface is uniquely identified by
the 3-tuple <Segment ID, Stream ID, Entity ID>. A compo-
nent serving more than one L4.5 segment streams needs
to implement multiple L3.5 interfaces, one for each L4.5
segment stream.

The OST (L3.5) interface design is unique in that it pro-
vides both; a L3 packet interface and a L4 transport end-
point interface. Therefore, it combines the concepts of
packet-based MAC-over-IP distributed edge overlay tun-
nels (such as STT [15], VXLAN [16] and NVGRE [17]) and
proxy-chaining tunnels such as those used to implement
the WS-Routing [18] interface in SOAP-based SOA. This al-
lows OST to support both, message-oriented services (e.g.,
transcoders) and packet-level network services (e.g., IDS)
within the same L4.5 segment stream.

The OST packet header carries three different entity IDs
for the same <Segment ID, Stream ID> - Two entity IDs
representing L4 source and destination and the third repre-
senting the next hop OST interface. This is required be-
cause the transport-layer destination entity ID may not
be same as the next hop OST interface, as is the case in a
segment such as Firewall (Message-level) — IDS (Packet-
level) — Transcoder (Message-level).

As shown in Fig. 11, a L4.5 APR routing function con-
nects to multiple OST interfaces to be able to route applica-
tion traffic across different segment streams. An OST
interface may be configured (by an SDN controller) as, (1)
simple packet based interface (e.g., IDS middlebox), (2)

with two-TCP-like interfaces - one for incoming and the
other for outgoing (e.g., message-level middleboxes), (3)
multiple incoming TCP-like interfaces with one out going
TCP-like interface (e.g., ingress to a segment stream), (4)
multiple incoming and outgoing TCP-like interfaces (e.g.,
in a third party proxy where the next-hop is not configured
in the individual components).

To summarize, the different design choices of the Ope-
nADN session abstraction and the OpenADN segment
transport address the issues with current L7 traffic steering
solutions, summarized previously in Table 1, and provide a
generic architectural solution to data-plane proxying and
L7 traffic steering to support modern service-centric appli-
cations over the Internet.

5. OpenADN design approach

In this section we discuss the key aspects of the Ope-
nADN design that address the architectural goals discussed
in Section 4.

5.1. ID/Locator split

OpenADN is designed as an overlay over IP. Hence, each
OpenADN entity (end host, proxy, middlebox, application
server) is assigned a globally unique and fixed identifier
which is separate from its locator. The ID is represented
by the <Authoritative Domain ID, Entity ID> 2-tuple; where
the authoritative domain is the SDN domain that controls
the entity and assigns it an unique ID within its name-
space. It could be an enterprise, organization or ASP. An en-
tity under multiple authoritative domain control will have
multiple IDs. All communication in the OpenADN layer
(L3.5 and L4.5) are between these IDs. When the OpenADN
layer hands over a packet to the IP layer, it needs to access
an ID/Locator mapping function that will map the ID to an
IP address (locator). This ID/Locator split is necessary to
uniquely identify and address an application level entity.
This is required for the following 3 reasons:

1. Enforcing sender/receiver policies (Section 4.1.4),

2. Specifying session affinity over a middlebox sequence
and endpoints (Section 4.1.4), and

3. Correctly steering the application traffic across locator
changes as a result of server/user mobility.

All IDs are 128-bit UUID (Universally Unique Identifi-
ers). Locators can either be IPv4 (32 bits) or IPv6 (128) bits.

5.2. OpenADN data plane

The OpenADN data plane design needs to be standard-
ized to allow high performance implementations (and
commoditization). Also, standardization will allow the
data plane to be outsourced to third party providers. Pres-
ently, the data plane implements MPLS-like label switch-
ing and stacking mechanisms, which we call APplication
Label Switching (APLS).

S. Paul et al./ Computer Networks 68 (2014) 166-186 177

APLS 4.5 Label

Network Level Application Application
[! y Meta- Tag | *++ | Meta- Tag

[:
L2 Hdr |1[L2.5] Hdri|L3 Hdrasy /

E L3.5 APLS L4.5 APLS
N I P NN

""""" Encrypted, if required

APLS 3.5Label T .

. Segment ID . Handoff
Flag Bits ’
[ag Bt s][Stream ID][Entity ID][Locator]

Fig. 12. APLS labels.

5.2.1. Label switching mechanism

Fig. 12 shows APLS labels for L3.5 and L4.5. The APLS la-
bels, unlike MPLS labels, are composite labels consisting of
several sub-labels. Each sub-label may be individually
switched by different entities to support different require-
ments. The switching rule is specified by the ASP control
plane module installed over SDN. The control module has
full access to the ASPs deployment state (such as applica-
tion partitions, replications, distributions, current load,
current user access patterns and liveness and failure infor-
mation) that are required to compute the switching rule
from the ASPs application-level policies (such as optimize
for cost, user perceived quality and availability). It sends
the rule to the data plane entities through an extended
OpenFlow protocol (discussed in Section 6). We now dis-
cuss each sub-label in the context of the design
requirements.

5.2.2. Layer 4.5 APLS label

The L4.5 APLS label carries a stack of application meta-
tags representing a sequence of L4.5 segments in the data
path (Fig. 12). The meta-tags are inserted by the application
end-points. As discussed in Section 4.1.1; implementation
of application-level routing may require access to the
application level data. However, owing to the constraint
of application data privacy (Section 4.1.1) in outsourcing
application-level routing to third-party providers, the
implementation needs to be divided into two separate
steps — the classification step and the binding decision step.
In APLS, the two steps are connected through an application
meta-tag (or simply referred to as the meta-tag) that en-
codes the result of the application-level classification. In
the current prototype implementation of OpenADN, meta
tags are encoded as flat 128-bit identifiers. Later versions
will implement it as a variable sized <Tag, Length, Value>
field to allow more flexibility. The classification step needs
to be implemented by an ASP trusted entity that has full
access to the application data and the communication con-
text, such as the end-hosts. A middlebox (or a chain of mid-
dleboxes) belonging to the outsourced third-party enforces
the binding decision based on the meta-tag. The binding
decision is configured as a rule, which is installed by the

ASPs control plane module. Apart from application data
privacy, the meta-tag has performance benefits as well. It
allows the high-speed implementation of application-level
routing at the outsourced APR proxy by removing the
requirement of general purpose processing needed to do
application-level classification.

As shown in Fig. 13, at the egress of an application seg-
ment, an APR proxy advances the active tag pointer (equiv-
alent to popping in the label stack) to the next meta-tag
and maps it to a <Segment ID, Stream ID> two-tuple of
the next L4.5 segment. The two-tuple is placed into the
L3.5 APLS header, discussed next.

