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1 Introduction

Many really large datasets are time series, and such datasets present unique
problems that arise from the passage of time reflected in the datasets. A problem
of current interest is clustering and classification of multiple time series; see, for
example, ?, ?, ?, and ?. When various time series are fitted to models, the
different time series can be grouped into clusters based on the fitted models. If
there are different identifiable classes of time series, the fitted models can be
used to classify new time series.

For massive time series datasets, any assumption of stationarity is not likely
to be met. It is generally futile to attempt to model large time series using
traditional parametric models.

In all statistical models, we seek to identify some random variable with zero
autocorrelations whose realizations are components of the observable variables.
The model is then composed of two parts, a systematic component plus a ran-
dom component.

The problem in modeling time series is identification of any such random
variable in a model over a long time period, or even in a short time period when
the data are massive.

Any useful time series model that extends over a lengthy time period must
either be very weak, that is, a model in which the signal-to-noise ratio is rela-
tively small, or else must be very complex with many parameters.

A common approach to model building in time series is to break the se-
ries into separate regimes and to identify an adequate local model within each
regime. In this case, the problem of clustering or classification can be addressed
by use of sequential patterns of the models for the separate regimes.

Regime Descriptors; Local Models

Within a particular time regime the time series data exhibit some degree of
commonality that is captured in a simple model. The model may specify certain
static characteristics such as average value (mean, median, and so on) or scale
(variance, range, and so on). The model may also specify certain time-dependent
characteristics such as trends or autocorrelations. The model within any regime
may be very specific and may fit most of the observations within that regime,
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or it may be very general with many observations lying at some distance from
their fitted values. For the data analyst, the choice of an appropriate model
presents the standard tradeoff between a smooth fit and an “over” fit.

The beginning and ending points of each regime are important components
of the model. Independent of the actual beginning and ending points, the length
of the regime is also an important characteristic.

The model may be formulated in various ways. For purposes of clustering
and classification of time series, it may be desirable for the model to be one of
a small pre-chosen set of models. It may also be desirable that the individual
characteristics be specified as one a particular small set. For example, if the
model specifies location, that is some average value within the regime, we may
use categorical labels to specify ranked levels of location; “a” may denote small,
“b” may denote somewhat larger average values, and so on. These relative
values are constant within a given regime, but the set of possible categories
depends on the values within other regimes in the time series.

Specifying a model in place of the full dataset allows for significant data
reduction. Substitution of the individual values within a regime by the sufficient
statistical descriptors is an important form of data reduction in time series.

Changepoints

Once we accept that different models (or models with different fitted param-
eters) are needed in different regimes, the main problem now becomes iden-
tification of the individual regimes; that is, identification of the changepoints
separating regimes.

The complexity of this problem depends to a large extent on the “smooth-
ness” of our individual models; if the models are linear in time, then change-
points are easier to identify than if the models are nonlinear in time or if they
involve features other than time, such as autoregressive models.

The two change points that determine the extent of a regime together with
the sufficient statistical descriptors describing the regime may be an adequate
reduction of the full set of time series data within the regime.

Patterns

Once regimes within a time series are identified, the patterns of interest now
become the sequences — or subsequences — of local models for the regimes.

Between any two changepoints, we have a local model, say µi(t). A particular
sequence of local models, µi(t), µi+1(t), . . . , µi+r(t), defines a pattern. We will
often denote a pattern in the form Pri, where Pri = (µi(t), µi+1(t), . . . , µi+r(t)).
While the model is a function of time together with descriptions of other model
components of the temporal relationships, such as the probability distribution
of a random “error” component, we may represent each µi(t) as a vector whose
elements quantify all relevant aspects of the model.
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Clustering, Classification, and Prediction

There is considerable interest currently in learning in time series data. “Learn-
ing” generally means clustering and/or classification of time series. This is one
of the main motivations of our work in pattern recognition within time series.

Forecasting or prediction is also an important motivation for time series
analysis, whether we use simple trend analysis, ARMA-type models, or other
techniques of analysis.

Prediction in time series, of course, is often based on unfounded hopes.
We view the prediction problem as a simple classification problem, in which
statistical learning is used to develop a classifier based on patterns. The response
could be another local model within the class of local models used between
changepoints, or the response could be some other type of object, such as a
simple binary “up” or “down”. The length of time over which the prediction is
made must, of course, be considered in the classification problem.

Measures of Similarity/Dissimilarity

Clustering or classification is often based on some metric for measuring dissim-
ilarity of elements in a set. For clustering and classification of time series or
subsequences of time series based on patterns, we need a metric ρ(Pri, Psj),
where Pri is a pattern consisting of a sequence µi, µi+1, . . . , µi+r and Psj is a
pattern consisting of a sequence over s regimes beginning at the jth one.

Outline

In the following we discuss methods for identifying changepoints in a univariate
time series. In massive datasets a major challenge is always that of overfitting.
With so much data, very complex models can be developed, but model com-
plexity does not necessarily result in better understanding or in more accurate
predictions.

We will generally consider linear models, either simple constant models or
simple linear trends. By restricting our attention to models that are linear
in time, we avoid some kinds of overfitting. In smoothing time series using a
sequence of linear models, “overfitting” is the identification of spurious change-
points.

Our main concern will be on the identification of changepoints, and we will
emphasize a technique called alternate trends smoothing.

After identification of changepoints, we briefly discuss the problem of defin-
ing patterns. The objectives of defining and identifying patterns are twofold:
to cluster and/or to classify sets of time series, and to predict future values or
trends in a time series.

Although we do not emphasize any specific area of application, some of our
work has been motivated by analysis of financial time series, so we occasionally
refer to financial time series data, in particular, to series of stock prices or of
rates of return.
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2 Data Reduction and Changepoints

Analysis of massive data sets, whether they are time series or not, often begins
with some form of data reduction. This usually involves computation of sum-
mary statistics that measure central tendencies and other summary statistics
that measure spread. These two characteristics of a dataset are probably the
most important ones for a stationary population in which a single simple model
is adequate.

Even assuming a single model for all data, just concentrating on summary
measures can miss important information contained in some significant indi-
vidual observations. These significant observations are often the extreme or
outlying points in the dataset. One simple method of analyzing a time series is
just to assume a single constant model and to identify the extreme points, say
the 10% outliers, with respect to that model. These outliers may carry a sig-
nificant amount of information contained in the full dataset. The set of outliers
may be further reduced. ?, for example, described a method for successively
identifying extreme points in a time series for the purpose of data reduction.
The extreme points alone provide a useful summary of the entire time series.

Another type of significant point in a time series is one that corresponds
to a change in some basic characteristic of the time series. A changepoint
may or may not be an extreme point. Changepoints can also be used for data
reduction because they carry the most significant information, at least from one
perspective.

