Code to Comment lranslation:

A Com
on Mode

Dd

rative Study

E-

fectiveness &

Errors

Junayed Mahmud,
Fahim Faisal,
Raihan Islam Arnob,
Antonios Anastasopoulos,
and Kevin Moran

The First Workshop on Natural Language Processing for
Programming (NLP4Prog'21)

/GEORGE
. MASON

Al PAIR PROGRAMMER

1 interface CommentMarker {
2 start: string;
3 end: string;
® 0y
GitHub
6 const markers: { [language:string]: CommentMarker } = {
° 7 |
8
Copllot
10
11
12
13
1 def strip_suffix(filename): .
) " 15
3 Removes the suffix from a filename 16
i Wi
5 return filename[:filename.rfind('."')]
6
7 def te
8 |
9 import urllib.request, json
10
11
12 |

1
2
3
1
5}
6
7
8
9

AUTOMATED SOFTWARE DOCUMENTATION

‘ def isPrime(n): ‘
prime = True
1f n==1:

return False
for 1 in range (2, n):

72 @7 Automated Software

Q Documentation Tool

ifn % 1==0:
prime = False

return prime ‘

Lexical Gap Return true if a given
re= number is prime, and
I false otherwise
I I ' .Q

RELATED VWWORK

RELATED VWWORK

1902.01954v1 [cs.SE] 5 Feb 2019

X1V

Summarizing Source Code using a Neural Attention Model

Srinivasan Iyer

Toannis Konstas

Alvin Cheung

Luke Zettlemoy«

Computer Science & Engineering
University of Washington
Seattle, WA 98195
{sviyer,ikonstas,akcheung,lsz}@cs.washington.edu

Abstract

1. Source Code (C#):

SRS T, (OIRE pRee

T-u‘-hl.‘_ll-l-l,-l-.—.'-ng text) (
3lock () ;

\ctualWidtk

A Neural Model for Generating Natural

Language Summaries of Program Subroutines

Alexander LeClair*, Siyuan Jiang!, Collin McMillan*
*Dept. of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
Email: {aleclair, cmc}@nd.edu
TDept. of Computer Science
Eastern Michigan University
Ypsilanti, MI, USA
Email: sjiangl @emich.edu

Abstract—Source code - creating natural lan-
guage descriptions of source code behavior - is a rapidly-growing
research topic with appli to ic d
generation, program comprehension, and software maintenance.
Traditional techniques relied on heuristics and templates built
manually by human experts. Recently, data-driven approaches
based on neural machine translation have largely overtaken
template-based systems. But nearly all of these techniques rely
almost entirely on programs having good internal documentation;
without clear identifier names, the models fail to create good
summaries. In this paper, we present a neural model that
combines words from code with code structure from an AST.
Unlike previous approaches, our model processes each data
source as a separate input, which allows the model to learn code
structure independent of the text in code. This process helps
our approach provide coherent summaries in many cases even
when zero internal documentation is provided. We evaluate our
technique with a dataset we created from 2.1m Java methods. We
find improvement over two baseline techniques from SE literature
and one from NLP literature.

Index Term t tic d tati
code ion, code

generation, source
t generation

I. INTRODUCTION

A “summary” of source code is a brief natural language
description of that section of source code [1]. One of the most
common targets for summarization are the subroutines in a

technologies that improve aut
process,” and “that document:
ter extract knowledge from c
code [7]. However, the state-of-
since that time for tool suppor
generation. Tools such as Je
automate the format and pres
still leave programmers with tt
writing the text and examples.

Research into generation of
of code has come to be kne
rization” [9], with significant
of summaries of subroutines:
progress was made based on
templates [1], [10]-[14] or eve
tions such as mimicking human
as in many research areas and :
by Allamanis et al. [16], these
way to Al based on big data i

The inspiration for a vast m
code summarization originates
(NMT) from the natural lang
munity. An NMT system con
another. It is typically thougl

vl [cs.SE] 22 Mar 2021

1g rounded uf

th inside a

Project-Level Encoding

Deep Code Comment Generation®

Xing Hu! , Ge Li!, Xin Xia?, David Lo®, Zhi Jin'
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, China
“Faculty of Information Technology, Monash University, Australia
3School of Information Systems, Singapore Management University, Singapore
Hhuxing0101 lige,zhijin}@pku.edu.cn, 2xin.xia@monash.edu, * davidlo@smu.edu.sg