5.2.3. Layer 3.5 APLS label

A L3.5 APLS label represents a single L4.5 application
segment. It serves as a hop-by-hop transport header
through the sequence of waypoints implementing the
L4.5 segment. It consists of the following three fields.

1. <Segment ID, Stream ID> 2-tuple: The <Segment ID,
Stream ID> two-tuple represents a specific instance of
an application segment as discussed in Section 4.1.4.
For entities such as the IDS in Fig. 13, which hosts more
than one segment stream (for flow-balancing as dis-
cussed in Section 4.1.3), each segment stream has a vir-
tual L3.5 interface uniquely identified by the <Segment
ID, Stream ID> 2-tuple.

2. Entity ID: This field holds the entity ID (Section 5.1) of
the next hop entity within the L4.5 segment stream.
For example in Fig. 13, segment stream (defined in Sec-
tion 4.1.3) SS 2.1 is composed of Firewall 1(FW1), IDS
and Application Server. Each of these entities has a
unique entity ID within the ASP namespace (Sec-
tion 5.1). If an intermediary entity, such as the firewall
(FW1 in SS 2.1) knows the next hop to be the IDS, it will
update the entity ID field with the entity ID of the IDS.
Else, it returns the packet with a flag bit (in the Flag Bits
field in Fig. 12) set indicating that the packet has
already travelled the entity recorded in the entity ID
field and needs to be switched to the ID of the next-
hop entity in the segment stream. This will be explained
in a bit more detail in §5.4 where we discuss an exam-
ple of packet forwarding through L3.5 label switching
within a segment.

3. Handoff-locator: The handoff locator is used to deploy
OpenADN as an overlay over IP. Again, the use of the
handoff locator will become more clear in the packet for-
warding example presented in Section 5.4.

5.2.4. Label stacking mechanism

Label stacking is used for enforcing sender/receiver poli-
cies (Section 4.1.4). In the forward path (user — service),
the user pushes two sets of L4.5 labels (Note: there may
be more than one label in each set) into an OpenADN mes-
sage - sender labels for the user (U) domain stacked over the
receiver labels for the service (S) domain. For simplicity,
Fig. 14 shows a scenario in which only one sender and
one receiver label are stacked into the OpenADN message.
The outer sender label invokes the sender policies in the
sender’s policy domain. Similarly, the inner receiver label
invokes the receiver policies in the receiver’s policy do-

178 S. Paul et al./ Computer Networks 68 (2014) 166-186

Active Tag Active Tag

4 ~

Meta-tag 1 |1 Meta-tag 2
Segment1 |i Segment2

Meta-tag 1| Meta-tag 2

& Segment 1

Segment 1 Segment 2
Egress Ingress

Ss1.1
L3.5
S§S1.2
L3.5

APR Proxy 1

L4.5

‘ Segment 1 i| Segment2

Segment 2

i N K
SS2.2 SS2.1
35 || 135

Fig. 13. Concept of segments and segment streams in the OpenADN data plane.

U - S Hando

Policy Policy
Domain U Domain S
:\\

Label
5> U Randof

Fig. 14. APLS label switching.

main. Initially the message is routed to the ingress of the
user’s policy domain (Node A in Fig. 14). The sender label
meta-tag is mapped to a <Segment ID, Stream ID> 2-tuple
and the message is routed through the entities in the seg-
ment stream of the user’s policy domain. The egress node
(Node B) of the user’s policy domain segment stream, pops
out the sender label and forwards the packet to the ingress
of the service’ policy domain (Node D) with only the recei-
ver label. Within the service’ policy domain, the receiver la-
bel meta-tag is mapped to a <Segment ID, Stream ID> 2-
tuple and the message is routed through the entities in
the segment stream. The handoff locator provides an expli-
cit in-direction mechanism to determine the ingress of
each policy domain. We expect that in most use cases, pol-
icy domains will use IP anycasting to advertize their in-
gress locators. In the return-path (service — user), only
the roles of the sender and receiver are reversed and the
same sequence of label pushing and popping operations
are performed, as shown in Fig. 14.

Fig. 15 shows the L4.5 APLS header. It may be noted that
the L4.5 APLS header informs message-level routing poli-
cies and hence it is a message header (OpenADN message
frame) that is not carried in every IP packet. It carries a list

Sender ID Receiver ID

Sender Session 1D Receiver Session ID

Label Heap | Active APLS Label Pointer | Active APLS Label Pointer
Pointers (Sender) (Receiver)
APLS - Label
Label
Heap APLS - Label

Fig. 15. L4.5 APLS header.

of application meta-tags. Each application meta-tag is
dynamically mapped to a L3.5 Segment Stream ID or SS-
ID (<Segment ID, Session ID> 2-tuple) by an OpenADN
proxy. To support session affinity, the list is a mix of un-
bound meta-tags and already bound SS-IDs (meta tags that
have already been bound to SS-IDs for the duration of the
OpenADN session). A one-bit flag indicates whether a label
is a meta-tag or a bound SS ID. In the current implementa-
tion, both application meta-tags and SS IDs have the same
size (128-bits) and hence the list is homogeneous. In the
future, if the meta-tags are implemented with <Tag, Length,
Value> (TLV) encoding, the list will need to be heteroge-
neous (with each label also encoded in the TLV format).
The label heap stores the APLS-label list with the active
APLS-label pointer (offset) in the header (Fig. 15) pointing
to the currently active label in the label heap. The sender
and receiver ID fields are needed to uniquely identify the
policy context on shared infrastructures while the sender
and receiver session IDs specify the particular communica-
tion context between the sender and receiver entities.
When a message arrives at an OpenADN proxy, it reads
the next active APLS Label. If the APLS label is a meta-tag,
the OpenADN proxy maps it to a SS ID and then copies it
to the L3.5 APLS header (packet-level). If it is already a SS
ID it directly copies it to the L3.5 APLS header. It then up-
dates the pointer to point to the next APLS label in the heap
and forwards the message. Several other fields such as a

S. Paul et al./ Computer Networks 68 (2014) 166-186

protocol field, header size, and flags are not discussed be-
cause they do not relate to any interesting OpenADN spe-
cific functions.