In a time series, a changepoint is a point in time at which some property
of interest changes. A changepoint, therefore, has meaning only in the context
of a model. The model for the observable data may be some strong parametric
model, such as an ARMA model, or it may be some weak parametric model,
such a constant median and nothing more. In the former case, a changepoint
would be a point in time at which one of the parameters changes its value. (Here,
we are assuming ARMA models with constant parameters.) In the latter case,
a changepoint would be any point at which the median changes. A changepoint
may also be a point in time at which the class of appropriate model changes.
Perhaps an ARMA model is adequate up to a certain point and then beyond
that the constant variance assumption becomes entirely untenable.

From one perspective, the problem of identification of changepoints can be
viewed as just a part of a process of model building. This, of course, is not a
well-posed problem without further restrictions, such as use of some pre-selected
class of models and specification of criteria for ranking models.

In the following, we will focus on identification of changepoints in simple
piecewise linear models of an observable random variable. We do not assume
finite moments, so we will refer to the parameter of central tendency as the
“median”, and the parameter of variability as the “scale”. We will also focus
most of our study on univariate time series, although we will consider some
extensions to multivariate series.

There is a vast literature on identification of changepoints, but we do not
attempt any kind of general review; rather we discuss some of the methods that
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have proven useful for the identification of patterns.

2.1 Piecewise Constant Models

The simplest model for time series with changepoints is one in which each
regime is modeled by a constant. The constant is some average value of the
data over that regime. For our purposes, the nature of that “average” is not
relevant; however, because of possibly heavy tails in the frequency distributions
and asymmetry of the data, we often think of that average as a median.

There are various approaches to modeling time series with median values that
change over time. The first step in any event is to determine the breakpoints.
Sometimes, when the data-generating process is indeed a piecewise constant
model, the breakpoints may be quite apparent, as in Figure 1.
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Figure 1: Time Series Following a Piecewise Constant Model

In other cases, we may choose to approximate the data with a piecewise con-
stant model, as in Figure 2, even though it is fairly obvious that the underlying
data-generating process is not piecewise constant or even piecewise linear.

There are various straightforward ways of determining the values of the ap-
proximating constants. A simple batch process is to use sample quantiles of the
data that correspond to some parametric model, such as a normal distribution.

2.2 Models with Changing Scales

Piecewise constant models, such as the data in Figure 1 seem to follow, or other
simple models for changing location may not to be of much interest, but there
is a type of derived financial data that exhibit similar behavior. It is rates of
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Figure 2: Time Series Approximated by a Piecewise Constant Model

return. The standard way of defining the rate of return for stock prices or stock
indexes from time t to time t + 1 is logXt+1 − logXt, where Xt+1 and Xt are
the prices at the respective times.

A stylized property of rates of return is volatility clustering. Figure 3 is an
illustration of this property for a small monthly sequence of the S&P 500 Index
over a period from January, 2010, through November, 2015. (This short time
series was just chosen arbitrarily. More data and data over other time spans
may illustrate this better; but here, our emphasis is on a simple exposition. See
? for more complete discussions of volatility clustering and other properties of
financial time series.)
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Figure 3: Monthly Log Rates of Return of S&P 500

6



D
ra
ft

Volatility clustering is an example of changes in a time series in which the
location (mean or median) may be relatively unchanged, but the scales change
from one regime to another. The changepoints in this case are points in the time
series where the scales change. The derive time series, that is, the volatility time
series can be approximated with a piecewise constant model.

In order to identify changes in scale or volatility, we must have some measure
of volatility. It may not be obvious how to measure volatility in a time series,
and this is especially true if the volatility it changing. A simple measure, called
“statistical volatility” by economists, is just the sample standard deviation,
which of course ignores any autocorrelations. To illustrate, however, we compute
the statistical volatilities over the apparent separate regimes of the log returns
shown in Figure 3. This type of analysis results in a piecewise constant time
series shown in Figure 4 of the type we discussed in Section 2.1. There are
various methods for detecting changepoints for scales, but we will not discuss
them here.
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Figure 4: Monthly Statistical Volatility of Log Returns of S&P 500

2.3 Trends

The main interest in patterns in time series most often focuses on changes in
trends. This is particularly true in financial time series, see, for example, ? and
? for methods that focus solely on trends.

More interesting simple linear models in time series are those that exhibit a
“trend” either increasing or decreasing. Changepoints are the points at which
the trend changes.

Identification of changepoints is one of the central aspects of technical anal-
ysis of financial data, and is the main feature of the so-called point and figure
charts that have been used for many years (?). Point and figure charts are good
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for identification of changepoints and the amount of change within an up or a
down trend.

Some interesting patterns are easily seen in a point and figure chart. For
example, a pattern that many technical analysts believe carries strong predictive
powers is the “head-and-shoulders” pattern. Figure 5 shows the stock price for
Intel Corporation (NASDAQ:INTC), and on the right side, a modified point and
figure chart. (The modifications, suggested in ?, among other things involve the
definition of threshold change.) The head-and-shoulders pattern is clearly visible
in both the graph of the raw prices on the left and the trend chart on the right.
(This is a very strong head-and-shoulders pattern; most head-and-shoulders
patterns that technical analysts would identify are not this clear.)
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Figure 5: Intel Price, 2014-6-1, through 2015-7-31, and the Associated Trend
Chart

Notice in the trend chart in Figure 5 that the time axis is transformed into
an axis whose values represent only the ordered changepoints. One of the major
deficiencies of point and figure charts and trend charts is that information about
the length of time between changepoints is not preserved.

A very effective smoothing method is use of piecewise linear models. Piece-
wise linear fits are generalizations of the piecewise constant models, with the
addition of a slope term. There are many variations on this type of fit, including
the criterion for fitting (ordinary least squares is most common) and restrictions
such as continuity (in which case the piecewise linear fit is a first degree spline).
New variations on the basic criteria and restrictions are suggested often; see, for
example, ?.

Some breaks between trends are more interesting than others, depending on
the extent to which the trend changes. Within a regime in which a single trend
is dominant, shorter trends of different direction or of different magnitude may
occur. This raises the issue of additional regimes, possibly leading to overfitting
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or of leaving a regime in which many points deviate significantly from the fitted
model.

3 Model Building

One of the main objectives of building a model for a time series is to reduce
the amount of data by use of an approximate representation of the dataset.
While the main objectives of the standard models for analysis of time series,
such as ARIMA and GARCH extensions in the time domain and Fourier series
or wavelets in the frequency domain, may be to understand the data-generating
process better, such models also provide an approximation or smoothing of the
data and thereby achieve significant data reduction. Several approximations
based on simple piecewise models, each with its three-letter-acronym, have been
proposed. These obviously depend on identification of changepoints prior to or
in conjunction with the modeling within the individual regimes. Representation
of the sequence of models then becomes an important issue. While a model is
usually represented as a parametized equation, a common method of simplifying
the representation further is to define a set of models, often of a common form,
but each instantiated with fixed values of all parameters, and then to associate
a symbol with each instantiation of each model. Two methods following this
approach are symbolic aggregate approximation (SAX), see ?, and nonparamet-
ric symbolic approximate representation (NSAR), see ?. ? provides a general
review of various methods of smoothing time series.