ABSTRACT

During software maintenance, code comments help developers
comprehend programs and reduce additional time spent on reading
and navigating source code. Unfortunately, these comments are
often mismatched, missing or outdated in the software projects.
Developers have to infer the functionality from the source code.
This paper proposes a new approach named DeepCom to automat-
ically generate code comments for Java methods. The generated
comments aim to help developers understand the functionality
of Java methods. DeepCom applies Natural Language Processing
(NLP) techniques to learn from a large code corpus and generates

comments from learned features. We use a deep neural network

g ' . . PEEE . ~ LI B

for Neural Source Code

Summarization of Subroutines

Aakash Bansal, Sakib Haque, and Collin McMillan
Dept. of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
{abansall, shaque, cmc}@nd.edu

Abstract—Source code summarization of a subroutine is the
task of writing a short, natural language description of that sub-
routine. The description usually serves in documentation aimed at
programmers, where even brief phrase (e.g. ‘“‘compresses data to a
zip file”) can help readers rapidly comprehend what a subroutine
does without resorting to reading the code itself. Techniques
based on neural networks (and der-decoder model d
in particular) have established themselves as the state-of-the-art.
Yet a problem widely recognized with these models is that they

the infor i ded to create a summary is present
within the code being summarized itself — an assumption which is
at odds with program comprehension literature. Thus a current
research frontier lies in the question of encoding source code
context into neural models of summarization. In this paper, we
present a project-level encoder to improve models of code sum-
marization. By project-level, we mean that we create a vectorized
representation of selected code files in a software project, and
use that representation to augment the encodeg&' state-of-the-art
neural code summarization techniques. We demonstrate how our
encoder improves several existing models, and provide guidelines
for maximizine improvement while controlline time and resource

roots in machine translation [10], in which the encoder creates
a vectorized representation of a sentence in one language
(e.g. English), while the decoder creates a representation of
that same sentence in a different language (e.g. French).
When trained with enough data (on the order of millions
of examples [11]), these models can learn to associate pat-
terns in the encoder representation to patterns in the decoder
representation. After training, the encoder can be given an
input example, and the model can generate a likely decoder
representation and therefore a likely output example — and
translate French sentences to English. For source code, the
encoder’s job is to represent the source code, while the decoder
represents the source code summary — give the encoder source
code, and the decoder generates a summary.

The obvious problem with these approaches is that they
can only generate a summary based on whatever source

code is passed to the encoder. Thus these approaches make
. LY Sy 1 Ty

o -

1 INTRODUCTION

In software development and maintenance, developers spend around
59% of their time on program comprehension activities [45]. Previ-
ous studies have shown that good comments are important to pro-
gram comprehension, since developers can understand the meaning
of a piece of code by using the natural language description of the
comments [35]. Unfortunately, due to tight project schedule and
other reasons, code comments are often mismatched, missing or
outdated in many projects. Automatic generation of code comments
can not only save developers’ time in writing comments, but also
help in source code understanding.
Many approaches have been proposed to generate comments for
ethods [24, 35] and classes [25] of Java, which is the most popu-
: programming language in the past 10 years!. Their techniques
ry from the use of manually-crafted [25] to Information Retrieval
V) [14, 15]. Moreno et al. [25] defined heuristics and stereotypes to
nthesize comments for Java classes. These heuristics and stereo-
pes are used to select information that will be included in the
mment. Haiduc et al. [14, 15] applied IR approaches to generate
mmaries for classes and methods. IR approaches such as Vector
race Model (VSM) and Latent Semantic Indexing (LSI) usually
arch comments from similar code snippets. Although promising,
ese techniques have two main limitations: First, they fail to ex-
wct accurate keywords used for identifying similar code snippets
1en identifiers and methods are poorly named. Second, they rely
 whether similar code snippets can be retrieved and how similar
e snippets are.
Recent years have seen an emerging interest in building proba-
listic models for large-scale source code. Hindle et al. [17] have
dressed the naturalness of software and demonstrated that code
n be modeled by probabilistic models. Several subsequent studies
wve developed various probabilistic models for different software
sks [12, 23, 40, 41]. When applied to code summarization, different
»m IR-based approaches, existing probabilistic-model-based ap-
oaches usually generate comments directly from code instead of
nthesizing them from keywords. One of such probabilistic-model-
sed approaches is by Iyer et al. [19] who propose an attention-
sed Recurrent Neural Network (RNN) model called CODE-NN.
builds a language model for natural language comments and
gns the words in comments with individual code tokens directly
*attention component. CODE-NN recommends code comments
ven source code snippets extracted from Stack Overflow. Experi-
sntal results demonstrate the effectiveness of probabilistic models
| code summarization. These studies provide principled methods

r probabilistically modeling and resolving ambiguities both in
1iral lanoniace decerintione and in the ecanrece code