5.2.5. Label-switching example

Fig. 16 shows a L3.5 label-switching example within a
L4.5 segment stream. The example illustrates how Ope-
nADN is implemented as an overlay over IP and the how
a distributed infrastructure of APR proxies, doing both
L3.5 and L4.5 switching helps in steering the traffic
through the right set of middleboxes and application serv-
ers. In this example we just show how an OpenADN mes-
sage is forwarded through a single sender segment
stream before it is handed-off to the receiver domain for
receiver-side policy enforcement. This is a 6-step process
as explained next.

In Step 1, the user (or sender) copies the handoff locator
from the sender label to the IP destination field and for-
wards it to the ingress (of the sender policy domain) Ope-
nADN proxy A over the IP network. The <Segment ID,
Stream ID> is set to <X, 1>, assuming that this Tagy — <X,
1> mapping is already resolved and stored at the user.
The ‘O’ represents an empty entity ID field. The ‘W flag’
bit is set to 1 indicating that the packet has already tra-
versed the entity indicated by the entity ID field and needs
to be forwarded to the next entity in the <X, 1> segment
stream.

At OpenADN proxy node A (Step 2), <X, 1> is looked up
to determine the next-hop entity ID; which is M;. Node A
then looks up the locator for M; and copies it to the IP des-
tination address field. In this case, this is not the actual
locator of M; but the locator of the egress node of M; (node
B). Whether M; maps to its actual locator or maps to fixed

R
Y g
Q S T
S §F w s &
X 9 Q N
& NN ¢ &
$S §§se & <
S §
L 88T & [xofofimg
I'PAI"’u NIEEED IIPAI Tagy)

@ | Sender Label, |

179

egress node of M; depends on how the sender domain
implements the ID-to-locator mapping function. If a DHT
based lookup mechanism is used, then the egress node
may be the lookup node for M. If the mapping is actively
distributed to all nodes, then M; may be mapped directly
to its locator. The mapping mechanism will depend on
the network size and the frequency of updates. It may also
depend on the entity type. For example, for small number
of middlebox nodes (mostly fixed), an active distribution
mechanism is not too costly; for user IDs (large numbers,
frequent mobility), DHT may be a better choice.

The handoff locator field stores the locator of the Ope-
nADN proxy node to which the waypoint node (node M1)
needs to send back the message after processing it. At this
point, there are two options. The first option is to set it to
IP5. This is done if the sender domain implements a cen-
tralized orchestration model, in which a single OpenADN
Proxy (such as Node A in this case) orchestrates the whole
workflow. In a more plausible distributed solution, it will be
set to an anycast IP of the policy domain. This allows the
waypoint return message to be intercepted by the closest
OpenADN proxy node. In this example, the distributed solu-
tion is assumed. The W flag bit is set and the packet is for-
warded towards node B. Note that in both these
approaches, we assume that the workflow orchestration
is done by the OpenADN proxy infrastructure, and the
waypoint nodes (Node M1 and M2) are unaware of the
next-hop to which they should forward the message. This
may not be the case in actual deployments. We consider
this case to show the most general deployment scenario
that the OpenADN design may need to handle.

In Step 3, Node B checks the W flag bit; looks-up the ID
to locator mapping for My; and re-writes the IP destination

Q=

|Puh|o |<x, 1>||v|1||pAny

Tagy|)

Sender Label,

1
] $
! § &
i Looku Ny O
XMV : . § N
i el N N S
! g § 8
: |IPM2em PN o [Tagy| K § ¢
i § N §
Lookup | ToS S K 0
___________ Sender Label, @ 70 erver & N §§
- ('hy <
1P| 1P, x|V T. ‘ § & ¢
| 'V"l “hl , , | Wi-egress agq\ - CUPyeoress) - S

Sender Label,
() [sederizves] -\

-
-
-

Receiver Label @

Sender Label, @

|IPM1 egress, |Puh| |<X 1>|M |IPM1 egress

e

Fig. 16. APLS label switching example.

180 S. Paul et al./ Computer Networks 68 (2014) 166-186

field. Again, for the handoff locator, there are two choices. In
this example, node B sets the handoff locator to its own IP
address. After finishing processing, M; (step 4), will unset
the W flag bit and copy the handoff locator to the IP destina-
tion field. On receiving the packet back from M; (Step 5), B
checks the W flag that indicates that the packet has already
been processed by My, and so it looks up <X, M> to deter-
mine the next hop. The next hop is M. It looks up the loca-
tor for M5; re-writes the IP destination field; re-writes the
waypoint entity ID to M2; unsets the W flag; and re-writes
the handoff locator to the domain’s anycast IP address.

The same sequence of steps (Steps 3 and 4) is repeated
for M,. However, in Step 6, node C on receiving the Ope-
nADN message from M, realizes that M, is the last entity
in the <X, 1> segment stream. The mapping of <X, 1>,
M, — 0, indicates this. Thus, node C pops out the L3.5 sen-
der label and looks up the L3.5 receiver label corresponding
to the L4.5 receiver label (Tagg). In this case the L3.5 recei-
ver label corresponding to Tagg only has the handoff loca-
tor mapped (IPs_pandofr) but the next segment stream in the
receivers domain is unbound. Therefore Node C copies the
handoff locator in the L3.5 receiver label to the IP destina-
tion address field; and forwards the packet to the receiver
domain’s ingress node. At this node, the Tagg will be
mapped to the <Segment ID, Stream ID> workflow that
the message needs to traverse.

5.3. OpenADN control plane

The OpenADN control plane needs to be diversified-dif-
ferent for different application deployment scenarios. The
OpenADN control plane is responsible for enforcing appli-
cation delivery policies by generating a set of application
traffic management rules for distributed enforcement in
the data plane. These application delivery policies are spe-
cific to the application provider (e.g., ASP) and each may
use different optimization criteria (cost, performance,
availability) with different policies. Thus, no “one” design
of the control plane is appropriate. Therefore, OpenADN
needs to decouple the control plane from the data plane,
allowing many different implementations of the control
plane to drive its standardized data plane.

6. OpenADN implementation approach: OpenADN over
SDN

SDN presents a framework for network architecture de-
signs based on control plane-data plane separation. The
control plane is implemented in software over a logically
centralized abstraction. The logically centralized abstrac-
tion makes writing control software easier while the soft-
ware implementation allows the control plane
implementation to be flexible. The data plane is imple-
mented over fast, commoditized hardware and is program-
mable (by the control plane) through a standardized
abstraction. Although, other designs may be possible in
the future, currently the only public standard available
for this standardized abstraction is OpenFlow [6]. Open-
Flow presents a flow-based abstraction to programming
the data plane. Packets are classified into flows based on

the flow classification rules that can be specified over a com-
bination of L2 (including L2.5), L3 and L4 header fields. The
flow classification rules are installed into the data plane by
the control plane through OpenFlow. Associated with each
flow classification rule is a set of flow-level actions that
determine what needs to be done with the packets identified
as belonging to a flow.

