
Multi-Tier Diversified Architecture for the Next Generation
Internet

Subharthi Paul
Washington University in St. Louis

Department of CSE
One Brookings Drive,

Saint Louis, MO 63130
spaul@wustl.edu

Raj Jain
Washington University in St. Louis

Department of CSE
One Brookings Drive,

Saint Louis, MO 63130
jain@cse.wustl.edu

Jianli Pan
Washington University in St. Louis

Department of CSE
One Brookings Drive,

Saint Louis, MO 63130
jp10@cse.wustl.edu

ABSTRACT

We propose a next generation Internet architecture that will allow
natural sharing of resources among multiple organizations by
dynamically reconfiguring and creating a virtual network for a
particular application. Our architecture called "Internet 3.0"
consists of a 3-tier object model. The bottom tier consists of a
high-speed network infrastructure owned by multiple ISPs. The
second tier consists of hosts owned by different organizations
such as DoE, DARPA, Amazon, etc. The third tier consists of
users and data objects. This is a three tiered virtualization model
as compared to single tier virtualization being discussed in NSF's
GENI and FIND communities. This three tiered virtualization
model allows users to quickly setup a virtual cloud for any
application. The users and data can easily move among the host
clouds that themselves move on the infrastructure cloud. The
users, data, hosts, and infrastructures are owned by different
organizations that have their own policies for sharing and
isolation. Also the multi-tiered virtualization concept allows each
tier to recursively provide richer and more diversified set of core
services to the tier above it.

Keywords

Next Generation Internet Architecture, Overarching Architecture,
Application Specific Network Architecture, Cloud Computing,
Distributed Application Contexts, Multi-Tier, Policy Framework,
Object Abstraction, Quality of Service.

1. INTRODUCTION
The current Internet designed around the modest requirements of
file transfer and resource sharing applications fail to satisfy the
diverse needs of modern distributed applications. Also, the
context of “networking” has evolved significantly over the last 40
years of our experience with network systems, making it

necessary to retrospect on the basic underlying design of the
present Internet.
The trend in distributed computing is emerging towards running
applications on leased resources from third party compute
resource providers such as cloud platforms. The wide scale
availability of compute resources consolidated over multiple
cloud computing platforms ranging from private clouds within
universities and research organizations, science clouds consisting
of various grid resources such as supercomputing centers etc, and
commercial clouds such as Amazon, GoGrid, Rackspace, etc,
provide a highly distributed and diverse platform for the
deployment of disruptive, novel and distributed application
contexts. Clouds, with much better and flexible management
plane than original grids have allowed them to better utilize their
resources through more dynamic and efficient of sharing among
multiple different contexts. Also, isolation handled through
virtualization allow strong performance guarantees. These have
allowed cloud platforms to build a viable business model for
leasing compute resources at extremely cheap prices and at high
temporal granularity. However, this evolution of distributed
computing (in terms of diversity of distributed resource
availability) is unfortunately not matched by the underlying wide
area networking substrate of the Internet. Thus, applications
deployed over the cloud are currently restricted to being stand
alone instances over compute resources leased from a single cloud
provider that elastically serve the resource requirements for
variable load conditions. The key motivation of this paper is to
evolve a next generation Internet architecture that allows the
Internet to match the service diversity and performance guarantees
of cloud platforms, and thus, serve the requirements of these
highly distributed application contexts with diverse requirements,
more naturally.
One of the key factors restricting the Internet’s service diversity is
that although the Internet was built over a fundamentally novel
packet switching paradigm as against the circuit switching
paradigm of telephone networks, it still preserved the same
unicast conversational model of telephony as its basic
connectivity primitive. The reason for choosing this primitive in
telephony was understandably to evolve the underlying
connectivity of the system separately from the purpose for which
it would eventually be used for. While, this model worked well
for a paradigm which was restricted to a single application
context, it has proved to be extremely restrictive for the more
diversified set of application contexts of the Internet. The reason
being that this conversational model does not necessarily map into
the diversity of the application contexts that can be supported over
the highly flexible packet-switching primitive of the underlying
network. Thus, the Internet 3.0 architecture is based on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CCV Conference 2010, May 17–18, 2010, Singapore.
Copyright 2010 CCV
This work was supported in part by a grant from Intel Corporation and
NSF CISE Grant #1019119.