RELATED VWWORK

Summarizing Source Code using a Neural Attention Model

Srinivasan Iyer Toannis Konstas Alvin Cheung Luke Zettlemoy:
Computer Science & Engineering

University of Washington Deep Code Comment Generation®

BLEU

Seattle, WA 98195 IR
{sviyer,ikonstas,akcheung, 1sz}@cs.washington.edu Xing Hu', Ge Li', Xin Xia’, David Lo’, Zhi Jin
IKey Laboratory of High Confidence Software Technologies (Peking University), Mo, Beijing, China
“Faculty of Information Technology, Monash University, Australia
3School of Information Systems, Singapore Management University, Singapore
1 i lig du 2xin, du, * i du.
i I e e ety 4 ABSTRACT 1 INTRODUCTION
ock ()3 During software maintenance, code comments help developers
comprehend programs and reduce additional time spent on reading 59% of their time on program comprehension activities [45]. Previ-
and navigating source code. Unfortunately, these comments are ous studies have shown that good comments are important to pro-
\ctualwidtt often mismatched, missing or outdated in the software projects P
. Developers have to infer the functionality from the source code. of a piece of code by using the natural language description of the
A Neural Model for Generating Natural T s papass e tproh A Do o omt. comients (591, Ut e 10 bt ks ahedle and
‘] ' rounded uf ically generate code comments for Java methods. The generated other reasons, code comments are often mismatched, missing or
Language Summaries of Program Subroutines o comients mea 15 b Ueiopee et e Rty ditiatel BT e o e el oo e
th inside a of Java methods. DeepCom applies Natural Language Processing can not only save developers’ time in writing comments, but also
) — - (NLP) techniques to learn from a large code corpus and generates help in source code understandi
Alexander LeClair®, Siyuan Jiang", Collin McMillan comments from learned features. We use a deep neural network Many approaches have been pmpused to generate comments for

“Dept. of Computer Science and Engineering ethods [24, 35] and classes [25] of Java, which s the most popu-
University of Notre Dame ¢ programming language in the past 10 years'. Their techniques
Notre Dame, IN, USA ry from the use of manually-crafted (25] to Information Retrieval

1902.01954v1 [cs.SE] 5 Feb 2019

arXiv

Email: {aleclair, cme} @nd.edu
Dept. of Computer Science

Eastern Michigan University
Ypsilanti, MI, USA

Email: sjiang] @emich.edu

Abstract—Source code summarization — creating natural lan-
guage descriptions of source code behavior - is a rapidly-growing
research topic with applications to automatic documentation
generation, program comprehension, and software maintenance.
Traditional techniques relied on heuristics and templates built
‘manually by human experts. Recently, data-driven approaches
based on neural machine translation have largely overtaken
template-based systems. But nearly all of these techniques rely
almost entirely on programs havi

technologies that improve aut
process,” and “that document:
ter extract knowledge from ¢
code [7]. However, the state-of-
since that time for tool suppor
generation. Tools such as J¢
automate the format and pres:

ing
without clear identifier names, the models fail to create good

summaries. In this paper, we present a neural model that
combines words from code with code structure from an AST.

still leave with tt
writing the text and examples
Research into generation of

Project-Level Encoding

for Neural Source Code

Summarization of Subroutines

Aakash Bansal, Sakib Haque, and Collin McMillan
Dept. of Computer Science and Engineering
University of Notre Dame.

