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Preface

This book began as a set of notes for myself to facilitate my use of R for
various applications, mostly in the analysis of financial data. I wanted a ready
reference for such simple tasks as initiating or manipulating xts objects or
adding graphics elements to a plot that was not produced by the base plot

function. Initially this was just a collection of R scripts, but I decided that
embedding them in a LATEX2ε document with an index would make them
more useful. I tried to make the index complete and useful to me. It contains
a mix of task-oriented terms relating to financial data analysis and names of
computer functions or terms relating to computer usage.

The result is this book that is now intended for other persons with interest
in analyzing financial data using R.

The book uses real financial data in the examples. The book identifies
internet repositories for getting real data and interesting data.

In addition to real data, the book discusses methods of simulating artificial
data following various models, and how to use simulated data in understanding
and comparing statistical methods.

Data preparation and cleansing are also discussed.
Chapter 1 is on the basics of R, but it is not a tutorial on R. It emphasizes

features of R that make it a particularly useful software system for financial
analysis. Section 1.6 discusses open sources of financial data and access of the
data using R. Chapter 2 focuses on nature of financial data, in particular on
equity returns and their statistical properties.

Chapter 3 describes simulation methods in R. Monte Carlo simulation
plays a major role in analysis of financial data. Chapter 4 covers graphics in
R. Plots for time series objects with date indexes require specialized graphics
functions, and these functions are discussed.

Chapter 5 covers use of R in financial time series analysis. There are various
ways of representing time series data in the computer. Simple time series data
are equally spaced, so the indexing can be sequential integers. The simple time
series data objects in R inherit from numeric vector or matrix objects. These
objects add only metadata to specify the beginning and ending dates, and the
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frequency within simple integer indexes. Chapter 5 describes the simple time
series objects and how they are used.

Unequally-spaced time series require a date object as an index. Chapter 5
describes date data and how to manipulate it, and then discusses R objects
for unequally-spaced time series and how to manipulate those objects.

Chapters 7 and 8 describe use of R in two important areas of numerical
analysis, linear algebra and optimization.

Chapter 9 covers use of R when high performance computing is important,
such as when very large datasets are to be analyzed.

A reader with prior exposure to R may be able to skip or to skim various
sections of the book, but even a reader with no experience with R should be
able quickly to pick up enough R to produce simple plots and perform simple
analyses. The best way to do this is to look at a few code fragments, execute
the code, and then make small changes to it and observe the effects of those
changes.
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1

R: The System and the Language

R is an interactive computer language and system that is particularly well-
suited for statistical applications. It is an object-oriented functional program-
ming system.

The standard R GUI has a subwindow for code (the “Editor” window),
and a subwindow to interact directly with the R interpreter (stdin, the “Con-
sole” window). Most R users write R statements in the console and then sub-
mit them directly to the system for execution. RStudio, which is a free and
open-source integrated development environment for R, provides an even more
useful interface.

R is available for download for various computer platforms from the Com-
prehensive R Archive Network (CRAN) at

cran.r-project.org/

Executables for various Apple Mac, Linux, and Microsoft Windows platforms
can be downloaded from that site. The R system is maintained by the R Core
Team (2020).

Although this chapter is written at an introductory level and describes
basic properties of R, it is not a general tutorial. The choice of topics is
somewhat eclectic, but generally the emphasis is placed on particular features
of R that are more likely to arise in applications to financial data analysis,
such as how dates are specified and used.

A reader with some prior knowledge of R can skim most of the chapter,
but should read more carefully less familiar material, such as perhaps date
data in Section 1.2.5. Also, some more esoteric topics are mentioned, such as
the reserved words and symbols in R (page 5).

R is a very well-defined system, and most things work just as a logical
or intuitive interpretation of an R expression would lead the user to believe.
There are some functions, operators, or objects, however, whose properties
may seem counterintuitive, or else may not conform to forms that allow simple
manipulation. I will often mention such aspect that I find difficult to work with
(such as working with levels of factors, for example).
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2 1 R: The System and the Language

Packages and Functions

R has a modular design, and the basic system consists of a number of “li-
braries” or “packages” that provide specific functionalities. The basic R dis-
tribution comes with a small number of standard packages, with names like
base, utils, stats, and so on. A package for a specific project or set of tasks
can be developed by an R user, and if the package meets certain standards, the
R Core Team may incorporate it into the CRAN distribution and documen-
tation system. There are over 17,000 packages currently in CRAN that have
been contributed by R users from around the world. Two other repositories
of R packages are Bioconductor, at

www.bioconductor.org

and R-Forge, at

r-forge.r-project.org

Packages may duplicate one another in functionality, and they vary some-
what in their quality. Each package may bring its own baggage into the user’s
working environment, and sometimes this causes unexpected results for other
common operations.

There are also a number of R functions and R packages available at GitHub
in the various users’ directories.

R is a programming language with operators, functions, constants, and
datasets. The language provides the ability for the user to add new operators,
functions, constants, and datasets.

Computational tasks are performed in R by functions and operators, so
after understanding the basic syntax of the language, “learning R” consists
mainly of learning the functions that perform the tasks to be accomplished,
and learning what packages contain those functions.

Functions in different packages could have the same name, but perform dif-
ferent tasks or perform tasks differently. The packages in CRAN are controlled
so as to prevent duplicate names, but in any event, it is important to know
which package contains a given function. A specific function can be specified
by naming the package and the function, in the form stats::smooth() for
the smooth() function in the stats package, or forecast::ma() for the ma()
function in the forecast(), for examples.

Versions of R and Other Distributions

The design and development of R has been very orderly. Frequent updates are
released, but the updates are well-tested prior to being released, and in most
cases, backward compatibility is maintained.

The version numbering scheme consists of three fields, separated by peri-
ods: x.y.z. Many users of R maintain their own computing environments, and
these users should be diligent in updating their R versions. (I do it once or
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1.1 Documentation 3

twice a year.) Installation of a new version often means that packages must
be reinstalled. Packages themselves must also be updated occasionally.

In addition to the standard distribution versions of R available from
CRAN, there are various add-ons and enhancements, some also available from
CRAN. One of the most notable of these is RStudio, which is an integrated
R development system including a sophisticated program editor. (I now use
RStudio most of the time that I use R.)

Microsoft R Open (MRO), formerly known as Revolution R Open (RRO),
is an enhanced distribution of R from Microsoft Corporation. An important
feature of Microsoft R Open is the use of the Intel Math Kernel Library (MKL)
to allow multiple threads if the CPU follows the Intel multi-core architecture.
This can result in significant speedup of numerical computations. MRO also
provides an ability to maintain snapshots of the system, including packages,
so that R scripts will yield reproducible results even if components of the the
system change over time.

Statistical analysis of financial data requires access to the data, and soft-
ware to manipulate the data and to perform statistical analyses. There are
many sources of financial data. We will discuss some sources and how to access
them through R in Section 1.6.

1.1 Documentation

There are a number of books and tutorials on R, and a vast array of resources
on the internet. Some of the more useful advanced books on R are listed in
the references beginning on page 221. There are also many online resources,
such as those listed at

cran.r-project.org/other-docs.html

Two additional useful sites are

www.rdocumentation.org/

and

rdrr.io/

The latter site has a page that allows the user to type a snippet of R code,
execute it, and receive the output in a subwindow of the browser. This allows
access to the R system on a connected device where R is not installed, such
as on a tablet or a smart phone.

Many useful functions are in packages that are not included in the standard
R distribution. To find packages and other software that provide functions for
a specific task, the Task View webpage at CRAN may also be useful:

cran.r-project.org/web/views/

The Task View webpage lists relevant packages for the various types of com-
putations or areas of application.
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4 1 R: The System and the Language

To use a function, the package containing that function must be loaded in
the current R session.

Example Code in this Book

I will show many short fragments of R code. Most can be executed as shown,
although in a few cases, I may omit some necessary initializations.

Many snippets of R code are shown. Whenever the results shown are not
immediately obvious, the reader should go through them in detail, possibly in
an R session. In some cases, the R code shown is a straightforward translation
of basic mathematical formulas for clarity, but it may not be the best way to
perform the computations.

In the example code, I will often show exactly what the user types in the
R console in a form such as this:

x <- 5

(This statement means that the value 5 is to be assigned to a variable that
the user has named “x”.) Sometimes I show an R prompt before the user’s
input together with the output that R prints to the console. Tokens that are
part of the R system, other that simple operators such as “<-” or “+”, will be
written in a different font, such as sqrt().

> y <- sqrt(9)

> y

[1] 3

If the code fragment requires some setup or other statement that are not
shown, I will use an ellipsis to indicate that statements are missing:

...

ysum <- ysum + sqrt(yi)

Also if the R code in the example requires a package other than the standard
ones (base, utils, stats, and so on), I will indicate which packages must be
loaded, using a different font such as forecast. Packages are loaded by the
R function require() or library():

...

require(forecast)

Acf(z)
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1.1 Documentation 5

Names and Special Characters

Entities in R are identified by names, which either are chosen by the user
to represent user-defined objects or are set by the system. In the examples
above, the names sqrt, require, forecast, and Acf were set by the system.
The names x, y, ysum, yi, and z were chosen by the user. Names are case
sensitive.

User-chosen names must conform to certain rules. Names cannot include
special characters such as the arithmetic or logical operators (see page 11), or
other special symbols such as “[” or “(”. The first character in a name cannot
be a numeral.

Names cannot be the same as R program control words such as “for()”
(see page 16). These are reserved words. Also, all of the missing value logical
constants such as “NA” as described in Section 1.2.6 are reserved. Names of
ordinary R functions are not reserved. In general, however, it is better not to
use such names so as to avoid confusion.

There is also some special characters in R. For example, “#” is a special
character generally indicating that what follows is a comment not to be inter-
preted or executed. (The “#” character may also be used within a character
string to specify a hexadecimal value defining a color; see page 156.) The “#”
character cannot appear in the name of an R object.

Another special character is the “backtick” or backslash “\”. This charac-
ter is used as a special type of quote (see Figure 1.9), but its more common
usage is as a control character, similar to its use in the C programming lan-
guage. For example, in a character string, “\n” means a new line. The string
“\\” means the single character “\”. Within a character string, “\x” followed
by two hexadecimal characters designates a single character in the ASCII cod-
ing. For example, “\x4B” is upper-case “K” and “\x6B” is lower-case “k”. The
ASCII hexadecimal coding for a blank character is “\x20”.

> cat("\x4B\x20\x6B\n")

K k

>

The “\” character cannot appear in the name of an R object.

1.1.1 Help

R has an integrated help system for functions and other objects included in
the system. Documentation is stored in PDF or HTML format and stored
locally. In the standard GUI setup, the documentation can be accessed from
a “Help” menu.

Documentation for R objects is generally stored in the form of man pages
and can also be accessed through the R help() function, for example, for the
R function rnorm(),
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help(rnorm)

The R “?” operator also performs the same operation:

?rnorm

Depending on the platform and internet connectivity, the help() function
opens a browser that displays the man page at an R site.

The help functions also work for R operators, but the operator symbols
must be quoted, for example,

?"%*%"

The help functions also provide information about other objects included
with the R system, such as constants and datasets.

?pi

?cars

(pi() is the constant π, and cars() is a built-in dataset.)
If we are already familiar with an R function, but just need a reminder of

the arguments for the function and any defaults they may have, we can use
the args() function:

> args(rnorm)

function (n, mean = 0, sd = 1)

NULL

(NULL has no relevant meaning here.)

1.1.2 Demos and Vignettes

Examples of the use and output of some R functions can be obtained by use
of the demo() function. If a function has a set of demos at the CRAN site, the
demo() function will source the demo scripts into the console. For example,

demo(smooth)

This sources several snippets of code to illustrate the smooth() function on
different dataset with various options. There are no demos for most R func-
tions, and there is considerable variation in the demos provided by demo().
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More information and examples for functions and other objects included in
packages are often available through the vignette() function. This function
is (or may be) particularly useful for obtaining information on a package or a
class of objects used in a package.

Note that the argument to vignette() must be quoted.

vignette("xts")

There are no vignettes for most R packages, and there is considerable variation
in the information provided by vignette(). Invocation of this function may
initiate a window with just a few comments, or it may bring into view an
extensive PDF document.

1.1.3 Finding Functions and Other Objects

As mentioned above, “learning R” consists mainly of learning the functions
that perform the tasks to be completed, and learning what packages contain
those functions. Learning R also involves becoming familiar with the other
object provided by the system.

Using the help() function requires knowledge of the name of the func-
tion or operator. The help() function also requires a package containing the
function be loaded in the current session.

Often, the easiest way to find the name of a function to do a specific task
is just to search the internet for that task; for example, use a search engine to
search for “smoothing in R”, and you will likely find the name of one or more
R functions useful in smoothing. The Task View webpage, as noted above,
may be useful for finding relevant packages.

The help.search() function can be used to search for functions in any
installed R package to do a specific task, based on a character string. For
example, to find functions in any installed packages that do smoothing, we
may use

help.search("smooth")

Note that the character string must be quoted. (In the help.search() func-
tion, the character string is not the name of an R function; although in this
case, it turns out that the R function is indeed named smooth().)

The help.search() function opens a browser that displays a page listing
all functions in all of the installed packages whose man pages contain the
specified string. The items in the list give the package name, the function
name, and a brief statement of what the function does:

stats::smooth Tukey’s (Running Median) Smoothing
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If any of the list functions have demos, they are listed, and vignettes associ-
ated with relevant packages that have vignettes are listed. Both demos and
vignettes are linked to the corresponding items among installed packages. The
names of functions are linked to the man pages.

The help.search() function does not require that the relevant packages
are loaded, only that they be installed. The package containing any function
to be used, or to be directly accessed by the help() function, must be installed
and loaded in the current session. (See page 42 for information on how to do
this.)

To determine what packages are currently loaded, the search() function
can be used (see page 39), and to determine what functions are in a given
package that is loaded, the ls() function can be used; see Figure 1.17 or the
other example on page 41. (The ls() function is essentially the same as the
Unix ls; it means “list”.)

The help system also leads the user to an index of all functions in a given
package. (Using the help() function for any function in a package brings up
a link to the index for that package.)

Once the name of the function is known and the package containing the
function is loaded, the help() function can be used to get a description of
the function.

Exercises: Documentation

The exercises generally require you to use R. In many cases, the exercises
require computations on data. If the emphasis is on the method rather than
the actual data, we will often use artificially generated “random” data. Stan-
dard normal random numbers serve this purpose well, and when an exercise
asks you to “generate 100 standard normal random numbers”, the simple R
statements

set.seed(12345)

x <- rnorm(100)

will yield the sample data. The set.seed() function ensures that the same
numbers can be generated.

1.1.1. a) Find two functions in the basic stats package that perform
the computations for principal components analysis.

b) What are the differences in these functions?
1.1.2. What does the binary operator %in% do, and when/how would

you use it?
1.1.3. On a phone or a tablet, navigate in a browser to rdrr.io. Select

the “Run in browser” option.
a) Execute the help() function for rnorm().
b) Generate 100 standard normal random numbers, compute

their mean, and plot them. Code to do this is
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x <- rnorm(100)

mean(x)

plot(x)

1.2 Program Structure and Syntax

Entities in R are identified by names that are case sensitive and must conform
to certain rules as mentioned above. Operations are performed by functions.

One of the most common functions is assign(), which assigns one entity
to another.

assign("r", 5)

assign("s", 3)

assign("rp", exp(r) + cos(2*pi*s))

R functions and operators for manipulating character strings, such as paste()
and as.character(), can be useful in forming the name of the object in the
assign() function.

There is also an R assignment operator, “<-”, which we have seen in
the examples above. One of the most common types of R statements is an
assignment statement, which assigns values to an object by use of the <-

operator.

r <- 5

s <- 3

rp <- exp(r) + cos(2*pi*s)

Other statements control the flow of a program or a group of statements, as
perhaps in a loop, request that a function or group of statements be executed,
or merely request that the values of an object be displayed. A statement that
consists only of the name of an object results in the display of that object:

> r <- 5

> r

[1] 5

This last illustration is intended to replicate the appearance of the R user’s
console. The has “>” symbols are meant to represent the prompts on the user’s
console. I will often use this form when I want to show both what the user
types and what the R system displays.

An R statement may also just be a comment for the reader or the program-
mer. A comment is any sequence of characters not enclosed in quote symbols
that follow the symbol “#”. When a sequence of R statements is put together,
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comments may help to understand what the statements do. The readability
of a group of R statements may also be improved by indentation. Indentation
or the placement of a statement on a line has no meaning in R.

y <- r+3

# This is a comment

R statements are line-oriented but continue from one line to another until
a syntactically complete statement is terminated by an end-of-line:

x <- r # this statement is syntactically complete; x gets r
y <- r+ # this statement is not yet syntactically complete

3 # it is now complete; y gets r plus 3

Multiple statements on the same line are separated by semicolons:

x <- 5; y <- x+3

1.2.1 Functions and Operators

Actions in R are performed by functions or operators. There are a number
of functions and operators provided in the R system, and we will give a brief
overview here. In Section 1.4 we will discuss functions and operators in more
detail, and in Section 1.4.2 we will list important R functions for common
mathematical computations, including computations involving common prob-
ability distributions in. The user can also add functions and operators to an
R session, as we will illustrate in Section 1.2.3.

R Functions

The R system provides a number of functions, including most of the standard
mathematical functions, such as sin, cos,

√
, exp, and so on. These functions

have the same name as used in mathematics, or else a simple mnemonic name:
sin(), cos(), sqrt(), and exp().

A function in R is invoked by using the name of the function followed by
matching parentheses, with or without arguments between them. The func-
tion can be invoked within any syntactically correct expression, including a
function. (There are some technical issues that involve the actual execution
of a function, which we will not get into here.) A function may return an R
object or it can alter the R environment.

Many standard Unix commands, such as “ls”, “grep”, “cat”, and so on,
have corresponding R functions that have essentially the same meaning in R
as in the Unix kernel operating system.
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There are functions that provide other types of action, such as the help()

function mentioned above. Some functions perform rather complicated statis-
tical analyses, such as lm(), which fits linear models and computes relevant
statistics for analysis of the model (see Section 7.4), or arima(), which fits
an ARIMA model to a time series (see Section 5.3).

R also includes some binary functions for set operations, including union(),
intersect(), and setdiff(). The setequal() and is.element() functions
return TRUE or FALSE depending on the equality of two set or the inclusion of
an element in a set. (See Figure 1.41 on page 104.)

R Operators

An “operator” is a function expressed in a special, usually more convenient
syntax. The common arithmetic operator “+” uses a simple form to add two
numbers, for example.

There are other R operators for common tasks, even when there is a simple
R function to perform the task. For examples, the R “?” operator performs
the same operation as the help() function, and the R assignment operator,
“<-” performs the same operation as the assign() function.

Arithmetic Operators

R has the usual arithmetic operators “+”, “-”,“*”, “/”, and “^”. Most of these
are binary infix operators, used for example as in x+y or x-y. The operator
“-” can also be used as a unary prefix operator as in -y. R also has a mod
operator “%%” where x %% y yields x mod y.

There are also two useful arithmetic operators for use with vectors and
matrices, the Cayley product “%*%” and the outer product “%o%”. We will
discuss these in Section 1.3.2, and in Chapter 7 we will discuss functions for
operations on vectors and matrices in general.

Logical Operators

Logical conditions in R, which have a value of TRUE or FALSE, can be defined
by logical operators. The negation logical operator is !, which is a unary prefix
operator.

The common binary infix logical relational operators are ==, !=, <, <=, !<,
>, >=, and !>, with obvious meanings. The conjunctions are && and |. The
binary function xor performs the exclusive operation. R also has a logical
operator for set inclusion, %in%. Examples:

3<5 is TRUE
3<2 && 2+2==4 is FALSE
3<2 | 2+2==4 is TRUE
xor(3<2, 2+2==4) is TRUE
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xor(2<3, 2+2==4) is FALSE
2%in%1:4 is TRUE

(The is.element() function performs the same operation as the operator
%in%.)

A logical condition can be an operand in an arithmetic expression. A TRUE

condition has a value of 1 and a FALSE condition has a value of 0; for example,

> 1+(3<2)*2+(3<5)*3

[1] 4

Logical conditions are often used to determine whether or not a group of R
statements are to be executed using if(), else(), and elseif() statements.
Logical conditions are also used in the looping control statements, for() and
while().

Other Operators

R also has a number of operators of various types, such as the unary prefix “?”
illustrated above. A useful operator that can be used to generate a sequence
of values is the “:” (colon) operator. It can be used when a given beginning
value and ending value have an obvious sequence of values between them, as
for example 8 and 12. The obvious values between them are the integers 9, 10,
and 11. With a starting value of 12 and ending value of 8, the values would be
the same, except in reverse order. Negative integers can also imply an obvious
sequence of intermediate values.

> 8:12

[1] 8 9 10 11 12

> 12:8

[1] 12 11 10 9 8

> -2:3

[1] -2 -1 0 1 2 3

> 2:-3

[1] 2 1 0 -1 -2 -3

The colon operator can also be used with non-integral values, so long as the im-
plied sequence is “obvious”. Sometimes an “obvious” approximation is made:

> 4.5:3.5

[1] 4.5 5.5 6.5

> 4.5:6.6

[1] 4.5 5.5 6.5
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The sequence operator has various other forms (see Figure 1.4 on page 25,
for example). The seq() function provides more options for generating a
sequence.

Another operator that we will encounter often is the binary infix operator
“$”, which is used to extract components of objects, as we will discuss in
Section 1.3.4.

An important operator in statistical data analysis is the tilde operator,
“~”, to separate the left-hand and right-hand sides of a statistical model.
There are many details in the syntax for specification of a statistical model,
and we will not go into them them. As an example, consider the multiple
linear regression model

yi = β0 + β1x1i + β2x2i + β3x3i + εi. (1.1)

If the regression variables in R are y, x1, x2, and x3, the linear regression
model with the intercept and additive error term as in equation (1.1) would
be specified in R as

y ~ x1+x2+x3

There is extensive syntax in R to allow for many variations on this; see Ta-
ble 1.9 on page 127.

While the R language does not support pipes, a piping operation can be
implemented by a binary operator. The operator %>% in the magrittr package
performs a pipe:

> library(magrittr)

> x <- 9

> x %>% sqrt() # x is piped to sqrt

[1] 3

Piping is of very little utility in ordinary numeric computations, but it may
be useful in set operations.

Precedence of Operators

The order in which operators in an expression are evaluated depends on how
the operators are grouped syntactically and within a single group, on their
precedence. For example, the value of the expression

12+4*2
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depends on whether “+” is evaluated before “*” or “*” is evaluated first. If the
precedence of two operators are different, the one with “higher precedence” is
evaluated first.

There are fixed rules of precedence for R operators, some of which I state
below. First, however, let us observe the effect of good programming practice.
When grouping symbols are used, we do not have to know the rules.