concept of a “communication-paradigm,” contrary to the existing
“communication-system” based architecture of the present
Internet. The difference between these two architectural
approaches being that in the “communication-system“ based
architecture the underlying communication primitives evolve
largely independent of the specific needs of the application
context that is installed over it, while the “communication-
paradigm“ based architecture ideally allows the communication
primitives to evolve per the specific requirements of application
contexts . The “communication paradigm-based” architecture is
driven by the better optimization scope of “verticlized” designs
over modular designs. However, defining such an architecture is
non–trivial and we are faced with the same classical trade-off
between simplicity (offering scalability) and flexibility
(introducing complexity) that drove the architectural design
choices behind the present Internet’s single best-effort
connectivity service model.
Additional complexities arise from the need to embed an explicit
policy framework into the communication paradigm. The truly
multi-ownership nature of modern application contexts necessitate
the ability to express policies at the required level of granularity,
within a framework that allows explicit policy negotiation and
enforcement. To motivate our case further, consider an example
of an enterprise application running over compute resources
leased from multiple cloud providers, and each distributed
location connected over the multi-domain infrastructure of the
Internet. Multiple such distributed contexts consolidated over
multi-owner substrate of compute and connectivity infrastructure
resources demand strong isolation guarantees in terms of both
performance and security. In the absence of a standardized policy
platform, interactions across ownership boundaries shall try to
implement local policies in ad-hoc, non-standard ways making the
system in-efficient, intractable and possibly in-deterministic. An
example can be seen in the state of policy implementation in the
current wide area inter-domain routing plane. BGP[21], the de-
facto inter-domain routing protocol of the Internet, tried to work
around the lack of an explicit policy framework in inter-domain
routing (for historic reasons), by allowing autonomous systems to
specify their local transit policies by conflating them with the
forwarding behavior of the AS. This conflation of policy and
functionality in the routing plane of the current Internet results in
local AS policies having global impact on the availability of end-
to-end paths. This in turn, indirectly impacts routing diversity,
resilience, efficiency, availability, path quality and multiple other
performance and quality metrics. The policy impact (or lack of it)
on modern applications, within the complex distributed ownership
context over which they are deployed, is inestimable. However,
the true challenge is to develop this policy framework within
manageable limits of complexity for it to be acceptable. Thus,
while policy expressiveness and granularity shall dictate the
available diversity to define an application context, abstraction
hierarchies to bound the complexity of these policy interactions
also need to be defined.

The discussion thus far, leads to the two architectural basis of the
Internet 3.0 architecture – 1. The Three-Tier Object Model, and
2) The Object Abstraction. The “three-tier object model” realizes
the inherent tiered nature of communication paradigms and allows
an explicit separation of data/users, hosts and infrastructure,
establishing them as independent entities within a tiered policy
framework. The “object abstraction” is the glue between the

functional plane and the policy plane of the Internet 3.0
architecture. It defines the most primitive building block the
Internet 3.0 architecture that allows specific application contexts
to be dynamically composed (Functional Plane) over distributed
resources leased from multiple resource owners through an
explicit policy-negotiation mechanism (Policy Plane). In the rest
of the paper, we shall discuss these architectural artifacts of the
Internet 3.0 architecture in more detail and try to justify the design
choices through well-founded design principles.

2. DESIGN PHILSOPHY
The Internet 3.0 architecture is governed by the following two
design philosophies:
A Diversity naturally follows ability to express and enforce
policy at the required level of granularity: Mostly, although
diversity is in the offing, choices can not be enabled owing to the
lack of a proper policy framework allowing policy expression,
enforcement and negotiations. As an example, years of research
and multiple technically sound solutions later, QoS routing could
not be widely deployed over the Internet. The reason can be traced
to the lack of a proper business framework wherein multiple
autonomous systems could negotiate their individual services and
aggregate them to provide an end-to-end inter-domain QoS
routing service to applications that need it. Also, the extent of
diversity depends directly on the level of granularity of policy
enforcements. An example can be cited in the per-flow and flow-
class managements of Inteserv[1] and Diffserv[16], respectively.
B. True diversity can be achieved only through the explicit
separation of policy from functionality: An example in support
of this design philosophy may be seen in current Internet inter-
domain routing where individual autonomous system (AS)
policies can effect the global state of the distributed routing
algorithm [7][8][9]. AS relationships govern routing quality. The
reason can be attributed to the conflation of the routing state to
represent both, reachability information as well as AS level
policies.
The three-tier object model recursively applies these design
philosophies to each of the three tiers of user/data, hosts and
infrastructure. While the three-tier object model builds the policy
framework of the Internet 3.0 architecture, the “object
abstraction” provides the basic primitive for realizing the diversity
requirements of specific application contexts within this policy
framework.
The Internet 3.0 architecture implements “Functional Plane”
overlaid with a “Policy Plane.” The “functional plane” realizes
the functional diversity requirements of specific application
contexts over a set of ownership and policy driven primitives
exposed through the “policy plane.” The two planes are glued
together using the basic abstraction of “objects” as shall be
discussed later in this paper.

3. THE POLICY FRAMEWORK
Building further on the discussion in Section 1 on
“communication-system” based design and “communication-
paradigm” based design, the key realization is that the application
context of modern distributed applications is inherently tiered.
The “communication-system” based design of the current Internet
is built on the basic primitive of “connectivity” between two
infrastructure access identifiers (in this case IP addresses). The

use-context of this “communication-system” (in this case data
communication) is a side-effect of this basic connectivity premise.
Similarly, proponents of data-centric networks [13] argue in favor
of re-defining the “communication-system” such that it is built
with “data connectivity” as its fundamental primitive. This new
connectivity premise more suitably models the data-
communication use-context of the Internet. However, it too makes
some very simplifying assumptions on the nature of the
communication paradigm. Firstly, it replaces the “where” based
“communication system” model with a “what” based model under
the assumption that the explicit representation of “hosts” and
“topological locations” would not be necessary for any application
context. Secondly, it neglects the fact that the multi-ownership
policy fabric shall still govern the implementation of the
“connectivity” primitive in non-standard ways (and beyond the
control of the primitive itself) in the absence of an explicit policy
framework.
The purpose of this discussion is to drive the point that the future
Internet architecture needs to define a framework that allows
multiple diversified contexts to co-exist. Also, such functional
diversity needs to be well aligned with the policy fabric of
multiple ownerships through explicit policy expression,
negotiation and enforcement.
The generality of the proposed framework is based on the tiered
dependency diagram (discussed next in Section 3.1) on entities
and their ownerships are represented through realms (Section 3.3).