Thus, we observe that in an OpenFlow-based SDN, a
control application needs to provide two types of rules:
(1) flow classification rules to identify packets as belonging
to a flow of interest (policy equivalence class) to the con-
trol application, and (2) flow-level enforcement rules to
specify the set of actions over each packet belonging to
the flow. Given this design paradigm, we observe that
the type of control applications that may be designed
over SDN depends on whether, (1) the packet carries en-
ough context that would allow the control application to
express its interest at the right level of granularity, and
(2) support for the desired header fields are present in
OpenFlow.

The requirements of the OpenADN architecture exactly
match the general motivation of SDN - commoditized data
plane and a flexible, diversified control plane. However, the
ADN abstraction is not represented in the OpenFlow stan-
dard and hence OpenADN control plane applications can-
not program the OpenADN data plane through current
OpenFlow standard. This requires extending the OpenFlow
standard and the OpenFlow base implementation (data
plane pipeline and set of actions) with APLS (the data-
plane implementation of OpenADN, Section 5.2) header
fields and APLS switching actions.

Control plane: The control rules for handling application
traffic will be provided by Application Service Providers
(ASPs). Note that we make a distinction between net-
work traffic and application traffic. Application traffic
is network traffic annotated with application semantics
such as context, message boundaries, sessions, etc. for
application-level policy enforcements.

Leveraging the power of abstraction, network infra-
structure domains implementing SDN can now easily al-
low externally provided ASP control applications without
relinquishing control of their infrastructure. As shown in
Fig. 17, SDN has three abstraction layers - virtualization,
network operating system and network control applica-
tions. The OpenADN control modules are implemented
on top of the network control modules. The OpenADN con-
trol modules implement policy virtualization to partition
application traffic into different application-level policy
groups and enforce actions to manage the application
deployment. They do not interfere with the network man-
agement policies implemented by the network control
modules in the layer below it. The network control mod-
ules implement network virtualization, virtualizing the net-
work resources and allocating them to be managed by the
corresponding control module. After enforcing application-
level policies on the application-traffic, the OpenADN con-
trol module hands-off the packet to a network control
module to invoke a network transport service imple-
mented within a virtualized network partition.

S. Paul et al./Computer Networks 68 (2014) 166-186 181

ASP1 ASP2

ASP3

Application Level

IOpenADNI IOpenADNI IOpenADNI Conttol (ASPS)

_ﬂ__ — o ==

OpenADN OpenFlow

Data Plane

*ASP — Application Service Provider

Aot App2 App3 Network Level
pp pp. pp
g Control (ISP) Northbound
o -
°
£ Network OS1 Network 0s2 | Network OS
S Yo b .
Network Virtualization Virtualization
Southbound

Fig. 17. OpenADN extends the Southbound API with new meta-tags in the header and introduces a northbound interface for policy communication.

Data plane: OpenADN needs to augment OpenFlow to
add support for OpenADN processing in the data plane.
In the data plane, OpenADN specific processing precedes
OpenFlow specific processing. This follows naturally
from the layered abstraction in the control plane. Hence,
it is required that in the data plane, OpenADN directly
interfaces with OpenFlow. We observe that the Open-
Flow data plane specification [6] already provides sup-
port for explicitly chained virtual tables. Incoming
packets are first passed through a generic flow-identifi-
cation table, which then redirects the packet through a
virtual table pipeline for more flow-context specific pro-
cessing. Using this virtual table support, the OpenADN
data plane may interpose application-level policy
enforcement (Fig. 18) before handing off the flow for net-
work-level flow processing. We propose a three level
naming hierarchy for virtual tables. The first level identi-
fies whether it is performing application-level or

network-level processing. The second level identifies
the SDN control module that configures the virtual table
(e.g., ASP IDs for OpenADN, infrastructure service IDs for
OpenFlow). The third level identifies the specific flow-
processing context within an SDN control module. In
Fig. 18, we only show a packet being explicitly handed-
off atlevel 1 in the hierarchy, from application-level pol-
icy enforcement to network level flow processing. How-
ever, it is also possible to allow packet handoffs at level 2
and level 3 in the hierarchy, to accommodate layered
abstraction in the control plane.

6.1. Initial prototype implementation

We implemented an initial prototype of an OpenADN
proxy using the click modular router [19]. Currently,
our implementation is limited to UDP-based service access.
This allows us to treat OpenADN messages to be one

Infrastructure Services Access
Table (Net-level Flows)

Infrastructure Service 1

OpenADN Access Table
(App-level Flows)
ASP 1
| Table :_> _;Tablei Table > _>Table s
C I 0.1.1: :0.1.x:\ f 1.1.1 0.1.u b
£ i VAR —_——— A a
k] — (0]
% _éiTa(t])Ie: > Tai:ule > —> z
© 1 c
o 1 -———— - <
"“‘I\‘ITable: Tablel_Tl—"\Table| ; _ [Table
10.K.1! 10Kyt 1.P.1 1.P.v
| S - -
ASP K
OpenADN Virtual Tables

Infrastructure Service P

Infrastructure Services
(e.g. OpenFlow) Virtual Tables

Fig. 18. OpenADN and OpenFlow processing.

182 S. Paul et al./ Computer Networks 68 (2014) 166-186

datagram long. Therefore, although L3.5 headers are pack-
et-level and L4.5 headers are message-level, the difference
is not noticeable in our current implementation. Work is
under progress to implement OpenADN over TCP
transport.

To validate the functionality, we simulated a simple
use-case scenario (Fig. 19) over NS3 [20] showing distrib-
uted application deployment over multi-cloud environ-
ment. It consists of three application servers
(AppServerla, AppServerls, and AppServer2), two way-
points (IDS A and IDS B), a user (simulating multiple traffic
sources), an OpenADN controller and an OpenADN data
plane proxy. Each of these nodes is OpenADN aware.

The scenario implements two OpenADN L4.5 segments
- (1) Segment 1 consisting of two segment streams;
SS14=<IDSs, AppServerla>, and SS1g=<IDSg, AppServ-
erlg>; and (2) Segment 2 consisting of one segment stream
SS2 = <AppServer2>. SS1, and SS15 also serve as the failov-
er instance for each other (when SS14 fails SS15 may take-
over and vice versa). The deployment assumes that the ISP
OpenADN proxy acts as a central coordinator for steering
the application traffic through the different nodes in the
segment stream. The nodes themselves are unaware of
the next hop; for example IDS, is not aware that it needs
to send the traffic towards AppServerl, and sends back
the messages to the OpenADN proxy after processing it.
This allows the controller to be simple in that it needs to
configure only the OpenADN proxy while the other Ope-
nADN nodes operate in their default configuration (Imple-
ment an OpenADN stub that is statically configured to
return the traffic to the interface over which it received
it.). In our current implementation, the controller is manu-
ally configured.