(12+4)*2 # + is performed first
12+(4*2) # * is performed first

We know, and anyone looking at the program segment knows, what the ex-
pression means in each case.

In general, the binary arithmetic operators have precedence order from
high to low: first “^”, next “*” and “/”, then “+” and “-”. The unary prefix
operator “-” has higher precedence that any of these:

> 12^2+4*2

[1] 152

> 12^2+4*-2

[1] 136

> 12^-2+4*2

[1] 8.006944

Most operators with equal precedence are evaluated left to right:

> 8/4/2

[1] 1

> 8/(4/2)

[1] 4

but some are evaluated right to left:

> 2^4^2

[1] 65536

> (2^4)^2

[1] 256

The colon sequence operator “:” has precedence between the exponentia-
tion operator and the multiplicative operators, as we can see in the following
examples.

> 4.5:6.5

[1] 4.5 5.5 6.5

> 4:6+.5
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[1] 4.5 5.5 6.5

> 1:(3+2)

[1] 1 2 3 4 5

> 1:3*2

[1] 2 4 6

> 1:(3*2)

[1] 1 2 3 4 5 6

> 1:3^2

[1] 1 2 3 4 5 6 7 8 9

> 1:(3^2)

[1] 1 2 3 4 5 6 7 8 9

This precedence of the colon operator is often a source of errors for R program-

mers. The precedence ranking is counterintuitive for many users, so I highly
recommend that grouping symbols be used anytime the sequence operator is
used together with any other operator.

The piping operator %>% in the magrittr package is of higher precedence
than the arithmetic operators.

> library(magrittr)

> x <- 9

> x+16 %>% sqrt()

[1] 13

> (x+16) %>% sqrt()

[1] 5

A complete precedence list can be obtained by

?Syntax

1.2.2 Program Control Structures

R statements can be grouped into control structures by “{” and “}”. With
the beginning and ending grouping symbols, there is no need for a “begin” or
an “end” statement.

Grouped statements can be executed together as a subprogram (formed
by a function() statement). They can be executed conditionally using if(),
else(), or elseif() statements:

...

if (xi>=0) {
nnonneg <- nnonneg+1

sum <- sum + sqrt(xi)

} else {
nneg <- nneq +1

}
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Grouped statements can also be executed in a loop using for() or while()
statements:

n <- 10

sum <- 0

sumsq <- 0

for (i in 1:n) {
sum <- sum + i

sumsq <- sumsq + i^2

}

Conditional and repetitive tasks can often be performed by use of an R
function, and in general, it is best to avoid use of the conditional and looping
constructs above if an alternative is available.

1.2.3 User-Written Functions and Operators

A simple way a user can extend R is to write a function using the R function
constructor called function() and the grouping symbols “{” and “}”. New
functions can be added to an R session with ease. Multiple functions may
have the same name, but only one is active at a time. A function can be
referenced uniquely by specifying the package it is in together with its name
(see discussion on environments beginning on page 38).

A function consists of arguments (called “formals”), a body, and the cur-
rent environment from with the function is invoked. The return() function
within the body of the user function causes the execution of the user func-
tion to terminate and the argument of the return() function to be returned
as the value of the user function. If the argument of the return() function
is missing, the value returned by the user function is NULL. If the end of a
function is reached without calling return(), the value of the last evaluated
expression is returned.

An example of an R function called myFun is shown in Figure 1.1. This
function determines the slope and intercept of the line that is determined by
two given points. Notice how it handles the special case of a vertical line. (A
more careful implementation would determine if the value abs(x2-x1) is too
small so as to prevent overflow of the result.) The myFun function returns the
intercept and slope in a numeric vector. If the the return() function is not
invoked explicitly, the user-written function will return the expression that is
evaluated just before the function is exited (in this case, just intercept).

Once the function has been entered into the R session, the function can
be invoked by assigning values to the arguments x1, y1, x2, and y2, called
“formal arguments”, and then issuing the R statement

ab <- myFun(x1,y1, x2,y2)
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myFun <- function(x1,y1, x2,y2){
# Given points (x1,y1) and (x2,y2), determine the intercept and slope of
# the line that goes through them.
# Returns a vector of length 2.
if (x2==x1) {
slope <- 1

intercept <- 0

} else {
slope <- (y2-y1)/(x2-x1)

intercept <- y1-slope*x1

}
return(c(intercept,slope))

}

Figure 1.1. A Simple Function in R

The names x1, y1, x2, and y2 are formal arguments to the function. They
are assigned a value when the function is invoked, and then are used within
the function. Any changes made to the formal arguments within the function
are not passed back to the environment in which the function was invoked.

There are many tools for debugging an R program. A very useful tool
to use when writing a function is the R function browser(). This function,
without arguments, causes the execution of the user’s function to pause and
return program control to the user, who can then have access to the variables
within the function. The R function ls() is also useful within a user-written
function to identify local variables (see Figure 1.17).

A common error when a large program is being developed is that variables
are referenced without being initialized. Sometimes this is because the names
are miss typed; other times it is just an oversight. If there is a variable in
the R workspace whose name is the same as the uninitialized variable, then
that value will be used, and neither the R system nor the user will realize the
mistake, unless there is a type mismatch. In the process of developing and
testing the program, the R statement

rm(ls())

is sometimes useful. This statement removes all of the variables in the
workspace, so it has use only in the program development process.

Two other useful debugging tools are the packages testthat and assertive.
Cotton (2017) provides a discussion of debugging methods in general and a
tutorial on the use of these two packages in particular.

In a simple case as in Figure 1.1, the computations of the function are
expressed in ordinary R statements. In other cases, the computations can be
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expressed in a compiler language such as Fortran or C, compiled, and then
linked into R. In either case, the user’s function is invoked by its name, just
as if it were part of the original R system.

In addition to defining new functions, whether in R or in some other code
that is linked into R, there are also other ways in which R can be extended.
New classes and new environments (see Section 1.2.7) can be defined and
incorporated into an R session.

An alternative to a user-written R function is an R GUI app, which may be
useful in a task in which various values may be easily entered and evaluated.

R GUI Apps

Using an R GUI app may be very different from using R itself. Once an R
GUI app is created, probably by someone conversant in R, the app can be
shared with other users who may not even know R. Most R GUI apps allow
interaction with the R system, however. An R GUI app, for example, can
have the appearance of an Excel spreadsheet. (Microsoft Excel R© is the most
widely used program in the world for statistical analyses.)

There are several packages that create GUI apps. The most widely used
package is Shiny, developed by RStudio.

User-Defined Operators

The user can also define operators in R using the function() function. It
is standard practice to name a newly-defined function with some meaningful
character or character string surrounded by “%” on either side, such as the
built-in operators %*%, %o%, and %in% that we have already mentioned.

To define an operator, we enclose it in quotes, either " or ’.
As an example, let us consider the special operator “\” that is provided by

MATLAB R© for solving a system of linear equations. (MATLAB is a general-
purpose mathematical software system that I will refer to occasionally. I will
generally use the name in mostly lower case, Matlab. Octave is an open-source
free clone of Matlab and provides much of the same functionality as Matlab.
I will sometimes refer to the two as “Matlab/Octave”.)

For the system of linear equations Ax = b with A and b properly initialized
as Matlab objects, the Matlab statement

>> x = A\b

causes the solution to be computed. For example

>> A = [1,2;6,3];

>> b = [8;21];

>> x = A\b

x =

2

3
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We will now define an R operator that does the same as the Matlab operator
“\”.

This example uses some functions in R for working with matrices that we
will encounter in Section 1.3.2. The example also emphasizes the existence of
special characters in R (see page 5).

The R expression that would most closely mimic the Matlab operator is
“%\%”. As it turns out, however, “\” is a special character in R, and cannot be
used in any user-defined name or expression. Therefore, we choose the symbol
“%bs%” (for “backslash”) to represent the operator. We define it as

"%bs%" <- function(A,b) return(solve(A,b))

using a standard R function, solve() (that does the same thing).
To use the operator, we write it without the quotes:

A <- matrix(c(1,2,6,3), nrow=2, byrow=TRUE)

b <- c(8,21)

x <- A%bs%b

1.2.4 Characteristics of Data: Classes, Modes, and Types

R is an object-oriented system. (Computer science purists may make various
distinctions regarding an “object orientation”, but we will ignore them here.)
A basic idea in object-oriented systems is that “objects” (all “things” are
objects) are characterized by properties that determine what computational
methods are applied to the object. The properties go with the object itself,
so that details of the computational method do not need to be specified each
time the method is applied.

In this section we will discuss characteristics of individual atomic data
items and simple sequences of items of the same kind. In Section 1.3, we will
discuss more complicated objects that may consist of various arrangements of
elements of different kinds.

Objects in R are characterized in various ways, such as class, mode, and
type. The class of an object, which is its most essential characteristic, can be
determined by the function class(). The mode of an object can be deter-
mined by the function mode() and the type can be determined by the function
typeof(). An R function, whether built-in, such as sqrt(), or user-defined,
such as myFun defined in the R statements shown in Figure 1.1 on page 17, is
of class function and mode function.

> class(sqrt)

[1] "function"

> mode(sqrt)
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[1] "function"

> class(myFun)

[1] "function"

> mode(myFun)

[1] "function"

The type of functions may vary.
The mode and the type correspond to the most basic nature of an object.

Although there are slight differences in mode and type, we will ignore them
here. The characteristics of an object are determined when it is first initialized,
and those characteristics determine what kinds of operations can be performed
on the object.

In this section we will be concerned with various classes of data: factor;
numeric and the subclass integer; complex; character; logical; and date. In sta-
tistical datasets, we often describe some variables and “categorical”, meaning
that they do not represent ordinary measurements or counts. In R, the factor
and character classes generally correspond to categorical variables. We will
discuss these classes and give examples of them in this section.

First, however, we will discuss a simple structure formed by a sequence of
atomic objects all of the same class.

Atomic Vectors

A basic R structure is a single sequence of individual elements of the same
class. We call the object an “atomic vector”. The qualifier “atomic” is to
distinguish the vector fram a list, which is a vector that may contain elements
of different classes. We will use the term “vector” to refer to an atomic vector.
The elements of a vector in this sense are not necessarily numbers. For vectors
containing numeric values, we can perform the usual vector operations in the
mathematical sense, as we will discuss in Section 1.3.2.

A single datum is considered to be a vector with one element.
The class of a vector is generally not vector, but rather it is the same as

the class of its elements.
A vector is constructed by the c() function.

> x <- c(9,8,7,6,5,4,3,2,1)

> x

[1] 9 8 7 6 5 4 3 2 1

> class(x)

[1] "numeric"

> a <- c("a", "bc", "d")

[1] "a" "bc" "d"

> class(a)

[1] "character"
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An element within a vector object is addressed by an index. Indexes of
arrays are indicated by “[ ]”. Indexing of arrays starts at 1; for example,
x[1] refers to the first element of the one-dimensional array x, just as is
common in mathematical notation for the first element in the vector x, that
is, x1.

Any set of valid indexes can be specified; for example, x[c(3,1,3)] refers
to the third, the first, and again the third elements of the one-dimensional
array x.

> x[1]

[1] 9

> x[c(3,1,3)]

[1] 7 9 7

Negative values can be used to indicate removal of specified elements from
an array; for example, x[c(-1,-3)] refers to the same one-dimensional array
x with the first and third elements removed. The order of negative indexes or
the repetition of negative indexes has no effect; for example, x[c(-3,-1,-3)]
is the same as x[c(-1,-3)]. Positive and negative values cannot be mixed as
indexes.

> x[c(-1,-3)]

[1] 8 6 5 4 3 2 1

A useful function for working with vectors is length(), which returns the
number of elements in an atomic vector.

> length(x)

[1] 9

> length(x[c(3,1,3)])

[1] 3

> length(x[c(-1,-3)])

[1] 7

The function length() operates on the entire vector at once. Other func-
tions operate on the individual elements of the vector.

When a function that ordinarily has an atomic element as its argument is
applied to a vector, the function is applied to each element in turn, yielding
an output that is a vector, as in Figure 1.2.

This property of R functions is one of the most important aspects of the
R system. It not only is a convenience for the programmer, it also results in
efficient execution of the code.
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> sqrt(x)

[1] 3.00000 2.82843 2.64575 2.44949 2.23607 2.00000 1.73205 1.41421 1.00000

Figure 1.2. Vectorized Function

Factors

In statistical data analysis, some variables in the dataset are used to identify
groups or classes of the observations. These variables are called categorical
variables. Such variables are called “factors” in R, and the different categories
identified by the factors are called “levels”. R treats all factor vectors in a
consistent and efficient manner. (Recall that in a statistical dataset, variables
generally correspond to vectors.) The levels of a factor are assigned to the
positive integers, which then can be used to index the groups.

The reason factors are important is that they can be used to perform
mathematical operations or statistical analyses on another variable separately
at each level of a factor; see page 77 for an example.

A factor is constructed from an atomic vector of arbitrary mode by the
factor() function. The elements in the atomic vector are converted to their
character representations; for example, 2 becomes "2" and 4/2 becomes "2".
The character representations are then sorted and the integers 1, 2, . . . are as-
signed to them in order. The factor vector then contains integers 1, 2, . . . corre-
sponding to unique values of the underlying vector. The R function levels()

shows the levels of a factor and the str() function shows both the levels and
the individual elements. The levels() shows the length of the factor vector
(not the number of levels).

To retrieve the original value of an element in the factor object, it is
necessary to convert the factor object back to the character object, and then
if necessary, convert the character object back to the class of the original
object.

Figure 1.3 illustrates a factor variable. Notice that levels(sexfac)[1] is
”f”, which could be known only if the sorted values of the levels were known.

A factor is not a numeric vector, even though it is of mode numeric and
type integer. An arithmetic function such as sum() cannot be applied to a
factor.

Once a factor has been defined, its possible values are limited to the original
levels. Individual values can be reassigned only if they are among the valid
levels.

# reassignment of factor values
> sexfac[1] <- "f"
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> sexfac <- factor(

+ c("m", "m", "f", "m", "f", "f", "m", "f", "m", "f", "f", "f", "m", "f"))

> sexfac

[1] m m f m f f m f m f f f m f

Levels: f m

> levels(sexfac)

[1] "f" "m"

> str(sexfac)

Factor w/ 2 levels "f","m": 2 2 1 2 1 1 2 1 2 1 ...

> length(sexfac)

[1] 14

> class(sexfac)

[1] "factor"

> mode(sexfac)

[1] "numeric"

> typeof(sexfac)

[1] "integer"

> sexfac[1]

[1] m

Levels: f m

> as.character(sexfac[1])

[1] "m"

Figure 1.3. An R Factor Variable

> sexfac[2] <- "t"

Warning message:

In ‘[<-.factor‘(‘*tmp*‘, 2, value = "t") :

invalid factor level, NA generated

The reason factors are important is that they can be used to perform
mathematical operations or statistical analyses on another variable separately
at each level of a factor; see page 77 for an example.

Numeric Data

Numeric data basically corresponds to a finite subset of the real numbers.
Technically, numeric data in R is of mode numeric() but has a type that
depends on how the data are stored in the computer, such as double() or
int(). All numeric data in R is of type double() by default. This corresponds
to the standard definition of “double precision”, which according to standards
defined by IEEE, has at least 53 bits of precision. This precision corresponds
to about 16 decimal places. (Numbers whose first digit is 1 in a decimal
representation can be represented to higher precision than numbers whose
first digit is 9.)
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Numerical computations in R are generally performed in double precision.
The results are usually displayed with six or seven digits. The user can control
this throughout an R session by use of the options() function.

The R function round() returns the value of a numeric object rounded
to the precision specified. Two related functions are floor(), which is the
greatest integer function, and ceiling(), which returns the integer that is
greater than or equal to the value of a numeric object.

The R function sprintf(), which is essentially the same as the C function
or the same name, can be used to control the number of digits printed with-
out changing the value of the object. For example, sprintf("%.16f",x) will
display the value of the numeric object x showing 16 decimal places (to the
right of the decimal point; not “significant digits”). For numbers very large
or very small in absolute value, the exponential format would be preferred,
and sprintf("%.16e",x) will display the value of the numeric object x in
exponential notation with one digit to the left of the decimal point and 16
digits to the right of the decimal point.

Vectors of Numeric Data

If the elements of the vector are numeric and have a simple sequence, the “:”
(colon) operator can be used to generate the elements. In that case, if the
elements in the sequence are integers, the class of the vector is integer();
otherwise it is numeric(). Examples are shown in Figure 1.4.

There are many useful R functions, such as min(), max(), sum(), and
mean(), that operate on numeric vectors (or more generally on numeric ar-
rays, as we will see later). Two additional functions for working with numeric
vectors are which.min() and which.max() that return the index of the min-
imum and maximum value respectively. These are illustrated in Figure 1.5.

Computations and other manipulations with a numeric vector in R are
very similar to the computations and manipulations of a mathematical vector
over a real field. A list of scalar numeric values can be treated as a vector with-
out modification. Simple mathematical operations on vectors include scalar
multiplication of a vector, and addition of two vectors form the same vector
space; that is, vectors with the same number of elements from the same field.
Numerical analysts call the combination of these two operations an axpy op-
eration, from the common mathematical expression z = ax+ y, where a is a
scalar and x and y are vectors.

The ordinary arithmetic operators can be used with operands that are of
different types, specifically scalars and vectors. (Technically, the operators are
overloaded.)

In Figure 1.6 the “+” in a+x implies addition of two different types of
objects, whereas the “+” in a*x+y implies addition of the same type of objects.
The “*” in a*x implies multiplication of two different types of objects, a scalar
and a vector.
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> yi <- 1:9

> yi

[1] 1 2 3 4 5 6 7 8 9

> class(yi)

[1] "integer"

> y <- 1:9+0.5

> y

[1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

> class(y)

[1] "numeric"

> xi <- 9:1

> xi

[1] 9 8 7 6 5 4 3 2 1

> class(xi)

[1] "integer"

> x <- c(9,8,7,6,5,4,3,2,1)

> x

[1] 9 8 7 6 5 4 3 2 1

> class(x)

[1] "numeric"

> x[2:6]

[1] 8 7 6 5 4

> x[-(2:6)]

[1] 9 3 2 1

Figure 1.4. Numeric Vectors and the Colon Operator

We will discuss additional operations on numeric vectors in Section1.3.2.

Complex Data and Arithmetic

Another kind of numeric data corresponds to a finite subset of the complex
numbers, and may contain an imaginary component. This kind of numeric
data is of mode complex() and also of type complex(). The real and imag-
inary components are both of mode numeric() and of type double(). A
complex number can represented in a manner similar to an ordinary math-
ematical representation, such as 3 + 2i, but it better to construct the value
using the R function complex(). The usual numerical functions and operators
work with complex numbers in the usual way.

There is an R function, complex(), that can be used to instantiate a com-
plex value. There is also a postfix operator, i, that represents

√
−1, which can

be used to initialize a complex variable. The “i” in the formal argument list
of complex() is not an operator. (For clarity, I recommend use of complex()
instead of i.)
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> x <- c(9,8,7,0,10,4,3,2,1)

> x[1]

[1] 9

> x[c(3,1,3)]

[1] 7 9 7

> x[c(-1,-3)]

[1] 8 0 10 4 3 2 1

> min(x)

[1] 0

> which.min(x)

[1] 4

> max(x)

[1] 10

> x[which.max(x)]

[1] 10

> min(x[2:5])

[1] 0

> which.min(x[2:5])

[1] 3

> sum(x)

[1] 44

> mean(x)

[1] 4.888889

Figure 1.5. Subvectors and Functions for Numeric Vectors

> a <- 2

> x <- c(1,2,3)

> y <- c(4,5,6)

> a+x

[1] 3 4 5

> a*x

[1] 2 4 6

> x+y

[1] 5 7 9

> a*x+y

[1] 6 9 12

Figure 1.6. Operations on Numeric Vectors

The associated functions Re() and Im() allow for simple manipulations
and computations. Notice that some of the functions for operations on complex
numbers begin with an upper-case letter.
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> x1 <- 3

> class(x1)

[1] "numeric"

> z1 <- x1+2i

> class(z1)

[1] "complex"

> z2 <- complex(real=x1, imaginary=2) # Does the same thing; better.
> z1==z2

[1] TRUE

> x1*z1

[1] 9+6i

> z1+z2

[1] 6+4i

> x2 <- Re(z1)

> x1==x2

[1] TRUE

> mode(x1)

[1] "numeric"

> typeof(x1)

[1] "double"

> mode(z1)

[1] "complex"

> typeof(z1)

[1] "complex"

> mode(Im(z1))

[1] "numeric"

> typeof(Im(z1))

[1] "double"

Figure 1.7. Complex Data in R

R can do complex arithmetic. Complex objects are of class, mode, and
type complex(). There are the two standard “is.” and “as.” functions for
dealing with a complex object. In mathematics, the field of real numbers is a
subfield of the complex numbers, but in R the numeric class is not a subclass
of the complex class, and a numeric object will not be promoted to a complex
object.

There are two built-in R functions for simple manipulations with complex
numbers, Mod() for computing the modulus of a complex quantity and Conj()

for computing the complex conjugate of a quantity. Figure 1.8 illustrates the
use of complex objects in R.

Complex arithmetic arises in certain types of statistical analyses of time
series. For example, analysis in the “frequency domain” of a time series fo-
cuses on the periodic behavior of the time series, and the standard models for
the frequency are based on Fourier transforms, which involve complex arith-
metic. The computational workhorse for Fourier transforms is the fast Fourier
transform, or FFT. The R function fft() computes an FFT.
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> x <- -4

> z <- sqrt(x) # x is numeric, not complex.
Warning message:

In sqrt(-4) : NaNs produced

> z <- sqrt(as.complex(x))

> z

[1] 0+2i

> is.complex(z)

[1] TRUE

> is.numeric(z)

[1] FALSE

> y <- z*(2+2i) - 1i # Note the 1 before the i; otherwise, it is the variable i.

> y

[1] -4+3i

> Mod(y)

[1] 5

> sqrt(Re(y)^2+Im(y)^2)

[1] 5

> Conj(y)

[1] -4-3i

Figure 1.8. Complex Arithmetic in R

Most of the computations for analysis of financial data, indeed for sta-
tistical analysis generally, involve only real numbers. In most computations
involving real numbers, all computational results remain in the real domain.
The exception of course is when a root of a negative number is to be taken.
This type of computation arises in the solution of a polynomial equation. In
statistical analyses, the need to solve a polynomial equation arises occasionally
in time series analysis, so we will encounter it briefly in Chapter 5. Solving a
polynomial equation is also required in evaluating eigenvalues. A real matrix
that is not symmetric may have non-real eigenvalues.

Character Data

Character data represent symbols rather than numbers. Character data are
of class, mode, and type character(). Character data in R is composed of
character strings, each consisting of a variable number of characters, each of
which is encoded in a standard form in a fixed number of bits (usually 8).