3.1 Entities
 Data, host and infrastructure represent entities. Entities are broad
classification of resource types. Any networked system is
implicitly organized as an interaction between these entities.
However, the conflated design of the current Internet neither
allows these interactions to be explicitly associated with the
individual entities nor allows these entities to specifically enforce
their policies. The core of the multi-tier diversification
architecture lies in making inter-entity interactions explicit and
design a framework for active negotiation of policies between
them. “Tiered entity-dependency diagram” (Figure 1) depicts an
obvious dependency relationship between these entities in a
networking context. The bottom tier consists of a high-speed
network infrastructure. The second tier consists of hosts. The third
tier consists of Data. The direction of the arrows implicitly
represents a “depends on” relationship. Also, the dependencies are
transitive, meaning “Data needs to reside on a Host connected
through an infrastructure point of presence” to participate in a
valid networking context. Dependency among the entities
represents “fundamental constraints” in the architecture that guide
the process of dynamic composition of “objects” to form a valid
requirement specific networking context.

Figure 1. Tiered Entity Dependency Diagram

3.2 Conflated Identities
The current Internet design suffers from the problem of conflated
identities. As a direct consequence of the “communication-
system” based architecture of the current Internet (as discussed
above), a single identifier space (IP addresses in the case of
current Internet) over which the “connectivity” primitive is
defined, is conflated to represent the tiered-communication
paradigm. De-conflated identities are desirable primarily for two
reasons:
A. Functional Diversity: The tiered-paradigm of modern
distributed application contexts based on the “tiered entity
dependency diagram” primarily requires independent identifier
space for each tier to avoid strong-coupling between functions
defined in each tier. As an example, the contextual overloading of
IP addresses to serve both as a routing locator as well as a
connection identifier for end-to-end TCP connections, creates
unnatural dependencies which prevent simple and optimal
implementation of host mobility, multihoming and site traffic-
engineering functions.
B. Policy Granularity: While identifiers need to be de-conflated
along the tiers of the “tiered entity dependence diagram” for
functional independence across the tiers, the identity space must
also be de-conflated to represent the ownership boundaries along
the different tiers. This is especially true in the context of modern
distributed applications where resources along the multiple entity
tiers may be leased from multiple resource providers such as
infrastructure resources from ISPs, compute resources from
multiple cloud platforms and data resources from multiple content
providers, and composed into a single application context. Thus,
the identifier space needs to be able to represent the required level
of granularity of ownership-dictated policy expression, control
and enforcement to be aligned with the required functional
diversity of the architecture.

3.3 Realms
Realms overlay entities with a discreet ownership framework
(Figure 2). Ownership entails related administrative and
management responsibilities. In the “tiered entity-dependency
diagram” (Figure 1), the bottom tier infrastructure is owned by
multiple infrastructure owners. The second tier of hosts is owned
by individual users or different organizations such as DoE,
DARPA, Amazon, etc. The third tier of users and data may
belong to specific organizations or individual users. Thus, realms
represent logical divide of entities into multiple ownership and
management domains.

Figure 2. Realms

3.4 Objects
An object is a logical instantiation of an entity, in a specific
networking context. Objects encapsulate the complexities of
resource allocation, resource sharing, policy enforcements etc and
expose a standard interface representing capabilities (in terms of
standardized abstract parameters) and fixed or negotiable policies.
Objects are owned and managed by realms and represent the
responsibilities and policies pertaining to its realm membership.

3.5 Three-Tier Object Model
Finally, Figure 3 represents the three-tier object model that maps
the functional diversity requirements of modern application
contexts to the policy enforcement granularity of the multi-
ownership resource base that compose these diversified contexts.

Figure 3. Three-Tier Object model

Object represents a fundamental service unit managed and leased
by the owner “realm.” The “objects” in each tier and belonging to
each realm are accessible through an “object abstraction”
interface. We have been using and shall continue to use the term
“object” interchangeably to refer to the “object abstraction
interface.” The object abstraction interface exposes a set of
capabilities and policies associated with the object. These
capabilities are implemented over the set of resources allocated to
the object through realm specific mechanisms. Applications need
to lease objects belonging to a single or multiple realms to
compose their specific application context. Object composition
entails “policy negotiations.” Realm managers are responsible for
management of objects within their realm. Apart from this, the
realm managers in each tier participate to implement intra-tier and
inter-tier (or cross-tier) management and control functions such
object advertisement and leasing framework, monitoring and
auditing framework, etc.
The three tier object model represents the “policy-plane” of the
Internet 3.0 architecture. It exposes the interface over which the
“functional-plane” of the architecture is implemented. The “object
abstraction” serves as the common glue between the policy plane
and functional plane by allowing functional requirements of
distributed application contexts to be mapped onto object
capabilities of objects leased from multiple ownership realms and
composed over the policy negotiation and enforcement primitives
of the policy plane. In the next section, we shall briefly discuss
the “functional plane” of Internet 3.0, followed by a set of object
composition principles that are dictated by both the functional as
well as policy primitives of the architecture.

