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THE IMPORTANCE OF SOFTWARE DOCUMENTATION

function check_things($first_name, $last_name, $age) {
if (
Ictype_alpha($_POST]['first_name']) OR
Ictype_alpha($_POST]['last_name']) OR
Ictype_digit($_POST['age')
) {

return false;

}

return true;

}
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// Check if the user input for the first name, last name
and age match alphabetic and numeric characters respectively

function check_things($first_name, $last_name, $age) {
if (
Ictype_alpha($_POST]['first_name']) OR
Ictype_alpha($_POST]['last_name']) OR
Ictype_digit($_POST['age')
) {

return false;

}

return true;



AUTOMATED SOFTWARE DOCUMENTATION

function check_things($first_name, $last_name, $age) {
if (
Ictype_alpha($_POST['first_name']) OR
Ictype_alpha($_POST['last_name']) OR
Ictype_digit($_POST['age)
){

return false;
}
return true;
}
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/I Check if the user input for the first name, last name
and age match alphabetic and numeric characters respectively

function check_things($first_name, $last_name, $age) {
if (
Ictype_alpha($_POST[first_name']) OR
Ictype_alpha($_POST['last_name']) OR
Ictype_digit($_POST['age")
){

return false;

}

4 return true;
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SOFTWARE DOCUMENTATION AS MACHINE TRANSLATION

function check_things($first_name, $last_name, $age) {
if (
Ictype_alpha($_POST['first_name']) OR
Ictype_alpha($_POST['last_name']) OR
Ictype_digit($_POST['age")
){

return false;

}

return true;

}

b )

Neural Machine
Translation Model

// Check if the user input for the first name,
last name

and age match alphabetic and numeric
characters respectively
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Abstract—Source code summarization is the task of creat-
ing short, natural language descriptions of source code. Code
summarization is the backbone of much software documentation
such as JavaDocs, in which very brief comments such as “adds
the customer object” help programmers quickly understand a
snippet of code. In recent years, automatic code summarization
has become a high value target of research, with approaches
based on neural networks making rapid progress. However, as
we will show in this paper, the production of good summaries
relies on the production of the action word in those summaries:
the meaning of the example above would be completely changed if
“removes” were substituted for “adds.” In this paper, we advocate
for a special emphasis on action word prediction as an important
stepping stone problem towards better code summarization —
current techniques try to predict the action word along with
the whole summary, and yet action word prediction on its own
is quite difficult. We show the value of the problem for code
summaries, explore the performance of current baselines, and
provide recommendations for future research.

Index Terms—neural networks, source code summarization,
automatic documentation generation, Al in SE

I. INTRODUCTION

The task of creating short, natural language descriptions of
source code has come to be known as “source code summa-
rization.” Code summarization is the backbone of a plethora
of documentation such as JavaDocs [1], in which the natural
language description (the “summary”) provides a quick way
for programmers to understand the software’s components.
Very often, these summaries are written for subroutines, so
that programmers can read that a subroutine e.g. “computes
the dot product of two vectors” rather than interpret the source
code itself. Traditionally, programmers write these summaries
around the time they write the code, to help other programmers
in understanding that code.

Anstnsmntir ocnde ci1immarratian haec heaan o draam Af cnfisarara

Yet, as we will show in this paper, very often these tech-
niques owe their good performance on their ability to predict
the first word of the summary. Some of the reasons for this are
technical: Existing techniques tend to be based on an encoder-
decoder architecture (e.g. seq2seq, graph2seq) in which the
output summary is predicted one word at a time. The first word
is predicted first, then that first prediction is used to predict
the second word, and so on. If the first word is wrong, the
model can have a hard time recovering. This situation can be
exaggerated by the aggressive use of attention mechanisms (as
in Transformer-based models [3]), which can attend previous
words in the predicted summary to parts of the source code.
Often each subsequent word depends more and more on the
previous predictions.

A more fundamental reason the first word is important is
that the first word tends to be the action word in code sum-
maries. As we will show (and in line with style guides [1], [4]),
summaries usually fall into a pattern where the action word
not only occurs first, but sets the tone for the whole summary.
Consider examples such as “initializes the microphone for the
web conference”, “sets the current speaker’s volume”, and
“sorts the list of connected users.” A lot of information is
communicated just by knowing that the code initializes, sets,
or sorts. The rest of the summary depends on that information,
begging the question: initializes/sets/sorts what?