Character data are initialized by enclosing the symbols within a pair of
either single quotes or double quotes. Anything within the pair of quotes
is considered a character. (A blank space is a character, and nothing is a
character.) R displays character data within double quotes. A double quote
itself is displayed with an escape character, which is a backward slash. Also,
similar to the as.complex() function to convert numeric data to an object of
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complex class as shown in Figure 1.8, there is an as.character() function
to convert numeric data to a character object. Figure 1.9 illustrates some
initializations of character data.

> a1 <- ’ab c’

> a2 <- "ab c"

> a1

[1] "ab c"

> a2==a1

[1] TRUE

> mode(a1)

[1] "character"

> typeof(a1)

[1] "character"

> b3 <- ’"ab" "c"’

> b3

[1] "\"ab\" \"c\""

> b4 <- "’ab’ ’c’"

> b4

[1] "’ab’ ’c’"

> b3==b4

[1] FALSE

> j <- 3

> as.character(j)

[1] "3"

> as.character(-3)

[1] "-3"

> x <- 3.5

> as.character(x)

[1] "3.5"

Figure 1.9. Character Data in R

Because a character string is a single entity, the individual characters in
the string are not accessible as they would be if they were part of a vector or
some other array. The nchar() function determines the number of individual
characters in a character string. The length of a single character string is 1
no matter how many individual characters are in the string.

R provides a number of functions for working with the individual charac-
ters in a character string.

The paste() function is useful for combining character strings into longer
strings. The paste() function will insert a blank between each of the con-
stituent strings, unless another separator is specified by sep=.

The R function substring() provides the opposite kind of operation from
paste(). This function extracts the characters from a given starting position
to a given ending position.
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Arithmetic operations cannot be performed on character data. R provides a
number of functions to manipulate character data, including string operations
to work with substrings within a character string.

Figure 1.10 illustrates various operations with character data.

> c <- "c"

> nchar(c)

[1] 1

> b <- ’abcde’

> nchar(b)

[1] 5

> length(c)

[1] 1

> length(b)

[1] 1

> e <- paste(c,b)

> e

[1] "c abcde"

> nchar(e)

[1] 7

> f <- paste(c,b,sep="")

> f

[1] "cabcde"

> nchar(f)

[1] 6

> substring(e,1,2)

[1] "c "

> substring(f,2,4)

[1] "abc"

Figure 1.10. Operations on Character Data in R

If the ending position in substring() is beyond the last character, the
function just gives the result up to the last character. If the beginning position
is beyond the last character, the function just gives a character string with no
characters. (As mentioned above, nothing, where a character is expected, is a
character.)

> substring(c,1,2)

[1] "c"

> n <- substring(c,2,2)

> n

[1] ""

> nchar(n)

[1] 0

> class(n)

[1] "character"
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The substring() function can also be invoked with two vectors of equal
length. In this case, the function generates an output vector of character
strings.

> b

[1] "abcde"

> d <- substring(b, c(1,1,3), c(2,nchar(b),5))

> d

[1] "ab" "abcde" "cde"

> length(d)

[1] 3

Character strings can be combined into a character vector in the usual
way. The length of a vector of character strings is the number of strings in the
vector, and the number of characters in each string can be determined by the
nchar() function in the usual way. As mentioned above, when a function that
ordinarily has an atomic element as its argument is applied to a vector, the
function is applied to each element in turn, yielding an output that is a vector;
hence the nchar() function and the substring() function can to vectors
of character strings. (See the comments on page 58 concerning vectorized
functions.)

> c

[1] "c"

> b

[1] "abcde"

> v <- c(c,b)

> length(v)

[1] 2

> nchar(v)

[1] 1 5

> substring(v,1,2)

[1] "c" "ab"

Figure 1.11. Operations on Character Data in R

Logical Data

Logical data represent true or false. Logical data in R are of class, mode, and
type logical(). In arithmetic expressions in R, logical data also have the
properties of numeric data, with a logical value of TRUE corresponding to a
numeric value of 1 and a logical value of FALSE corresponding to a numeric
value of 0, as illustrated on page 11.
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1.2.5 Date Data

Dates can be represented in many ways, “January 2, 2020”, “2 Jan 2020”,
“1/2/20”, “2-1-2020”, and so on. Most of these representations are immedi-
ately interpretable by humans, but some are not, such as “1/2/2020” and
“2/1/2020”, without a statement of the rule governing the format. In com-
puter data processing of date data, some level of standardization is desirable,
and unambiguous rules are necessary. Date data may also include the time of
day. In that case, more rules governing all of the fields are necessary.

There are various functions in R for determining the current date and time
and for basic operations on the date data. Most of these functions are based
on underlying Unix functions for working with times and dates.

Often, only the date is required, and the as.Date() function in the base

R package is sufficient. This function creates an object of class Date. Dates,
of course, can be represented in a number of ways, such as “10/19/1987”,
“19/10/1987”, or “October 19, 1987” for the same date, so long as we know
the format.

In some applications more expressive methods of representing dates and
time are required, and more options for manipulating date date are needed.
The date() function in the lubridate package is a convenient way of assign-
ing date data. It also creates an object of class Date.

The International Standard ISO 8601 specifies representation of a date
in the form “1987-10-19” (but also allows the form “19871019”), and the
Portable Operating System Interface (POSIX) standards adopted by the IEEE
Computer Society uses dates in this general format. The ISO 8601 format also
allows for date plus time in hours, minutes, and seconds. The full format is
yyyy-mm-dd hh:mm:ss. All fields have a fixed number of integer characters
except “ss”, which can have an appended decimal fractional part. The fields
must be filled from the left, and the last field on the right indicates the full time
period specified; for example, “1987-10” refers to the full month of October,
1987. I will generally refer to this form of representation, or most often, just
the date portion of this, as the “ISO 8601 format” or as a “POSIX format”.

External data files to be read into R often have dates in non-POSIX for-
mats. One way of dealing with such dates is to treat them as character data
and then use as.Date() or some other R function to convert them to POSIX
format; see page 131, for example.

The as.Date() function accepts dates in this format as default, but also
allows dates in other formats, as shown in Figure 1.12, for example. Some of
the formats for as.Date() are shown in Table 1.1. The formats can also be
used in the format() function for printing dates in different forms (again, see
Figure 1.12), and can be used in other functions that operate on dates, such
as strftime().

Date data created by as.Date() or by date() in lubridate() is of class
Date, of mode numeric even though it appears as character data, and of type
double (in most environments). Internally, a date is represented as the number
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Table 1.1. Some Date Formats for R Functions

Code Meaning

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (3-letter abbreviation)
%B Month (full English name)
%y Year (2 digits; breaks between 68 and 69)
%Y Year (4 digits)
%j Day of the year

of days before or after January 1, 1970. If the date is before January 1, 1970,
the number is negative; if after, it is positive. January 1, 1970, is represented
as 0. The format() argument in various functions that operate on date data
specifies the format in which the date is represented for interaction with the
user, but it does not change the internal representation. The base R package
also provides utility functions, such as weekdays() for working with objects of
class Date. The R function strftime() is useful for getting dates into different
formats. A simple example of strftime() operating on a given input date is
to determine the number of the day within the year; January 1, is day 1;
December 31 is 365 unless the year is a leap year, in which case it is 366.

Figure 1.12 illustrates some of the properties and operations, using only
the base package.

> x <- as.Date("Oct 24, 1929",format="%b %d, %Y")

> class(x)

[1] "Date"

> mode(x)

[1] "numeric"

> format(z, "%b %d, %Y")

[1] "Oct 19, 1987"

> weekdays(x)

[1] "Thursday"

> x

[1] "1929-10-24"

> strftime(x, format="%j")

[1] "297"

> strftime("2017-12-31", format="%j")

[1] "365"

> strftime("2020-12-31", format="%j")

[1] "366"

Figure 1.12. Examples of Date Data and Functions to Work with It
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The base package of R also includes two functions, as.POSIXct() and
as.POSIXlt(), that handle time as well as dates. The POSIXct and POSIXlt

classes also carry information about time zones and daylight savings time.
There are also a number of other packages for working with dates and

times. Three commonly used packages are timeDate, chron, and lubridate.
I use lubridate most often. The date() function in lubridate requires an
input in a POSIX format.

> library(lubridate)

> xd <- date("1929-10-24")

> xd

[1] "1929-10-24"

Many of the packages for working with time series, such as those discussed in
Chapters 2 and 5, also provide functions for dealing with dates and times.

More useful functions and operators for handling date data are provided
in various R packages. The date objects must conform to specific rules for
representation of the date.

Operations on Date Data

Date data of class Date are of mode numeric (recall, internally, they are the
number of days before or after January 1, 1970), and numerical operations
can be performed on date data. Numeric data can be added to Date data

(but not multiplied with it). Addition of numeric quantities to a Date object
results in a Date object of the appropriate value. The operators are aware of
leap years and other aspects of the Gregorian calendar.

> as.Date("2016-02-28")+1

[1] "2016-02-29"

> as.Date("2016-02-28")+0:3

[1] "2016-02-28" "2016-02-29" "2016-03-01" "2016-03-02"

> as.Date("2016-02-28")-0:3

[1] "2016-02-28" "2016-02-27" "2016-02-26" "2016-02-25"

Objects of class Date can be “subtracted” from each other, but not added
to each other. The binary “-” infix operator is used to determine the length
of time from one date to another. The result is number of days from the first
date to the second, which is negative if the second date precedes the first.
When an object of class Date is subtracted from another, an object of class
difftime is created.

The seq() function works with Date data. The by() parameter in seq()

can be "days", "weeks", "months", or "years". The colon sequence operator
“:” produces a sequence in days using the internal representation, that is, the
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numbers of days before or after January 1, 1970. For dates used as indexes
ranges within the set of indexes can be indicated by “/”.

Figure 1.13 illustrates some operations, using only the base package.

# ”Black Thursday”
> x <- as.Date("Oct 24, 1929",format="%b %d, %Y")

# ”Black Tuesday”
> y <- as.Date("29 October 1929",format="%d %B %Y")

# ”Black Monday”
> z <- as.Date("10/19/87",format="%m/%d/%y")

> weekdays(c(x,y,z))

[1] "Thursday" "Tuesday" "Monday"

> x

[1] "1929-10-24"

> x+5

[1] "1929-10-29"

> x-y

Time difference of -5 days

> y

[1] "1929-10-29"

> class(x-y)

[1] "difftime"

> z-x

Time difference of 21179 days

> seq(x, length=6, by="weeks")

[1] "1929-10-24" "1929-10-31" "1929-11-07" "1929-11-14"

[5] "1929-11-21" "1929-11-28"

> seq(from=x, to=y, by="days")

[1] "1929-10-24" "1929-10-25" "1929-10-26" "1929-10-27"

[5] "1929-10-28" "1929-10-29"

> x:y

[1] -14679 -14678 -14677 -14676 -14675 -14674

Figure 1.13. Examples of Date Data and Functions to Work with It

Date Data as Indexes to Arrays

An important application of date data in working with financial data is its
use as an index to arrays of data. Much of financial data are time series. Each
data item or observation corresponds to a specific date.

In the examples of atomic vectors we have considered above, the indexes
are just positive integers. In many time series, integers are used as indexes just
as in simple vectors, and this is generally acceptable it the dates are evenly
spaced and we have a mapping from actual dates to the integers.

If the elements in a time series are not equally spaced in time, use of simple
integers as indexes may not be satisfactory. In addition, it may be awkward to
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determine the integer index that corresponds to a given date in the ordinary
year, month, and day format.

There are some common R data structures that use dates in POSIX form
as indexes. This allows for easy manipulation of the data at specific dates or
within specific ranges of dates. Date ranges in indexes can be indicated by “/”;
for example, “198710/19871120” represents October 1 through November 20,
1987. We will describe and illustrate use of dates as indexes in R arrays in
Section 1.3.6.

1.2.6 Missing Values

Occasionally, in the course of performing numerical computations, a value
results that does not correspond to an ordinary number and cannot be repre-
sented in the ordinary way. A computation such as 1/0 yields a result we might
designate as ∞ and characterize by certain properties such as ∞ + 1 = ∞,
2∞ = ∞, −2∞ = −∞, and so on. The result of a computation such as 0/0
has no meaningful properties. The standard way that computer systems deal
with these special values is to designate them as special objects that follow
the appropriate rules of arithmetic. The object similar to ∞ is usually called
“Inf” and the meaningless object is usually called “NaN” (“not a number”).
The NaN object is not a value, so if an object has a missing value and NaN

has been assigned to it, it is not equal to NaN. R provides a special function
is.nan() to test whether a value is a NaN.

> x <- 1/0

> x

[1] Inf

> x+1

[1] Inf

> -2*x

[1] -Inf

> y <- 0/0

> y

[1] NaN

> y==NaN

[1] NA

> is.nan(y)

[1] TRUE

> y+1

[1] NaN

> -2*y

[1] NaN

> x+y

[1] NaN

Often in financial analyses a data item cannot be given a value consistent
with its ordinary meaning. The PE ratio of the stock of a company whose
earnings are exactly 0 would be ∞, and one with a loss would be some finite
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negative value. In financial datasets these unusual PE values are often reported
just as 0. Other times these PE values are just left blank, that is, they are
just missing.

Missing values can arise in financial datasets for a variety of reasons. In fi-
nancial applications, data may be missing for various reasons, including simple
failures to report data or changes in definitions of certain quantities. In com-
pany reports or in survey data, values may be missing because the respondent
did not provide a response for a particular field.

These missing values are not the result of extreme or meaningless mathe-
matical computations such as 0/0.

R provides a very simple way to handle values that are not available.
A special logical constant called NA is assigned to a missing value. Statistical
computations on datasets with some NA items can be handled in various ways.
Sometimes it is appropriate to declare that the computations cannot be per-
formed and so the results are missing; in other cases, such as computing the
mean of a set of numbers, it may be appropriate to report the mean of all of
the non-missing numbers.

The single constant NA is generally sufficient for all instances of missing or
undefined values, but additional constants such as NA integer , NA characters ,
and so on are also available if it is desirable to distinguish the data types. The
numerical constants Inf, NaN, and so on are also sometimes appropriate. A
NaN is NA, but an NA is not necessarily NaN.

Computer manipulations with objects that are missing obviously should
be performed with some care. The facilities provided by R for dealing with
missing values should be utilized. The NA object is not a value, so if an object
has a missing value and NA has been assigned to it, it is not equal to NA. R
provides a special function is.na() to test whether a value is missing.

> z <- NA

> z==NA

[1] NA

> z <- NA

> z==NA

[1] NA

> z==z

[1] NA

> is.na(z)

[1] TRUE

> is.nan(z)

[1] FALSE

> y <- 0/0

> is.na(y)

[1] TRUE

> is.nan(y)

[1] TRUE

Often when data contain missing values, we wish to ignore those values
and process all of the valid data. Many functions in R provide a standard way
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of requesting that this be done, by means of the logical argument na.rm().
If na.rm() is true, then the function ignores the fact that some data may be
missing, and performs its operations only on the valid data.

> xx <- c(1,2,NA,3)

> mean(xx)

[1] NA

> mean(xx, na.rm=TRUE)

[1] 2

In some cases where data are missing, we may wish to impute values by
using the available data to estimate or predict the values that are missing.

1.2.7 Working Environment

Within an R session various packages may be loaded and various objects
may be initialized within the working environment of the program. When the
session is ended, the environment in which these items exist no longer exists.
The items themselves,however, may be saved in computer files so that they
can be reinstated in a subsequent R session.

Environments

A set of R statements may consist of separate modules, such as the statements
forming functions and the other statements that may invoke those functions.
A group of statements that make up an R function may introduce variables
that are local to the function; that is, these variables with their assigned
values exist only within the scope of the function definition. For example,
in the function myFun defined in the R statements shown in Figure 1.1 on
page 17, there are two variables, slope and intercept that are introduced
and assigned values within the function. In other R statements that may be
executed in the same session as when this function is initiated or invoked, the
existence or the values assigned to these two variables are unchanged.

An R environment consists of a collection of objects, and it also may refer
to its parent environment. A name of an object refers to the object in the
environment that has that name, or else if no object with that exists within
the environment, it refers to the object in the parent environment with that
name.

At any point in an R session there is a hierarchy of environments, and
names of objects have meanings that are resolved by going back through the
hierarchy of environments. The name of an object instantiated within a given
environment always refers to the object in that environment.

There is always a global environment. Other environments may depend on
what packages have been loaded. The environments can be determined using
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> search() # the output depends on the current R session
[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Figure 1.14. A Search List

the search() function. This function displays the search list that is used in
resolving object names. An example is shown in Figure 1.14.

The order in this list is the order in which objects (primarily functions)
will be identified. For example, if there is a function in the graphics package
with the same name as a function in the stats package, the one in the stats

package is the one that will be used. The search list is the reverse of the order
in which the packages were loaded.

A package may be unloaded by the detach() function.
Names within an environment, or “namespace”, must be unique. The same

name can be used for different objects in different environments, however.
An object can be referenced by the name of its environment, followed by
“::” followed by the name of the object within that environment, env::obj.
Figure 1.15 shows an example with an object called t, which is also the name
of a function in the R base package that computes the transpose of a matrix.
In this example, t is defined as a function to add 5 to its argument. (This
would not be a good idea! Nevertheless, look at the example.) Standing alone,
“t” refers to this new function. The t object in the base package can be
referenced as “base::t”. It is recommended that user-written functions have

more descriptive and generally longer names.

> t <- function(x) return(x+5)

> x <- matrix(c(1,2,3,4),nrow=2)

> t(x)

[,1] [,2]

[1,] 6 8

[2,] 7 9

> base::t(x)

[,1] [,2]

[1,] 1 2

[2,] 3 4

Figure 1.15. t as a User Function and as a Built-in Function
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The example function myFun shown in Figure 1.1 establishes an environ-

ment in which the local variable names slope and intercept have meaning.
The names x1, y1, x2, y2, and x are formal arguments to the function. They
are assigned a value when the function is invoked, and then are used within the
function. The names of the variables in the environment in which the function
is invoked do not have to be the same. Any changes made to them within the
function are not passed back to the environment in which the function was
invoked.

The function, however, inherits variables from the environment in which it
was invoked. The function myFun1 shown in Figure 1.16 does the same thing
as the myFun function if the variables x1, y1, x2, and y2 exist in the envi-
ronment in which the function is invoked. Omitting the formal arguments and

using object names assumed to exist in the environment in which a function

is invoked is not recommended.

myFun1 <- function(x) {
# Given the points (x1,y1) and (x2,y2) and a set of abscissas x,

# determine the ordinates at x for the line that goes through all of them.
slope <- (y2-y1)/(x2-x1)

intercept <- y1 - slope*x1

y <- slope*x + intercept

return(y)

}

Figure 1.16. A Simple Function in R; Compare Figure 1.1()

The objects within a specific environment can be listed by the ls() func-
tion. The function without any arguments returns a list of the objects created
in the current environment; hence if it is invoked within a function, it returns
a list of the objects created within the function. It can also give a list of the
objects in a specified environment, so it is useful for determining the names
of functions within a given package. The package must be loaded, of course.
(Note in the example below that datasets is generally included with the basic
R system.)

The list.files() function is the same as the common operating sys-
tem ls() command, and lists the files in the specified directory, or in the
working directory by default (see page 42). Notice that ls() refers to an R
environment, while list.files() refers to an environment of the computer
operating system. Figure 1.17 illustrates the use of ls() and list.files().

Occasionally, some part of the name of an R function is known. For exam-
ple, we may know that there is an R function that rounds to a specific number
of significant figures. We vaguely remember the name of the function to be
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> ls() # the output depends on the current R session
[1] "a" "A"

[3] "x1" "x2"

[5] "y"

> ls("package:datasets")

[1] "ability.cov" "airmiles"

[3] "AirPassengers" "airquality"

[5] "anscombe" "attenu"

... etc. ...

> list.files()

[1] "grSF10108.ps" "grSF10109.ps" "grSF10110.ps" "grSF10111.ps"

[5] "grSF10112.ps"

> list.files("../Web/Data")

[1] "DJId.csv" "GSPC1990.csv" "GSPCd.csv" "INTCd.csv"

[5] "INTCd20173Q.csv"

Figure 1.17. The ls() and list.files() Functions

“sig...”. We can search for the function by listing all of the functions in a
given package with a specific character string in the name. Rounding is a basic
activity, so we might just search within the base package for all functions that
have “sig...” in their names:

> ls("package:base", pattern = "sig")

[1] "assign" "delayedAssign" "psigamma" "sign"

[5] "signalCondition" "signif"

From this list of objects that contain the pattern “sig” in their names, we
rightly conclude that the function of interest is signif(). Hence, we can use
?signif to see exactly how this function works.

There are also some functions in R for using objects from different envi-
ronments. The one most commonly used perhaps is get(), which returns an
object from a different environment to the current environment.

Workspace

The R workspace is the current environment in a session. It contains all current
objects and settings.

The current environment can be saved for use in a subsequent R session by
use of the save.image() function. This creates a “workspace image” of the
R session that contains the current values of all defined objects at that point
in time. An R user will often do this at the end of the session. The R system
even prompts the user to do this when the program is exited. The image of the
environment will be saved in a designated file with default filename extension

R for Data Science and Applications in Finance James E. Gentle



42 1 R: The System and the Language

.RData. If no file is specified, it is stored in the file

.RData in the current working directory (see below). Later, either in the same
session or in a different session even on a different compatible computer, the
workspace can be restored by the load() function. This is useful when working
on a given project over multiple sessions. Different project can have different
saved workspace images.

The save() function in R saves specified objects that can be retrieved in
a later session of R, even on a different computer, using the load() function.

Working Directory

An R session has a working directory. The path to any external file begins in
this directory, so if any external files are to be read or written, it is convenient
to set the working directory to the directory where most of the external files
will reside. Different working directories can be used for different projects.

The working directory is set by the function setwd(). The function
getwd() without an argument displays the working directory.

A directory path in R is specified using “/” as the separator of directory
names, as in Unix/Linix. (In Microsoft Windows, the usual separator is “\”.)
In Microsoft Windows, for example,

> setwd("c:/Books/Data/")

> getwd()

[1] "c:/Books/Data"

Notice that names of external objects, such as files, are character objects.
(This means that the literals are enclosed in quotation marks.) Also, note that
the last “/” in the path is not necessary. Use of a character variable may allow
more flexibility. An alternative to the statement setwd("c:/Books/Data/")

are the statements

maindir <- "c:/Books/"

wkdir <- paste(maindir,"Data",sep="")

setwd(wkdir)

Packages

A group of functions written either in R or in a compiler language can be
packaged together in a “library” or “package”, and then all of the functions,
together with associated documentation, can be loaded into R just by loading
the package.