4. THE FUNCTIONAL PLANE
The functional plane of Internet 3.0 has three levels of abstraction:
1) Objects: Objects represent the basic level of abstraction. 2)
End-to-end Services: End-to-end services represent the next
level of abstraction. An end-to-end service is composed from
objects of the same type (belonging to the same entity tier) with
diverse capabilities. The object’s realm publishes an object
through a publish/lease framework. Service providers may lease
these objects to compose an end-to-end service. Leasing an object
entails policy negotiations. The basic and most common policies
include, 1) pricing policies laying the terms of usage, and 2) SLA
(Service Level Agreement) entailing the capability advertized by
the object. 3) Application: A distributed application represents
the highest level of abstraction. Applications specify a
“requirement specific context” through a Requirement
Specification (RSpec) document that is translated and rendered
into a Map document. The map guides object compositions to
specific services and service compositions to distributed
applications.

4.1 Objects: Functional Taxonomy
We already defined “objects” in Section 3.4. In this section we
present a more detailed functional taxonomy of objects with
reference to the entity type that they belong to.
A. Data Objects: “Data/Content” is the resource owned by data
owners or data realms. Data is leased as Data objects. A Data
object is data encapsulated within meta-data. Capability
pertaining to a data object is represented through its content,
availability, number of instances, etc. Policies represent the usage
terms, security policies, authorization and authentication
parameters etc. As an example, a movie ‘X’ created by the
production company ‘XYZ Corporation’ may be encapsulated
within meta-data specifying copyright policies, terms and policies
of usage etc and leased to a Video-on-Demand (VoD) provider for
distribution. Video-on-Demand is a service provided by the VoD
provider by leasing movie objects from multiple production
houses. This service is instantiated through a distributed
“requirement specific” content distribution application with
specific processing, storage, buffering, networking, etc.
requirements.
B. Host Objects: Host objects shall typically abstract capabilities
of data processing, data storage and other data handling
capabilities as required by data services, that specify the context
of data handling for a specific distributed application over the
typical host resources of processors, memory, caches, secondary
storage etc. These resources may belong to separate owners or
host realms such as grid computing platforms, cloud computing
platforms, individual users, organizations etc.
C. Infrastructure Objects: Autonomous systems (AS) of the
present Internet shall be treated as infrastructure realms.
Infrastructure realms shall advertize “transit objects”. Each transit
object shall be characterized by an ingress and egress AS neighbor
and transit characteristics in terms of throughput, delay, etc.
Internally, a transit object needs to be instantiated as required
resource reservations and forwarding table entries to honor the
capabilities advertized by the object. It must be realized that
objects are expected to represent a high degree of diversity and
cannot be classified under broad service classes as in
differentiated services architectures. Also, these objects represent

leases that are dynamically instantiated and have temporal
validity.
All “objects” can be classified as “real” objects and “placeholder”
objects.
D. Real Object: An object that is instantiated physically through
an object lease and is embedded as a functional component of an
application is called a real object. Unless otherwise mentioned the
term “object” always refers to a “real object.”
E: Placeholder Objects: A “placeholder object” is a non-
instantiated object to which no resources has yet been allocated. A
placeholder object is primarily an advertized object that is yet to
be leased by an application. There is a one-to-one mapping
between a placeholder object and a real object. The difference
between the two being that the real object is implicitly bound by a
Service Level Agreement (SLA) on its advertized capabilities,
while no such SLA binds the placeholder object.

4.2 Object Composition: Principles
The basic premise of the Internet 3.0 functional plane is to allow
applications to dynamically compose their specific tiered contexts
through composing objects leased over the “Policy Plane.” In this
section we present the underlying principles that govern object
compositions.
Principle #1: Objects represent singular capabilities. These
singular capabilities can only satisfy “local requirement
specifications” in the map. Thus, “end-to-end requirement
specifications” of a map has to be factored into singular object
capabilities that can be satisfied by object composition. Such
composition shall spawn new end-to-end requirements and re-
definition of existing end-to-end requirements.

Principle #2: Derived from Principle #1, if re-defining an end-to-
end requirement owing to higher priority end-to-end requirement
initiated refactoring, causes the original end-to-end service to be
rendered impossible, then the map is considered invalid.
Principle #3: Strict top-down ordering of object composition:
The object composition is guided by the top-down movement of
the map and hence enforces a strict top-down order in object
composition.
Principle #4: Horizontal Composite: Simple/Composite objects
belonging to the same entity level may be composed together to
form a horizontal composite object, if, 1) each object satisfies at-
least one singular requirement specification of the map through
its set of capabilities, 2) their realm policies can be negotiated,
and 3) their object policies for horizontal composite formation can
be negotiated.
Principle #5: Vertical Composite: A vertical composite is formed
by stacking a simple/composite object of same or lower entity
level below another simple/composite object if, 1) the difference
in their entity level is at-most one, 2) their realm policies can be
negotiated, and 3) their object policies for vertical composite
formation can be negotiated.
Principle #6: Termination condition: The termination of a
composition is indicated by the prune function on a map returning
an empty set for both local and end-to-end requirement
specifications.