Notre Dame, IN, USA
{abansall, shaque, cme} @nd.edu

Abstract—Source code summarization of a subroutine is the
task of writing short, natural lungunge desciption of that sub-
usually serves

£ pl X
Unlike previous approaches, our model processes each data of code has come to be kn« D e b esens "Pidly"c'xlﬁmd wmmbm:i‘;:
source as a separate input, which allows the model to learn code rization” [9], with significant does without resorting to reading the code itself. mhnlqm

structure independent of the text in code. This process helps
our approach provide coherent summaries in many cases even
when zero internal documentation is provided. We evaluate our
technique with dataset we created from 2.m Java methods, We
o improvement aver two busline echniques from SE lteature
i ome oo NP e
o Torme——sutomatic. documentation generation, source
code summarization, code comment generation

L. INTRODUCTION

A “summary” of source code is a brief natural language
description of that section of source code [1]. One of the most
common targets for summarization are the subroutines in a
program; for example, the one-sentence descriptions of Java
methods widely used in automatically-formatted documenta-
tion e.g. JavaDocs [2]. These descriptions are useful because
they help programmers understand the role that the subroutine
plays in a program — empirical studies have repeatedly shown
that understanding the role of the subroutines in a program
is a crucial step to understanding the program’s behavior
overall [3}-[6]. Even a short summary of a subroutine e.g.
“returns the player’s hitpoint count” can tell a programmer a
Iot about that subroutine and the program as a whole.

A holy grail of software engineering research has long
been to generate these summaries automatically. Forward et
al. pointed out in 2002 that “software professionals value

swork s supported in part by NSF CCF-1452959, CCF-1717607, and
Pt et

of summaries of subroutines
progress was made based on
templates (1], [10]-{14] or eve
tions such as mimicking human
as in many research areas and;
by Allamanis ef al. [16]), thesc
way to Al based on big data i
‘The inspiration for a vast m
code summarization originates
(NMT) from the natural lang:
munity. An NMT system com
another. It is typically thoug!
sequence (seq2seq) learning, in
is one sequence and is conv
Sequence representing a e.g.
engineering research, machine
as a metaphor for source code
tokens in the body of a subrc
the desired natural language s
This application of NMT to ¢
strong benefits in a variety of
However, an Achilles’ heel
marization techniques is a rel
written high quality internal
identifier names or comments.
ingful summary, meaningful v
body of the subroutine. In tra

2103.11599v1 [cs.SE] 22 Mar 2021

arXiv

based on neural networks (and encoder-decoder model d
i particular) have established themselves 95 he state-ot-tho-art.
Yet a problem widely recognized with these model i that they
informa reate a summary s present
ihin the code hemu Summartzed sel - an asoumpilon which I
at odds with program comprehension literature. Thus a current
research frontier lies in the question of encoding source code
context into neural models of summarizaton, In this paper, we
present a project-level encoder to improve models of code sum-
Toaccation, BY proRet 16wl ¢ men hat e reate » ectorized
representation of selected code files in a software project, and
use that representation to augment the encoder of state-of-the-art
neural code summarization techniques. We demonstrate how our
encoder improves several existing models, and provide guidelines
for maximizing improvement while controlling time and resource
costs in model size.
Index Terms—source code summarization, automatic docu-
‘mentation generation, neural networks

1. INTRODUCTION

Source code summarization is the task of writing short,
natural language descriptions of that code [1], (2]. Typical
targets of summarization are the subroutines of a software
project. The purpose of the descriptions is to provide human
readers with a big picture view of what each subroutine does.
Even a single phrase e.g. “compresses data to a zip file”
can help a person understand code without having to read
every detail of that code [3]. Summaries of subroutines form
the foundation of much documentation aimed at program-
mers such as JavaDocs (4], and the literature is replete with
studies demonstrating how programmers often rely on these
summaries, only tuming to reading the code itself as a last
resort [5). And while a majority of documentation is still
written manually, recent research has made inroads towards
automatic code summarization [6].

The backbone of almost all state-of-the-art approaches to
automatic source code summarization is the neural enct
decoder model architecture [7]-{9). This architecture has its

“This work is supported i part by NSF CCF-1452959 and CCF-1717607
erants.

roots in machine translation [10), in which the encoder creates
a vectorized representation of a sentence in one language
(e.g. English), while the decoder creates a representation of
that same sentence in a different language (e.g. French)
When trained with enough data (on the order of millions

of examples [11]), these models can leam to associate pat-
tems in the encoder representation to patterns in the decoder
representation. After training, the encoder can be given an
input example, and the model can generate a likely decoder
representation and therefore a likely output example — and
translate French sentences to English. For source code, the
encoder’s job is to represent the source code, while the decoder
represents the source code summary — give the encoder source

d the decoder generates a summary.