To use a package, first install it on the R system being used, and then load

it in the current R session.
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Previously developed packages can be installed with the local system, and
then can be loaded in an R session. There are many R packages stored in the
Comprehensive R Archive Network (CRAN). An R system program, such as
install.packages(), can install them on a local system, and they can be
loaded in an R session by the library() function. The install.packages()

function requires that the package name be a character string, but the
library() function does not require that, although it allows it.

install.packages("vars")

library(vars)

The main window in the standard R GUI has a menu item for “Packages”,
which allows both for installing and loading packages. The “Load package”
selection gives a list of all installed packages on the system.

Packages from other repositories can also be installed with the install.packages()
function using the repos argument. For example, to install a package from

install.packages("XYZ", repos="http://r-forge.r-project.org"))

(XYZ is not a package, at least not at this time.)
Installing packages from sources other than CRAN may not be straight-

forward for a number of reasons. Although there are some useful and well-
developed packages at the other sites, some of the packages at the other sites
may not be as robust as those at CRAN.

There is an R function install github() in the devtools package to
install packages from GitHub. This function requires the username, that is,
the name of the GitHub user account, as well as the name of the package.
Alternatively, there is a githubinstall package available from CRAN that
contains functions to search GitHub accounts for projects with names similar
to a specified character string. Once the name of a package (project or direc-
tory) is known, the gh install packages() function can be used to install
it, given only the package name; that is, the has a similar interface to that of
install.packages(). The githubinstall() function in the githubinstall
package is an alias for gh install packages().

The R system generally consists of a set of packages, a “base” package, a
“stats” package, and so on. When the R program is invoked, a standard set
of packages are loaded. Beyond those, the user can load any number of other
packages that have been installed on the local system.

Within an R session, the available functions include all of those in the
loaded packages. Sometimes, there may be name conflicts (two functions with
the same name). The conflicts are resolved in the order of the loading of the
packages; last-in gets preference.
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As mentioned above, the ls() function can be used to determine the
functions included in a package, so the functions in the vars package, after it
is loaded could be determined by

ls("package:vars")

External Data Connections and Filenames

Storing or manipulating data or performing computations on the data on
different computer systems (“platforms”) can present problems because of
the differing formats of storage or differing programming paradigms. We call
these protocols an “application programming interface” or “API”. There are
many standard APIs that facilitate manipulating data on different systems.

The Open DataBase Connectivity, or ODBC, is a standard application
programming interface for accessing database management systems. The R
package RODBC provides the ODBC facility.

One of the most widely-used database management systems is MySQL,
which is an open-source relational database management system (DBMS)
built on SQL, the Structured Query Language. Most professionals in the in-
formation processing field are familiar with some SQL system, and so for
them, MySQL is simple to use, although the functionality may not be exactly
the same. In any event, most of the functionality of an SQL DBMS can be
accessed through the R package RMySQL that provides direct connections to
MySQL.

It is common for programs, especially operating systems, to associate file
types with filename extensions, often consisting of three characters; for exam-
ple, a file named “book.tex” is probably a TEX file and a file named “book.pdf”
is probably a PDF file. R generally does not distinguish the file type by an
extension. Though a file named “Mydata.csv” is probably a CSV file, the R
functions dealing with it cannot omit the extension.

Most functions in R data are designed to ignore any meaning that may be
conveyed by a filename extension, so the user must specify full filenames.

Exercises: Program Structure and Syntax

1.2.1. For values that naturally form a sequence or else have some simple
structural relationship to each other, the use of an R array to store
and retrieve those values is generally appropriate, for example,
> x <- c("d","c","b","a")

> x[2]

[1] "c"
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Occasionally, however, we may wish to form names of R objects
that express their order in a sequence or else their value.
Assume that we have the R object x as above.
a) Write an R expression that creates R variables of the form xd,

xc, and so on, using x, where xd="d", xc="c", and so on.
b) Write an R expression that creates R variables of the form x1,

x2, and so on, using x, where x1=x[1], x2=x[2], and so on.
1.2.2. In the following, write simple R expressions. Although extraneous

parentheses often are useful for improved clarity, do not use any
extraneous parentheses in your solutions.
a) Write an R expression that yields the sequence of even integers

from 2 to 20.
b) Write an R expression that yields the sequence of odd integers

from 1 to 19.
c) Write an R expression that yields the sequence of the squares

of odd integers from 1 to 19; that is, 1, 9,....
d) Write an R expression that yields the sequence of the square

roots of odd integers from 1 to 19; that is, 1, 1.732051,....
e) Write an R expression that yields the sequence of halves from

0.5 to 20.0; that is, 0.5, 1.0, 1.5,....
1.2.3. Write an R function, evens, that yields the sequence of even in-

tegers between and including x1 and x2.
For example, if x1=-2.5 and x2=4.5, the function returns -2, 0,
2, 4.
If x1 is greater than x2, the function returns NULL.

1.2.4. Factors.
a) Suppose we have a factor variable that is initialized by the

statement
xf <- factor(c("d","c","b","a"))

Write an R expression that yields the third value in xf. Note
that the value is a character.

b) Suppose we have a factor variable that is initialized by the
statement
yf <- factor(1:4)

Write an R expression that yields 7 times the third value in
yf. (The value is 21.)

1.2.5. Often in producing graphs or other output in R, we wish to include
some text that specifies the value of a variable. If the variable is
numeric, 500 for example, we need the character representation
of the numeral, "500" for example. If the variable is a factor, we
need the character representation of the factor level.
For example, we may want to print the phrase

The mean of 500 random numbers is 5.33.
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where 500 is a quantity used in the program, and may change
on another run, and 5.33 is the computed mean rounded to two
decimal places.
Write an R character string expression that corresponds to the
text
“The mean of 500 random numbers is 5.33.”
but allows the number and the computed mean to be variable,
depending on the R variables n and xm in the program.
Let n=500 and xm=5.333333.
Use the print() function to display the character string.

1.2.6. Shiny apps.
Write a Shiny app that yields the sequence of even integers be-
tween and including x1 and x2, as in Exercise 1.2.3.

1.2.7. Missing values.
In some applications, especially in survey sampling, a missing
value is coded as a “0”.
Write an R statement that codes the value of the variable x as 0
if x is missing, either an NaN or an NA.

1.3 R Objects and Classes

Each entity, or object, in R belongs to a specific class that determines the
general characteristics of the entity and the methods or computations that
can be performed on the object. An object in R also has a mode and a type,
which determines more fundamental properties of the object.

In Section 1.2.4, we encountered various classes of data, such as the
numeric class and the related classes of integer and complex, the character
class, and the Date class. R has a number of other built-in object classes, such
as function, which we have also encountered.

In this section, we will discuss additional built-in object classes that pro-
vide structure to data, such as matrix, table, list, and data.frame. Many
of the packages from CRAN define additional classes, and the user also can
define new classes.

Classes

We have used the class() function to determine the class of an object. For
the main built-in classes such as numeric, matrix, and so on, there are three
associated functions, a constructor function, a conversion function (an “as.”
function), and a test function (an “is.” function). There are also “as.” and
“is.” functions for some types of data, such as double. We saw examples of
the as.complex() function in Figure 1.8 and the as.character() function
in Figure 1.9.
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> y1 <- 4

> y2 <- as.integer(y1)

> y3 <- as.character(y1)

> y4 <- as.complex(y1)

> y5 <- sqrt(y4)

> is.integer(y1)

[1] FALSE

> is.integer(y2)

[1] TRUE

> is.integer(y3)

[1] FALSE

> is.integer(y4)

[1] FALSE

> is.integer(y5)

[1] FALSE

> is.complex(y5)

[1] TRUE

Figure 1.18. Converting and Testing Classes and Types

The “as.” function does not change the class of its argument. The “as.”
and “is.” functions are illustrated in Figure 1.18.

There are three different kinds of classes and methods that apply to objects
in R. The two most commonly used are called “S3” or “S4”. We will not
consider the differences in the types of classes in this book, but rather refer
the interested reader to Chambers (2008, 2016) or Wickham (2019).

1.3.1 Arrays

Proper organization of data allows for efficient access and processing. Orga-
nization and access of distributed external databases can present significant
challenges, but organization of data within a single computer system is fairly
straightforward. A very simple, yet general basic organization is as a rectangu-
lar (or “hyperrectangular”) array. A one-dimensional array is just an ordered
set, a two-dimensional array corresponds to a two-dimensional rectangular
table, and higher-dimensional arrays correspond to multi-way tables.

The elements in an array may be of any class, mode, or type. In the basic
array structure, only one type is allowed. The simplest example of a one-
dimensional array is an atomic vector, which we discussed above. An atomic
vector has the same class as the elements in the array, but an array is of class
array. An array is constructed by the R function array().

The R statements below produce the same results as those for atomic
vectors on page 20, except that the objects produced here are of class array
instead of class numeric and character as in the former case. The operations
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on the arrays, however, depend on the class, mode, and type of the individual
elements.

> x1 <- array(c(9,8,7,6,5,4,3,2,1))

> x1

[1] 9 8 7 6 5 4 3 2 1

> class(x1)

[1] "array"

> a1 <- array(c("a", "bc", "d"))

[1] "a" "bc" "d"

> class(a1D)

[1] "array"

> xsq1 <- c(9,4,1)

> sqrt(xsq1)

[1] 3 2 1

An array can have any number of dimensions. The numbers of elements
are specified in the dim argument in the array() function. Data are cycled
through the first dimension first, the second dimension next, and so on. An
array of data can be reshaped by the dim argument.

> xxx <- 1:12

> x34 <- array(xxx, dim=c(3,4))

> x34

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> x43 <- array(x34, dim=c(4,3))

> x43

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Reshaping a data array is a fundamental operation in data management
and analysis, and we will encounter other, more complicated instances of re-
shaping data later.

The dim() function returns a vector whose elements are the lengths of the
dimensions. The dim() function requires that its argument be of class array,
or at least be an object that inherits from the array class. The function
returns NULL for an atomic array. The length() function returns the total
length; that is, the total number of values in all dimensions.

> x2D <- array(1:12, dim=c(3,4))

> x2D

[,1] [,2] [,3] [,4]
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[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> dim(x2D)

[1] 3 4

> length(x2D)

[1] 12

> x3D <- array(1:12, dim=c(2,3,2))

> x3D

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

> dim(x3D)

[1] 2 3 2

> length(x3D)

[1] 12

The head() and tail() functions are useful for obtaining the first few
elements of a large array. The functions are particularly useful for one- or two-
dimensional arrays. The number of items to return can be specified with the
n argument. In the case of a two-dimensional array, for example, n determines
number of lines (the first dimension) to return.

> y1D <- array(1:10000)

> head(y1D)

[1] 1 2 3 4 5 6

> tail(y1D)

[1] 9995 9996 9997 9998 9999 10000

> y2D <- array(1:10000, dim=c(2500,4))

> head(y2D, n=4)

[,1] [,2] [,3] [,4]

[1,] 1 2501 5001 7501

[2,] 2 2502 5002 7502

[3,] 3 2503 5003 7503

[4,] 4 2504 5004 7504

> tail(y2D, n=4)

[,1] [,2] [,3] [,4]

[2497,] 2497 4997 7497 9997

[2498,] 2498 4998 7498 9998

[2499,] 2499 4999 7499 9999

[2500,] 2500 5000 7500 10000

> y3D <- array(1:10000, dim=c(500,5,4))

> head(y3D)

[1] 1 2 3 4 5 6

> tail(y3D)
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[1] 9995 9996 9997 9998 9999 10000

While arrays generally are useful, two special cases stand out, because they
correspond to the mathematical objects, vectors and matrices, which we will
discuss from that standpoint in Section 1.3.2.

Indexing and Subarrays

An array has an index for each dimension. As with vectors, the indexes are
enclosed in “[ ]”, and separated by commas. The indexing in each dimension
uses the positive integers from 1 to the range of the dimension. Again, as with
vectors, negative values can be used to indicate omission of values. Positive
and negative values cannot be combined in the same dimension, but they can
be used in the same expression in different dimensions.

The R statements below for the x1 array yield the same values in objects
as illustrated beginning on page 20, except that the objects produced below
are of class array instead of class numeric as in the former case.

> x1 <- array(c(9,8,7,6,5,4,3,2,1))

> x1[1]

[1] 9

> x1[c(3,1,3)]

[1] 7 9 7

> x1[c(-1,-3)]

[1] 8 6 5 4 3 2 1

> length(x1[c(3,1,3)])

[1] 3

> length(x1[c(-1,-3)])

[1] 7

For higher dimensional arrays, the indexing consists of a vector of the
positions in the respective dimensions. The index for each dimension may be
a vector.

> x2D <- array(1:12, dim=c(3,4))

> x2D[2,1]

[1] 2

> x3D <- array(1:12, dim=c(2,3,2))

> x3D[2,1,2]

[1] 8

> x3D[2, c(2,3), 2]

[1] 10 12

> x3D[2, c(2,3), -2]

[1] 4 6

> x3D[1:2, c(2,3), 1:2]

, , 1
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[,1] [,2]

[1,] 3 5

[2,] 4 6

, , 2

[,1] [,2]

[1,] 9 11

[2,] 10 12

If the subarray consists of all elements in a given dimension, the index itself
can be omitted; the comma indicating its position in the expression must be
given, however.

> x3D[, c(2,3), ]

, , 1

[,1] [,2]

[1,] 3 5

[2,] 4 6

, , 2

[,1] [,2]

[1,] 9 11

[2,] 10 12

> x3D[2, c(2,3), ]

[,1] [,2]

[1,] 4 10

[2,] 6 12

If the number of elements in a given dimension is reduced to 1, that di-
mension is effectively eliminated. The R operators on arrays remove such a
dimension; that is, the number of dimensions in the object is reduced. This
operation is called “downcasting”. The class of the subarray object may also
not be array. The class of a three-dimensional array reduced to two dimen-
sions becomes of class matrix (which is effectively still of class array. A
two-dimensional array reduced to one dimension is no longer of class matrix

or of class array. The dim() function does not work as we might expect on a
one-dimensional array.

> x3D[, c(2,3), ] # Generates a 3-D object
, , 1

[,1] [,2]

[1,] 3 5

[2,] 4 6
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, , 2

[,1] [,2]

[1,] 9 11

[2,] 10 12

> class(x3D[, c(2,3), ])

[1] "array"

> dim(x3D[, c(2,3), ])

[1] 2 2 2

> x3D[2, c(2,3), ] # Generates a 2-D object
[,1] [,2]

[1,] 4 10

[2,] 6 12

> class(x3D[2, c(2,3), ])

[1] "matrix"

> dim(x3D[2, c(2,3), ])

[1] 2 2

> x3D[2,c(2,3),2] # Generates a 1-D object
[1] 10 12

> class(x3D[2, c(2,3), 2])

[1] "integer"

> dim(x3D[2, c(2,3), 2]) # The vector is not an array
NULL

This behavior of the dim() function is often a source of errors for R program-

mers.

The original structure can be retained in the new object obtained by this
kind of subsetting by use of the drop in the subsetting operation.

> x3D[2, c(2,3), 2, drop=FALSE] # Generates a 3-D object
, , 1

[,1] [,2]

[1,] 10 12

> class(x3D[2, c(2,3), 2, drop=FALSE])

[1] "array"

> dim(x3D[2, c(2,3), 2, drop=FALSE])

[1] 1 2 1

Both the rows and the columns of a two-dimensional array can be given
names, and then elements of the array can be addressed using the names as
indexes. The names of rows are assigned by the rownames() function and the
names of rows are assigned by the colnames() function. These two functions
can also be used to determine what names have been assigned to the rows
and columns. The ordinary integral indexes can also be used to address the
elements, in the usual way.

x2D <- array(1:12, dim=c(3,4))

> rownames(x2D) <- c("A", "B", "C")
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> colnames(x2D) <- c("1st", "2nd", "3rd", "4th")

> x2D

1st 2nd 3rd 4th

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

> x2D["B", ]

1st 2nd 3rd 4th

2 5 8 11

> x2D[2, ]

1st 2nd 3rd 4th

2 5 8 11

> x2D["B", "3rd"]

[1] 8

Matrices

An array with two dimensions is called a “matrix” in R, and in most cases,
it is of class matrix. This term and the class are used even if the object does
not correspond to a mathematical matrix, for example if the elements are
character strings. (In mathematics, matrix is an object whose elements are
members of a field, such as IR.)

Because the two-dimensional array is so commonly used, there is an R
function matrix() to construct a matrix. In the matrix() function only the
number of rows or number of columns need to be specified. The data elements
are specified by column unless the byrow argument is TRUE.

> A <- matrix(c(1,5,9,2,6,10,3,7,11,4,8,12), nrow=3)

> A

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

> B <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12), ncol=3, byrow=TRUE)

> B

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

A matrix can also be constructed by binding vectors or matrices as the
columns of the matrix (the cbind() function) or by binding vectors or matri-
ces as the rows of the matrix (the rbind() function).

There are slight differences in the matrices produced by cbind() or
rbind() using vectors and those produced by use of matrix(), as A and
B above. The matrices produced by cbind() have names of the constituent
vectors for its columns and those produced by rbind() have names of the
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constituent vectors for its columns. If matrices are bound to form a new ma-
trix, that matrix gets the names of rows and columns of the corresponding
matrices whose rows and columns have names. The names, which are char-
acters, can be used to access elements in the matrix. (Neither the row names
nor the column names must be unique. If there are duplicate row names, the
first one is assumed; likewise, for column names.)

> r1 <- c(1,2,3,4); r2 <- c(5,6,7,8); r3 <- c(9,10,11,12)

> c1 <- c(1,5,9); c2 <- c(2,6,10); c3 <- c(3,7,11); c3 <- c(4,8,12)

> AA <- rbind(r1, r2, r3)

> BB <- cbind(c1, c2, c3, c4)

> AA

[,1] [,2] [,3] [,4]

r1 1 2 3 4

r2 5 6 7 8

r3 9 10 11 12

> rownames(AA)

[1] "r1" "r2" "r3"

> colnames(AA)

NULL

> BB

c1 c2 c3 c4

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

> AA["r2", ]

[1] 5 6 7 8

> AA[2, ]

[1] 5 6 7 8

> AA["r1", 2]

r1

2

> AA[, r1]

[,1] [,2] [,3] [,4] # {it Note r1}
r1 1 2 3 4

r2 5 6 7 8

r3 9 10 11 12

> cbind(AA, BB[1:3, ])

c1 c2 c3 c4

r1 1 2 3 4 1 2 3 4

r2 5 6 7 8 5 6 7 8

r3 9 10 11 12 9 10 11 12

Figure 1.19. Simple Manipulations of Matrices

Matrices can be subsetted in the same way as other arrays, using the
indexes. The dim keyword is not directly applicable to matrices (although in
can be used when a matrix is an argument of the array() function), but
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of course the nrow or ncol serve a similar purpose. A common reshaping of
matrices is to make the rows to be columns and the columns to be rows. This
called transforming the matrix. The transpose of a matrix is obtained by the
R function t():

> t(AA)

r1 r2 r3

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

The R function t() also operates on a vector, treating the vector as a
“column” vector:

> x <- 1:3

> t(x)

[,1] [,2] [,3]

[1,] 1 2 3

1.3.2 Numerical Vectors and Matrices

For mathematical applications on the computer, we need objects that simulate
certain mathematical objects, such as integers, real numbers, sets, vectors, and
matrices.

Mathematical vectors and matrices are defined in terms of elements from a
field (essentially, “numbers”). In R, the terms “vectors” and “matrices” refer
to more general arrays (that is, their elements may not be numbers).

If the elements of R vectors and matrices are numbers, however, they can
be manipulated in ways similar to mathematical operations on vectors and
matrices. As we have mentioned above, atomic vectors of class numeric can
be operated on just as vectors in a vector space.

In this section we will describe some simple operations on vectors and
matrices. In Chapter 7 we will discuss other operations of linear algebra and
applications in statistical analysis of financial data.

Basic Operations with Numerical Vectors and Matrices

Most operators such as “+”, “-”, “*”, and “/” are applied elementwise when
the operands are arrays. The symbol “*”, for example, indicates the Hadamard
product of two matrices, that is, the elementwise product. This is often de-
noted in mathematics by “�”. In the expression
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AA * BB

the number of rows of AA must be the same as the number of rows of BB, and
the number of columns of AA must be the same as the number of columns of
BB. We have 


1 2 3
4 5 6
7 8 9



�




1 2 3
4 5 6
7 8 9



 =




1 4 9

16 25 36
49 64 81



 .

Cayley multiplication of matrices, on the other hand, in mathematics is
just indicated by juxtaposition, that is, there is no explicit symbol; but in
R it is denoted by the symbol “%*%”. Cayley multiplication is the “usual”
multiplication of matrices. The expression

AA %*% BB

indicates the Cayley product of the matrices, where the number of columns
of AA must be the same as the number of rows of BB:




1 2 3
4 5 6
7 8 9








1 2 3
4 5 6
7 8 9



 =




30 36 42
66 81 96

102 126 150



 .

Subarrays can be used directly in expressions. For example, the expression

AA[c(1,2), ] %*% BB[, c(3,1)]

yields the product
[

1 2 3
4 5 6

]


3 1
6 4
9 7



 =

[
42 30
96 66

]
.

Operations Mixing Numerical Scalars, Vectors, and Matrices

Like many other software systems for array manipulation, R usually does not
distinguish between scalars and arrays of size 1. For example, if

x <- c(1,2)

y <- c(1,2)

z <- c(1,2,3)

the expression
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x %*% y %*% z

yields the same value as 5*z because the expression x %*% y %*% z is inter-
preted as (x %*% y) %*% z and (x %*% y) is a scalar.

The expression x %*% (y %*% z) is invalid because y and z are not con-
formable for multiplication.

In the case of one-dimensional and two-dimensional arrays, R sometimes
allows the user to treat them in a general fashion, and sometimes makes a
hard distinction. For example, the function length() returns the number of
elements in an array, whether it is one-dimensional or two-dimensional. The
function dim(), however, returns the numbers of rows and columns in a two-
dimensional array, but returns NULL for a one-dimensional array.

The basic atomic numeric type in R is a vector, and a 1 × n matrix or
an n × 1 matrix may be cast as vectors (that is, one-dimensional arrays).
This is often exactly what we would want. There are, however, cases where
this casting is disastrous, for example if we use the dim() function, as shown
in Figure 1.20. To prevent this casting, we can use the drop keyword in the
subsetting operator.

> A <- matrix(c(1,2,3,4,5,6), nrow=3)

> dim(A)

[1] 3 2

> b <- A[, 2]

> dim(b) # b is not two-dimensional
NULL

> length(b)

[1] 3

> C <- A[, 2, drop=FALSE]

> dim(C) # C is two-dimensional
[1] 3 1

Figure 1.20. Downcasting and Preserving the Class in R

Matrices as Statistical Datasets

One of the most common and widely-useful structures for observational data
is a rectangular array in which the rows correspond to observational units, and
the columns correspond to observable features, as in Table 1.2. This structure
is essentially a matrix.
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Table 1.2. Statistical Dataset in a Flat File Structure

Var 1 Var 2 ...