4.3 Object Composition: Map Primitive
The basic primitive that drives the mechanism of object
composition is called the “MAP primitive.” It is characterized by
the “MAP” document and a set of functions. The “MAP
primitive” lays down a broad framework for object composition.
The specific details of the map rendering process are
implementation specific.
4.3.1. MAP: A map may be considered to be a type of dynamic
“workflow” [22][23][4][11][26]. It represents requirement
abstractions that drive object composition. It is a set of
requirement specifications defining a particular “requirement
specific” networking context. The map presents different levels of
abstraction, with different sets of parameters at each entity level
and moves top-down through the different entity levels.
The requirements are specified as “local requirements” and “end-
to-end (e2e) requirements”. A local requirement relates to
parameters that can be satisfied by individual objects while end-
to-end requirements are spawned when the individual objects are
composed into groups. The map initially starts off with a few local
and end-to-end requirement parameters defined over placeholder
objects (Section 4.1 Taxonomy E) at the application specification
level. This highly abstract specification mostly provides a top
level description of the desired networking context. The context is
refined and the abstract service parameters instantiated with actual
object capabilities as the map moves downwards.
The key idea is to map the top level context specific requirements
into discrete individual object capabilities. The requirements are
prioritized at each level. Thus, at each step of the map’s descent, it
initiates a horizontal composition of objects that satisfy a subset of
the map’s local requirements. The composition also spawns a new
set of end-to-end requirements. The end-to-end requirements of
objects belonging to the same entity level are recursively satisfied
by factoring an end-to-end requirement as local requirements and
initiating a horizontal composition (Section 4.2 Principle #4). The
horizontal composites are stacked downwards along a descending
priority order. Finally, when all the local and end-to-end
requirements are satisfied, the composite represents the
requirement specific context that was set to be defined.
4.3.2. MAP functions: The three basic functions that implement
the MAP primitive are as follows:
1. Translate: Replaces the placeholder objects in local and end-
to-end requirements with real objects.
2. Prune: Prunes a translated map to get rid of the local
requirements that have been satisfied by the object compositions
in that level.

3. Remap: draws a new map from translated and pruned map. The
group of end-to-end requirement specifications of the pruned map,
having the highest priority is remapped to spawn new local and
end-to-end requirement specifications in terms of objects that
satisfy the end-to-end service required for these objects. The end-
to-end requirements not part of this group are redefined in terms
of this remapping.

4.4 The Service Level
Realms own and manage objects. These objects are logical
abstractions of realm specific services, capabilities and policies.
End-to-end services need to be composed by aggregating objects
leased from object owners that match the requirements of the
specific end-to-end service context. In the object abstraction

concept, end-to-end services are represented as composite objects
and can be generally typified as a “horizontal composite” object
(Section 4.2 Principle #4). Objects are logical entities and
implicitly carry an SLA on the advertized capabilities. However,
these SLAs are activated only through object lease and
instantiation as an integral part of an object composition. Thus,
service level SLAs are mapped to object level SLAs. Nonetheless,
the executor of the SLA is different in the two cases and so are the
stakes on non-compliance.

4.5 The Application Level
Applications are vertical compositions (Section 4.2 Principle #5)
of end-to-end services. Composing a “requirement specific”
application can be abstracted as translating the “RSpec document”
to the map document”(Section 4.3) and managing the top-down
movement of the “map”, through cycles of translate, prune and
remap functions, as discussed in Section 4.3.2. The design of the
management plane at this level presents two distinct choices
depending on where the “remap” (Section 4.3.2, Part 3) function
is performed. One choice is for the application to perform the
remap function, thus requiring the application to specifically
spawn each service, and also be responsible for re-composition of
the context when required. The other option is for the remapping
function to be performed at the service layers with each service
spawning the next service layer in a top-down fashion, and thus
locally handle re-compositions at and below the service layer that
needs to be recomposed. However, at this point, we believe that
the architecture shall need to define separate suite of protocols to
allow existence of both mechanisms. The first option of having
applications in full control of spawning each required service is
necessary for realizing the basic goal of top-down diversity
wherein the application requirement may be directly instantiated
by the application itself in the absence of a service provider
providing the relevant service. The second option of delegating
the “remap” responsibility to services, allows composite services
to be pre-configured, thus defining common contexts in terms of
pre-composed services.