Because the identification of changepoints, that is, the identification of of
regimes, is intimately tied to the identification and fitting of models within the
individual regimes, it is not possible to separate those two steps. Usually, a
form of the model is chosen and then regimes are chosen based on the goodness
of fits of potential models of that form. Often, especially in the analysis of stock
prices, there is no model within the regimes other than simple increasing or
decreasing trends. ? and ?, for example, described methods for determining
changepoints between increasing and decreasing price trends.

Batch Methods

For fitting piecewise constant models, there are various straightforward ways of
determining the values of the approximating constants. If all of the data are
available as we mentioned above, a simple batch process is to use sample quan-
tiles of the data that correspond to some parametric model, such as a normal
distribution, and then just identify regimes as those subsequences clustering
around the sample quantiles.

Another simple batch approach is to fit a single model of the specified form,
and then to identify subsequences based on points that are outliers with re-
spect to a fitted model. This process is repeated recursively on subsequences,
beginning with the full sequence.
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Given a single linear trend over some regime, ? defined measures for “per-
ceptually important points”, which would be candidate changepoints. The per-
ceptually important points are ones that deviate most (by some definition) from
a trendline.

Online Methods

Batch methods, such as ones that base local models on sample quantiles of
the whole time series, or those that recursively identify subsequences with local
models, have limited applicability. In most applications of time series analysis,
new data are continually being acquired, and so an online method is preferable
to a batch method.

An online method accesses the data one observation at a time and can retain
only a predetermined amount of data to use in subsequent computations.

4 Model Building: Alternating Trends Smooth-

ing

A method of identifying changepoints in a time series based on alternating up
and down linear trends, called alternating trends smoothing, or ATS, is given
in Algorithm 1. It depends on a smoothing parameter, h, which specifies the
step size within which to look for changepoints.

Code for simple tests of ATS

# Experiments

# first changepoint within step size; two changepoints that are consecutive

x<-c(6,8,7,9,8,7,6,6,4,5,3,6,9,4,3,6,5,4,3,2,7,8,9,1,3,4,6,4,3,2,5,4,3,4,5,6,7)

# slope at first step point different from direction of first extreme point.

# compare ATS1 with ATS on these data

x<-c(6,8,7,9,8,5,6,6,4,5,3,6,5,4,3,6,5,4,3,2,7,8,9,1,3,4,6,4,3,2,5,4,3,4,5,6,7)

# slope at first step point = 0.

x<-c(6,8,7,9,8,6,6,6,4,5,3,6,9,4,3,6,5,4,3,2,7,8,9,1,3,4,6,4,3,2,5,4,3,4,5,6,7)

# slope=0 and data constant after first step.

x<-c(6,8,7,9,8,6,6,6,6,6,6,6,6,6,6,6,6,6)

# not enough data.

x<-c(6,8,5,6)

plot(x)

ATS(x,step=5,segments=TRUE)

Algorithm 1 Alternating Trends Smoothing (h)

10



D
ra
ft

1. Set d = 1 (changepoint counter)

2. While (more data in first time step)

(a) for i = 1, 2, . . . , m, where m = h if h additional data available or else
m is last data item:
input xi;

(b) set bd = 1; cd = x1

(c) determine j+, j−, xj+, xj
−

such that
xj+ = maxx1, . . . , xh and xj

−

= minx1, . . . , xh

(d) set s = (xk − xi)/(k − i) and r = sign(s)

(e) while r = 0, continue inputting more data; stop with error at end of
data

3. Set j = i (index of last datum in previous step); and set d = d + 1

4. While (more data)

(a) for i = j + 1, j + 2, . . . , j + m, where m = h if h additional data
available or else j + m is last data item:
input xi;

i. while (sign(s) = r)

A. set k = min(i + h, n)

B. if (k = i) break

C. set s = (xk − xj)/(k − j)

D. set j = k

ii. determine j+ such that rxj+ is the maximum of rxj+1, . . . , rxj+m

iii. set bd = j+; and set cd = xj+

iv. set d = d + 1; set j = j+; and set r = −r

(b) set bd = j+; and set cd = xj+

The output of this algorithm applied to a time series x1, x2, . . . is

(b1, c1), (b2, c2), . . . ,

where b1 = 1, c1 = x1, b2 = t(2), and c1 = xt(2) , where t(2) is the time at which
the first trend changes sign.

Between two breakpoints the trend is represented by the slope of the time
series values at the two points divided by the time between the two points,
and the smoothed time series is the piecewise linear trendlines that connect
the values at the changepoints. The method is effective for finding interesting
patterns. For example, the head-and-shoulders pattern in the Intel stock price,
shown in Figure 5, is very apparent in the ATS representation of the time series
shown in Figure 6. A step size of 30 was used in that fit.
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Figure 6: A Head-and-Shoulders Pattern in ATS

The output of the ATS algorithm applied to the INTC data in Figure 6 is

(1, 26.11), (69, 34.07), (97, 29.75), (132, 36.57), (206, 29.23), (251, 33.94), (290, 27.63).

Thus, the 290 raw data points are summarized in the 7 pairs of numbers repre-
senting the changepoints and their values.

While the ATS fit emphasizes only the signs of the trends, the actual slopes
are very easily computed from the values at the changepoints.

The Tuning Parameter

The tuning parameter h in Algorithm 1 is a “step size”. The process of iden-
tifying the next changepoint begins with the datum one step size beyond the
current changepoint. Larger values of h tend to increase the distances between
changepoints, but the actual distance between changepoints can be smaller than
h; in fact, the distance between changepoints can be as small as 1 time unit.

Although in the standard implementation, the identification of trends in
ATS is based on individual points, the aggregate behavior tends to dominate,
especially after the first trend. In identifying the changepoint at the end of the
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first regime, however, the dependence of the trend on the point one step size
beyond can lead to misidentification of the trend. This is because ATS works by
identifying changepoints based on changing trends, and in the first trend there
is no previous trend for comparison. This can result in a trend determined by
points x1 and xh differing completely from the apparent trend in the points
x1, . . . , xh−1. For this reason, a simple modification of the ATS algorithm in
the first step is to use some other criterion for determining the trend. One
simple approach is a least-squares fit of a line through x1 and that comes close
to the points x2, . . . , xh. Because of the constraint that the line goes through
x1, the least-squares criterion might be weighted by the leverages of the other
points. If the time-spacing is assumed to be equal over the points x1, . . . , xh,
the least-squares slope is

arg min
s

h∑

i=2

(xi − si)2/i = (h2 − h)/

h∑

i=2

xi. (1)

If all of the first h observations follow the same trend, the modification has no
effect.

This modification can also be at each step, and it often results in what
appears visually to be a better fit. Nevertheless, it is not always easy to pick
a good rule for determining the direction of a trend. Because of the way the
algorithm looks backwards after detecting a change in the sign of the trend, the
modification does not have as much effect in subsequent regimes after the first
one.

If the length of the time series is known in advance, a step size equal to
about one tenth of the total length seems to work reasonably well. Even so, it
is often worthwhile to experiment with different step sizes.