The obvious problem with these approaches is that they
can only generate a summary based on whatever source
code is passed to the encoder. Thus these approaches make
a tacit assumption that all of the information necessary to
generate that summary is present in that source code. This

9 [14, 15]. Moreno et al. [25] defined heuristics and stercotypes to
nthesize comments for Java classes. These heuristics and stereo-
pes are used to select information that will be included in the
‘mment. Haiduc et al. [14, 15] applied IR approaches to generate
‘mmaries for classes and methods. IR approaches such as Vector
vace Model (VSM) and Latent Semantic Indexing (LST) usually
rch comments from similar code snippets. Although promising,
ese techniques have two main limitations: First, they fail to ex-
act accurate keywords used for identifying similar code snippets
aen identifiers and methods are poorly named. Second, they rely
\ whether similar code snippets can be retrieved and how similar
e snippets are.
Recent years have seen an emerging interest in building proba-
listic models for large-scale source code. Hindle et al. [17) have
dressed the naturalness of software and demonstrated that code
n'be modeled by probabilistic models. Several subsequent studies
we developed various probabilistic models for different software
sks [12,23, 40,41]. When applied to code summarization, different
>m IR-based approaches, existing del-based ap-
oaches usually generate comments directly from code instead of
nthesizing them from keywords. One of such probabilistic-model-
sed approaches is by Iyer et al. [19] who propose an attention-
sed Recurrent Neural Network (RNN) model called CODE-NN.
builds a language model for natural language comments and
gns the words in comments with individual code tokens directly
 attention component. CODE-NN recommends code comments
ven source code snippets extraced from Stack Overtlow. Experi-
tal results
\ code summarization. These studies provide principled methods
¢ probabilistically modeling and resolving ambiguities both in
tural language descriptions and in the source code.

assumption is at odds with decades of program
literature [12]-[14]. This literature is quite clear that high-level
descriptions such as summaries very often contain concepts
that can only be understood in the context of the other code
in the same software project. To paraphrase a classic example,
a subroutine called book () can only be fully understood if it
is also known that it exists in a class called Seats in a project
called AircraftTravel [15].

In this paper, we present a project-level encoder to augment
existing encoder-decoder neural models of source code sum-
marization. Our approach is “project level” in that it creates a
vectorized representation of a subset of code files in a software
project. Our approach augments existing models in that the
output of our approach may be combined with encoder portion
of most existing code summarization models: most models
contain an encoder for the source code itself that produces
some vectorized representation of that code, and our encoder
extends that representation. The advantage to our encoder is
that it provides context to the model about the software project
in which a subroutine exists, so that the model does not rely
only on the information in that subroutine.

We evaluate our project encoder in three ways. First, we
implement our project encoder as an addition to four existing
neural source code summarization techniques. We demonstrate

METEOR

ROUGE-L

PROBLEM

returns the tip text for
’ this property

public String numRulesTipText() { |)' Human written Smoothed
return "Number of rules to find."; docstring BLEU-4: 16.99

L}

= 508)
i

Code Summarization \
Tool returns the text of the

text of the current text

Error: Repetition

RESEARCH QUESTIONS

RQ1: Effectiveness in
predicting natural language
summaries

RQ2: Errors made by our
studied models

RQs: Differences in the errors
made by different models

DATASET: FUNCOM

e

Code Summarization 500000 method- Java
comment pairs

® ©

Training Validation Testing

Funcom 400000 50000 49997

NEURAL CODE SUMMARIZATION MODELS

code2seq

- Encoder-decoder model
- Capture the syntactic construction of source

code by encoding AST paths
- Applies attention to generate the final sequence

NeuralCodeSum
- Encoder-decoder model with a copy mechanism

- Relative positioning to encode pairwise token

CodeBERT
* Pre-trained on both bimodal and unimodal data

- Similar architecture as RoberTa
« Uses multi-layer bidirectional Transformer

QUALITATIVE EVALUATION METHODOLOGY

Initial Discussion: Gold set (15
method-comment pairs)

label errors

Number of conflicts after
second round

| Number of conflicts after
First round: 148 method- first round Second round: 50 method-

comment pairs, comment pairs,

148 x 3 = 444 predictions | 90 x3 =150 predictions

TAXONOMY OF THE ERRORS

Missing Context (1, 2, 2)

Missing Prog. Language Information (0, 0, 2)
- Missing Attributes that refer to PL specific
information.