The controller configures the OpenADN proxy with
static as well as dynamic APR policies. The static policies

ID-Loc
Map

Table 0.1.1

Table 0.0.0

OpenFlow

ISP OpenADN
Proxy

Segment 1: Session Stream SS1,= <IDS,, ApServerl,>
Session Stream SS1;= <IDSg, ApServerlg>
Segment 2: Session Stream SS2 = <AppServer2>

Fig. 19. Use-case scenario: application traffic steering.

include mapping the meta-tag in the OpenADN header to
the L4.5 segment to which the application traffic is bound.
Dynamic polices are specified to choose a particular seg-
ment stream, if a segment has multiple instances, based
on real-time load or fault information.

In the scenario shown in Fig. 19, the user simulates a
distributed user population and sends OpenADN messages
over UDP to the ISP OpenADN proxy. It randomly includes
either of the two meta-tags Tags and Tagg in each of these
messages. Each message is first intercepted by Table 0.0.0
in the OpenADN Proxy that classifies the message based
on the ASP ID. For ASP ID =1, the message is forwarded
to Table 0.1.1; similarly for ASP ID = 2, the message is for-
warded to Table 0.2.1, and so on. Table 0.1.1 determines
whether the OpenADN message is already bound to a seg-
ment stream (part of an OpenADN session with session
affinity requirements, i.e. the requirement that all mes-
sages needs to be bound to the same segment stream). If
the message is unbound, it is sent to the CBR (Content-
based Router) module that maps the meta-tag to the L4.5
segment. In our example, the following two mappings are
stored:

Tag, — Segment 1 — Unspecified

Tagy — Segment 2 —< AppServer2 >

If the message is carrying Tagg, it is mapped directly to
AppServer2 and sent to the ID-Loc module that maps the
ID of AppServer2 to its IP address and hands-off the mes-
sage for OpenFlow-based processing. The OpenADN pro-
cessing may set certain QoS flags (in L3.5 flags field) that
may be interpreted by the OpenFlow processing pipeline
to provide the required differentiated transport services
to the message.

If the message is carrying Taga, then the CBR can only
determine that the message belongs to segment 1. It sends
the message to the LB (Load Balancer) module determine
which of the two segment streams (SS14 or SS1g) the mes-
sage needs to be bound to. Also, in the case that a message
arrives at Table 0.1.1 with Taga but is already bound to
either of the segment streams, the message is sent to a FT
(Fault Tolerance) module that determines whether the seg-
ment stream that the message is bound to is still up; other-
wise redirects the message to the failover instance. This
scenario is illustrated by the experiment shown in
Fig. 20. The x-axis represents time (T) in seconds and the
y-axis represents the number of OpenADN messages. We
fix the number of bound and unbound OpenADN messages
to 1000. The time interval T = 0 through T = 14, shows load
balancing in action for new unbound messages. At T =15,
we stop sending unbound messages and only send already
bound messages. At T =19, AppServer1, fails (thus SS14 be-
comes unavailable) and comes back at T = 29. During this
time, all messages are re-directed to segment stream SS1g
by the FT. After AppServer1, comes back at T = 30, the FT re-
sumes sending messages bound to SS1, towards SS1,, as
usual. Note that the proportion of traffic directed to the
two segment streams dynamically follows the load balanc-
ing as specified by the ASP and listed at the bottom of
Fig. 20.

S. Paul et al./ Computer Networks 68 (2014) 166-186 183

#- Load Balancer Box to Server 1 (New Connactions)

~%- Fault Tolerance Box to Server 1 (Bound Connections)

1200 - -®- Fault Tolerance Box to Server 2 (Bound Connactions)
=4~ Load Balancer Box to Server 2 {New Connactions)

)

2

= 10004 'm

g : '

o : i

g 800 [

'§ Aaa ' “uunfgfge Sgtgtet,

2 6004 v

c ' ;

8 . l“".‘

w 4004 o

5 CEL I WYW S i ol

£ 2004] 5

=3 /' . '

=4 3 . Fault Aware
0 ak Load Balancing Fokdohik Binding

T T T T T T T T T

0 5 10 15 20 25 30 35
Time (s)

40
Availability Both up —.lt-l ann+Both up-.l
Load Balancing 50:50' 7(}:30: 30:70 |

Fig. 20. Validation of the use case presented in Fig. 19.

6.2. Discussion

Adding OpenADN headers to application messages and
network packets will add bandwidth and computation
overheads to the network data plane. However, we expect
the functional benefits of OpenADN in terms of simplified
and dynamic management and control of large-scale, mas-
sively distributed application deployment and delivery to
be compelling enough to justify these overheads. Although
our current prototype implementation is not performance
tuned to provide an objective evaluation, we may analyti-
cally claim that these overheads will be well within the
acceptable limits and should not be a major deterrent to
the adoption of OpenADN. First, packet level (L3.5) Ope-
nADN header processing at intermediary hops is similar
to MPLS label-swapping on fixed-length identifiers. Sec-
ond, message-level header processing will be done only
at intermediary OpenADN proxies and not at each applica-
tion-level entity. Third, although OpenADN header allows
L4.5 labels to be stacked over each other and hence the ac-
tual size of the L4.5 header may vary, in real use-cases we
generally expect the stacking level to be between two and
four. In cases where each message is independent, that is
there is no session affinity, each message shall carry two
labels (in most cases) — one for each sender and receiver.
For cases that need to implement session-affinity, each
message will carry four labels (in most cases) — two for
each sender and receiver. One of these labels shall be
bound to a session (indicating a path through session-level
entities such as firewalls and IDS’) whereas the other label
shall allow the message to be routed based on the message
content (message headers and application data) through
transformation and optimization functions. Fourth, L3.5
carries the L4.5 meta-tag to session-stream mapping (plus
additional fields to implement hop-by-hop routing, see
Section 5.2.1) of the currently active L4.5 meta-tag label.
Therefore, it is sufficient to carry one L3.5 label (Sec-
tion 5.2.1) in each packet, or two if the implementation
needs to save the last accessed L4.5 session segment in
the packet for each sender and receiver domains.