The importance of early predictions in text generation
models has been recognized in the NLP community for years,
with several proposed technical workarounds e.g. beam search
and alternative training strategies. Meanwhile, the prevalence
of verb-direct object patterns in code summaries has long
been observed in SE literature [57 What is not yet recognized
is the special importance of the action word in source code
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ource code summary. Almost all neural approaches to
e summarization are some form of an attentional encoder-
oder model, in which the encoder creates a vectorized
resentation of source code, and the decoder represents the
ral language summary. In the past five years, neural ap-
aches have almost completely superseded alternatives such
entence templates or IR-based keyword extraction [8]-[10].
urrent strategies to neural code summarization can be
adly classified by the type of information they focus on
eling in the encoder. There are approaches that treat
e as text, focusing on the identifier names and other
ral language content buried in code [11], [12]. There are
roaches that encode the context of other code in the same
rce file [13]. Some techniques model the structure of source
e with an RNN by linearizing structural representations
h as the AST [12], [14], [15]. And there is very active
tiny of GNN-based encoders to model structures such as
AST or CPG [16]-[18]. All of these lines of inquiry are
wing promise and continue to advance the state of the art.
ecent work in source code summarization has been focus-
on providing models with ever more complex representa-
s of code with the assumption that it will yield better and
r predictions of code summaries [13], [15], [19], [20],
]. This approach mirrors progress in many other fields
h as machine translation or image captioning [21], [22].
wever, hints from prior work point to a complementary re-
onship among neural models of code summarization, rather




SKEPTICISM OF NEURAL MACHINE TRANSLATION

Code to Comment “Translation”:
Data, Metrics, Baselining & Evaluation
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ABSTRACT

The relationship of comments to code, and in particular, the task
of generating useful comments given the code, has long been of
interest. The earliest approaches have been based on strong syntac-
tic theories of comment-structures, and relied on textual templates.
More recently, researchers have applied deep-learning methods
to this task—specifically, trainable generative translation models
which are known to work very well for Natural Language trans-
lation (e.g., from German to English). We carefully examine the
underlying assumption here: that the task of generating comments
sufficiently resembles the task of translating between natural lan-
guages, and so similar models and evaluation metrics could be used.
We analyze several recent code-comment datasets for this task:
CopeNN, DeepCoM, FuNCoMm, and DocSTRING. We compare them
with WMT19, a standard dataset frequently used to train state-of-
the-art natural language translators. We found some interesting
differences between the code-comment data and the WMT19 natu-
ral language data. Next, we describe and conduct some studies to
calibrate BLEU (which is commonly used as a measure of comment
quality). using “affinity pairs" of methods, from different projects,
in the same project, in the same class, etc; Our study suggests that
the current performance on some datasets might need to be im-
proved substantially. We also argue that fairly naive information
retrieval (IR) methods do well enough at this task to be considered
a reasonable baseline. Finally, we make some suggestions on how
our findings might be used in future research in this area.
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1 INTRODUCTION

Programmers add comments to code to help comprehension. The
value of these comments is well understood and accepted. A wide
variety of comments exist [42] in code, including prefix comments
(standardized in frameworks like Javadocs [31]) which are inserted
before functions or methods or modules, to describe their function.
Given the value of comments, and the effort required to write
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Figure 1: Distribution of trigrams in English (blue) in the
WMT [10] German-English machine-translation dataset,
and in English comments from several previously published
Code-Comment datasets

them, there has been considerable interest in providing automated
assistance to help developers to produce comments, and a variety
of approaches have been proposed [38, 47, 48, 59].

1

Comments (especially prefix comments) are typically expected
to be a useful summary of the function of the accompanying code.
Comments could be viewed as a restatement of the semantics of
the code, in a different and more accessible natural language; thus,
it is possible to view comment generation as a kind of translation
task, translating from one (programming) language to a another
(natural) language. This view, together with the very large volumes
of code (with accompanying comments) available in open-source
projects, offers the very appealing possibility of leveraging decades
of research in statistical natural language translation (NLT). If it’s
possible to learn to translate from one language to another from
data, why not learn to synthesize comments from code? Several
recent papers [22, 26, 33, 61] have explored the idea of applying
Statistical Machine Translation (SMT) methods to learn to translate
code to an English comments. But are these tasks really similar?
We are interested to understand in more detail how similar the
task of generating comments from code is to the task of translating
between natural languages.