Obs 1 X X ...
Obs 2 X X ...

... ... ... ...

Statistical analyses can often be formulated in terms of operations on
vectors and matrices. Observations on a single univariate feature are stored in
a vector, and observations on several features are stored in a matrix in which
each column corresponds to a feature or variable and each row corresponds
to an observational unit. When a matrix is used in this way, it is convenient
to give names to the columns that correspond to names of the features. This
can be done by means of the colnames() function, which can also be used to
retrieve the names of the columns of a matrix, if they have been given names.

When a matrix is used to contain a statistical dataset, in addition to
the names of the variables, it may be convenient to have names for the ob-
servational units, that is, for the rows. This can be done by means of the
rownames() function, which can also be used to retrieve the names of the
rows of a matrix, if they have been given names. The row names and the
column names can be used as indexes to access the elements. (As noted pre-
viously, neither the row names nor the column names must be unique.)

Figure 1.21 shows an example.

Vectorization

We often want to apply some operation to all of the elements in an array
or to all of the elements in a given dimension of an array. As we noted in
Figure 1.2 on page 22, most R functions that operate on scalar objects do this
automatically when they are given an array object. User-written functions do
this also (if they are properly written).

> sqr <- function(x) return(x^2)

> xm <- matrix(c(1,2,3,4), nrow=2)

> xm

[,1] [,2]

[1,] 1 3

[2,] 2 4

> sqr(xm)

[,1] [,2]

[1,] 1 9

[2,] 4 16
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> Stks <- matrix(c(157.74, 200,

+ 24.64, 400,

+ 75.59, 200,

+ 46.93, 400,

+ 101.57, 300), byrow=TRUE, ncol=2)

> colnames(Stks) <- c("Price","Quantity")

> rownames(Stks) <- c("AAPL","BAC","COF","INTC","MSFT")

> colnamesStks)

[1] "Price" "Quantity"

> Stks

Price Quantity

AAPL 157.74 200

BAC 24.64 400

COF 75.59 200

INTC 46.93 400

MSFT 101.57 300

> Stks["BAC","Price"]

[1] 24.64

> Stks["BAC", ]

Price Quantity

24.64 400.00

> Stks[, "Price"]

AAPL BAC COF INTC MSFT

157.74 24.64 75.59 46.93 101.57

Figure 1.21. A Matrix as a Statistical Dataset

Thus, there is no need to loop explicitly over the elements of the array. The
user should not think of the individual elements, but rather think of the object
as a matrix.

There are many instances in which we may wish to perform operations on
the individual elements in an array. That does not mean, however, that we
must loop through those elements. At the user level, the appropriate R func-
tion may operate on a large, complicated structure, but at the computational
level, the function operates on the elements separately.

For example, suppose we have an array that consists of numeric elements
and we want to form an analogous array that whose elements depend on a
binary condition involving the elements of the given array, maybe whether
those elements are equal to some specified value. The R function ifelse()

performs this task easily.

> xv <- c(1,2,4,2,5,6,2)

> xv2 <- ifelse(xv==2, 2, 0)

> xv2

[1] 0 2 0 2 0 0 2
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The result of ifelse() will be an array of the same dimensions as the
given array, but it does not have to be of the same data type.

> xm <- matrix(c(1,2,3,4), nrow=2)

> xm2 <- ifelse(xm>2, TRUE, FALSE)

> xm

[,1] [,2]

[1,] 1 3

[2,] 2 4

> xm2

[,1] [,2]

[1,] FALSE TRUE

[2,] FALSE TRUE

Often when working with a multidimensional array, we want to perform
an operation on a one-dimensional projection of the array. For example, in a
two-dimensional array, we may want to compute the sums or the means of the
individual columns. The apply() R function provides the ability to perform
the operation of another R function that accepts a vector argument over ei-
ther the rows or the columns. The apply() function has an argument for the
“margin”. In a two-dimensional array, the rows are margin 1 and the columns
are margin 2. For the case of sums or means, there are four special func-
tions, rowMeans(), rowSums(), colMeans(), and colSums() (each of which
allows the user to interchange how “column” and “row” are interpreted), that
perform the same operation as apply(). These functions are illustrated in
Figure 1.22.

The apply() function “vectorizes” the operations and it should be used
instead of explicitly looping over the rows or columns.

The apply() R function provides the ability to perform the operation of
a function that accepts a vector argument over any of the lower-dimensional
projections of the multidimensional array.

The function being applied operates in its usual way. Arguments to the
function being applied can be passed as arguments to the apply() function.
For example, if missing values are present, some functions give optional ways
of handling them with the na.rm argument, and the value of na.rm. Using
the 3-dimensional array x3D used above, but with one element set to NA, we
illustrate the various sums in Figure 1.23.

The apply() operates on structures of class array (or related, such as
class matrix), as illustrated in Figures 1.22 and 1.23. There are other “apply”
functions appropriate for other structures, such as lists, and we will mention
some of them when discussing other structures.

1.3.3 Time Series Objects; The ts Class

Since most financial data are time series, an R class for time series is useful.
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> A <- matrix(c(1,2,3,6,5,4), nrow=2)

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 6 4

> apply(A, 1, sum) # Compute marginal sums over the rows
[1] 9 12

> rowSums(A) # same
[1] 9 12

> apply(A, 1, var) # Compute marginal variances over the rows
[1] 4 4

> apply(A, 2, sum) # Compute marginal sums over the columns
[1] 3 9 9

> colSums(A) # same
[1] 3 9 9

> apply(A, 2, var) # Compute marginal variances over the columns
[1] 0.5 4.5 0.5

Figure 1.22. Vectorized Operations on Matrices

The first consideration in forming a computer structure for time series
data is whether or not the data are equally spaced in time, or approximately
so.

A large number of the time series of interest can be considered to be equally
spaced. For example, while “daily” stock prices are not equally spaced in time,
for most practical purposes, we can consider them to be.

If the data are equally spaced, all we need is the beginning or ending date
or time and the time interval between successive points in time. For equally-
spaced data, we may use natural divisions of the time intervals. For example,
if the data are collected monthly, we may consider a year as the basic time
unit and define a “frequency” of 12. Quarterly data could be considered to
have a frequency of 4 within a basic time unit of one year.

For unequally-spaced data, a more complicated structure would be nec-
essary. A data frame with a variable representing the time, which may be of
class Date, would be one possibility, but a better solution would be a class of
object that handles the time in a more natural way. The zoo or xts objects
serve this purpose. We will defer discussion of these objects to Section 1.3.6.

In this section we will concentrate on equally-spaced data, and describe
two object classes provided in the base package, ts and mts.

ts and mts Objects

The ts class is a numeric vector with attributes that specify the beginning
and ending and the frequency of the time series. The mts class is similar to
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> x3D <- array(1:12, dim=c(2,3,2))

> x3D[1,2,1] <- NA

> x3D

, , 1

[,1] [,2] [,3]

[1,] 1 NA 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

> applyx3D, 1, sum)

[1] NA 42

> apply(x3D, c(1,2), sum)

[,1] [,2] [,3]

[1,] 8 NA 16

[2,] 10 14 18

> apply(x3D, c(1,2), sum, na.rm=TRUE)

[,1] [,2] [,3]

[1,] 8 9 16

[2,] 10 14 18

Figure 1.23. Vectorized Operations on a Three-Dimensional Array

ts but allows for multiple synchronized time series as numeric columns in a
matrix; hence, we restrict most discussion in the following to the ts class.

We will illustrate the characteristics of the class by a time series with the 21
values 20, 21, . . . , 40 scrambled randomly. The ts() function is the constructor
for the class, and the attributes are assigned by the keyword arguments start,
end, and frequency. These arguments are of class numeric; a Date object is
invalid.

Unless some meaning is attached to the beginning, ending, and frequency
attributes, they just default to the beginning and ending indexes of the object
and to a frequency of 1:

> set.seed(12345)

> data <- sample(20:40)

> ts(data)

Time Series:

Start = 1

End = 21

Frequency = 1
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[1] 35 37 34 40 27 22 24 36 29 31 20 21 26 30 39 28 32 38 33 23 25

If a starting time is specified and a frequency is not specified (that is, the
frequency=1), the times are just interpreted as a sequence of the starting
time in increments of 1:

> ts(data, start=2016)

Time Series:

Start = 2016

End = 2036

Frequency = 1

[1] 35 37 34 40 27 22 24 36 29 31 20 21 26 30 39 28 32 38 33 23 25

set.seed(12345) data ¡- sample(20:40) ts(data)

Frequency in ts Objects

Much economic data are observed monthly, quarterly, or annually. The
frequency attribute of ts objects allows for divisions of the basic time unit
into subunits.

While the concept of frequency is straightforward, its use in ts objects is
meaningful for only three special values. A frequency of 1, which is the default
in most functions involving ts objects, indicates that no subdivisions of the
basic time unit are made; and that basic time unit is more-or-less irrelevant. A
frequency of 4 or 12 indicates that basic time unit ia a year and that months
and quarters are defined with respect to the Western calendar. The starting
time is to be a year number in that calendar. A frequency of 12 indicates that
the time divisions are months, and a frequency of 4 indicates quarters. Other
values of frequency are ignored, although they are retained as attributes of
the object.

> ts(data, start=2016, frequency=12)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016 35 37 34 40 27 22 24 36 29 31 20 21

2017 26 30 39 28 32 38 33 23 25

> ts(data, start=2016, frequency=4)

Qtr1 Qtr2 Qtr3 Qtr4

2016 35 37 34 40

2017 27 22 24 36

2018 29 31 20 21

2019 26 30 39 28

2020 32 38 33 23

2021 25
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> ts(data, start=2016, frequency=3)

Time Series:

Start = c(2016, 1)

End = c(2022, 3)

Frequency = 3

[1] 35 37 34 40 27 22 24 36 29 31 20 21 26 30 39 28 32 38 33 23 25

The starting date can be specified as a decimal fraction if the fractional part
to 7 digits corresponds to a subunit corresponding to the frequency. Other
fractional values are processed, but are not interpreted.

> ts(data, start=c(2016.0833333333), frequency=12)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016 35 37 34 40 27 22 24 36 29 31 20

2017 21 26 30 39 28 32 38 33 23 25

> ts(data, start=2016.25, frequency=4)

Qtr1 Qtr2 Qtr3 Qtr4

2016 35 37 34

2017 40 27 22 24

2018 36 29 31 20

2019 21 26 30 39

2020 28 32 38 33

2021 23 25

> ts(data, start=c(2016.08), frequency=12)

Time Series:

Start = 2016.08

End = 2017.74666666667

Frequency = 12

[1] 35 37 34 40 27 22 24 36 29 31 20 21 26 30 39 28 32 38 33 23 25

The starting and ending periods are specified as a two-element vector with
the first element giving the year and the second element giving the month or
the quarter, depending on the frequency.

> datats <- ts(data, start=c(2016,6), frequency=12)

> datats

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016 35 37 34 40 27 22 24

2017 36 29 31 20 21 26 30 39 28 32 38 33

2018 23 25

> ts(data, start=c(2016,6), frequency=4)

Qtr1 Qtr2 Qtr3 Qtr4
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2017 35 37 34

2018 40 27 22 24

2019 36 29 31 20

2020 21 26 30 39

2021 28 32 38 33

2022 23 25

These examples indicate most of the relevant properties of ts objects. The
ts() function and most of the R functions that operate on ts objects are ro-
bust to the values of the attributes. If start, end, and frequency correspond
to simply interpretable dates in years and months or quarters, those inter-
pretations will be applied; otherwise, the object will just be interpreted as
a numeric vector and the attribute apply without interpretation in common
terms.

There are some useful functions that summarize or manipulate ts objects.
The functions start(), end(), and frequency() functions retrieve the indi-
cated attributes of a ts objects, and the deltat() function returns the period
as a fraction of the basic time unit, that is, the reciprocal of the frequency. The
time() function extracts the time index and converts it to fractional amounts
in the basic time unit. It returns a ts object. (The datats time series below
is one in the examples above. We display it again for easy reference.)

> datats

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016 35 37 34 40 27 22 24

2017 36 29 31 20 21 26 30 39 28 32 38 33

2018 23 25

> start(datats)

[1] 2016 6

> end(datats)

[1] 2018 2

> frequency(datats)

[1] 12

> deltat(datats)

[1] 0.08333333

> head(time(datats))

[1] 2016.417 2016.500 2016.583 2016.667 2016.750 2016.833

Subsetting ts Objects

A ts object is a numeric vector with some associated attributes. The attributes
can be used in certain operations, but they are quite limited. For example,
they cannot be used directly as indexes to the ts object.

The window() function can be used to subset a ts object by specifying
beginning and ending points in the time series. (Again, we use the datats

time series from above.)
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> subdatats = window(datats, start=c(2016,9), end=c(2017,2))

> subdatats

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016 40 27 22 24

2017 36 29

Subsetting a ts object using indexes, such as datats[4:8], preserves the
correct data, but produces a numeric (in this case, integer) object.

> subdata = datats[4:9]

> subdata

[1] 40 27 22 24 36 29

> class(subdata)

[1] "integer"

The meanings of the data in ts objects must be interpreted correctly when
working with objects of different frequencies. Monthly and quarterly stock
price data, for example, are measured at the ends of the respective periods;
hence, quarterly data can be produced from monthly data just by selecting
ever third month.

In order to convert a monthly series to a quarterly series by selecting the
months of Mar, Jun, Sep, and Dec, the subset can be chosen by use of the
indexes, and then the object converted back to a ts object with a frequency
of 4. To do this, we first determine the starting month of the series, and then
find the end of the first quarter that includes that month.

> strtyr <- start(datats)[1]

> strtmo <- start(datats)[2]

> endyr <- end(datats)[1]

> endmo <- end(datats)[2]

> ind1 <- strtmo:(12*(endyr-strtyr)+endmo)

> ind <- ind1[ind1%%3==0]

> qrtdatats <-

+ ts(datats[ind+1-strtmo], start=c(strtyr,ceiling(strtmo/3)), frequency=4)

> qrtdatats

Qtr1 Qtr2 Qtr3 Qtr4

2016 35 40 24

2017 31 26 28 33

Aggregating Data in ts Objects

Aggregating data in a time series generally means formation of equivalent
data at a lower frequency, converting daily data to weekly data, for example.

The way data are aggregated depends on the kind of data. Stock price
data for a given quarter, for example, it just the price data at the end of the

R for Data Science and Applications in Finance James E. Gentle



1.3 R Objects and Classes 67

last month in that quarter. This can be determined as in the simple example
above. On the other hand, for data such as revenue or earnings, the amount at
the end of a quarter is equal to the sum of that in the three months comprising
the quarter; it is not just the same as monthly data for particular months. For
other types of data, such as extremes, the values for a quarter correspond to
values in some month in the quarter. The highest price of a stock in a quarter
is the highest price in one of the months comprising the quarter, but which
month is not known until the data in all three months are examined.

The R function aggregate() computes functions of data at a given fre-
quency into aggregated data at a lower frequency. The most common types of
aggregation, as indicated above, are summation of the values within the higher
frequency time units, and determination of the maximum of minimum value
within those time units. The operation is specified by the keyword argument
FUN in aggregate().

As illustrated in the example above, if the series at the higher frequency
does not begin at a natural time period for the lower frequency, the aggrega-
tion must be adjusted.

If the aggregation involves all monthly data within the quarter, we must
find the end of the first full quarter after that month. Note the difference in
this and what was done above for data similar to closing prices.

Suppose that the data in our example datats are volumes of trades within
the months making up the time series. To aggregate these data to quarters
involves summing the volumes within the three months comprising a quarter.
Notice that the first quarter in our aggregated series is the third quarter.

> strtyr <- start(datats)[1]

> strtmo <- start(datats)[2]

> qrtaggreg <- aggregate(window(datats, start= c(strtyr,3*ceiling(strtmo/3)+1)),

nfrequency=4, FUN=sum)

> qrtaggreg

Qtr1 Qtr2 Qtr3 Qtr4

2016 111 73

2017 96 67 97 103

Now, suppose that the data in our example datats are the highest price
of a stock within each month. To aggregate these data to quarters, we must
determine the maximum among the three months comprising each quarter.
Again, the first quarter in our aggregated series is the third quarter.

> qrtmax <- aggregate(window(datats, start= c(strtyr,3*ceiling(strtmo/3)+1)),

nfrequency=4, FUN=max)

> qrtmax

Qtr1 Qtr2 Qtr3 Qtr4

2016 40 27

2017 36 26 39 38
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Merging ts Objects

ts objects that have have the same frequency can be merged into a matrix
by use of the cbind() function. The result is an mts object. If the start-
ing and ending dates do not match, NAs result in the unmatched cells. The
ts.intersect() function selects only the cells whose time stamps are the
same.

> data1ts <- ts(20:23, start=c(2016,6), frequency=12)

> data2ts <- ts(28:32, start=c(2016,7), frequency=12)

> datamts <- cbind(datats, data2ts)

> class(datamts)

[1] "mts" "ts" "matrix"

> datamts

data1ts data2ts

Jun 2016 20 NA

Jul 2016 21 28

Aug 2016 22 29

Sep 2016 23 30

Oct 2016 NA 31

Nov 2016 NA 32

> ts.intersect(data1ts, data2ts)

data1ts data2ts

Jul 2016 21 28

Aug 2016 22 29

Sep 2016 23 30

The ts object class has obvious limitations. Except for the monthly and
quarterly rates, the frequency attribute is not very useful. The class has its
own methods for plotting (plot.ts(), which we will use in Section 1.4.3),
and plotting methods for mts objects allow either multiple plots on one set
of axes or plots in multiple panels. There are also some other R functions for
operations on equally-spaced time series objects, such as lag() and diff()

that will be discussed beginning on page 99, although those functions operate
equally well on numeric vectors that are not of class ts.

The standard R functions for modeling time series, such as arima(), and
widely-used packages for time series, such as forecast, work with ts/mts
objects.

1.3.4 Lists

A list in R is a simple, but very useful structure. It differs from an atomic
vector in that the elements of a list may be objects of different types, including
other lists. The elements of a list can be named and accessed by their names,
or else they can be accessed by an index, similar to an atomic vector, but
because of the fact that the elements of a list can be other lists, the elements
have a hierarchy, and a simple index in a list refers to a top-level item in the
list (see portfolios[2] in the example below).
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If an element in a list has a name within the list, the name of the element is
the name of the list and the name of the element with the symbol $ separating
the names. The names of all upper-level elements in a list can be obtained by
the names() function.

The power of lists lies in their flexibility. They are useful for the results of
a statistical analysis. Consider, for example, a linear regression analysis using
least squares. In R, this is performed by the lm() function.

A regression analysis consists of several results. It always includes the usual
coefficient estimates and sums of squares. In some cases, however, the anal-
ysis may include computations of various statistics on the residuals, and/or
assessment of possible effects of multicollinearity. The lm() function produces
a list that contains the results of the analysis.

> regr <- lm(formula)

> names(regr)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

A list is constructed by the list() function. The elements of the list may
be given names when the list is formed.

portfolios <- list("Fund1"=c("INTC","MSFT"),

"Fund2"=c("IBM","ORCL","CSCO"))

The list portfolios contains two elements, each of which is an atomic
character vector. An element of a list may be accessed by its name, or by its
index:

> portfolios$Fund2

[1] "IBM" "ORCL" "CSCO"

> portfolios[2]

$Fund2

[1] "IBM" "ORCL" "CSCO"

Two R functions that are useful in working with lists, especially list pro-
duced by R functions instead of the user, are str() (for “structure”) and
names() which was shown above.

> str(portfolios)

List of 2

$ Fund1: chr [1:2] "INTC" "MSFT"

$ Fund2: chr [1:3] "IBM" "ORCL" "CSCO"

> names(portfolios)

[1] "Fund1" "Fund2"
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Figure 1.24 illustrates some of the features of lists.

> mylist <- list("one_to_three"=1:3,

+ "a",

+ list("four_to_six"=4:6, "b", list(7:9, "c")))

> mylist

$one_to_three

[1] 1 2 3

[[2]]

[1] "a"

[[3]]

[[3]]$four_to_six

[1] 4 5 6

[[3]][[2]]

[1] "b"

[[3]][[3]]

[[3]][[3]][[1]]

[1] 7 8 9

[[3]][[3]][[2]]

[1] "c"

> str(mylist)

List of 3

$ one_to_three: int [1:3] 1 2 3

$ : chr "a"

$ :List of 3

..$ four_to_six: int [1:3] 4 5 6

..$ : chr "b"

..$ :List of 2

.. ..$ : int [1:3] 7 8 9

.. ..$ : chr "c"

> names(mylist)

[1] "one_to_three" "" ""

Figure 1.24. Lists and the str() Function

The “[” operator is used to specify an index into a list, portfolios[2] or
mylist[1], for examples. The element indexed in the list, however, is returned
as a list.

Figure 1.25 illustrates some more features of lists. Some results are more
obvious than others. Make sure that you understand each.

The lapply() function and two variations sapply() and vapply() oper-
ate on structures of class list.

1.3.5 Data Frames

As we have noted, one of the most common and widely-useful structures for
observational data is a rectangular array in which the rows correspond to ob-
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> mylist$one_to_three

[1] 1 2 3

> class(mylist[1])

[1] "list"

> mylist[1]

$one_to_three

[1] 1 2 3

> class(mylist[[1]])

[1] "integer"

> mylist[[1]]

[1] 1 2 3

> mylist$one_to_three[2]

[1] 2

> mylist[[1]][2]

[1] 2

> mylist[[3]]$four_to_six

[1] 4 5 6

> mylist[[3]][1]

$four_to_six

[1] 4 5 6

> mylist[[3]][3]

[[1]]

[[1]][[1]]

[1] 7 8 9

[[1]][[2]]

[1] "c"

> mylist[[3]][[3]][1]

[[1]]

[1] 7 8 9

Figure 1.25. Lists and the $ and [[ Operators (Using Mylist from Figure 1.24)

servational units, and the columns correspond to observable features, yielding
a flat file structure as in Table 1.2.

For numerical data, this structure naturally corresponds to a mathematical
matrix and to an R object of class matrix. In statistical applications, it may
be convenient to give names to the columns and rows of a matrix, as the
matrix Stks in Figure 1.21.

The matrix class in R can also be of mode and type character, but
a matrix object cannot contain elements of both numeric and character

modes. Often in statistical applications, some variables may be numerical and
others may be character. Some variables may have other characteristics, such
as being dates.

The R class data.frame accommodates data in this structure. Each vari-
able or column can be of any mode.