Figure 7 shows ATS applied to the daily closing price of the stock of Inter-
national Business Machines Corporation (NYSE:IBM) from January 1, 1970,
through December 31, 2014. There are n = 11, 355 points. Over this full pe-
riod, a step size of h = 1136 (a step size of n/10) was used. This resulted in the
alternating trend lines shown as solid red line segments.

Code to produce Figures 7 and 8

setwd(’c:/Work/Papers_and_Talks/Working/SpringerHandbookBigData/’)

source("c:/files/Computers_and_Software/Notes_ExamplePrograms/R_finance/financetools_funs.R"

source("c:/files/Computers_and_Software/Notes_ExamplePrograms/R_TimeSeriesPatterns/ATS.R")

IBMd<-get.stock.price("IBM", start.date=c(1,1,1970), stop.date=c(12,31,2014),

freq="d",full.table=FALSE, print.info=FALSE)

plot(as.ts(IBMd),ylab="IBM Price")

ATS(IBMd,step=0,segments=TRUE)

ATS(IBMd[5816:length(IBMd)],step=0,segments=TRUE,offset=5815,color="blue",ltype=3,char="*")

savePlot("FPTS_35",type="eps")
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plot(as.ts(IBMd),ylab="IBM Price")

chpt1<-ATS(IBMd,step=100,segments=TRUE)

chpt2<-ATS(chpt1[,2],step=5,segments=FALSE)

lines(chpt1[chpt2[,1],1],chpt1[chpt2[,1],2],col="blue",lty=3)

savePlot("FPTS_40",type="eps")
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Figure 7: ATS with Different Stepsizes over Different Regions

There are only 5 changepoints identified in the IBM daily closing prices, and
the changes are as likely to occur in the area of “low action” (the earlier times)
as in the areas of higher volatility. This is because ATS operates in an online
fashion; when processing the data in the earlier time regimes, it is not known
that the trends will become more interesting. Only one changepoint from the
observation at the time index of 5971 through the end of the series is identified.
A smaller step size may be appropriate. Alternating trend segments were then
determined for these data, beginning with January 1, 1993, (a time index of
5815 in the original series), and using a stepsize of 554. These are shown as
dashed blue line segments in Figure 7. The ATS fit resulting from those two
different stepsizes better captures the pattern of the time series.

Alternating trends smoothing can be applied recursively. Once the original
data are smoothed, ATS can be applied to the changepoints determined in the
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original smoothing. This is illustrated in Figure 8 using the same IBM daily
closing price data as before.
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Figure 8: ATS Applied Twice

First, a step size of 100 was used. This resulted in 53 changepoints. These
are shown in Figure 8, and the trend lines connecting them are shown as solid
red line segments. Next, ATS was applied to the changepoints (55 points in
all, including the first and last observations). A stepsize of 5 was used for
this smoothing. This resulted in 9 changepoints. The alternating trend lines
connecting them are shown as dashed blue line segments in Figure 8. The
original set of 54 trendline segments may be considered too noisy to be a good
overall model. That model may be considered to be overfit. The subsequent fit
of the changepoints is of course much smoother than the fit of the original data.

This repeated ATS fitting is iterative data reduction. The first fit, reduced
the data to 55 points (including the two endpoints). These points may contain
sufficient information to summarize the original 11,355 points. Carrying the
reduction further by applying ATS to the changepoints, we reduce the data to
11 points (again, including the two endpoints), and this may be sufficient for
our purposes.

Making transformations to a time series before applying ATS results in dif-
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ferent changepoints being applied. For example, using a log transformation of
the IBM price data in Figure 7 would result in different changepoints, and even
using only one stepsize for the whole time series, those changepoints on the log
data may be more meaningful.

Modifications and Extensions

An alternating trends fit can be modified in several ways. One very simple way
is to subdivide the regimes by identifying changepoints within any regime based
on deviations from the trendline within that regime. This type of procedure
for identifying changepoints has been suggested previously in a more general
setting.

Consider again the IBM data in Figure 7, with the ATS fit using a stepsize
of 1136. (This is the solid red line in the figure.) Over the region from a time of
5971 to a time of 10901, a single model was fit. This model is the line segment
from the point (5971, 7.63) to the point (10901, 200.98). The most deviant point
within this regime, as measured by the vertical residuals is at time point 9818
where the actual price is 61.90, while the point on the trendline is 158.51.

Time

IB
M

 P
ri

ce

0 2000 4000 6000 8000 10000

0
5
0

1
0
0

1
5
0

2
0
0

X

X

X

X

X

Figure 9: A Linear Trend Broken into Two Trends at the Most Extreme Point
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This point can be considered to be a changepoint, as shown in Figure 9. In
this case the trends on either side of the changepoint are both positive; that is,
they are not alternating trends.

Continuing to consider changepoints within regimes identified with a single
trend, in this case we would likely identify a changepoint at about time 7500,
which would correspond to the maximum deviation from the single trendline
between the original changepoint at time 5971 and the newly identified change-
point at time 9818. In this case, while the single trend is positive, the first new
trend would be positive and the second new trend would be negative.

While in many applications in finance, only the sign of a trend is of primary
interest, occasionally, the magnitude may also be of interest, and a changepoint
might be identified as a point at which the slope of the trend changes signifi-
cantly. The basic ideas of ATS can be adapted to this more general definition
of changepoints; however, some of the simplicity of the computations of ATS
would be lost. This approach would also require an additional tuning parameter
to quantify “significance” of change in trend, when the sign of the trend may
not change.

Another possible improvement to the basic ATS algorithm is to allow the
stepsize to be adjusted within the computations. The alterations to the stepsizes
could be based on the number of changepoints or on goodness-of-fit within a
regime, and in either of these general approaches, there are several possible ways
of doing it. The modification shown in Figure 9 could be performed routinely as
a postprocessing step in any ATS fit. That modification of course would require
an additional tuning parameter to be used in deciding whether or not to break
up an existing regime.

In very noisy data goodness-of-fit measures can often be misleading. This
is because single or a few outliers can cause the measure to indicate an overall
lack of fit. (Note that the basic ATS fitting, although individual points are used
in determining changepoints, the method is generally resistant to outliers.) As
in most data analysis, outliers often must be treated in ad hoc ways. This is
because they often contain completely new information.

5 Bounding Lines

In statistical modeling it is common practice to associate “confidence bounds”
with a fitted model. These are usually based on some underlying probability
distribution, and they can take various forms depending on the model, which
includes the relevant probability distributions.

In our objective of finding patterns in the data, we have not assumed any
specific probability model. In other applications of trend analysis, it is common
to identify bounding lines within a given regime that generally are in the same
directions as the trend over that region, but which are either above all the points
in the regime (a “resistance line”) or below all the points (a “support line”).
Such bounding lines do not depend on any probability model.

As we have emphasized, finding the changepoints is the paramount prob-
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lem. Once the regimes are identified, however, it may be of interest to identify
bounding lines for those regimes.