Comments form a domain-specific dialect, which is highly struc-
tured, with a lot of very repetitive templates. Comments often begin
with patterns like "returns the", "outputs the", and "calculates the".
Indeed, most of the earlier work (which wasn’t based on machine

1* Authors contributed equally

“Natural Language NMT datasets
show a stronger input-output
dependence than Code to Comment
translation datasets”

This suggests that code-to-comment
translation is likely more difficult
via neural machine translation
due to an information mismatch
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Abstract—We advocate for a paradigm shift in supporting the
information needs of developers, centered around the concept
of automated on-demand developer documentation. Currently,
developer information needs are fulfilled by asking experts or
consulting documentation. Unfortunately, traditional documenta-
tion practices are inefficient because of, among others, the manual
nature of its creation and the gap between the creators and
consumers. We discuss the major challenges we face in realizing
such a paradigm shift, highlight existing research that can be
leveraged to this end, and promote opportunities for increased
convergence in research on software documentation.

I. THE VISION

We advocate for a new vision for satisfying the information
needs of developers, which we call On-Demand Developer
Documentation (OD3). Development tasks typically involve
a variety of artifacts, tools, processes, and other humans.
Currently, when developers have questions, they may consult
curated documentation, explore artifacts, browse Questions
and Answers (Q&A) websites, or seek the advice of experts.
Within this new perspective, an OD3 system would automati-
cally generate high-quality documentation in response to a user
query; the OD3 system would use a combination of knowledge
extraction techniques on an underlying collection of struc-
tured and unstructured artifacts, including source code, issue
tracking system metadata, and posts from Q&A forums. For
example, a developer assigned to repair a fault related to copy-
paste functionality might ask about the implementation of the
system’s Clipboard feature; in response, the OD3 system might
generate a document that explains relevant design decisions for
this feature (e.g., based on mining historical project data), and
suggest alternatives (e.g., based on processing Q&A forum
data). This paper is the outcome of a community effort; in the
remainder, we motivate the need for OD3 and then discuss
major research challenges that need to be addressed to realize
a vision of OD3.

II. MOTIVATION

Documentation pervades many, if not most, software en-
gineering activities [1], [2]. A particular type of documenta-
tion, which we call developer documentation, is specifically
intended to assist software developers in the creation or
modification of a system. Common types of developer doc-
umentation include source code comments, tutorials and ref-
erence documentation for application programming interfaces
(APIs), and design documentation. Developer documentation
is considered to be one of the most useful pieces of information
by developers during software maintentance [1].

Although the ideal of fully self-documented software has
been with us since the dawn of the discipline [3], the reality
of software development technology and practice falls short.
Documentation is an essential resource for creating and main-
taining software systems, but it suffers from two fundamental
limitations. First, it is costly to create and maintain, and
second, it is a non-executable artifact whose presence and
correctness are not technically critical to the construction of
software. The combination of high cost and low immediate
return on investment is particularly nefarious, and reports on
documentation being a low priority task are routine [1], [4].
Over the years, tools have been developed to reduce some of
the accidental inefficiencies related to the production of doc-
umentation. However, documentation tools provide relatively
little help with the creation of original content.

Curated documentation can provide coherent and authorita-
tive answers to some classes of questions, but the scope of such
documentation is necessarily limited. The field has benefited
from many studies of information needs of developers and
maintainers [5], [6], [7], from which questions arise that would
be hard to document, especially in the absence of a clear
promise of return on investment.

This suggests that we need to find
new techniques and data sources
to discover hidden abstractions of
software to better
automate documentation
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NEURAL IMAGE CAPTIONING
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NEURAL IMAGE CAPTIONING OF UIs
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CLARITY PROJECT OVERVIEW

1 Clarity Dataset Collection

(Screenshots + GUI metadata + Captions) 2 Naturalness & Topic Analysis

3 Train Image-Captioning and 4 Quantitative and Qualitative
Metadata Captioning Models Model Evaluations
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CLARITY PROJECT OVERVIEW
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1 Clarity Dataset Collection

(Screenshots + GUI metadata + Captions) 2 Naturalness & Topic Analysis

3 Train Image-Captioning and 4 Quantitative and Qualitative
Metadata Captioning Models Model Evaluations
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CROSS ENTROPY ANALYSIS - RESULTS
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ToOPIC MODELING ANALYSIS - RESULTS