5. THE APPLICATION CONTEXT
In this section, we shall discuss a prototype object composition
scenario that iterates through the “MAP” functions to dynamically
spawn a multi-tier application context starting from an abstract set
of requirement specification.
Initially to start with, single and group requirements are specified
in terms of application level place-holder objects belonging to the
placeholder object space. At the first level of object composition,
when the place-holder object’s local requirements are instantiated
over actual objects belonging to the object space, the map is
translated. After this the map is pruned and then remapped to
guide the next level of object composition. Thus, the process of
object composition involves multiple cycles of (translate, prune,
remap) of the original map till ‘prune’ returns a map with empty
local and end-to-end requirement specification sets.
Figure 4, is an example of the map rendering procedure along the
different service levels, discussed thus far. The highest level
application layer represents requirements between a data source
and the data sink. An intermediate set of data processing objects
processes the data produced by the data source. Between the first
two data processing host objects, a delay tolerant service needs to
be interposed that provides capability to store the data till a
forwarding link is available. Finally all these objects map to

infrastructure objects for actual transmission. The interposed host
entity level services introduce packet transmission delays between
the data-source and data-sink, thus requiring the “transit objects”
over the infrastructure to vary in their capabilities. Also, as shown
in the figure, at each downward step, the local requirements are
instantiated on real objects and the end-to-end requirements are
rendered into multiple placeholder objects.
An Example Application Scenario: The scientific community is
generally far spread out geographically and so are scientific
installations. Experimenters generally need to run experiments
remotely on huge shared experimental installations. These
experiments often produce enormous amounts of data that might
need to be fed to another experiment that depends on this data.
Also, huge amount of data need to be stored and made available
for processing or analysis when required. An experimental setup
consisting of geographically spread out scientists, scientific
installations producing/consuming data, supercomputers churning
humongous amounts of data require the services of a massive and
extremely efficient distributed system. The resource requirements
in terms of data processing and storage, and real-time bounds on
delay of peta-scale data transfer, force scientific experiments to be
conducted on specially built grid computing facilities that are
served by dedicated networking resources [6][3][10]. Such
specialized facilities incur huge setup costs and time that need to
be amortized through sufficient long term usage. The basic design
objective of the multi-tiered diversified architecture of Internet 3.0
is to enable the Internet to serve as the substrate of such large
scale requirement specific applications. Being able to utilize the
distributed shared resource base of the Internet with the required
degree of isolation and QoS, provisioned for the duration of the
scientific experiment has huge gains in terms of cost savings, low
barrier to entry, high utilization, high availability and increased
robustness owing to higher redundancy.
In the context of multi-tier diversification, an experimental setup
run by geographically spread out data objects
producing/consuming huge amounts of data can be composed as a
high level distributed service. Distributed data processing objects
and storage objects leased from multiple host facilities such as
supercomputing centers, cloud computing platforms, etc., can be
composed into an end-to-end host service by end-to-end host level
service providers. These processing and storage objects together
with the data source and data sinks need to be connected by
infrastructure objects with specific delay and throughput
properties. Infrastructure objects satisfying these connectivity,
delay and throughput requirements can be leased from multiple
infrastructure object owners and composed into end-to-end paths
by infrastructure level service providers. Thus, the specific
requirements of distributed scientific experiment contexts can be
served over the shared Internet facility through object abstraction
and object composition in a multi-tiered diversified networking
architecture.
Figure 5 represents a policy view of the above scenario. Each tier
spawns a virtual cloud representing the entities of that tier. The
virtual cloud represents a common policy horizontal composite of
objects from that tier. The functional requirement of the
application context is satisfied through the recursively calling the
translate, prune and remap function on the application level
specification. The dotted line between each tier represents a
service layer through which specific tier-based capabilities are
advertized and leased as horizontal composites. The application
itself is a vertical composite of tiered service layers.

Figure 4. Example Scenario of “Rendering the Map”

The exact mechanisms for the map rendering process is
implementation specific. Several different map rendering
mechanisms could co-exist over the basic primitive of object
abstraction. The policy framework and the functional plane
provide clean interfaces for management, control and policy
negotiation that allow the process of spawning a whole
application context across resources leased from multiple
ownerships to be completely automated. This allows novel
application contexts to be defined and deployed on-the fly. Also,
it allows applications to manage their commercial viability better
by allowing all resource lease/allocation and de-allocation to be
dynamic over a multi-ownership framework.

Figure 5. Example Scenario of “Rendering the Map

Some of the features of application contexts over the Internet 3.0
framework are:
1. Dynamically Configurable: A distributed application context
may be spawned dynamically over the distributed resource base of
multiple owners. Also, the framework allows applications to
dynamically re-configure (scale up/scale down/ release) its
context allowing it to be suitably manage its performance and be
economically feasible.
2. QoS Mapping and Abstractions: “Requirement specific
networking” is driven by the need to represent QoS requirements
of individual contexts and mapping it to distributed resource
capability parameters that represent specific requirements from
the networking substrate. Multi-tier diversification through the
“object abstraction” is a direct manifestation of multi-level QoS
specification and mapping [17][18][14][15][5][12]. Thus, an
application QoS specification is mapped to a distributed service
QoS parameters. The service QoS parameters are further mapped
into host parameters including number of hosts with the service
instance required, location of such hosts, host capabilities such as
connectivity, storage, memory, processing power, etc, and finally
need to be further mapped into infrastructure path parameters such
as delays, throughputs, link speeds etc. There may be many more
intermediate levels of mapping and at each level the requirement
for that level may be further mapped to specific device parameters
such as buffer sizes, queuing delays, memory cache levels,
processor parallelism etc. The “tiers” in the multi-tier
diversification architecture represent levels of object abstractions
in this multi-level mapping and present interfaces exposing
capabilities, policies, etc. in some standard representation.