An example of some data is shown in Table 1.3 below. The numerical
values are exactly the same as those in the matrix Stks of Figure 1.21, but

R for Data Science and Applications in Finance James E. Gentle



72 1 R: The System and the Language

here the names of the stocks are values of a variable called “Symbol”, instead
of being names of the rows of a matrix. This is a dataset with three variables,

Table 1.3. Stock Data; Prices and Numbers of Shares

Symbol Price Quantity

AAPL 157.74 200
BAC 24.64 400
COF 75.59 200
INTC 46.93 400
MSFT 101.57 300

“Symbol”, which is a character variable, “Price”, and “Quantity”. It is still
in the flat file structure of Table 1.2. We will build an R data frame called
“Stocks 1” with these data in Figure 1.26 below.

There are other ways of forming a data frame, but this is one of the simplest
and most common.

In many ways an R data frame is like a matrix; for example, the elements
of a data frame can be accessed by the same kind of indexing as done with a
matrix, and the R functions nrow() and ncol() are the same. In other ways,
however, data frames behave more like R lists.

Both the rows and the columns in a data.frame have names. The names of
the columns are usually the names of the variables. The names of the columns
are the names of the vectors used to form the data frame, if that was the way
it was formed. The default and most common names for the rows are just the
positive integers, which can be interpreted as the observation numbers. The
names of the columns in an R data frame are similar to the names of columns
in a matrix, and are accessed likewise by colnames(). The names of the rows
in an R data frame are similar to the names of rows in a matrix, and are
accessed likewise by rownames().

The column names in an R data frame are the variable names in the
common paradigm of a statistical dataset, so the “names” are those. The same
R function names() is used for data frames as is used for lists. A variable in
a data frame can be accessed by the name of the data frame followed by $
and then by the name of the variable. Note that $ cannot be used to extract
columns (or variables) in a matrix.

The row names and the column names can be used as indexes to access
the elements.

Figure 1.26 illustrates the creation of a data frame and some simple ma-
nipulations with it.

The last statement in Figure 1.26 may give one pause. In this snippet of
code, Stocks 1$Symbol is merely a character variable, so we not expect it to

R for Data Science and Applications in Finance James E. Gentle



1.3 R Objects and Classes 73

> Symbol <- c("AAPL", "BAC", "COF", "INTC", "MSFT")

> Price <- c(157.74, 24.64, 75.59, 46.93, 101.57)

> Quantity <- c( 200, 400, 200, 400, 300)

> Stocks 1 <- data.frame(Symbol, Price, Quantity)

> Stocks 1

Symbol Price Quantity

1 AAPL 157.74 200

2 BAC 24.64 400

3 COF 75.59 200

4 INTC 46.93 400

5 MSFT 101.57 300

> Stocks 1$Price

[1] 157.74 24.64 75.59 46.93 101.57

> Stocks 1[1,2]

[1] 157.74

> Stocks 1[2,3]

[1] 400

> Stocks 1[1, ]

Symbol Price Quantity

1 AAPL 157.74 200

> names(Stocks 1)

[1] "Symbol" "Price" "Quantity"

> colnames(Stocks 1)

[1] "Symbol" "Price" "Quantity"

> rownames(Stocks 1)

[1] "1" "2" "3" "4" "5"

> class(Stocks 1$Price)

[1] "numeric"

> class(Stocks 1$Symbol)

[1] "factor"

Figure 1.26. An R Data Frame with Data from Table 1.3()

be of class factor. By default, however, when R forms a data frame, character
vectors are converted to class factor.

Factors in Data Frames

On page 22, we discussed categorical variables and described the factor class,
which is appropriate for such variables.

As mentioned following Figure 1.26, when R forms a data frame, character
vectors are converted to class factor. For variables that are indeed categorical
variables, this is appropriate; otherwise, however, this may not be what we
want. The stringsAsFactors=FALSE option in data.frame() prevents this
from happening. On the other hand, it may be useful to have one or more
variables to be factors. This will be the case if the vector is initially a factor.
These two points are illustrated in Figure 1.27, where we build a data frame
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similar to that in Figure 1.26 and include a variable that really should be a
classification variable.

> Sector <- factor(c("Tech", "Fin", "Fin", "Tech", "Tech"))

> Symbol <- c("AAPL", "BAC", "COF", "INTC", "MSFT")

> Price <- c(157.74, 24.64, 75.59, 46.93, 101.57)

> Quantity <- c( 200, 400, 200, 400, 300)

> Stocks 2 <- data.frame(Sector, Symbol, Price, Quantity,

+ stringsAsFactors=FALSE)

> Stocks 2

Sector Symbol Price Quantity

1 Tech AAPL 157.74 200

2 Fin BAC 24.64 400

3 Fin COF 75.59 200

4 Tech INTC 46.93 400

5 Tech MSFT 101.57 300

> class(Stocks 2$Symbol)

[1] "character"

> class(Stocks 2$Sector)

[1] "factor"

> Stocks 2$Sector[1]

[1] Tech

Levels: Fin Tech

Figure 1.27. An R Data Frame with a Factor Variable and a Character Variable

The stringsAsFactors=FALSE option can also be set globally for an R
session by use of the options() function:

options(stringsAsFactors=FALSE)

It is usually not a good idea to use the global options() function, however.
Working with factors in a data frame involves the same considerations

we discussed on page 22. For instance, to obtain the sector value of the first
observation, we do not use

Stocks 2$Sector[1]

but rather we must use

as.character(Stocks 2$Sector[1])
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As mentioned previously, the reason factors are so useful is that math-
ematical operations or statistical analyses can be performed on other data
separately at each level of a factor. This can be done on variables in a data
frame or just on individual vectors of the same length when one of them is of
class factor.

Operations on Data Frames

As we have seen, ordinary matrix-type indexing can be used in a data frame.
These indexes can be used to form subsets of a data frame, and of course
the result is usually a data frame. If the result consists of a single column,
however, even if the original data frame only had one column, the result is an
atomic vector by default. This is the same kind of downcasting we observed
for matrices in Figure 1.20. To prevent this casting, as with matrices, we
can use the drop keyword in the subsetting operator. Figure 1.28 illustrates
these points using the Symbol factor vector and the Stocks 2 data frame
from Figure 1.27. (See also Figure 1.20.) The downcasting does not change
the variable in the data frame.

> class(Stocks 2[,1])

[1] "factor"

> class(Stocks 2[,1,drop=FALSE])

[1] "data.frame"

> class(Stocks 2[,2])

[1] "numeric"

> class(Stocks 2[,2,drop=FALSE])

[1] "data.frame"

> SymbolDF <- data.frame(Symbol)

> class(SymbolDF)

[1] "data.frame"

> class(SymbolDF[-1,,drop=FALSE])

[1] "data.frame"

> class(SymbolDF[-1,])

[1] "factor"

Figure 1.28. Subsetting R Data Frames and Downcasting

Data frames can be combined or updated using cbind() and rbind(),
just as with matrices. The data frame Stocks 2 could have been built using
Stocks 1 from Figure 1.26 along with the vector Sector from Figure 1.27
using cbind().
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Stocks 2 <- cbind(Sector, Stocks 1)

(There would be one small difference: in building Stocks 1, the Symbol vari-
able became a factor; but in building Stocks 2, we forced it to be a character
variable. In the next few examples, as we build the Stocks 1 data frame in
various ways, it will be different from the original Stocks 1 data frame be-
cause the Symbol variable will be a character variable.)

Data frames can also be combined in other meaningful ways using the
merge() function. The operation performed by merge() is called “join” in
general database terminology. This function is very flexible, and among other
options, allows merging by the variable names or by the observation names
or by various combinations. The merge() function operates on only two data
frames at a time, and joins the data frames by matching a specified variable
that is in both data frames.

The simple R operator “[” can be used to select elements or variables
(columns) or observations (rows) within an R data frame just as in any array,.
For example, the data frame Stocks 1 above can be formed from the Stocks 2

data frame as follows.

Stocks 1 <- Stocks 2[, c("Symbol","Price","Quantity")]

The R function subset() can also be used for that purpose.

Stocks 1 <- subset(Stocks 2, select=c("Symbol","Price","Quantity"))

The select() function in the dplyr package provides more flexibility in sub-
setting data frames.

Neither the “[” operator nor the subset() function can be used with the
unary “-” operator to remove variables by specifying their names. The “-”
operator can be used with the regular row or column indexes, however. For
example, the data frame Stocks 1 above can be formed from the Stocks 2

data frame as follows.

Stocks 1 <- Stocks 2[, -1]

Similar to the apply() function discussed earlier, the tapply() R function
applies another operation to a given vector or set of vectors, but tapply() does
it separately for each level of a specified factor vector. The tapply() function
returns an array. For example, using the objects above, we can compute the
total value in each sector as follows.
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> tapply(Price*Quantity, Sector, sum)

Fin Tech

24974 80791

The arguments for the tapply() function above could have been specified as
the variables in the data frame Stocks 2, but since those variable names are
also the names of the individual vectors, the vectors were used as arguments
in this example. The first argument can be a vector of any class, but it cannot
be a data frame.

The split() function splits either a vector or a data frame into separate
subsets corresponding to the different level in a factor. Again, using the objects
above, we separate the whole data frame into parts corresponding to the
different levels of the factor variable sector.

> split(Stocks 2, Sector)

$Fin

Sector Symbol Price Quantity

2 Fin BAC 24.64 400

3 Fin COF 75.59 200

$Tech

Sector Symbol Price Quantity

1 Tech AAPL 157.74 200

4 Tech INTC 46.93 400

5 Tech MSFT 101.57 300

The split() function yields a list whose primary elements are the resulting
data frames. The unsplit() function restores the separate pieces into a single
frame.

The by() function is similar in operation to the tapply() function, except
the first argument can be a data frame and the function can be more general,
usually an R function for a statistical analysis such as regression. The data in
the toy example above does not allow a meaningful illustration of by(), but
we will see examples of it in later chapters.

Date Information in Data Frames

Many sets of financial data, such as daily or weekly stock prices or interest
rates, are time series. If the time steps are roughly equal, it may be sufficient
to label the times as 1, 2, 3, and so on, with some accompanying metadata
specifying the starting time and the length of the time intervals. The ts class,
discussed in Section 1.3.3, is an adequate structure to handle this kind of time
series, but if the the time intervals are not equal or if it is necessary to know
the actual dates, the time of each observation needs to be an explicit part of
the dataset. (Another deficiency of the ts class, of course, is that it can only
handle numeric data.)
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Date information can easily be incorporated in a data frame. One variable
can be of class Date, for example, as in the data frame for INTC daily stock
prices and volumes traded for the last few trading days of January and the
first few of February, 2020, shown in Figure 1.29. The date() function in the
lubridate package could be used instead of the as.Date() function.

> Price <- c(60.84, 60.10, 59.93, 58.93, 58.97, 59.30)

> Volume <- c(18056000, 15293900, 17755200, 21876100, 23133500, 18813300)

> Date <- as.Date(c("2020-01-02", "2020-01-03", "2020-01-06", "2020-01-07",

+ "2020-01-08", "2020-01-09"))

> INTCdf <- data.frame(Date, Price, Volume)

> INTCdf

Date Price Volume

1 2020-01-30 66.47 18522400

2 2020-01-31 63.93 25268400

3 2020-02-03 64.42 16654600

4 2020-02-04 65.46 20970800

5 2020-02-05 67.34 23401400

6 2020-02-06 67.09 17408000

7 2020-02-07 66.02 18134600

8 2020-02-10 66.39 22299300

>

> INTCdf[3, ]

Date Price Volume

3 2020-02-03 64.42 16654600

Figure 1.29. Data Frame with a Date Variable; Indexing February 3, 2020

Picking a date or a range of dates in the data frame INTCdf in Figure 1.29
can be somewhat awkward. To get the data for February 3, 2020, if we know
that it corresponds to the third row, we could address it as in the code in
the figure. If we did not know which row, we could get the data for the date
by matching the value of the Date variable. We could also determine the row
number using which().

> INTCdf[INTCdf$Date=="2020-02-03", ]

Date Price Volume

3 2020-02-03 64.42 16654600

> which(INTCdf$Date=="2020-02-03")

[1] 3

Another way of handling dates in data frames is to use the dates as the
row names of the data frame. This is illustrated in Figure 1.30 using the same
data as in the data frame INTCdf created in Figure 1.29.
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> Price <- c(60.84, 60.10, 59.93, 58.93, 58.97, 59.30)

> Volume <- c(18056000, 15293900, 17755200, 21876100, 23133500, 18813300)

> Date <- as.Date(c("2020-01-02", "2020-01-03", "2020-01-06", "2020-01-07",

+ "2020-01-08", "2020-01-09"))

> INTCdf2 <- data.frame(Price, Volume)

> rownames(INTCdf2) <- Date

> INTCdf2

Price Volume

2020-01-30 66.47 18522400

2020-01-31 63.93 25268400

2020-02-03 64.42 16654600

2020-02-04 65.46 20970800

2020-02-05 67.34 23401400

2020-02-06 67.09 17408000

2020-02-07 66.02 18134600

2020-02-10 66.39 22299300

>

> INTCdf2["2020-02-03", ]

Price Volume

2020-02-03 64.42 16654600

Figure 1.30. Data Frame with Dates as Row Names; Indexing February 3, 2020

Either of the methods illustrated above for obtaining a specific date is
adequate, but neither structure allows for more general operations with the
dates or with ranges of dates. We will discuss a more flexible structure in
Section 1.3.6.

Reshaping Data Objects

Much of financial data fits into the general format of a flat file, as in Table 1.2
on page 58, in which the rows correspond to observations and the columns
correspond to variables. The small example of stocks in Table 1.3 fit this
structure nicely, even after we add another variable “Sector”, as in Figure 1.27.
The structure also accommodates additional observations, which in this case,
would be additional stocks.

If we were interested in the differences between the two sectors, we might
want to organize the data to separate the sectors. The organization of the data
as in left-hand side of Table 1.4 shows stocks in the two sectors separately.
This arrangement of the data does not fit the basic structure of Table 1.2,
however.

We could easily add more variables and maintain the structure of Table 1.2.
We could, for example, add prices at different times. The “Price” variable in
Table 1.3 happens to be the stock price as of the close on the last trading day
of 2018. Suppose we add to the dataset the corresponding prices as of the last
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trading day of 2019. This would be a dataset with two variables corresponding
to price. The dataset shown in right-hand side of Table 1.4 includes both
prices, and the arrangement of the data corresponds to the basic structure of
Table 1.2. The layout allows us easily to make comparisons between the two
prices for each of the stocks. We can form an R data frame with a variable
for the 2018 prices and another variable for the 2019 prices.

Table 1.4. “Wide” Datasets

Separate Sectors

Sector
Tech Fin

Symbol Price Symbol Price
AAPL 157.74 BAC 24.64
INTC 46.93 COF 75.59
MSFT 101.57

Prices at Two Times

Symbol Price 2019 Price
AAPL 157.74 293.68
BAC 24.64 35.26
COF 75.59 103.06
INTC 46.93 59.93
MSFT 101.57 157.77

It is not always obvious, however, what are the variables; that is, what are
Var 1, Var 2, and so on, in Table 1.2. This is often the case when one of the
variables is measured at different times. For example, The price data in the
dataset on the right-hand side of Table 1.4 could be combined into a single
variable if we introduce another variable for year. The additional variable may
be a factor if only two or three years are involved. We may, however, anticipate
building a dataset with prices corresponding to multiple dates, not just a few
year-end dates. In that case, we may form a date variable.

The idea of combining the two price variables in the right-hand side of
Table 1.4 and introducing another variable for date, is in a sense the opposite
of what was done in the formation of the dataset on the left-hand side of
Table 1.4 in which the factor variable corresponding to the sector was used
to form two groups of data. In any event, the two sets of data shown in
“wide” formats in Table 1.4 can be structured into “tall” formats as shown in
Table 1.5.

How a dataset is displayed in a table depends on the purpose of displaying
the data. The question is what is the best way to suit the purpose. Whatever
the purpose, the clutter of the table must be considered. The format of the
dataset on the right-hand side of Table 1.5 seems unnecessarily cluttered.

In computer structures, repetition, visual clutter, and so on are not rel-
evant. Data frames should be constructed in a manner that allows for easy
manipulation and analysis using the facilities provided in R.

For the two datasets we have shown in Tables 1.4 and 1.5 R data frames
corresponding closely to the layouts of Table 1.5 would be preferred.

In financial applications using the data in Tables 1.4 and 1.5, it is actually
more likely that a different wide data structure would be more appropriate. It
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Table 1.5. “Tall” Datasets

Sector Symbol Price
Tech AAPL 157.74
Tech INTC 46.93
Tech MSFT 101.57
Fin BAC 24.64
Fin COF 75.59

Date Symbol Price
2018-12-31 AAPL 157.74
2018-12-31 BAC 24.64
2018-12-31 COF 75.59
2018-12-31 INTC 46.93
2018-12-31 MSFT 101.57
2019-12-31 AAPL 293.68
2019-12-31 BAC 35.26
2019-12-31 COF 103.06
2019-12-31 INTC 59.93
2019-12-31 MSFT 157.77

is one with six variables, date, and the names of the five stocks. There would
be only two observations, corresponding to the two dates. In Exercise 1.3.6,

Table 1.6. Time Series of Prices

Date AAPL BAC COF INTC MSFT
2018-12-31 157.74 24.64 75.59 46.93 101.57
2019-12-31 293.68 35.26 103.06 59.93 157.77

you are asked to form a data frame of this structure by manipulating a data
frame with a structure as in the table on the right side of Table 1.5.

In data analysis it is often the case that the raw data may be stored in
various formats at various repositories. Manipulation of data into a common
format often requires major effort before any analysis can begin. Serious con-
sideration of these mechanical aspects is the main way in which “data science”
differs from “statistics”, where the emphasis is on the modeling, analysis, and
inference.

The merge() and split() functions are useful in reshaping R data frames.

Two other basic R functions that aid in manipulating a data frame into
an appropriate form are the stack() (and the related unstack()) and the
reshape() functions. In addition, there are two packages, reshape2 and tdyr,
that provide additional functionality for restructuring data frames. The names
of the functions melt(), colsplit(), and dcast() in the reshape2 package,
and gather(), separate(), and spread() in the tdyr package indicate the
nature of the manipulations that they perform. See Wickham (2014) for dis-
cussions of “tidy data” and the tdyr package. Wickham also developed the
reshape2 package.
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1.3.6 Time Series Objects

Many sets of financial data, such as daily or weekly stock prices or interest
rates, are time series. How a computer dataset should be constructed to hold
time series data depends on the nature of the time series. The ts class, dis-
cussed in Section 1.3.3, is adequate for many purposes. The data.frame class
with a date variable or with dates used as row names as discussed beginning
on page 77, is also adequate for many purposes.

An object that accepts dates as indexes and also allows subsetting opera-
tions based on the dates would be useful. The zoo class of objects does just
that (see Zeileis and Grothendieck, 2005). There are other classes, such as
xts, that inherit from zoo. We will consider properties of these classes below,
generally referring to them as xts objects.

There are other aspects of a time series that can be incorporated in a data
structure. For example, in some financial time series, especially ones relating to
equity prices, within the fundamental time unit of the time series, four values
may be of interest: the opening value, the closing value, the maximum value
during that time period, and the minimum value. Time series datasets that
include these values are called “OHLC” datasets (“open, high, low, close”).
Data structures capturing this information are particularly useful for graphing
(“candlestick” charts).

xts Objects

For an example, if the Price and Volume variables in the data frame INTCdf

above are stored in an xts object, the dates are indexes, and the specific date
February 3, 2020 can be indexed more naturally. In the following, we will refer
to the data frames INTCdf and INTCdf2, created in Figures 1.29 and 1.30.

In Figure 1.31, we show an xts object, INTCxts, that contains the same
data as in the data frame, INTCdf, but the date variable is no longer included;
rather, the date information is used as the index.

An object of class xts has a row index that is an object of class date, and
date operators can be used to manipulate the individual rows.

The values in an object of class xts must all be numeric. The actual data
portion of the object is essentially a matrix.

An object of class xts provides not only for date stamping, but it allows
for operations on the object via date functions and operators. On the other
hand, sometimes computations are easier to perform by first converting xts

objects to numeric objects using as.numeric. Of course, they can also be
converted to R data frames, and sometimes this makes processing the data
simpler. Conversion of an xts object to a data frame is straightforward using
data.frame. A “date” variable in the data frame is created from the index in
the xts object by the index() function.

There are several R packages that use the xts class, including the xts

package and the quantmod package, which we will use extensively in this book.
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> INTCxts

Price Volume

2020-01-30 66.47 18522400

2020-01-31 63.93 25268400

2020-02-03 64.42 16654600

2020-02-04 65.46 20970800

2020-02-05 67.34 23401400

2020-02-06 67.09 17408000

2020-02-07 66.02 18134600

2020-02-10 66.39 22299300

>

> INTCxts["2020-02-03"]

Price Volume

2020-02-03 64.42 16654600

Figure 1.31. An xts Object; Indexing February 3, 2020. Compare Data Frames in
Figures 1.29 and 1.30

An object of class xts can be created by the xts() function. The xts()

function has an interface similar to that of the data.frame() function, except
that if there are more than one variable, the data in the variables must be
formed into a matrix. Also, and more importantly, xts() has an argument,
order.by, which specifies how the data are to be ordered nad which becomes
part of the xts object. The index can be integers or dates in any of the
acceptable R formats. The entries in the xts object (that is, the rows) are
ordered by the index.

The xts object INTCxts in Figure 1.31 corresponds to the data frame
INTCdf formed in Figure 1.29 or the data frame INTCdf2 formed in Fig-
ure 1.30. The xts object can be formed by the xts() function. The xts()

function can either use vectors as were used in forming the data frames, or
it can use the data frames themselves. When an xts object is formed from a
data frame, if the data frame has a date variable, that variable is dropped and
its values used as the index in the xts object, assigned with the order.by

argument. If, instead, the data frame has row names corresponding to dates,
the row names would be captured by the rownames() function and used as
the order.by argument.

A xts object cannot include any variable from a data frame that is not
numeric.

Three ways to form an xts object are illustrated in Figure 1.32. They all
produce the same object.

The xts object inherits the names of the variables in the data frame or
else the names of the matrix columns (if any) or the name of the vector. A
variable in an xts object can be accessed by the name of the followed by $
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INTCxts <- xts(cbind(Price, Volume), order.by=Date)

INTCxts <- xts(subset(INTCdf,select=c("Price","Volume")), order.by=INTCdf$Date)

INTCxts <- xts(INTCdf2, order.by=as.Date(rownames(INTCdf2)))

Figure 1.32. Formation of an xts Object from Vectors or from Two Types of Data
Frames

and then by the name of the variable, just as accessing a variable in a data
frame.