For a given time series {xt : t = 1, . . . , n}, we seek a lower bounding line
x = a + bt that satisfies the optimization problem

mina,b

∑n

t=1 ρ(xt − a + bt)
s.t. xt ≥ a + bt, for t = 1, . . . , n,

(2)

where ρ(·) is a nonnegative function such that for a vector v = (v1, . . . , vn),
‖v‖ =

∑n

t=1 ρ(vt) is a norm. An upper bounding line is defined the same way,
except that the inequality in the constraint is reversed.

In general, this is a hard optimization problem, but for the L1 norm, that is,
when ρ(·) = | · |, it is straightforward; and a method is given in Algorithm 2. The
method depends on the fact that the L1 norm satisfies the triangular inequality
with equality: that is, ‖y + z‖1 = ‖y‖1 + ‖z‖1. The method also depends on
the fact that the data are equally spaced along the time axis.

Algorithm 2 L1 Lower Bounding Line: xt = ã + b̃t

1. Fit the data xt = a + bt by a minimum L1 criterion to obtain parameters
a∗ and b∗.

2. Determine the position of the minimum residual, k, and adjust a∗:
a∗ ← xk − b∗k.

3. If k − 1 = n − k, then set b̃ = b∗ and ã = a∗, and stop.

4. Else if k ≤ n/2,

(a) rotate the line x = a∗ + b∗t clockwise about the point (k, xk) until
for some point (i, xi), xi = a∗ + b∗i.

(b) set b̃ = (xi − xk)/(i− k) and ã = xk − b̃k, and stop.

5. Else if k > n/2,

(a) rotate the line x = a∗ + b∗t counterclockwise about the point (k, xk)
until for some point (j, xj), xj = a∗ + b∗j.

(b) set b̃ = (xk − xj)/(k − j) and ã = xk − b̃k, and stop.

Theorem 1 Algorithm 2 yields a solution to optimization problem (2), when
ρ(·) = | · |.

Proof. Let a∗ and b∗ be such that
∑n

t=1 |xt−a∗−b∗t| = mina,b

∑n

t=1 |xt−a−bt|.
Let k be such that

xk = arg min
xi

(xi − a∗ − b∗i).

For the optimal values of ã and b̃, we must have xk ≥ ã + b̃k.
There are three cases to consider: k = (n + 1)/2 (corresponding to step 3 in

Algorithm 2), k ≤ n/2 (corresponding to step 4 in the algorithm), and k > n/2
(corresponding to step 5 in the algorithm). We will first consider the case
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k ≤ n/2. The case k > n/2 follows the same argument. Also following that
argument, it will be seen that the solution given for case k = (n+1)/2 is optimal.

If k ≤ n/2, consider the line x = xk − b∗k + b∗t. (The intercept here is
what is given in step 2 of the algorithm.) This line goes through (k, xk), and
also satisfies the constraint xt ≥ xk − b∗k + b∗t, for t = 1, . . . , n. The residuals
with respect to this line are xt − xk + b∗k − b∗t and all residuals are positive.
Any point t for t < k is balanced by a point t̃ > k, and there are an additional
n − 2k points xt̃ with t̃ > k. If any point xt̃ with t̃ > k lies on the line, that is,
xt̃ = xk−b∗k +b∗t̃, then this line satisfies the optimization problem (2) because
any change in either the intercept xk − b∗k or the slope b∗ would either violate
the constraints or would change the residuals in a way that would increase the
norm of the residuals. In this case the solution is as given at the end of step 4,
because b̃ = b∗.

The step now is to rotate the line in a clockwise direction, which results in
an increase in any residuals indexed by t for t < k and a decrease of the same
amount in the same number of residuals xt̃ with t̃ > k. (This number may be
0.) It is the decrease in the residuals of the additional points indexed by t̃ > k
that allows for a possible reduction in the residual norm (and there is a positive
number of such points).

Consider the line x = xk−b∗k+(b∗+δb)t such that δb is the minimum value
such that there is a point xt̃ with t̃ > k such that xt̃ = xk−b∗k+(b∗+δb)t̃. This
line satisfies the constraints and by the argument above, is optimal. Hence, the
solution is as given at the end of step 4, because b̃ = b∗ + δb.

Now consider the case k = (n + 1)/2. (In this case, n is an odd integer, and
k − 1 = n − k as in Algorithm 2.) Following the same argument as above, we
cannot change the intercept or the slope because doing so would either violate
the constraints or would change the residuals in a way that would increase the
norm of the residuals. Hence, we have b̃ = b∗ and ã = xk − b∗k as given in the
algorithm is a solution to optimization problem (2) when ρ(·) = | · |.

One possible concern in this method is that the L1 fit may be nonunique.
This does not change any of the above arguments about an optimal solution to
optimization problem (2) when ρ(·) = | · |. It is possible that the solution to
this optimization problem is nonunique, and that is the case independently of
whether or not the initial fit in Algorithm 2 is nonunique.

The discussion above was for lower bounding lines under an L1 criterion.
Upper bounding lines are determined in the same way following a reversal of
the signs on the residuals.

Bounding lines can easily be drawn over any region of a univariate time
series. They may be more meaningful if separate ones are drawn over separate
regimes of a time series, as in Figure 10, where separate bounding lines are
shown for the six regimes corresponding to alternating trends, that were shown
in Figure 6.

Code to produce Figure 10

setwd(’c:/Work/Papers_and_Talks/Working/SpringerHandbookBigData/’)
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source("c:/files/Computers_and_Software/Notes_ExamplePrograms/R_finance/financetools_funs.R"

source("c:/files/Computers_and_Software/Notes_ExamplePrograms/R_TimeSeriesPatterns/ATS.R")

source("c:/files/Computers_and_Software/Notes_ExamplePrograms/R_TimeSeriesPatterns/BoundingL

INTCd<-get.stock.price("INTC", start.date=c(6,1,2014), stop.date=c(7,24,2015),

freq="d",full.table=FALSE, print.info=FALSE)

plot(as.ts(INTCd),ylab="INTC Price")

brks <- ATS(INTCd,segments=TRUE)

k <- dim(brks)[1]-1

for (i in 1:k){

env <- 1

xs <- BoundingLines(INTCd[brks[i]:brks[i+1]],env,segments=TRUE,offset=brks[i])

env <- -1

xs <- BoundingLines(INTCd[brks[i]:brks[i+1]],env,segments=TRUE,offset=brks[i])

}

savePlot("FPTS_47",type="eps")
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Figure 10: Bounding Lines in Six Regimes

6 Patterns

One of our motivations for fitting time series is for clustering and classification
of time series based on similarities of Usually, in large time series datasets a
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single model does not fit well, so our approach has been to identify a sequence
of local models, µ1(t), µ2(t), . . . , µk(t), in k regimes.

The models µi(t) may be of various forms, and they may contain various
levels of information. For example, in piecewise constant modeling, the form of
the model is

µi(t) = ciI[ti1,ti2](t), (3)

where IS(t), is the indicator function: IS(t) = 1 if t ∈ S, and IS(t) = 0 otherwise.
(This formulation allows the global model to be written as

∑
i µi(t).) The form

of the model in ATS is

µi(t) = (ai + sit)I[ti1,ti2](t), (4)

where in the notation of Algorithm 1, ai = ci, si = (ci+1 − ci)/(bi+1 − bi),
ti1 = ci and ti2 = ci+1, and of course a global is just the sum of these local
models.