LDA Topics Learned over high-level captions, k = 15

Assigned Label Top 7 Words

“color options” screen show app option color book differ
“login or create account” user screen allow account log creat app
“select image from a list”  user screen allow select view list imag

“map search by location”  screen locat search map user show find

LDA Topics Learned over low-level captions, k = 25

Assigned Label Top 7 Words

“page button” page button top center bottom side left
“select date” avail date select one option theme present
“camera button” video imag photo pictur bottom camera

“privacy policy banner” titl just term blue banner privaci polici
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IMAGE AND METADATA CAPTIONING MODELS
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IMAGE CAPTIONING MODELS
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IMAGE-CAPTIONING MODEL TREATMENTS

Pre-trained on general image dataset (imagenet)

Pre-trained on imagenet, fine-tuned on ReDraw
cropped dataset

Pre-trained on imagenet, fine-tuned on ReDraw
full-screen dataset
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METADATA CAPTIONING MODELS

SHEEPN

<node bounds="[1104,66][1184,162]"
checkable="false" checked="false"
class="android.widget.ImageView" clickable="true"
content-desc="More options" enabled="true"
focusable="true" focused="false" index="0" long-
clickable="true" package="com.apalon.ringtones"”
password="false" scrollable="false"

Ringtones & Wallpapers for Me

WALLPAPERS RINGTONES

POPULAR
*

@ Abstract Animals Selected="false" teXt=""/>
<node bounds="[34,313][578,477]" checkable="false"
Cartoon o Holidays checked="false" class="android.widget.ImageView"

clickable="false" content-desc="" enabled="true"
focusable="false" focused="false" index="0" long-
Nature Sci-i clickable="false" package="com.apalon.ringtones”
password="false" scrollable="false"
selected="false" text=""/>

<node bounds="[34,573][578,653]" checkable="false"
checked="false" class="android.widget.TextView"
cites Q = clickable="false" content-desc="" enabled="true"
focusable="false" focused="false" index="0" long-

@ Sports Q Minimal

clickable="false" package="com.apalon.ringtones”
password="false" scrollable="false"
selected="false" text="Abstract"/>

Dynamic wallpaper

27



METADATA CAPTIONING MODELS

Animals eelected:"false" text=""/> y

{<node bounds="[34,313][578,477]" checkable="false"}

° Cartoon Holidays checked="false" class="android.widget.ImageView"
clickable="false" content-desc="" enabled="true"
focusable="false" focused="false" index="0" long-

@ Nature seif clickable="false" package="com.apalon.ringtones"
password="false" scrollable="false"
selected="false" text=""/>

@ Sports Minimal ~—
<node bounds="[34,573][578,653]" checkable="false"
checked="false" class="android.widget.TextView"

6 clies “ clickable="false" content-desc="" enabled="true"
focusable="false" focused="false" index="0" long-

K] 4
) | (<node bounds="[1104,66][1184,162]" )
R . checkable="false" checked="false"
WALLPAPERS RN class="android.widget.ImageView" clickable="true"
e content-desc="More options" enabled="true"
focusable="true" focused="false" index="8" long-
clickable="true" package="com.apalon.ringtones"
password="false" scrollable="false"

© 2 6 © o

e . § clickab false" package="com.apalon.ringtones"
yremealbere password="false" scrollable="false"
Lselected:"false" text="Abstract"/>

Clarity Metadata seqg2seq Natural Language
Encoder-Decoder Captions
Model

28



RESEARCH QUESTIONS

e RQ1: Accuracy of Models?

e RQ2: Accuracy, Completeness, &
Understandabllity as rated by humans?
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RQI:ACCURACY OF MODELS
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RQ I:RESULTS
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RQ2: RESULTS
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Introduction

Graphical User Interface (GUI) based applications predominate user-facing software in the modern era of
computing. High quality applications with well-designed GUIs allow users to instinctively understand
underlying features. Thus, intuitively, certain functional properties of applications are encoded into the visual,
pixel-based representation of the GUI such that cognitive human processes can determine the computing
tasks provided by the interface. This suggests that there are certain latent patterns that exist within visual GUI
data which indicate the presence of natural use cases capturing core program functionality. This functionality
can be easily interpreted and communicated in natural language (NL) by users after simply glancing at a GUI.

Given the inherent representational power of GUIs in conveying program related information, we set forth the
following hypothesis that serves as the basis for the work undertaken in this project:

The representational power of graphical user interfaces to convey program-related information can be
meaningfully leveraged to support and automate software documentation tasks.
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