7. Related work

Several research efforts have focused on the problem of
adding explicit support for middleboxes into the Internet
architecture [1,21]. However, the ad-hoc network configu-
ration techniques and explicit middlebox support in HTTP
somehow managed the show and thus the motivation for
adopting an architectural change never became too strong.
We believe that in the context of multi-cloud environ-
ments the problem is more urgent. Also, the problem is
very different since the environment imposes a new
requirement that the network infrastructure ownership is
separate from the application provider. None of the previ-
ous proposals try to abstract out application-level seman-
tics into standard representation for a generic and high-
performance implementation while still preserving some
richness of application diversity; allowing application level
policies to be enforced on third-party infrastructures.

Research efforts on in-network processing may be con-
sidered to lie in the broader periphery of the OpenADN re-
search scope. The in-network processing proposed in
active networks research [22] allowed ASPs to write pro-
grams in the packet headers. This violated the administra-
tive boundary between ASP and ISP by giving direct control
of ISP’s router to ASPs. OpenADN avoids this by providing a
very restricted and standardized switching abstraction
making some allowance for representing the application
context. OpenADN may be considered similar to Rule-
based Forwarding architecture (RBF) [23]. RBF proposes
a flexible forwarding plane design by forwarding packets
to a rule instead to a destination address. The key difference
is that RBF provides more flexibility at the cost of perfor-
mance whereas OpenADN is designed to tradeoff flexibility
for higher performance.

Serval [24] is another recent approach that addresses
the problem of accessing geographically distributed service
deployments. Serval provides a point solution for accessing
distributed services through a service router infrastructure.
The service router infrastructure is similar in spirit to the
requirement of outsourcing application-level routing in Ope-
nADN. However, OpenADN provides a richer interface than
just service IDs to a generic middlebox-switching solution
which allows flexible implementation of any service access
mechanism by composing specific mechanisms such as
CBR, load balancer, cluster fault-manager, etc. Also, Ope-
nADN allows application context to be included into the
switching abstraction. Other distinguishing features in-
clude support for middlebox-switching both in the data
and control planes and support for both sender and recei-
ver policies.

CloudNaaS [25] proposed an OpenFlow-based data
plane to allow ASPs deploy off-path middleboxes in Cloud
datacenters. OpenADN is different from CloudNaas in that
it provides a session-layer abstraction to applications pre-
serving session-affinity properties in an environment
where the application servers and virtual appliances may
need to scale dynamically. OpenADN allows both the user
and ASP policies, unlike CloudNaaS that allows only ASP
policies. Also, CloudNaas does not allow application-level
flow processing like OpenADN, thus it is unable to provide
support for dynamic service partitioning and replication,

184 S. Paul et al./ Computer Networks 68 (2014) 166-186

routing on user context and context-based service
composition.

L7 traffic steering provided by OpenADN is a more dy-
namic data-plane primitive as compared to earlier propos-
als such as NUTTS [1], SIP [26], Serval [24], UIA [27] and
DONA [28] which use separate control messages (routed-
by-name instead of address) to setup an end-to-end or
end-middle-end session over which data plane messages
are exchanged. In this regard, OpenADN is more similar
to the Named Data Network (NDN) [29] proposal in which
each request message is routed independently towards the
data source. However, NDN lacks service-centric semantics
including session affinity and service chaining.

Some other works, such as CoMB [30] and APLOMB [31]
have proposed delegating middlebox services to third-
party providers. However, they directly conflict with the
design principle of OpenADN that third party providers
should not be able to have access to the ASPs applica-
tion-level data for privacy reasons. Therefore, OpenADN
provides a platform, where, instead of third parties, ASPs
themselves can manage their middleboxes distributed
across different cloud sites more easily.

8. OpenADN deploy-ability

Deploying a new network architecture is hard and
hence deploy-ability of an architecture is a metric to judge
the chances of an architecture to impact the real-world.
Hence, while designing OpenADN we paid special atten-
tion to addressing this issue. Our case for the deploy-ability
of OpenADN is based on the following observations:

1. Layer 4.5 is an application-level header and it should be
relatively easy to introduce this as an extension header
to application protocols such as X-prefixed headers in
HTTP. Also, application providers stand to benefit most
from OpenADN (in terms of managing/controlling their
large-scale distributed application deployments) and
hence should adopt this new application-layer header
that can easily piggyback over existing application mes-
sage frame formats.

2. Introducing a new layer 3.5 is more challenging than
layer 4.5. However, note that layer 3.5 is an overlay over
IP and hence does not assume anything at layer 3 or
below to change. The main difficulty, however is that
since it is between layer 4 and layer 3 we would ideally
expect it to be implemented as a kernel module which
may not always be feasible. One way to address this
issue is through user-space libraries that run on raw-
IP sockets. In our current prototype implementation,
however, we provide layer 3.5 as a kernel-level click
element while layer 4.5 is provided as a user-level click
element.

3. In general, network virtualization technologies have
started leading the way for new tunneling encapsula-
tion techniques including STT [15], VXLAN [16] and
NVGRE [17]). OpenADN may either piggyback on one
of these new tunneling encapsulation headers or have
its own header if it is successful.

9. Future work

The implementation of OpenADN is still a work-in-pro-
gress. The initial prototype implementation is simply to
provide a proof-of-concept for our proposed design. We
are working towards a more generic implementation that
will address the following:

1. The current implementation is not tuned for perfor-
mance and hence it is not possible to provide insights
into the performance overhead of introducing a new
software layer. Our future implementation will address
this aspect.

2. For our initial proof-of-concept implementation we
have used a centralized controller. However, in future
work we are working towards more distributed
approaches. There are several aspects of distributing
the controller that we are presently considering. The
first aspect is to add redundancy to address availabil-
ity issues by adding a hot-standby. The second aspect
is to distribute load by partitioning the control func-
tions across several controllers located at a central
location. The third aspect is to distribute the control-
lers across different sites and constructing a hierarchi-
cal controller deployment. This requires logically
partitioning the control functions into multiple feed-
back loops of different latencies.

3. The current implementation uses only UDP transport. In
the future, we will add support for TCP transport
including support for TCP connection pooling and
multiplexing.

4. Currently, we use custom OpenADN message frame for-
mats. Future implementations shall provide support for
at-least HTTP frame formats with the OpenADN L4.5
header piggybacking on an X-prefixed field in the HTTP
header.