Missing Database Information (1, 2, 0)
- Missing database attributes that provide
needed context to method functionality.

Incorrect Semantic Information (6, 27, 19) =

AW

Partial Incorrect Information (6, 11, 3)
- Semantically meaningful, with a few errors.

Semantically Unrelated to Code (0, 11, 13)
- Does not capture code context whatsoever.

Algorithmically Incorrect (0, 5, 3)
- Conveys a different algorithmic meaning as

E]

Missing Information (65,56,27)

compared to the code.

Missing Critical Information (21, 14, 7)
- Comment is missing critical semantic
information.

Missing Task Elaboration (5, 2, 1)
- Did not describe what code was doing properly.

Missing Non-Critical Information (28, 19, 5)
- Useful comment but non-critical info missing.

Missing Web-Related Information (0, 1, 0)
- Comment failed to mention web-related
identifier.

Failed to Mention Identifiers (0, 11, 6)
- Does not mention specific variable/attribute
names, often using a generic identifier.

Missing Identifier (5, 3, 7)
- No identifier mentioned at all.

Missing Data Structure Information (2, 0, 1)
- Does not capture relevant data structure info

Missing Syntax Information (2, 6, 0)
- Important syntactic information (e.g. code
ordering) is missing.

Missing Exception (1, 0, 0)
- Does not mention relevant exception info

Missing Conditional Information (1, 0, 0)
- Misses code branching information

(=X

Incorrect Construction (26, 31, 53)

Consistent with Ground Truth (88, 57, 17) 2

Consistent with Specific Info (30, 15, 5)
- Comment matches ground truth well.

Consistent but Missing Specific Info (56, 35, 12)
- Comment matches ground truth mostly, but
misses some important specific information.

Improves upon Semantic Meaning (2, 6, 0)
- The predicted comment matches the ground
and improves capturing method meaning.

Consistent but with Unnecessary Info (0, 1, 0)
- Accurate but has some unnecessary info.

Incorrect Identifier/Attribute (5, 19, 15)
- Correctly identifies a variable or attribute, but
uses it incorrectly.

Incomplete Sentence (1, 1, 10)
- Predicted comment is grammatically
incomplete.

Repetition (0, 7, 27)
- Comment contains unnecessary repetition of a
word or fragment between 2-3 times.
Extreme Repetition (0, 2, 1)
- Comment contains unnecessary repetition of a
word or fragment more than 2-3 times.

Focusing Only on Method Name (20, 1, 0)
- When comment focuses mostly on the method
name, which provides an incomplete but
partial description of the functionality.

Grammatical Errors (0, 1, 0)
- Grammatical Error is present in predicted
caption.

Extraneous/Unnessecary
Information Included (2, 3, 4)

2 2

Unnecessary Data Structure Info (1, 0, 0)
- Adds unnecessary data structure info to
comment.

Unnecessary File Information (0, 1, 1)
- Adds unnecessary file information to
comment.

Unnecessary Incorrect Information (1, 2, 3)
- Adds information to comment that is both
incorrect and unnecessary.

The numbers shown for each category
illustrate the number of instances

found for (CodeBERT, NeuralCodeSum,
and code2seq) respectively

Over-Generalization (7, 21, 21) E g

Different Meaning (2, 3, 3)
- Comment over-generalizes on the meaning of
the code functionality.

Algorithmically Incorrect (1, 6, 3)
- Overgeneralizes to the point of incorrectness

Missing Attribute Specification (4, 12, 15)
- Uses generic names such as var.

RQ| RESULTS: PREDICTION OF NATURAL LANGUAGE

SUMMARIES
Smoothed BLEU-4 METEOR

codencrT INERE codeserT |EED

NeuralCodeSum 21.5 NeuralCodeSum 2/7.7/8

codezseq _m codezscq | NERE
6.25 125 18.75 25 O 7.75 155 23.25 31

ROUGE-L
coceserT [EEEGEGEEETS
NeuralCodeSum 33.71

—_ -

0 9 18 27 36

CodeBERT is the best performing model among the
three neural models

13

RQ?2 RESULTS: TYPES OF ERRORS COMPARED TO
GROUND TRUTH

public float getDashPhase() {

o
l J return dashPhase;

. }
. Ground truth: gets the dash phase of the
Consistent to the = slioslig e

ground truth (30.28%)