3. Fine Grained Policy Enforcements: The current Internet
design conflates identities, obscuring ownerships. Separate
ownerships of infrastructure, hosts, and data cannot be explicitly
represented in the current architecture. Lack of explicit
representation of ownership makes it extremely difficult to
enforce policies at the required level of granularity. This creates
tussles. Examples of such tussles are abundant in the form of deep
packet inspections, port blocking, IP blocking and other such
mechanisms by data path proxies to enforce organizational
policies on incoming/ outgoing data and organizational host
access, ISP’s throttling P2P overlay traffic that do not conform to
ISP routing policies, P2P traffic avoiding ISP rationing through
end-to-end encryptions, etc. The future diversified Internet need to
explicitly establish the ownership of objects and foster an
environment of active negotiation such that owners of objects can
specify, negotiate and enforce their policies at the required level
of granularity and object leases implicitly entail a service level
agreement between object owner towards the leaser.
4. Co-operative Business Incentives Aligned to Promote
Diversified Choices: The “object abstraction” in Internet 3.0 de-
conflates functionality from policies by separating end-to-end
services provided by service providers from object owners. This
separation creates a unique business environment of cooperative
competition wherein object owners co-operate with each other to
make their objects more attractive to end-to-end service contexts
and at the same time compete to make their objects better than
others to guarantee their lease amongst similar existing choices.
5. Well Defined Accountability: One of the biggest hurdles in
enforcing service level agreements (SLA) [1][20][25][19][24] into
the current Internet is the lack of architectural support for defining
a framework to ascertain accountability. The Internet 3.0
architecture is proposed to be designed with SLA enforcement as
a basic requirement. “Objects” will be the building blocks for any
network context. These objects will advertize capabilities. A
leasing framework will allow leasing these objects to services.
This lease will implicitly enforce an SLA on the advertised
capabilities of the object, between object owners and the object
lessee. Additionally, the management plane of Internet 3.0 will
provide inherent architectural support for a multi level monitoring
and measurement framework allowing monitoring and
measurements at different levels of aggregation.
6. Flexibility and Future Ossification: The primary reason for
the current ossification of the Internet can be attributed to 1) huge
investments in the current technology, 2) need for extensive and
concurrent multi-lateral changes, and 3) lack of enough business
incentives. The design of multi-tier diversification will try to
address these hurdles through, 1) “object abstraction”
encapsulating diversity and exposing a standardized abstract
interface, 2) allowing current stakeholders to trade their
capabilities and resources as objects, 3) creating newer business
opportunities in the form of diversified service providers creating
newer and disruptive services from objects leased by object
owners, and 4) allowing each party to express, negotiate and
enforce their individual policies. The Internet 3.0 architecture is
designed to create an architectural framework wherein diverse
technologies and associated protocols can co-exist under a
uniform management and control framework and co-operate to
define requirement specific networking contexts, thus providing
huge flexibility gains and preventing future ossification.

6. SUMMARY
In this paper, we propose a framework wherein the availability of
enormous amount of compute resources may be put into the
correct perspective and evolve an integrated “communication
paradigm” based architecture over the present “communication-
system” based architecture. The communication-paradigm based
architecture shall enable novel distributed applications to be
dynamically deployed and managed over resources leased from
multiple ownerships. Also, the three tier perspective of the
communication-paradigm based architecture over a recursive
application integration platform allows an application context to
be highly “verticlized.” The salient feature of the architecture is
that it overlays a policy framework on the functional plane, thus
allowing the functional plane to evolve more naturally and
legitimately over the multi-ownership nature of resources serving
the application context.

7. REFERENCES
[1] AT&T Managed Internet Service (MIS),
http://new.serviceguide.att.com/mis.htm, 2007.

[2] R. Braden, D. Clark, S. Shenker, “Integrated Services in the
Internet Architecture: an Overview,” RFC 1633, June 1994
[3] CERNET, www.edu.cn/cernet_1377/index.shtml
[4] Marco Danelutto; Paraskevi Fragopoulou, Vladimir Getov
(Eds.), “Making Grids Work,” Proceedings of the CoreGRID
Workshop on Programming Models Grid and P2P System
Architecture Grid Systems, Tools and Environments, Heraklion,
Crete, GreeceSpringer US, 12-13 June 2007, pp 309-321

[5] L. A. DaSilva, “QoS mapping along the protocol stack:
discussion and preliminary results,” IEEE International
Conference on Communications, 2000, Volume 2, pp 713-717

[6] ESNet, http://www.es.net/

[7] Joan Feigenbaum, Rahul Sami, Scott Shenker, “Mechanism
design for policy routing,” Journal of Distributed Computing,
Springer, Volume 18, Number 4 / March, 2006, pp 293-305

[8] Nick Feamster, Ramesh Johari, Hari Balakrishnan,
“Implications of autonomy for the expressiveness of policy
routing,” ACM SIGCOMM Computer Communication Review,
Volume 35, Issue 4 (October 2005), pp 25 - 36

[9] L. Gao, “On Inferring Automonous System Relationships in
the Internet,” IEEE Globe Internet, Nov 2000