For comparing different time series for clustering or classification, we may
focus on patterns of models, µi(t), µi+1(t), . . . , µi+r(t), on r successive regimes,
not necessarily beginning at the start of the time series and not necessarily
extending over the full extent of the time series. We compare the pattern
Pri = (µi(t), µi+1(t), . . . , µi+r(t)) with patterns from other time series. The
obvious basis for comparison would be a metric, or a measure with some of
the properties of a metric, applied to the patterns; that is, we define a a
metric function ρ(Pri, Psj), where Pri is a pattern consisting of a sequence
µi(t), µi+1(t), . . . , µi+r(t) and Psj is a pattern consisting of a sequence over
s regimes beginning at the jth one.

Because the patterns depend on fitted models, the fact that a pattern

(µi(t), µi+1(t), µi+2(t))

in one time series is exactly the same as a pattern

(µj(t), µj+1(t), µj+2(t))

in another time series does not mean that the actual values in the two time
series are the same over those regimes or even that the values have some strong
association, such as positive correlation, with each other. This is generally not
inconsistent with our objectives in seeking patterns in time series or in using
those patterns in clustering and classification.

In this section, we discuss some of the issues in clustering and classification
of time series, once a sequence of regimes is identified. An important considera-
tion in analyzing multiple time series is registration of the different time series;
that is, shifting and scaling the time series so that the regimes in the separate
time series can be compared. We also briefly indicate possible approaches for
further data reduction. Once these issues have been addressed, the problems of
clustering and classification are similar to those in other areas of application.
Examples and the details of the use of the clustering and classification methods
are discussed by ?.
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6.1 Time Scaling and Junk

Prior to comparing two time series or the patterns in the two series, we generally
need to do some registration of the data. Usually, only subsequences of time
series are to be compared, and so the beginning and ending points in the two
series must be identified. The actual time associated with the subsequences
may be different, and the subsequences may be of different lengths. There are
various methods of registering two subsequences. The most common methods
are variants of “dynamic time warping” (DTW), which is a technique that has
been around for many years. There are several software libraries for performing
DTW.

In the overall task of identifying and comparing patterns in time series, the
registration step, whether by DTW or some other method, can be performed
first or later in the process. Our preference generally is to identify breakpoints
prior to registration.

Similarity of patterns is not an absolute or essential condition. Similarity,
or dissimilarity, depends on our definition of similarity, which in turn depends
on our purposes. We may wish to consider two patterns to be similar even in
the time intervals of the piecewise models do not match. We also may wish to
ignore some models within a pattern, especially models of brief duration.
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Figure 11: Three Patterns that Are Similar

In Figure 11 we see three patterns that for some purposes we would wish
to consider to be similar to each other. The times as well as the actual values
are rather different, however. Among the three time series, the times are both
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shifted (the starting time of course is almost always arbitrary) and scaled. The
unit of time is not always entirely arbitrary. It depends on our ability to sample
at different frequencies, and the sampling rate is not always adjustable. The unit
of time may also be important in an entirely different way. It is a well-recognized
property of markets that frequency of trading (or frequency of recording data)
results in different market structures (see, for example, ?).

Figure 11 also illustrates another problem for comparing patterns. The blip
in the time series on the right side results in two additional model terms in the
fitted time series. We would actually like to compare the patterns

(µ1, µ2, µ3, µ4)

and
(ν1,S(ν2, ν3, ν4), ν5, ν6),

where the specific correspondences are µ1 ≈ ν1, µ3 ≈ ν5, µ4 ≈ ν6, and µ2 ≈
S(ν2, ν3, ν4), where S(ν2, ν3, ν4) is some smooth of the three models ν2, ν3, and
ν4.

The plot on the right side of Figure 11 compared with the other two plots
illustrates the intimate connection between smoothing or model fitting and pat-
tern recognition. A smoother fit of the time series shown on the right side
would have resulted in just four models (three changepoints), in which the sec-
ond model would be some smooth of ν2, ν3, and ν4, that is, S(ν2, ν3, ν4).

The extra blip in the time series on the right side of Figure 11 is “junk” at
a lower level of resolution.

6.2 Further Data Reduction: Symbolic Representation

While the individual components of a pattern Pri may contain various details of
the models, in some cases some details can be suppressed while salient features
of the pattern, that is, the sequence, are retained. For example, for a sequence
of constant models such as in equation (3), the most important features of the
sequence may be a sequence of indicators whether the ci were small, mid-size, or
large; that is, the pattern is a sequence of the form abcde . . ., where each of the
as, bs, and so on, are just the values s, m, and l, indicating “small”, “medium”,
and “large”. For example, the pattern sllmls would indicate a sequence of six
piecewise constant models of the form of equation (3), in which c1 is (relatively)
small, c2 and c2 are large, and so on. This representation, of course, does not
include information about the ti1s or ti2s or even the exact values of the cis,
but the patterns of small, medium, and large may be information for clustering
or classifying time series.

This further step of data reduction of forming categories of models and asso-
ciating each category with a single symbol can be very useful in data mining of
time series, and has been used in various ways for some time. One widely-used
symbolic approximation for time series is SAX, which is based on a modifica-
tion of a sequence of piecewise constant models (called PAA), see ?. Another
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type of symbolic approximation of a time series, called NSAR for nonparamet-
ric symbolic approximate representation, was described by ?. This method is
based on preliminary wavelet transformations and so enjoys the multi-resolution
properties of wavelets.

The transformation of models with quantitative parameters to models of
categorical symbols requires some a priori definition of the symbols, possibly
a complete listing or catalogue of the symbols, or at least some formula for
defining new symbols. In batch processing of the data, the range of possible
models can be determined before the transformation of quantitative models to
categorical models.

In ATS, each model is characterized by four real numbers. A sequence of
r models is characterized by 2r + 2 real numbers. To reduce the data further,
the real numbers are binned into ordered groups. These ordered bins can be
associated with a unique set of symbols.

The replacement of models with continuous numeric parametrizations by
symbolic representations results in loss of data. A linear model in a given
regime may be transformed into a model that carries only the information that
a particular coefficient is large, relative to the same coefficient in other regimes.
The symbolic approximations may even lose information concerning the time of
the changepoints.

6.3 Symbolic Trend Patterns (STP)

The symbolic approximation of SAX is based on a type of piecewise constant
modeling called “piecewise aggregate approximation” (“PAA”) as described by
?. The same idea of SAX can be applied to the models in ATS, as described by
? who called it “symbolic trend patterns”, or “STP”. These symbols consist of
pairs of symbols or syllables. They are formed by selection of a consonant

J, K, L, M, N
that represents duration of an upward trend, or of a consonant

P, Q, R, S, T
that represents duration of an downward trend, and selection of a vowel

A, E, I, O, U
that represents magnitude of a trend. In many cases, however, the vowels could
represent the magnitude of the change in value instead of the magnitude of a
trend, that is the slope of the segment between the changepoints.