Prediction: gets the dashphase

RQ?2 RESULTS: TYPES OF ERRORS COMPARED TO
GROUND TRUTH

@
v ?
Consistent to the Missing Information
ground truth (30.28%) (27.66%) \

public String getSchema() {

return fSchema;

}

Ground truth: returns a path to the xml
schema of a extension point

Prediction: returns the name of the xml
schema

RQ?2 RESULTS: TYPES OF ERRORS COMPARED TO

GROUND TRUTH
Consistent to the Missing Information Incorrect Construction
ground truth (30.28%) (27.66%)

r (20.56%)

public String numRulesTipText() {
return "Number of rules to find.";

}

Ground truth: returns the tip text for this

property

Prediction: returns the text of the text of the
current text

RQ?2 RESULTS: TYPES OF ERRORS COMPARED TO

GROUND TRUTH
Consistent to the Missing Information Incorrect Construction
ground truth (30.28%) (27.66%) (20.56%)

public void setHeight (int height) {
containerHeight = height,

),
Incorrect or failed to . ..
recognize identifiers Grounhd f[rtrj]tth.]:[r;rl]s Tet;tlhoq sgts Ithe mini-
(13.20%) mum height of the table in pixels

Prediction: sets the height of the image

RQ?2 RESULTS: TYPES OF ERRORS COMPARED TO

GROUND TRUTH
Consistent to the Missing Information Incorrect Construction
ground truth (30.28%) (27.66%) (20.56%)

public boolean isCreatelds() {

return createlds;

Incorrect or failed to

recognize identifiers o
(13.20%) Over-generalization

(9.15%) Prediction: returns whether the is the

automatically creates ids and resolves id
collisions

default id

RQJ3 RESULTS: DIFFERENCES BETWEEN THE ERRORS
MADE BY DIFFERENT MODELS

®?

CodeBERT & %
NeuralCodeSum + Consistent but missing

specific information

code2seq — wmlie @

Repetition

)
CodeBERT wullipe-

public void setReadTimeout (int timeout) { L _J
if (0 > timeout) {

Most frequent categories

Focusing only on method name
this.read Timeout = timeouft;

}

Ground truth: sets the timeout value in milliseconds for
reading from the input stream

Prediction: sets the read timeout

RQJ3 RESULTS: DIFFERENCES BETWEEN THE ERRORS
MADE BY DIFFERENT MODELS

®?

CodeBERT & @N

NeuralCodeSum + Consistent but missing

specific information

code2seq — wmlie @

Most frequent categories Repetition

PN
T

Focusing only on method name
public float getDashPhase() {

CodeBERT wullipe-

return dashPhase;

NeuralCodeSum & >
code2seq

}

Ground truth: gets the dash phase of the
basicstroke

Semantically unrelated to code [t leie e SR R R eI AR ARt
ols] Value

CONCLUSION

CodeBERT performs the best compared to
other models based on reference-based
metrics

F o !

o Incorrect
Over- Construction

Missing

generalization :
Information

2

CONCLUSION

CodeBERT performs the best compared
to other models based on reference-
based metrics

Incorrect

o Construction
Missing

Information

Future studies should also do similar kind
of qualitative study

22

FUTURE WORK

2 508)

@"YA

Prediction from a model

O * - Use newer machine translation
. . N metrics

Human written description

FUTURE WORK

/-)@7 She is eating a apple.
@ = A self-attention

Combine two
different
models

Prediction from a model

Use newer
O -> S machine
adh

translation metrics

Missing Incorrect
Information Construction

Improve
performance Taxonomy

RELEVANT LINKS

Zenodo

Github

https://github.com/SageSELab/CodeSumStudy

25

Junayed Mahmud (jmahmud@gmu.edu)

Fahim Faisal (ffaisal@gmu.edu)

Raihan Islam Arnob (rarnob@gmu.edu)

Antonios Anastasopoulos (antonis@gmu.edu)

@ P1/GEORGE

Kevin Moran (kpmoran@gmu.edu)

mailto:jmahmud@gmu.edu
mailto:rarnob@gmu.edu
mailto:antonis@gmu.edu
mailto:kpmoran@gmu.edu

PROBLEM

'public String numRulesTipText() {
return "Number of rules to find.";

Error: Repetition

3o

Code Summarization
Tool

Human written
docstring

returns the tip text for
this property

Smoothed
BLEU-4: 16.99

returns the text of the
text of the current text

TAXONOMY OF THE ERRORS

Missing Context (1,2,2) @

Missing Prog. Language Information (0, 0, 2)
+ Missing Attributes that refer to PL specific
information.