[10] GEANT, http://www.geant.net/
[11] A. Hoheisel, “Grid Workflow Execution Service–Dynamic
and interactive execution and visualization of distributed
workflows,” In Proceedings of the Cracow Grid Workshop 2006,
Cracow, 2006.
[12] Jean-Francois Huard, Aurel A. Lazar, "On QOS Mapping in
Multimedia Networks," Computer Software and Applications
Conference, Annual International, pp. 312, COMPSAC '97 - 21st
International Computer Software and Applications Conference,
1997.
[13] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N.
Briggs, and R. Braynard. Networking Named Content. In CoNext,
Rome, Italy, December, 2009

http://new.serviceguide.att.com/mis.htm
http://www.springerlink.com/content/g80030/?p=c50d76a2126a401eb9312ad01c0e9ad5&pi=0
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6882
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6882

[14]Jingwen Jin, Klara Nahrstedt, "QoS Specification Languages
for Distributed Multimedia Applications: A Survey and
Taxonomy," IEEE MultiMedia, vol. 11, no. 3, pp. 74-87, July
2004

[15] Klara Nahrstedt, Duangdao Wichadakul, Dongyan Xu,
“Distributed QoS Compilation and Run time Instantiation,”
Proceedings of IEEE/IFIP International Workshop on QoS, 2000

[16] K. Nichols, S. Blake, F. Baker, D. Black, “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers,” RFC 2474, December 1998

[17] C. Koliver, K. Nahrstedt, J. Farines, J. D. Fraga, and S.A.
Sandri, „Specification, Mapping and Control for QoS
Adaptation,” Real-Time Syst. 23, 1/2 (Jul. 2002), 143-174.

[18] B. Li and K. Nahrstedt, “A control-based middleware
framework for quality of service adaptation,” IEEE Journal on
Selected Areas in Communications (JSAC) 17(9): 1632-1650

[19] J. Martin and A. Nilsson, “On service level agreements for IP
networks,” In IEEE INFOCOM ’02, 2002.
[20] NTT Communications, “Global IP Network Service Level
Agreement (SLA),” http://www.us.ntt.net/support/sla/network/,
2007
[21] Y. Rekhter, T. Li, S.Hares, Editors, A Border Gateway
Protocol 4 (BGP-4), RFC4271, Januay, 2006
[22] J. Wang, D. Rosca, W. Tepfenhart, A. Milewski, and M.
Stoute, “An intuitive formal approach to dynamic workflow
modeling and analysis,” In Proceedings of the Third International
Conference on Business Process Management (Nancy, France,
2005).

[23] B. Shafiq, A. Samuel, H. Ghafoor, “A GTRBAC based
system for dynamic workflow composition and management
Object-Oriented Real-Time Distributed Computing,” 2005,
ISORC, 18-20 May 2005 Page(s): 284 – 290

[24] A. Shaikh and A. Greenberg, “Operations and Management
of IP Networks: What Researchers Should Know,” Tutorial
Session, ACM SIGCOMM ’05, August, 2005

[25] Sprint NEXTEL, “Service Level Agreements,”
http://www.sprint.com/business/support/serviceLevelAgreements.
jsp, 2007.

[26] J. Yu, R. Buyya, “A Taxonomy of Scientific Workflow
Systems for Grid Computing,” SIGMOD RECORD, VOL 34;
NUMB 3, 2005, pages 44-49

http://www.us.ntt.net/support/sla/network/
http://www.sprint.com/business/support/serviceLevelAgreements.jsp
http://www.sprint.com/business/support/serviceLevelAgreements.jsp

	1. INTRODUCTION
	2. DESIGN PHILSOPHY
	The Internet 3.0 architecture is governed by the following two design philosophies:
	A Diversity naturally follows ability to express and enforce policy at the required level of granularity: Mostly, although diversity is in the offing, choices can not be enabled owing to the lack of a proper policy framework allowing policy expression, enforcement and negotiations. As an example, years of research and multiple technically sound solutions later, QoS routing could not be widely deployed over the Internet. The reason can be traced to the lack of a proper business framework wherein multiple autonomous systems could negotiate their individual services and aggregate them to provide an end-to-end inter-domain QoS routing service to applications that need it. Also, the extent of diversity depends directly on the level of granularity of policy enforcements. An example can be cited in the per-flow and flow-class managements of Inteserv[1] and Diffserv[16], respectively.
	3. THE POLICY FRAMEWORK
	3.1 Entities
	
	3.2 Conflated Identities
	3.3 Realms
	3.4 Objects
	3.5 Three-Tier Object Model

	4. THE FUNCTIONAL PLANE
	4.1 Objects: Functional Taxonomy
	4.2 Object Composition: Principles
	Principle #2: Derived from Principle #1, if re-defining an end-to-end requirement owing to higher priority end-to-end requirement initiated refactoring, causes the original end-to-end service to be rendered impossible, then the map is considered invalid.
	4.3 Object Composition: Map Primitive
	The basic primitive that drives the mechanism of object composition is called the “MAP primitive.” It is characterized by the “MAP” document and a set of functions. The “MAP primitive” lays down a broad framework for object composition. The specific details of the map rendering process are implementation specific.
	4.4 The Service Level
	4.5 The Application Level

	5. THE APPLICATION CONTEXT
	6. SUMMARY
	7. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