10. Discussion and conclusions

In this paper, we presented a new service-centric net-
work design called OpenADN that will allow ASPs to fully
leverage multi-cloud application deployment environ-
ments to more efficiently deploy and deliver their services
to a highly distributed, dynamically changing and mobile
user population. OpenADN has the following features:

1. It provides a new OpenADN session abstraction that
creates a logical channel between the user and a ser-
vice. Both, the user and the service may be virtual enti-
ties representing a set of application-level routing (APR)
policies which are basically a set of access policies for
accessing the service or the user and specified at per-
message granularity. Using the new OpenADN L4.5 mes-
sage framing header, each OpenADN message, is for-
warded based on a meta-tag (instead of a destination
address). The meta-tag can be uniquely mapped to the
right set of APR policies that need to be applied on it
by the channel. APR policies include application-level
traffic steering policies such as selecting the right ser-

S. Paul et al./ Computer Networks 68 (2014) 166-186 185

vice partition/replica, service chaining, service compo-
sition and user access to different value-added network
services.

2. OpenADN allows the ASP to delegate the APR function
to third-party infrastructure providers such as ISPs,
CSPs, and CDNs without compromising on the privacy
and security of application-level data. This is done by
using the concept of the meta-tag in the OpenADN mes-
sage frame header (L4.5 APLS header). The meta-tag
encodes the result of the message-classification that is
done at an ASP trusted entity such as the end-user host
or the service end-host. Therefore, this prevents the
need to do session reconstruction and/or deep-packet
inspection in the third-party network node to be able
to apply APR policies. Also, note that apart from meet-
ing the security and privacy requirements, this design
choice also makes for a more efficient, simple and stan-
dardize-able (hence commoditize-able) OpenADN data-
plane design in-spite of the diversity of the application
layer.

3. OpenADN introduces a new layer 3.5 that provides a
wrapper around existing layer 4 transport protocols
including TCP and UDP. The idea is to make a general
transport layer for application delivery that supports a
mixed application delivery workflow consisting of both,
message-level entities (requiring data plane proxying,
transport connection splicing and multiplexing) and
packet-level middleboxes (that do not serve as a trans-
port end-point).

4. OpenADN is designed for control and data plane separa-
tion in which the data plane is standardize-able and
hence delegate-able to third-party infrastructure pro-
viders; while all the application-related diversity and
intelligence is moved to the control-plane, which is
under the control of the ASP. We are in the process of
incorporating OpenADN into the general SDN frame-
work. Currently, a set of simple APIs, for direct commu-
nication between the OpenADN controller and the
OpenADN data-plane node, has been defined. To port
the OpenADN deployment to an SDN-based deploy-
ment, this direct communication between the Ope-
nADN controller and the OpenADN data-plane will
need to be mediated by the SDN controller. Thus, a
new set of Northbound and Southbound APIs for SDN
will need to be designed to support OpenADN.

In summary, OpenADN is an effort to evolve the current
Internet design to make it suitable for modern (and future)
Internet-scale, massively-distributed application deploy-
ment and delivery. OpenADN is designed to be an overlay
over IP, thus increasing its deploy-ability significantly.
Also, we believe that this is the right time to design a
new architecture such as OpenADN while the networking
community is still trying to converge on the SDN ideas.

Acknowledgement
This work has been supported under the Grant ID NPRP

6-901-2-370 for the project entitled “Middleware Archi-
tecture for Cloud Based Services Using Software Defined

Networking (SDN),” 2013-2016, which is funded by the
Qatar National Research Fund (QNRF).

References

[1] S. Guha, P. Francis, An end-middle-end approach to connection
establishment, ACM SIGCOMM (2007).

[2] P. Gill, M. Arlitt, Z. Li, A. Mahanti, The flattening Internet topology:
natural evolution, unsightly barnacles or contrived collapse, PAM
(2008) 1-10.

[3] S. Paul, R. Jain, OpenADN: mobile apps on global clouds using
OpenFlow and software defined networking, in: IEEE Globecom
Workshop on Management and Security Technologies for Cloud
Computing (ManSec-CC), 2012.

[4] S. Paul, R. Jain, J. Pan,]J. Iyer, D. Oran, OpenADN: a case for open
application delivery networking, ICCCN (July) (2013).

[5] J. Salz, A.C. Snoeren, H. Balakrishnan, TESLA: a transparent,
extensible session-layer architecture for end-to-end network
services, USITS (2003).

[6] Open Networking Forum, OpenFlow Switch Specification, Version
1.3.1, September 6, 2012. <https://www.opennetworking.org/
images/stories/downloads/specification/openflow-spec-v1.3.1.pdf>.

[7] F5 Networks. <http://www.f5.com/>.

[8] Citrix Systems Inc. <http://www.citrix.com/>.

[9] Blue Coat Systems Inc. <http://www.bluecoat.com/>.

[10] Oracle Weblogic. <http://www.oracle.com/technetwork/
middleware/weblogic/overview/index.html>.

[11] IBM Websphere. <http://www-01.ibm.com/software/websphere/>.

[12] D. Chappell, Enterprise Service Bus, O'Reilly Media, Inc., 2004.

[13] HAProxy. <http://haproxy.1wt.eu/>.

[14] D.A. Joseph, A. Tavakoli, I. Stoica, A policy-aware switching layer for
data centers, SIGCOMM (2008).

[15] B. Davie, Ed., J. Gross, A Stateless Transport Tunneling Protocol for
Network Virtualization (STT), IETF Draft draft-davie-stt-03.txt,
March 12, 2013, 19 pp. <http://tools.ietf.org/html/draft-davie-stt-
03>.

[16] M. Mahalingam, D. Dutt, K. Duda, et al., VXLAN: A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks,
IETF Draft draft-mahalingam-dutt-dcops-vxlan-03.txt, February 22,
2013, 22 pp. <http://tools.ietf.org/html/draft-mahalingam-dutt-
dcops-vxlan-03>.

[17] M. Sridharan, A. Greenberg, N. Venkataramiah, et al., NVGRE:
Network Virtualization using Generic Routing Encapsulation, IETF
Draft draft-sridharan-virtualization-nvgre-02.txt, February 25, 2013,
17 pp. <http:/[tools.ietf.org/html/draft-sridharan-virtualization-
nvgre-02>.

[18] H. Nielsen, S. Thatte, Web services routing protocol, Microsoft
(October) (2001).

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. Frans Kaashoek, The click
modular router, ACM Trans Comput Syst 18 (3) (2000) 263-297.

[20] NS3. <http://www.nsnam.org/>.

[21] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, S.
Shenker, Middleboxes no longer considered harmful, OSDI (2004).

[22] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, G.J.
Minden, A survey of active network research, IEEE Commun. (1997).