In each case, the individual letters as listed above represent increasing mag-
nitudes. Thus, “P” represents a downward trend of short duration, and “A”
represents a trend (up or down) of very small magnitude.

If these symbols are defined and assigned in a batch fashion, they can rep-
resent quantiles (or approximate quantiles) of the fully observed time series.

For example, the ATS fit of the INTC data in the head-and-shoulders pattern
shown in Figure 6 could be represented by the STP symbolic approximation

LO, PE, KO, RO, JE, QI
where the vowel is used to represent magnitude of change, rather than rate of
change. The ATS fit of the IBM price data shown by the solid red lines in
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Figure 7 could be represented by the symbolic approximation
PA, LE, QE, NU

where again the vowel represents magnitude of change.
Of course, because the trends in ATS alternate, if a single direction is given,

then there would be no need for different symbols to be used to designate up
and down moves.

6.4 Patterns in Bounding Lines

Following any kind of data reduction, there are enhanced opportunities for iden-
tifying patterns. Trends are a simple form of data reduction any offer various
methods of pattern identification. Likewise, the bounding lines discussed in
Section 5, may be used to develop patterns. The bounding lines have the same
kinds of characteristics as the trend lines of Section 4; they have slopes and
duration. When bounding lines are determined in regions determined by the
ATS their slopes will generally (but not necessarily) have the same sign as the
slopes of the trends.

Another interesting characteristic of bounding lines is their relationship to
each other; in particular, whether they seem to be converging or diverging.
(By their definition, they can never cross within the region for which they are
defined.) In Figure 10, for example, we see that the bounding lines in the
leftmost regime seem to be converging, while those in the second regime from
the left seem to be diverging. Technical security analysts sometimes attach
meaning to such patterns.

6.5 Clustering and Classification of Time Series

In clustering and classification of data we need appropriate measures of simi-
larity or dissimilarity. The most useful measures of dissimilarity are metrics,
because of their uniqueness and the ordering they induce, and the most useful
metrics on IRd are those induced by a norm. For a given class of patterns,
whether defined on a finite set of symbols or on IRd, there is a wide choice of
possible metrics. For metrics induced by norms the equivalence relation among
any set of norms yields an equivalence of metrics. This equivalence carries over
to metrics on a set of ordered bins or symbols (see ?).

The problem of clustering or classification on a set of time series is essentially
the problem of clustering or classification on a set of patterns. Despite the
equivalence of metrics, on a given class of patterns, different metrics can lead
to different clusters or different classifiers.

The most challenging problem in clustering and classification of time series
arises from the time scaling and “junk” models that constitute a pattern. The
three similar time series shown in Figure 11, for example, may be associated
with the STP approximations

JO, PU, ME, RA
MO, RU, KE, PA

MO, PI, JA, RI, KE, PA
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The question here is how to recognize the similarity of the patterns. These
patterns exhibit different time scalings and in one case includes a superfluous
model. An approach to the problem at this point is the same approach that
was used from the start: further discretization; that is, further data reduction,
with its concomitant loss of information.

One way of dealing with the time scale is a further discretization; instead of
ten different values, we may just use two, up or down. The first two patterns
are now the same:

+O,−U, +E,−A

A model with both short duration and small change in magnitude is a can-
didate for a superfluous modes; that is, one that can be smoothed away by
combinations with nearby models. Applying this approach to the smoothed
time series on the right side of Figure 11 would result in the second through
fourth models being combined into a single model, which would be represented
as RU or -U.

This approach to the problem involves combinations and adjustments of
any or all of the models in a set of patterns, and so is obviously not entirely
satisfactory. For clustering and classification, of course, we do not need for the
patterns to be exactly alike, so another approach would be based on use of
appropriate metric.

A metric that weights differences in direction of a trend much more heavily
than differences in length of two trends in the same direction would achieve
some of the same effect as considering the duration to be a binary variable.

Classification of time series is closing related to the standard problem of
prediction or forecasting in time series. For a given pattern, the predicted value
is merely the predicted class of the pattern.
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A R Codes

A.1 ATS

1 #<pre >
2 ## Function to determine changepoints in linear trends of sequenced

univariate data .

3 ## Except fot the last trend , each linear trend is followed by a trend with
4 ## a slope of opposite sign .
5 ## Optionally , the function will add trend -line segments to an existing plot .
6 ##
7 ## Arguments

8 ## xdata Data ; either a one -dimensional numeric array or a matrix of
9 ## class xts . Data must not contain missing values.

10 ## step The window size within which to identify trends;
11 ## a nonnegative integer.
12 ## If step is input as 0 or if step is not specified ,

13 ## a default value of length(x)/10 is assigned .
14 ## Small values result in more and shorter trends.
15 ## Optional printing arguments ; these arguments affect only the printing .
16 ## segments Logical variable indicating whether to add trend -line

segments
17 ## to an existing plot of a univariate data vector against its

index.
18 ## ** If segments =TRUE , there must be an existing plot over the
19 ## appropriate range.

20 ## ** If segments =FALSE , the additional arguments are not used .
21 ## offset If segments =TRUE , the index of the original data plotted at

which
22 ## to begin plotting of trend lines for the current series x.
23 ## The index of x is treated as starting at offset+1 with

respect
24 ## to the index of time used in the original plot .
25 ## ltype If segments =TRUE , the line type , using the standard values in

R.
26 ## color If segments =TRUE , the line color , using the standard values

in R.
27 ## char If segments =TRUE , the character to print at the changepoints .
28 ##
29 ## Value A matrix with two columns.
30 ## The first column is the index of the changepoint (with no

offset).
31 ## The second column is the value of x at the changepoint .
32 ## The (1,1) element is always 1.
33 ## The (1,2) element is x[1].

34 ##
35 ATS <- function (xdata ,step =0,segments =FALSE ,offset=0, ltype=1,color="red ",char

="x"){
36 ## JEG 2015-12 -28
37 ## JEG 2016-2-12

38 ## JEG 2017-6-12
39 ## JEG 2017-6-20
40 if (class(xdata)=="xts "||class(xdata)=="zoo ") {
41 x <-as.numeric(xdata[,1])
42 } else x <- xdata

43 n <- length(x)
44 error <- FALSE
45 if (sum (is.na(x) >0)) {
46 print("Error: The data contain one or more missing values.")
47 error <- TRUE

48 }
49 if (n<2) {
50 print("Error: The length of data is less than 2.")
51 error <- TRUE
52 }

53 if (step <0) {
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54 print("Error: The step size is negative .")
55 error <- TRUE
56 }
57 if (step == 0) step <- max (1,round(n/10) )
58 if (n<step ) {

59 print("Error: The length of data is less than the step size .")
60 error <- TRUE
61 }
62 if(error)return()
63 chpts <- matrix(c(1,x[1]) ,ncol =2)

64 #Set initial starting point and slope (use least squares through first point)
65 sp <- 1
66 x0 <- sp
67 b <- 6*(sum ((1: step )*(x[2:( step +1) ]))-x[1] *step *(step +1)/2)/
68 (step *(step +1) *(2*step +1) )