Although it is not done as often, a data frame can be created from an
xts object. The procedure essentially is to form vectors from which to form
a data frame, as is done in Figure 1.29. Given the xts object INTCxts, the
data frame INTCdf from above could be created by the statements below

Date <- index(INTCxts)

Price <- as.numeric(INTCxts$Price)

Volume <- as.numeric(INTCxts$Volume)

INTCdf <- data.frame(Date, Price, Volume)

One of the most useful features of xts objects is the ability to access
elements or subsets by use of the index.

Indexing and Subsetting xts Objects

The elements of an xts object can be addressed either by the time index alone
or by two indexes, the time and the column. Instead of a time index, the row
number can be used.

The date index of the ith row of an xts object can be obtained by use of
the index() function in the xts; for example, the date index of the third row
in the xts object INTCxts is obtained by

index(INTCxts)[3]

If a time index is used, it must be specified in the ISO 8601 date format
order, but the “-” separators may be omitted; “20170202” is the same as
“2017-02-02”.

The time index of an xts object can be manipulated in the ways described
in Section 1.2.5.

If a specified time index does not exist in an xts object, only the column
names are returned (see Figure 1.33).
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A range of times in an xts object can be specified using the “/” separator
in the form “from/to”, where both “from” and “to” are optional. If either
is missing, the range is interpreted as the beginning or the end of the data
object, as appropriate. Exact starting and ending times need not match the
underlying data; the nearest available observation is chosen.

Figure 1.33 shows examples of indexing. It also shows a way to determine
if a specified date does not exist in an xts object. The xts object is displayed
in Figure 1.31. It was created in Figure 1.32.

Figure 1.34 shows another example of indexing xts objects and identifying
missing values.

OHLC Datasets

In many financial time series the time of a datum corresponds specifically
to value at the end of a time period, but the time itself is associated with
an interval of time. A common example is a time series of the daily closing
prices of a stock. There are three associated prices that may be of interest,
The opening price, the high of the day, and the low of the day. Time series
datasets that include these values are called “OHLC” datasets (“open, high,
low, close”). An additional item of interest may be the number of shares traded
on that day, the volume.

Plots of daily prices often show the opening, high, low, and closing prices. A
convenient way of doing this is with a “candlestick” at each day. A candlestick
has the appearance of the graphic in Figure 1.35, with the meanings shown.

An example of a daily candlestick plot, together with a panel showing the
trading volume, is in Figure 1.51 on page 122.

Many traders believe that the relationships among the open, high, low,
and close, which can be seen very easily in a candlestick, indicate something
about the future price moves.

A standard data structure in financial analysis is an xts object containing
an OHLC dataset with variable names of a standard form. Figure 1.36 shows
an xts object, INTC, in this form. The closing prices and the volumes are the
same as in the INTCxts object shown in Figure 1.31. (Note the additional
variable, which is the closing price adjusted over time to account for stock
splits and dividends.)

The standard forms of the variable names allow for changing of the fre-
quency, say from daily to weekly or monthly.

Changing the Frequency in xts Objects

The to.period() function in the xts package operates on an xts object to
produce a new xts with a coarser frequency; that is, for example, it may take
an xts object that contains daily data and produce an xts object containing
monthly data.
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> INTCxts["2020-02-03"]

Price Volume

2020-02-03 64.42 16654600

> INTCxts["2020-02-03","Price"]

Price

2020-02-03 64.42

> INTCxts["20200203"]

Price Volume

2020-02-03 64.42 16654600

> INTCxts["20200131/20200205"]

Price Volume

2020-01-31 63.93 25268400

2020-02-03 64.42 16654600

2020-02-04 65.46 20970800

2020-02-05 67.34 23401400

> INTCxts["20200131/"]

Price Volume

2020-01-31 63.93 25268400

2020-02-03 64.42 16654600

2020-02-04 65.46 20970800

2020-02-05 67.34 23401400

2020-02-06 67.09 17408000

2020-02-07 66.02 18134600

2020-02-10 66.39 22299300

> INTCxts["/20200131"]

Price Volume

2020-01-30 66.47 18522400

2020-01-31 63.93 25268400

> INTCxts["202001"]

Price Volume

2020-01-30 66.47 18522400

2020-01-31 63.93 25268400

> INTCxts["202002"]

Price Volume

2020-02-03 64.42 16654600

2020-02-04 65.46 20970800

2020-02-05 67.34 23401400

2020-02-06 67.09 17408000

2020-02-07 66.02 18134600

2020-02-10 66.39 22299300

> INTCxts["20200201"]

Price Volume

Figure 1.33. Indexing and Subsetting in xts Objects (Using Object Created in
Figure 1.32)

Different kinds of data must be aggregated differently, as we discussed
and illustrated beginning on page 66. The closing prices are merely the clos-
ing prices at the end of the higher-frequency time period; the high and low
prices are the highest and lowest within the higher-frequency time periods
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> d1 <- index(INTCxts)[1]

> d2 <- index(INTCxts)[dim(INTCxts)[1]]

> # Determine if a date missing (weekend or holiday)
> for (i in d1:d2) if(length(INTCxts[as.Date(i)]>0)==0)

+ print(paste(as.Date(i),"is a weekend day or holiday"))

[1] "2020-02-01 is a weekend day or holiday"

[1] "2020-02-02 is a weekend day or holiday"

[1] "2020-02-08 is a weekend day or holiday"

[1] "2020-02-09 is a weekend day or holiday"

Figure 1.34. Missing Items in xts Objects (Using Object Created in Figure 1.32)
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Figure 1.35. A Candlestick

> INTC

INTC.Open INTC.High INTC.Low INTC.Close INTC.Volume INTC.Adjusted

2020-01-30 65.64 66.50 64.93 66.47 18522400 65.77273

2020-01-31 65.80 65.98 63.67 63.93 25268400 63.25937

2020-02-03 64.46 65.04 64.30 64.42 16654600 63.74423

2020-02-04 65.77 66.06 64.92 65.46 20970800 64.77332

2020-02-05 66.69 67.60 66.13 67.34 23401400 66.63360

2020-02-06 67.30 67.40 66.77 67.09 17408000 66.71315

2020-02-07 66.86 67.30 66.01 66.02 18134600 65.64916

Figure 1.36. An OHLC Dataset in an xts Object

comprising the coarser period; and the volume data are the sums of the vol-
umes within the higher-frequency time periods comprising the coarser period.
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If the columns of the xts dataset that correspond to open, high, low,
close prices, and volume are all appropriately identified by the names of the
columns, then the to.period() function produces a dataset with a coarser
frequency that has the appropriate values of high, low, close prices, and volume
for each of the new periods.

Figure 1.37 shows the daily data from Figure 1.36 converted to weekly
data. Compare the values in the figures.

> to.period(INTC, "weeks")

INTC.Open INTC.High INTC.Low INTC.Close INTC.Volume INTC.Adjusted

2020-01-31 65.64 66.5 63.67 63.93 43790800 63.25937

2020-02-07 64.46 67.6 64.30 66.02 96569400 65.64916

Figure 1.37. An xts Object Containing Daily OHLC Data Converted to Weekly

The to.period() function assumes that the input is an OHLC dataset.
If the input is not an OHLC dataset, the OHLC=FALSE can be used; otherwise,
some of the output of to.period() will be spurious.)

Figure 1.38 shows the use of to.period() on the xts object displayed in
Figure 1.31, which is not an OHLC dataset. Notice that data for 2020-02-
10 are produced, even though it was not the end of the week; compare with
Figure 1.37. Notice also that the Volume data are incorrect; they are merely
the daily data for the day at the end of the week.

> to.period(INTCxts, "weeks", OHLC=FALSE)

Price Volume

2020-01-31 63.93 25268400

2020-02-07 66.02 18134600

2020-02-10 66.39 22299300

Figure 1.38. Changing Time Periods in an xts Object. The Volume Variable Is
Not Aggregated Correctly

Merging xts Objects

One of the most useful methods for xts objects is the ability to merge them
based on the time index.

R for Data Science and Applications in Finance James E. Gentle



1.3 R Objects and Classes 89

Merging of datasets in general is a common activity, and the ability to do
so is provided in most database management systems, including those built
on SQL.

The merge() function in R is quite flexible, and provides for most of the
common options. A common application of course is to match observations
in one dataset with those in the other, based on common values of one of the
variables. In the case of two time series, generally, we want to match based
on the time index, and that is what merge() does for xts objects. (Note that
the time index is not one of the variables; rather, is is a special type of row
name.)

The R merge() function only merges two datasets at a time.
We use two small xts objects, dataxts1 and dataxts2, to illustrate the

merge() function in Figure 1.39.
The examples in Figure 1.39 should be self-explanatory. The merged

dataset has missing values in positions for which the value is lacking in one of
the datasets. Note the use of the join keyword that limits the merged dataset
to the observations that have the common values of the time index. The last
merge in the examples is processed so that all rows with missing values were
omitted. This is often useful in cleaning data.

> dataxts1

INTC MSFT

2017-01-05 36.35 62.58

2017-02-03 36.52 63.68

> dataxts2

GSPC

2017-01-05 NA

2017-01-27 2294.69

2017-02-03 2297.42

> merge(dataxts1, dataxts2)

INTC MSFT GSPC

2017-01-05 36.35 62.58 NA

2017-01-27 NA NA 2294.69

2017-02-03 36.52 63.68 2297.42

> merge(dataxts1, dataxts2,join="inner")

INTC MSFT GSPC

2017-01-05 36.35 62.58 NA

2017-02-03 36.52 63.68 2297.42

> na.omit(merge(dataxts1, dataxts2))

INTC MSFT GSPC

2017-02-03 36.52 63.68 2297.42

Figure 1.39. Merging xts Objects
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R Functions with xts Objects

Some standard R functions do not work in the same way on xts objects as
they do on other objects. One that we encounter often in financial applica-
tions is in the computation of log returns. The simple way of doing this is
diff(log(XYZ)), which yields a vector of length one less than the length of
XYZ. If XYZ is an xts object, however, diff(log(XYZ)) is an xts object with
length the same as the length of XYZ, with an NA in the first position. Fig-
ure 1.40 illustrates the problem and two ways to deal with it. I often convert
xts objects to numeric objects because I always know exactly what R func-
tions will do to numeric objects. The disadvantage of the numeric object,
of course, is that date data are lost. I often remedy this by use of either the
as.xts() function or the merge() function.

There are plot methods for xts objects in the generic plot() function.
There are also additional graphing functions for xts objects in the quantmod

package. We will discuss and illustrate graphics with xts objects in Section 4.4
beginning on page 157.

1.3.7 Tables

It is often convenient to arrange data into tables in various ways. This is often
appropriate for categorical data, which in R usually are of class factor, as
we described on page 22. Consider the factor variable sexfac in Figure 1.3.
The only relevant property of that small dataset are the numbers of the two
factor levels. The R function table() forms a factor dataset into a table that
shows just the levels and the counts of the levels. The table is of class table.
We can form a simple table from the factor variable sexfac.

> sex <- c("m", "m", "f", "m", "f", "f", "m", "f", "m", "f", "f", "f", "m", "f")

> sexfac <- factor(sex)

> sextab <- table(sexfac)

> class(sextab)

[1] "table"

> sextab

sexfac

f m

8 6

The table only shows the salient property; there are 8 “f” and 6 “m”.
A dataset may contain multiple categorical variables. In a data frame, the

categorical variables are generally of class factor. (As we noted in regard to
Figure 1.26, character variables are converted to class factor when forming
a data frame from vectors of variables.) Using the vector sexfac formed in
Figure 1.3, and a character vector party shown below, we form a data frame
called people, consisting of two variables. There are 14 observations in the
data frame.
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> library(xts)

> class(INTCdC)

[1] "xts" "zoo"

> INTCdC[1:2,]

INTC.Close

2017-01-03 36.60

2017-01-04 36.41

> # standard computation of returns
> INTCdCReturns <- diff(log(INTCdC))

> # get NA
> INTCdCReturns[1:2,]

INTC.Close

2017-01-03 NA

2017-01-04 -0.005204724

> # problem is diff; not log

> diff(INTCdC)[1:2,]

INTC.Close

2017-01-03 NA

2017-01-04 -0.189998

> # clean NAs
> INTCdCReturnsClean <- na.omit(INTCdCReturns)

> INTCdCReturnsClean[1:2,]

INTC.Close

2017-01-04 -0.005204724

2017-01-05 -0.001649313

> # fix name
> names(INTCdCReturnsClean)<-"INTC.Return"

> INTCdCReturnsClean[1:2,]

INTC.Return

2017-01-04 -0.005204724

2017-01-05 -0.001649313

> # alternatively, get returns in numeric vector
> INTCdCReturnsNum <- diff(log(as.numeric(INTCdC)))

> INTCdCReturnsNum[1:2]

[1] -0.005204724 -0.001649313

Figure 1.40. Unexpected Behavior in Computing Log Returns in xts Objects

> party <- c("R","D","D","R","D","R","R","D","R","R","D","R","D","D")

> people <- data.frame(sexfac, party)

> head(people, n=3)

sexfac party

1 m R

2 m D

3 f D

> class(people$party)

[1] "factor"
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If there are no other variables in the data frame people, then all of the
information contained in the 14 × 2 data frame is contained in a two-way
contingency table shown in Table 1.7.

Table 1.7. Contingency Table

party
D R

sex f 5 3
m 2 4

The contingency table shown in Table 1.7 can be produced by the R func-
tion table() operating on the two vectors sexfac and party, or on the data
frame party containing them.

The kinds of operations performed by the apply() function, or similar
functions that operate on specific dimensions of an array are common in work-
ing with tables, and there are R functions for operations on objects of class
table. One of the most useful is the addmargins() function, which computes
the row and column sums of the table. (This function does the computa-
tions of both of the general two-dimensional array functions, rowSums() and
colSums() mentioned earlier.)

> addmargins(table(people))

party

sexfac D R Sum

f 5 3 8

m 2 4 6

Sum 7 7 14

The data input to the table() function are either vectors, matrices, or
data frames. The function assumes that each vector or column in a matrix
or variable in a data frame is a categorical variable, and hence table() iden-
tifies each level or each different value within each variable and treats them
separately. The results of the table() function is an array whose number of
dimensions is the number of variables, and the range of each dimension is the
number of levels of each variable.

The data in contingency tables are convenient visual presentations of the
numbers of observations in the various cells. By comparing the relative counts
in the cells, we can assess whether or not the factors are related to each other. If
the factors are not related, then we can work out the expected relative counts,
and compare those to the counts observed. It would appear, for example, from
the contingency table in Table 1.7 that there may be a relationship between
party and sex; there seems to be more “D” corresponding to “f”. (Using the
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margin sums, we see 5/8 of “f” are “D”, whereas only 1/3 of “m” are “D”.)
The sample is rather small, and we do not know how the sample was collected,
so we should be careful in making inferences based on those data.

There are various statistical tests that allow us to formalize the assessment
of relationships among the variables. The most common, but perhaps not the
best, statistical test is called Pearson’s chi-squared test. It is implemented in
the chisq.test() function.

Multidimensional Tables

Most statistical analyses of tables are performed on two-way contingency ta-
bles, indeed, most multivariate analysis is bivariate analysis, that is, pairwise
variable analysis. A multi-way table is a simple concept that extends the ideas
of a table to multiple factors. The R functions operate on tables of any di-
mension.

The tables in the examples above may be extended to account for another
variable. This yields a three-way table as below.

> sexfac <- c("m","m","f","m","f","f","m","f","m","f","f","f","m","f")

> party <- c("R","D","D","R","D","R","R","D","R","R","D","R","D","D")

> voted <- c("N","Y","Y","N","Y","N","N","N","Y","Y","N","Y","Y","N")

> votes <- data.frame(sexfac, party, voted)

> table(votes)

, , voted = N

party

sexfac D R

f 3 1

m 0 3

, , voted = Y

party

sexfac D R

f 2 2

m 2 1

The addmargins() function operates in the usual way on multi-way tables.
Statistical analyses such as chi-squared tests and other nonparametric analyses
are performed on pairwise factors in tables, however.

Reshaping of tables as with data frames discussed on page 79 is a com-
mon operation, and the reshape() function as well as the functions in the
reshape2 and tdyr packages are useful for this purpose.

Exercises: R Objects and Classes

As in previous exercises, these exercises may require computations on data.
If the emphasis is on the method rather than the actual data, we will often
use artificially generated “random” data. Standard normal random numbers
serve this purpose well. An exercise may ask you to generate n normal random
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numbers with a mean of m and a standard deviation of s. To do this for a
sample of size 50, a mean of 100, and a standard deviation of 3, you can use
the simple R statements

n <- 50

m <- 100

s <- 3

set.seed(12345)

x <- s*rnorm(n) + m

1.3.1. Suppose we have a vector of positive integers, x, and we want
to form two vectors, y and z, where y consists of the ordered
elements from x that are evenly divisible by 4, and z consists of
the remaining elements from x.
Write R expressions to form y and z.
Test your code with an example.

1.3.2. Let A and B be matrices and let x, y, and z be vectors as shown
below.

A =

[
3 2
2 7

]
, B =

[
1 2 3
4 5 6

]
,

x = (2, 4),

y = (−3, 1),

z = (1, 2, 3).

(All vectors are “column” vectors, no matter how they are dis-
played. I will occasionally refer to “row” vectors to refer to vectors
that correspond to rows of a matrix.)
Use R to compute all Hadamard and Cayley matrix/vector prod-
ucts involving no more that three operands and for which the
operands are conformable, such as A � A, AA, ATA, AT � A,
xTAx, AB, and so on.

1.3.3. ts objects.
In this exercise, we need some data, but the data themselves are
not important, so we will just use normal random numbers.
Interpret the monthly and quarterly data in this exercise as obser-
vations made at the end of the month or the end of the quarter.
a) Make four random ts objects, each beginning in May, 2020

and going through September, 2021, with a frequency of 12.
• Closing prices at the end of the month: prmon. Use as the

data a sample of normal random numbers with a mean of
100, rounded to two decimal points.

• High prices for the month: prhimon. Use as the data the
same data as in prmon plus 5.
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• Low prices for the month: prlomon. Use as the data the
same data as in prmon minus 5.

• Volume traded during the month: volmon. Use as the data
a sample of normal random numbers with a mean of 10000
and a standard deviation of 3, rounded to integers.

Display each of the sets of data.
b) Form a ts object prqrt that represents the quarter-end data

in prmon. (The first observation in prqrt is the datum for
June, 2020, that is, the second quarter.)

c) Aggregate (appropriately!) the monthly high-price data into
quarterly data in an xts object prhiqrt. (The first observa-
tion in prhiqrt is the third quarter of 2020.)

d) Aggregate (appropriately!) the monthly low-price data into
quarterly data in an xts object prloqrt.

e) Aggregate (appropriately!) the monthly volume data into
quarterly data in an xts object volqrt.

f) Form an mts object that contains the data from prqrt,
prhiqrt, prloqrt, and volqrt for all quarters for which they
all have data.

1.3.4. Assume that we have an R data frame Xdf with a numeric vari-
able weight, and a factor variable sizes with levels “small”,
“medium”, and “large”. The general characteristics of Xdf are
shown by the head() function:

> head(Xdf, n=4)

weight sizes

1 45 small

2 32 small

3 90 large

4 76 medium

a) We want the mean weight in each category.
Write an R statement to obtain these values and store them
in an array called meanwts.

b) Write an R statement that will print a phrase stating the mean
weight of the items with a specified level of the sizes factor.
Recall that the factor levels are sorted, so your R statement
should just require the index of the level; for example, if the
index is specified as i=1 then the “large” sizes are indicated.
The statement is of the form

The mean weight of the large items is 1.23.
where large is the specified level of the factor variable, and 1.23
is the computed mean at that level, rounded to two decimal
places.
Note that you statement has an index i, and that it uses the
sizes variable and the meanwts object above.
Make a small dataset to test your R code.
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1.3.5. Use the data shown in shown in Tables 1.4 and 1.5 to form a single
R data frame called Stocks that has four variables, Date, Sector,
Stock, and Price. There are ten observations.
The Date variable is of class Date; the Sector variable is of class
factor, the Stock variable is of class factor, and the Price vari-
able is of class numeric.
Print the data frame.

1.3.6. Using the data frame in Exercise 1.3.5, form a data frame named
Prices that consists of five time series of the prices of the five
stocks. The variable names are Date, as before, and the names of
the stocks AAPL and so on. Except for the dates, all of the data are
prices; there is no variable named “Price”. This dataset is shown
in Table 1.6. (Each time series has only two observations; but the
point of the exercise is to be able to do it.)
Print the data frame.

1.3.7. Make an xts object Pricesxts from the data frame Prices in
Exercise 1.3.6. (That data set is shown in Table 1.6.)
“Date” is no longer one of the variables; it is an index in Pricesxts.
Print the xts object.

1.3.8. xts objects.
In this exercise, we will create an xts object that contains the
same data as the ts objects in Exercise 1.3.3.
Instead of the four random ts objects representing monthly data
beginning in May, 2020 and going through September, 2021, we
will form a single xts object with variable names that correspond
to the standard names in an OHLC dataset, A.Open, A.High,
A.Low, A.Close, A.Volume, and we will set dates that correspond
to trading days. (We will exclude weekend days, but we may in-
clude holidays on which the market is closed; otherwise, doing the
exercise would require a list of trading holidays, and that is not
relevant to the point of the exercise.)
a) Form an R vector called Date that consists of the dates of the

last non-weekend day in each month from May, 2020, through
September, 2021. (Although it may be more fun to determine
the POSIX form of the last day in each month using the rules
of the Gregorian calendar, you may assume that the dates are
"2020-05-31", "2020-06-30", and so on.)

b) Form simple numeric vectors A.Open and A.Close with entries
that correspond to the data in prmon in Exercise 1.3.3. (We
just let the opening price for the month be the same as the
closing prices. While it is unlikely that real data would ever
be this way, it makes no difference for the exercise.)
Now form simple numeric vectors A.High, A.Low, and A.Volume

with entries that correspond respectively to the data in prhimon,
prlomon, and volmon in Exercise 1.3.3.
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c) Form a single OHLC xts dataset Adata with monthly data
corresponding to the five time series created in Exercise 1.3.8b,
and ordered by the dates created in Exercise 1.3.8a.

d) Now produce an OHLC xts dataset of quarterly data corre-
sponding to the data in Adata in Exercise 1.3.8c.

e) Form the subset of Adata in Exercise 1.3.8c that consists only
of months in 2020.

1.4 R Functions

Actions on objects are performed in R by functions. As we have seen, there
are many “built-in” functions, such as sqrt(), exp(), and so on, that come
with the basic R systems. There are many packages that provide additional
functions, and the user can also write functions.

1.4.1 General Properties of R Functions

A function has a name and may accept arguments that are to be operated on.
The arguments are enclosed in parentheses, and may be positional or named.
Named arguments may have default values. An R function may operate dif-
ferently on different types of objects.