[23] L. Popa, N. Egi, S. Ratnasamy, I. Stoica, Building extensible networks
with rule-based forwarding (RBF), USENIX OSDI (2010).

[24] E. Nordstrom et al., Serval: an end-host stack for service-centric
networking, NSDI (April) (2012).

[25] T. Benson, A. Akella, A. Sheikh, S. Sahu, CloudNaaS: a cloud
networking platform for enterprise applications, in: Symposium on
Cloud Computing SOCC, 2011.

[26]]. Rosenberg et al., SIP: Session Initiation Protocol, IETF RFC 3261,
June 2002.

[27] B. Ford, Unmanaged Internet Protocol: Taming the Edge Network
Management Crisis, HotNets-II, November 2003.

[28] T. Koponen, M. Chawla, B.G. Chun, et al, A data-oriented (and
beyond) network architecture, SIGCOMM Comput. Commun. Rev. 37
(4) (2007) 181-192.

[29] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L.
Braynard, Networking named content, CONEXT (2009).

[30] Vyas Sekar, S. Ratnasamy, M.K. Reiter, N. Egi, G. Shi, The middlebox
manifesto: enabling innovation in middlebox deployments, ACM
HotNets (2011).

[31] Justine Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, V.
Sekar, Making middleboxes someone else’s problem, network
processing as a cloud service, ACM SIGCOMM (2012).

http://refhub.elsevier.com/S1389-1286(14)00082-6/h0005
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0005
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0010
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0010
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0010
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0020
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0020
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0025
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0025
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0025
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.1.pdf
http://www.f5.com/
http://www.citrix.com/
http://www.bluecoat.com/
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www-01.ibm.com/software/websphere/
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0060
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0060
http://haproxy.1wt.eu/
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0070
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0070
http://tools.ietf.org/html/draft-davie-stt-03
http://tools.ietf.org/html/draft-davie-stt-03
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-03
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-03
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-02
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-02
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0090
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0090
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0095
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0095
http://www.nsnam.org/
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0105
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0105
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0110
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0110
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0115
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0115
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0120
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0120
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0140
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0140
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0140
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0145
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0145
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0150
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0150
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0150
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0155
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0155
http://refhub.elsevier.com/S1389-1286(14)00082-6/h0155

186 S. Paul et al./ Computer Networks 68 (2014) 166-186

Subharthi Paul received his BS degree from
University of Delhi, Delhi, India, and Masters
degree in Software Engineering from Jadavpur
University, Kolkata, India. He is presently a
doctoral student in Computer Science and
Engineering at Washington University in St.
Louis, MO USA. His primary research interests
are in the area of future Internet architectures
including Software Defined Networks (SDN),
datacenter network architectures and appli-
cation delivery networking for cloud and
multi-cloud environments. He is a student

Member of IEEE.

Raj Jain is a Fellow of IEEE, a Fellow of ACM, a
winner of ACM SIGCOMM Test of Time award,
CDAC-ACCS Foundation Award 2009, and
ranks among the top 50 in Citeseer’s list of
Most Cited Authors in Computer Science. Dr.
Jain is currently a Professor of Computer Sci-
ence and Engineering at Washington Univer-
sity in St. Louis. Previously, he was one of the
Co-founders of Nayna Networks, Inc. - a next
generation telecommunications systems
company in San Jose, CA. He was a Senior
Consulting Engineer at Digital Equipment
Corporatlon in Littleton, Mass and then a professor of Computer and
Information Sciences at Ohio State University in Columbus, Ohio. He is the
author of “Art of Computer Systems Performance Analysis,” which won
the 1991 “Best Advanced How-to Book, Systems” award from Computer
Press Association. His fourth book entitled “ High-Performance TCP/IP:
Concepts, Issues, and Solutions,” was published by Prentice Hall in
November 2003. Recently, he has co-edited “Quality of Service Archi-

tectures for Wireless Networks: Performance Metrics and Management,”
published in April 2010.

Mohammed Samaka is an associate professor
of Computer Science in the Department of
Computer Science and Engineering (CSE),
College of Engineering at Qatar University. He
obtained his PhD and Master from Loughbor-
ough University in England and a Post Grad-
uate Diploma in Computing from Dundee
University in Scotland. He obtained his Bach-
elor of Mathematics from Baghdad University.
His current areas of research include Wireless
Software Architecture and Technology, Mobile
Applications and Services, Networking, e-
Learning, and Computing Curricula Development.

Jianli Panreceived his B.E. from Nanjing
University in Posts and Telecommunications
(NUPT), Nanjing, China, and M.S. from the
Beijing University of Posts and Telecommu-
nications (BUPT), Beijing, China. He is cur-
rently a PhD student in the Department of
Computer Science and Engineering in Wash-
ington University in Saint Louis, MO, USA. His
current research is on the Future Internet
architecture and related topics such as routing
scalability, mobility, multihoming, and Inter-

4 net evolution. His recent research interest also
includes intelligent buildings, green buildings, and smart energy in net-
working context.

	Application delivery in multi-cloud environments using software defined networking
	1 Introduction
	1.1 Service partitioning in a datacenter
	1.2 Service partitioning in multi-cloud environments
	1.3 Contribution and plan

	2 OpenADN: High level architecture
	2.1 Using SDN framework for application delivery

	3 Current approaches to application delivery in data centers
	3.1 Limitations of current approaches
	3.1.1 L7 traffic steering functions
	3.1.2 General deployment issues
	3.1.3 Cloud deployment issues
	3.1.3.1 Single-cloud-datacenter environments
	3.1.3.2 Multi-cloud datacenter environments

	3.1.4 Architectural issues

	4 OpenADN architecture
	4.1 Layer 4.5 – OpenADN session abstraction
	4.1.1 Delegation
	4.1.2 Deployment
	4.1.3 Deploying scale-out architecture
	4.1.4 Multi-segment

	4.2 Layer 3.5 – OpenADN segment transport

	5 OpenADN design approach
	5.1 ID/Locator split
	5.2 OpenADN data plane
	5.2.1 Label switching mechanism
	5.2.2 Layer 4.5 APLS label
	5.2.3 Layer 3.5 APLS label
	5.2.4 Label stacking mechanism
	5.2.5 Label-switching example

	5.3 OpenADN control plane

	6 OpenADN implementation approach: OpenADN over SDN
	6.1 Initial prototype implementation
	6.2 Discussion

	7 Related work
	8 OpenADN deploy-ability
	9 Future work
	10 Discussion and conclusions
	Acknowledgement
	References