69 ep <- sp + step
70 diff <- x[ep]-x[sp]
71 while (sign (diff )!=sign (b)){
72 ep <- ep -1
73 if (ep <= 1) {

74 print("data constant in first step ")
75 return ()
76 }
77 diff <- x[ep]-x[sp]

78 }
79 while (diff ==0) {
80 ep <- ep+1
81 if (ep >= n) {
82 print("slope=0 and data constant after first step ")

83 return ()
84 }
85 diff <- x[ep]-x[sp]
86 }
87 slope <- (x[ep] - x[sp])/step

88 cs <- sign (slope)
89 while (ep < n){
90 spstart <- sp
91 while (sign (slope) == cs) {
92 ep <- min (sp+step , n)

93 if (sp== ep) break
94 diff <- x[ep] - x[sp]
95 while (diff ==0 & ep>sp+1) {
96 ep <- ep -1
97 diff <- x[ep] - x[sp]

98 }
99 if (diff ==0) {
100 ep <- min (sp+step , n)
101 while (diff ==0 & ep<n){

102 ep <- ep+1
103 diff <- x[ep] - x[sp]
104 }
105 }
106 slope <- diff /(ep-sp)

107 sp <- ep
108 }
109 sp <- spstart -1+ rev (which(cs*x[spstart :sp]== max (cs*x[ spstart:sp])))

[1]
110 if(segments ){

111 text (sp+offset ,x[sp],char )
112 lines(c(x0+offset ,sp+offset),c(x[x0],x[sp]),col = color ,lty =

ltype)
113 }
114 chpts <- rbind(chpts ,c(sp,x[sp]))

115 x0 <- sp
116 cs <- -cs
117 }
118 if(segments )lines(c(x0+offset ,ep+offset),c(x[x0],x[ep]),col = color ,lty =

ltype)
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119 if (chpts[dim(chpts)[1],1] !=n) chpts <- rbind(chpts ,c(n,x[n]))
120 return(chpts)
121 }
122
123 #</pre >

c:/files/Computers and Software/Notes ExamplePrograms/R TimeSeriesPatterns/ATS.R

1 #<pre >

2 ## Function to compute an upper or lower bounding line
3 ## for sequenced univariate data .
4 ## The bounding line is either above or below all of the data .
5 ## Optionally , the function will add a bounding line segment to
6 ## an existing plot .

7 ##
8 ## Arguments
9 ## x Data ; a one -dimensional array.

10 ## env Indicator of whether bounding line is to be above or below.
11 ## If env = 1, the bounding line is above (" resistance ").

12 ## If env = -1, the bounding line is below (" support ").
13 ## Optional printing arguments ; these arguments affect only the printing .
14 ## segments Logical variable indicating whether to add a bounding line
15 ## segment to an existing plot of a univariate data vector
16 ## against its index.

17 ## ** If segments =TRUE , there must be an existing plot over the
18 ## appropriate range.
19 ## ** If segments =FALSE , the additional arguments are not used .
20 ## offset If segments =TRUE , the index of the original data plotted at

21 ## which to begin plotting of trend lines for the current series
x.

22 ## The index of x is treated as starting at offset+1 with
respect

23 ## to the index of time used in the original plot .

24 ## ltype If segments =TRUE , the line type , using the standard values in
R.

25 ## color If segments =TRUE , the line color , using the standard values
in R.

26 ##

27 ## Value A vector of length 2 containing the ordinates of the bounding
line

28 ## at the beginning and the end of x.
29 ##
30 #

###############################################################################

31 BoundingLines <- function (x,env =0, segments =FALSE ,offset=0,ltype=1, color="blue
"){

32 ## JEG 2016-02 -20
33 ## requires l1fit{L1pack}
34 require (L1pack)
35 if (env !=1 & env!= -1) {
36 print("env must be either 1 or -1")

37 return ()
38 }
39 n <- length(x)
40 if (n<3) {
41 print("length of data must be greater than 2")

42 return ()
43 }
44 ## Determine L1 fit and compute residuals , and determine position of max

res .
45 ab <- l1fit (1:n,x)

46 a <- ab$coef [1]
47 bc <- ab$coef [2]
48 r <- x-a-bc*(1: n)
49 ## Determine position of max residual , above or below , and determine L1

norm .
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50 maxr <- max (env *r)
51 k <- which(env*r==maxr )
52 dc <- sum (abs (r-env *maxr ))
53 if (n/2==( n-1)/2 & k==n/2){
54 ## Max residual is at middle point (n must be odd )

55 x1 <- maxr +a+bc
56 x2 <- maxr +a+bc*n
57 if (segments ) lines(c(1+ offset ,n+offset ),c(x1,x2),col =color)
58 return(c(x1,x2))
59 }

60 if (k<=n/2){
61 ## Find maximum rotation based on points on the right
62 ## If env =1, this is a clockwise rotation ; if env =-1, it is

counterclockwise .
63 tans <- env *(x[(k+1) :n]-x[k])/(1:( n-k))

64 maxtanright <- max (tans )
65 j <- which(tans == maxtanright )+k
66 bright <- (x[k]-x[j])/(k-j)
67 x1 <- x[k]-bright*(k-1)
68 x2 <- x[k]+ bright*(n-k)

69 if (segments ) lines(c(1+ offset ,n+offset ),c(x1,x2),col =color)
70 return(c(x1,x2))
71 }
72 if (k>n/2){

73 ## Find maximum rotation based on points on the left
74 ## If env =1, this is a counterclockwise rotation ; if env =-1, it is

clockwise .
75 tans <- env *(x[1:( k-1) ]-x[k])/((k-1) :1)
76 maxtanleft <- max (tans )

77 i <- which(tans == maxtanleft )
78 bleft <- (x[k]-x[i])/(k-i)
79 x1 <- x[k]-bleft*(k-1)
80 x2 <- x[k]+ bleft*(n-k)
81 if (segments ) lines(c(1+ offset ,n+offset ),c(x1,x2),col =color)

82 return(c(x1,x2))
83 }
84 }
85
86 #

###############################################################################

87 ### Functions
88 #

###############################################################################

89 Distances2Line <- function (xs,t0,b){
90 ## Computes the sum of the vertical distances of the points in a given

vector

91 ## to a line with a given slope that goes through a given point in the
vector.

92 ## The points are assumed to be equally spaced.
93 ##
94 ## Arguments

95 ## xs A vector .
96 ## t0 The index in xs of the given point.
97 ## b The slope of the line .
98 ##
99 ## Value The sum of the vertical distances to the line .

100 n <- length(xs)
101 x0 <- xs[t0]
102 sumabs <- 0
103 if (t0 >1) sumabs <- sumabs+sum (abs (xs[1:( t0 -1) ]-(x0+b*(1:( t0 -1) -t0))))
104 if (t0<n) sumabs <- sumabs+sum (abs (xs[(t0+1) :n]-(x0+b*((t0+1) :n-t0))))

105 sumabs
106 }
107 #</pre >
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