Missing Database Information (1, 2, 0)

+ Missing database attributes that provide
needed context to method functionality.

Incorrect Semantic Information (6, 27, 19) ‘
N

Consistent with Ground Truth (88, 57, 17)

Partial Incorrect Information (6, 11, 3)
- Semantically meaningful, with a few errors.

Semantically Unrelated to Code (0, 11, 13)

- Does not capture code context whatsoever.
Algorithmically Incorrect (0, 5, 3)

- Conveys a different algorithmic meaning as

Missing Information (65,56,27) %

compared to the code.

Consistent with Specific Info (30, 15, 5)
- Comment matches ground truth well.

Consistent but Missing Specific Info (56, 35, 12)
- Comment matches ground truth mostly, but
misses some important specific information.

Improves upon Semantic Meaning (2, 6, 0)
+ The predicted comment matches the ground
and improves capturing method meaning.

Missing Critical Information (21, 14, 7)
+ Comment is missing critical semantic
information.
Missing Task Elaboration (5, 2, 1)
+ Did not describe what code was doing properly.
Missing Non-Critical Information (28, 19, 5)
+ Useful comment but non-critical info missing.
Missing Web-Related Information (0, 1, 0)
+ Comment failed to mention web-related
identifier.
Failed to Mention Identifiers (0, 11, 6)
+ Does not mention specific variable/attribute
names, often using a generic identifier.
Missing Identifier (5, 3,7)
+ No identifier mentioned at all.
Missing Data Structure Information (2, 0, 1)
+ Does not capture relevant data structure info
Missing Syntax Information (2, 6, 0)
- Important syntactic information (e.g. code
ordering) is missing.
Missing Exception (1, 0, 0)
- Does not mention relevant exception info

Missing Conditional Information (1, 0, 0)

Incorrect Construction (26, 31, 53) X

Consi: but with Unnecessary Info (0, 1, 0)
+ Accurate but has some unnecessary info.

Incorrect Identifier/Attribute (5, 19, 15)
« Correctly identifies a variable or attribute, but
uses it incorrectly.

Incomplete Sentence (1, 1, 10)
+ Predicted comment is grammatically
incomplete.
Repetition (0, 7, 27)
+ Comment contains unnecessary repetition of a
word or fragment between 2-3 times.
Extreme Repetition (0, 2, 1)
- Comment contains unnecessary repetition of a
word or fragment more than 2-3 times.
Focusing Only on Method Name (20, 1, 0)
+ When comment focuses mostly on the method
name, which provides an incomp but

Extraneous/Unnessecary v
Information Included (2, 3, 4)

Unnecessary Data Structure Info (1, 0, 0)
+ Adds unnecessary data structure info to
comment.

Unnecessary File Information (0, 1, 1)
+ Adds unnecessary file information to
comment.

Unnecessary Incorrect Information (1, 2, 3)
+ Adds information to comment that is both
incorrect and unnecessary.

partial description of the functionality.

Grammatical Errors (0, 1, 0)
- Grammatical Error is present in predicted
caption.

+ Misses code branching information

The numbers shown for each category
illustrate the number of instances
found for (CodeBERT, NeuralCodeSum,
and code2seq) respectively

Over-Generalization (7, 21, 21) S c

Different Meaning (2, 3, 3)
- Comment over-generalizes on the meaning of
the code functionality.
Algorithmically Incorrect (1, 6, 3)
- Overgeneralizes to the point of incorrectness
Missing Attribute Specification (4, 12, 15)
- Uses generic names such as var.

QUALITATIVE EVALUATION METHODOLOGY

e..
- Q=0

e yey

Initial Discussion: Gold set (15
method-comment pairs)

b

Number of conflicts after —
first round Second round: 50 method-
comment pairs,
50 x 3 = 150 predictions

label errors conflict resolve

Number of conflicts afte
second round

First round: 148 method-
comment pairs,

148 x 3 = 444 predictions |

CONCLUSION

CodeBERT performs the best compared
to other models based on reference-
based etrics

Incorrect

. Construction
Missing

Information

Future studies should also do similar kind
of qualitative study