In this section, we after reviewing some of the general properties of R
functions, we describe some useful functions for mathematical computations
and manipulations, some useful statistical functions, and then some R func-
tions for graphics. There are many technical details of functions that we will
ignore. We emphasize functions that are in the basic packages, rather than
among the thousands of user-contributed packages. We will continue to refer
to the functions that are included in the basic R system (the base package, the
stats package, and so on) by the term “built-in”, to distinguish them from
functions included in other packages that must be loaded explicitly. (Some
R functions are of type builtin, but others are not, even some of the ones
that I call “built-in” because they are included in the basic packages. Some
of these built-in functions are of type closure, rather than of type builtin.
User-written functions are also of type closure. The R code forming many
functions of type closure can be displayed by entering the name of the func-
tion without parentheses.)

Most functions in R are generic, in the sense that what the function does
depends on the class or even the mode or type of the object(s) passed as the
argument(s) to the function. The function exp() is a simple example.

In exp(x), x must be of mode numeric, complex, or logical. If x is of
class or mode character, the function will generate an error, because the
exponential of a non-numeric quantity does not make sense.

If x is of mode numeric or logical, then the result exp(x) is of mode
numeric; if x is of mode complex, then exp(x) is of mode complex. If x is
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of class numeric, then exp(x) is of class numeric; If x is of class matrix, as
above, then exp(x) is also of class matrix.

Statistical functions in R such as var() for variance may compute dif-
ferent quantities depending on the class of the argument. If x is a numeric
vector var(x) is just the same variance, while if x is a matrix, var(x) is the
variance-covariance matrix of the variables in the columns of x. The R func-
tions cov() and cor() produce single scalar results if their arguments are two
vectors. If their arguments are matrices, they produce matrices, respectively,
the variance-covariance matrix (the same as var()) or the correlation matrix.

As we have mentioned, missing values occur often in statistical datasets.
Sometimes the appropriate way to handle missing values is just to remove
them from the computations, as we did in the example on page 38 using
the na.rm() argument. Many other statistical functions offer more options
for handle missing values; for example, in computing correlations, sometimes
we want to compute the correlations for all pairs without a missing value
(“pairwise”), but other times we want to omit the complete observation if
one field contains a missing value (“casewise”). We will consider some of the
options in Section 7.4.

The fact that most R functions that generally operate on a single quan-
tity immediately accept an array and perform the operations on each element
in the array, producing an array of results is also an example of the generic
aspects of the function. Figure 1.2 shows a simple example of this when an
atomic vector of length greater than 1 is used as an argument for a function
that in a simpler form operates on a scalar. In that case, the vectorized oper-
ation is much more efficient than it would be to use sqrt() on each element
individually.

Although R provides program control structures for loops (for() and
while()), loops should be used only when a single operation is not avail-
able. In problem-solving, we sometimes think about the individual low-level
steps. It is almost always better, at least in the initial approach, to think at
the highest level relevant to the problem. A simple example here is the multi-
plication of two matrices, A and B. This operation is performed by multiplying
corresponding elements in a row of A and a column of B, accumulating the sum
those products, then moving on to the next column in B and doing the same
thing, then moving back to the next row of A and repeating this process. In
elemental computations, this is done in three nested loops of computations.
In R, it is one operation: A%*%B.

We think in terms of matrices, not in terms of rows and columns or in
terms of elements.

1.4.2 Some Useful R Functions

R provides a number of useful functions for the common computations in fi-
nance, applied mathematics, and statistical analyses. We have discussed some
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of these functions already. The output of an R function can immediately be
included as an argument to another function, or even to the same one.

There are utility functions for most common operations, including reading
and writing. We will describe some of the variations on reading in data in
Section 1.6.

In this section, we will mention several R functions, categorized by their
type of usage.

As we have mentioned, after learning the basic syntax and program struc-
ture, “learning R” consists primarily of learning the functions that perform
the various tasks.

Constructor Functions

A number of R functions, such as c(), character(), array(), list(),
matrix(), and data.frame(), are constructor functions; that is they are used
to construct R objects. Some of the constructor functions build objects of a
particular class, type, and mode. (We can use the class() function to deter-
mine the class of the object produced.)

Some R functions may require an object of a particular class, type, and/or
mode. Corresponding to many constructor functions, there are conversion
functions (“as.” functions). The “as.” function does not change the class
of its argument. We saw examples of the as.complex() function in Figure 1.8
and the as.character() function in Figure 1.9.

For some built-in classes, there are logical test functions (“is.” functions),
is.numeric(), is.matrix(), and so on.

Functions for Operations on Numeric Vectors

R provides several utility functions for processing a numeric vector. Some, with
obvious names, are length(), sum(), mean(), and var(). These functions
return single values that are summary statistics for the several values in a
vector.

Another useful R function for operations on elements of vectors is the
ifelse() function.

Functions for Operations on Numeric Time Series

To summarize or just to manipulate the values in a time series vector, instead
of a single value, a vector of values is necessary. We will discuss processing of
time series data in more detail in Chapters 2 and 5, but here we will mention
a useful function for working with time series.

A time series is a sequence

. . . , x−2, x−1, x0, x1, x2, . . .
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A useful operator for time series is the backward difference operator, 4(·),
defined by

4(xt) ≡ xt − xt−1. (1.2)

The corresponding R function is diff(), which produces the differences be-
tween successive points in a sequence. Differences between consecutive terms
are called differences of lag 1; ones between a term and the kth subsequent
term are called differences of lag k. The diff() function has an additional
argument to specify the lag. The default lag is 1.

Notice that the sum of all first order differences is equal to the difference
from the first to the last.

> x <- c(10,13,11,15)

> xdiffs <- diff(x)

> xdiffs2 <- diff(x, lag=2)

> x

[1] 10 13 11 15

> xdiffs

[1] 3 -2 4

> xdiffs2

[1] 1 2

> sum(xdiffs)

[1] 5

> x[4]-x[1]

[1] 5

> diff(x, lag=3)

[1] 5

The result of diff() is one element shorter than the original vector, and with
lag=k, it is k elements shorter. This is often the case with functions of time
series; a difference or a return cannot be computed for the first data point.
Smoothing computations, such as moving averages, cannot be computed until
enough data to complete the initial window have been accumulated. (We will
discuss smoothing of time series in Chapter 5.) In cases like these, there is a
choice to be made: whether or not the output vector be shorter than the vector
or other object containing the data. Obviously, the computations cannot be
performed until enough data is available. In computer operations, however,
we may choose to work with arrays of different sizes, but sometimes it is more
convenient to insert NA where there is no legitimate value, so as to have arrays
of the same size. In many functions in some packages for financial applications,
vectors such as differences or moving averages are padded with NA so as to
have vectors of the same length.

Notice that for a numeric vector, the diff() function merely performs the
operation in equation (1.2):

> x[-1] - x[-length(x)]

[1] 3 -2 4
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If x is a ts object, the result of diff(x) is a ts object; however, the result of
x[-1]-x[-length(x)] is just a numeric object.

The trivial differences (in difference functions!) have practical conse-
quences for the R user, as we see in computation of the return on a financial
asset.

Returns on Financial Assets

The return is the relative change in value of the asset plus any income that
the asset has generated over some time period. In fixed-income asset such as
bonds, the return results primarily from the accumulated interest. In nego-
tiable equity assets such as common stock, the returns result primarily from
change in the market value of the stock. In this book our emphasis will be on
equity assets.

Consider a sequence of prices, P1, P2, . . . , Pn, of a common stock that pays
no dividends. The one-period simple return, from time t− 1 to time t, is

Rt =
Pt − Pt−1

Pt−1
. (1.3)

If we have n prices, we can compute n−1 one-period returns. (We assume that
the periods are of the same length, say one day. This is common in financial
applications; we compute “daily” returns, although the length of time from
one trading day to the next is not constant. We ignore the “weekend effect”,
which also may be due to holidays.)

Now, suppose we have a time series of prices of this stock stored in an
R vector, prices. The numerator in equation (1.3) can be obtained using
diff(), and since R does element-wise multiplication with numeric vectors,
we can just divide the differences by the prices. Hence, we compute the vector
of one-period simple returns as

sreturn <- diff(prices)/prices[-1]

If the difference function produced a vector with an NA in the first position, we
would not need to remove the first element in the denominator. The resulting
vector of simple returns, however, would also have an NA in the first position.
Either way is acceptable; we just need to know which way the software handles
the situation.

Simple returns, as in equation (1.3), are often quoted in financial reports.
They are easy to understand. They are the same as percentage returns, after
adjusting by 100%.

If we know the price Pt−1 and the rate of return Rt−1 at time t − 1, at
time t, we have the price at time Pt

Pt = Pt−1(1 + Rt−1), (1.4)
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by rearranging equation (1.3). Increasing the base price in this way for the
next time period is called compounding.

The most common issues in working with returns involve compounding. If
the price from time t − 1 to t increases by Rt−1Pt−1, the price at time t+ 1,
should increase further by Rt(1 + Rt−1Pt−1). This leads to the more general
formula for compound growth, which is often stated in annualized values.

Using common notation, let P be the value of an asset, let r be the an-
nualized rate of growth due to interest, dividends, or just change in market
value and assume that this amount is compounded c times per year. Assuming
constancy of this process, after t years, the value of the asset is

P (1 + r/c)ct. (1.5)

The frequency of compounding changes the rate of growth, and leads to
different values for an “annual rate”.

It is now common to compound continuously, and much of financial anal-
ysis is done under the assumption that the compounding is continuous. In
continuous compounding, the c in equation (1.4) goes to ∞, which formally
results in

P ert, (1.6)

which starting with Pt−1 and ending one year later with Pt, analogous to
equation (1.3), yields

rt = log(Pt) − log(Pt−1). (1.7)

This is called the log return.
The properties of returns are some of the most important subjects in

finance. The standard deviation of the returns is called the volatility, and it
is topic we will encounter often in this book.

A log return can be defined over any interval. An important property of log
returns is that they are additive. In the notation above, where t represent time
in any fixed-length interval, the log return over two consecutive time points,
log(Pt) − log(Pt−2), is just the sum of the log return over the single-period
intervals:

log(Pt) − log(Pt−2) = (log(Pt) − log(Pt−1)) + (log(Pt−1) − log(Pt−2)) .

Now suppose we have a time series of prices stored in an R vector, prices,
as above. The log returns at the frequency of the time series can be obtained
easily.

logreturn <- diff(log(prices))

If prices, contains prices P1, P2, . . . , Pn, then logreturn is a vector of length
n− 1 containing the log returns.
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We will encounter snippets of R code for both simple and log returns often
in this book.

This illustrates a simple property of R functions. The output of one R
function, log() in this case, can be immediately input as the argument to an
R diff() in this case.

Some Common Mathematical Functions

R includes many built-in functions for various mathematical operations with
obvious names, such as sqrt(), log(), exp(), sin(), and so on. These and
similar mathematical functions are called “elementary functions”. The ele-
mentary functions are of type builtin.

There are several other built-in functions for mathematical operations such
as polyroot() to find all complex roots of a polynomial, and uniroot() to
find a root of a general function.

The Matlab system mentioned above has many mathematical functions,
especially in the area of linear algebra. The pracma package, written by Hans
Werner Borchers, contains R functions with the same name and function as
many of the Matlab functions. Not only do these functions extend the com-
putational capabilities of R, they also serve to make some Matlab or Octave
code transportable into R code. If a Matlab name conflicts with a standard
R name, the R function in pracma is capitalized so as to avoid the conflict. A
list of names of all Matlab functions that are implemented in pracma can be
obtained by the matlab() function without arguments.

One of the most important design features of functions in R is that in most
cases, the arguments to the functions can be arrays (where it makes sense for
them to be). The value of the function is an array of the appropriate shape.

Other Mathematical Objects and Operations

R provides facilities for many operations in addition to numerical computa-
tions. One of the most common non-computational operations is sorting. R
does sorting very efficiently. Often we may just wish to check if an object is
sorted. A useful R function is is.unsorted(), which checks if an object is
sorted without sorting it.

R does not have an object class of “set” (although we could create one).
R, however, does provide functions for the standard set operations such as
union and intersection, and the logical operators of set equality and inclusion,
as illustrated in Figure 1.41.

The R function unique() is useful for removing duplicate elements in an
R object.

Some Useful Statistical Functions in R

R has a number of functions for computing simple statistics. These R functions
have mnemonic names, such as mean(), var(), cov(), and cor().
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> S1 <- c(1,2,3,2)

> S2 <- c(3,2,1)

> S3 <- c(4,3,2,1)

> setequal(S1,S2)

[1] TRUE

> union(S1,S3)

[1] 1 2 3 4

> union(S1,S1)

[1] 1 2 3

> intersect(S1,S3)

[1] 1 2 3

> intersect(S1,S1)

[1] 1 2 3

> 1 %in% S1

[1] TRUE

> 5 %in% S1

[1] FALSE

Figure 1.41. Set Functions Operators in R: setequal, union, intersect, %in%()

R also has a number of statistical functions for other common analyses,
which may produce extensive summary statistics. Two of the most useful
of these functions are lm() for “linear model” and glm() for “generalized
linear model”. These functions produce coefficient estimates, various sums of
squares, various t and F statistics along with their p-values, and a variety of
other statistics. The R function summary() can be used to extract the more
commonly-used output statistics from many R statistical functions such as
lm() and glm().

Some of the more basic statistical functions are not included in the stats

package; for example, there is no function to compute the skewness or kurtosis
statistics. Functions for these statistics are available in a number of packages.
The e1071 package, for example, contains the skewness() and kurtosis()

functions, along with several other functions for basic statistical computations.
(The kurtosis() function computes the excess kurtosis.) Also, the pracma

package mentioned above contains functions for simple statistical computa-
tions, such as moving averages.

R Functions for Probability Distributions

There are a number of built-in functions for computations involving several
common probability distributions. The function names consist of a root name
that identifies the family of distributions, such as norm or t and a prefix to

R for Data Science and Applications in Finance James E. Gentle



1.4 R Functions 105

determine the type of function, density, CDF, or quantile, or a function to sim-
ulate random numbers. Functions whose names begin with “d” compute the
density or probability function, with “p” compute the CDF (the probability
of a value less than or equal to a specified point), and with “q” compute the
quantile. For example, pnorm(x) computes the probability that a standard
normal random value is less than or equal to x.

R also provides functions for simulating random samples from these distri-
butions (see Section 3.2). Functions to generate random numbers have names
that begin with “r()”.

The root names of common distributions are shown in Table 1.8.
The arguments to the R function are the point at which the result is to

be computed, together with any parameters to specify the particular distri-
bution within the family of distributions. For example, the root name of the
R functions for the Poisson distribution is pois(). The Poisson family of dis-
tributions is characterized by one parameter, often denoted as “λ”. Hence, if
lambda (which may be a numeric array) is initialized appropriately,

dpois(x, lambda) = λxe−λ/x!

ppois(q, lambda) =
∑q

x=0 λ
xe−λ/x!

qpois(p, lambda) = q, where
∑q

x=0 λ
xe−λ/x! = p,

(1.8)

where all elements are interpreted as numeric arrays of the same shape. The
values of the mean and standard deviation are taken from the positional re-

lations of the arguments.
Various R functions for computations involving a Poisson random variable

with parameter λ = 5 are shown for example in Figure 1.42.

> dpois(3, lambda=5)

[1] 0.1403739 # probability that a random variable equals 3
> ppois(3, lambda=5)

[1] 0.2650259 # probability less than or equal to 3
> qpois(0.2650259, lambda=5)

[1] 3 # quantile corresponding to 0.2650259

Figure 1.42. Values in a Poisson Distribution with λ = 5

For the univariate normal distribution, there are two parameters, the mean
and the variance (or standard deviation). The root name of the R functions is
norm(), and the names of the parameters are mean() and sd() (for standard
deviation not the variance). Hence, if the variables mean() and sd() (which
may be numeric arrays of the same shape) are initialized to m and s,
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Table 1.8. Root Names and Parameters for R Functions for Distributions

Continuous Univariate Distributions Discrete Distributions
unif uniform binom binomial

min=0, max=1 size, prob

norm normal nbinom negative binomial
mean=0, sd=1 size, prob

lnorm lognormal multinom multinomial
meanlog=0, sdlog=1 size, prob

chisq chi-squared only the r and d versions
df, ncp=0 pois Poisson

t t lambda

df, ncp=0 geom geometric
f F prob

df1, df2, ncp=0 hyper hypergeometric
beta beta n, m, k

shape1, shape2

cauchy Cauchy
location=0, scale=1

exp exponential
rate=1

gamma gamma
shape, scale=1

gumbel Gumbel
{evd} loc=0, scale=1

laplace double exponential
{rmutil} m=0, s=1

logis logistic
location=0, scale=1

pareto Pareto
{EnvStats} location, shape=1

stable stable
{stabledist} alpha, beta,

gamma=1, delta=0

weibull Weibull
shape, scale=1

Generalized Distributions Continuous Multivariate Distributions
gl generalized lambda mvnorm multivariate normal
{gld} lambda1=0, lambda2=NULL, {mvtnorm} mean=0, sigma=I

lambda3=NULL, lambda4=NULL, only the r and d versions
param="fkml", lambda5=NULL) dirichlet Dirichlet

ged generalized error {MCMCpack} alpha

{fGarch} mean=0, sd=1 only the r and d versions
gpd generalized Pareto mvt multivariate t
{evir} xi, mu=0, beta=1 {mvtnorm} sigma, df, delta=NULL

snorm skewed normal only the r and d versions
{fGarch} mean=0, sd=1, xi=1.5

dnorm(x, mean, sd) = 1√
2πs

e−(x−m)2/2s2

pnorm(q, mean, sd) =
∫ q

−∞
1√
2πs

e−(x−m)2/2s2

dx

qnorm(p, mean, sd) = q, where
∫ q

−∞
1√
2πs

e−(x−m)2/2s2

dx = p,

(1.9)
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where all elements are interpreted as numeric arrays of the same shape. (Be-
cause this is a continuous distribution, the value dnorm(x, mean, sd) is not
a probability, as dpois(x, lambda) is.)

The values of the mean and standard deviation are taken from the posi-

tional relations of the arguments, but the keyword arguments allow different
forms of function calls. If the mean is stored in the variable m and the standard
deviation is stored in the variable s, we could use the function reference

dnorm(x, sd=s, mean=m)

The parameters often have defaults corresponding to “standard” values.
For the univariate normal distribution, for example, the default values for the
mean and standard deviation respectively are 0 and 1. This is the “standard
normal distribution”. If either parameter is omitted, it takes its default value.
The function reference

dnorm(x, sd=s)

is for a normal distribution with a mean of 0 and a standard deviation of s.
The standard normal distribution is so important that we define stan-

dard symbols for its PDF and CDF. The PDF is denoted by φ(·) (this is
dnorm()(·)), and the PDF is denoted by Φ(·) (this is pnorm()(·)).

The Black-Scholes Formulas for Options Prices

An objective in financial analysis is to determine the “fair price” of an asset.
The fair price depends on the nature of the asset and what is to be done
with the asset. Even for relatively simple assets, this is not an easy task. The
fair price of a share of stock may depend on book value, realized earnings, of
expected earnings.

Derivative assets depend on other, underlying assets; hence, the fair price
of a derivative asset depends on the fair price of the underlying. A common
type of publicly-traded derivative is a call or a put option on shares of a
publicly-traded stock. A call is the right to buy the stock at a specific price a
put is the right to sell the stock at a specific price.

The parameters of the option include the number of shares, the price at
which they can be bought or sold, and at what times the purchase or sale can
be made. An option is settled or exercised when the purchase or sale is made
to close out the option. (Related calls and puts involve proprietary indexes;
the option is settled by cash transfer at expiry. An index cannot be bought
or sold.) Most publicly-traded stock options can be exercised any time before
their expiration and most index options can be settled only at the time of their
expiration. Options that can be exercised at any time before their expiration
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are called “American” options, and those that at settled only at expiration
are called “European” options.

In the following, we will use notation that is standard in analysis of option
pricing:

t current time
St price of a unit of the underlying at at time t
K strike price
r risk-free annual interest rate
σ volatility of the underlying (standard deviation of annual log returns)
T expiration time
Φ(·) CDF of standard normal distribution

(1.10)
At expiration, the value of the call option is

CT =

{
ST −K if ST ≥ K

0 if ST < K,
(1.11)

and the value of the put option is

PT =

{
K − ST if ST ≤ K

0 if ST > K.
(1.12)

We define the fair price of an option as its expected value at exercise
discounted to the present.

The expected value depends on the expected price of the underlying, and
that depends on a stochastic model of the prices of the underlying over the
time period leading up to expiration. A simple model developed by Black,
Scholes, and Merton is a stochastic differential equation involving a geometric
Brownian motion (see Black and Scholes, 1972, and Merton, 1973).

For a European option, determining the expected value involves solving
the stochastic differential equation subject to the boundary conditions (1.11)
and (1.12). We will not show the development of the solution here, but rather
just show the formulas that the solution yields.

If the stock pays no dividends, the solution involves integrating the the
differential equation over the range of time from the present, t, to expiry T .
Let Tt denote the amount of time measured in years from t to T ; that is,
Tt = T − t.

This integration involves integration of the normal probability density over
that time range to two endpoints,

d1 =
log(St/K) + (r + σ2/2)(Tt)

σ
√
Tt)()

(1.13)

and

d2 =
log(St/K) + (r − σ2/2)(Tt)

σ
√
Tt)()

, (1.14)
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which arise respectively from the delta of the option, which is the relative
change in price of the option to the change in price of the underlying, and the
strike price adjusted by the value of a risk-free bond paying a rate of r. The
integrals of the normal density to those two points are Φ(d1) and Φ(d2).

The result are the two Black-Scholes formulas, for the fair value of a call,

Ct = Φ(d1)St − e−r(Tt)KΦ(d2), (1.15)

and for the fair value of a put,

Pt = −Φ(−d1)St + e−r(Tt)KΦ(−d2). (1.16)

These two formulas were significant theoretical advances when they were
first put forth in the 1970s. There are three significant problems for applica-
tions, however. Two involve σ, the standard deviation of the distribution of
log returns. The value of σ is not observable, and in any event, it is likely not
to be constant. The other problem arises from the fact that the normal proba-
bility model for the distribution of returns has lighter tails than the empirical
frequency distributions.

Estimation of the distribution of returns is difficult. First of all, the distri-
bution is not constant over any significant time period. Secondly, because the
elements of any set of observational data are not independent, estimation of
any parameter of the distribution, such as σ, that ignores relationships within
the data generally leads to poor estimates.

The simplest estimate of σ for any asset is the “historical volatility” of the
price of the asset, which is the sample standard deviation of the computed
returns of that asset over some recent time period.

Observed market prices of options, together with all of the observable
values in equations (1.15) and (1.16) can be used to determine the value of
σ that would yield an option value corresponding to the market price. The σ
arrived at in this way is called the implied volatility. Doing this for various
options yields different values of the volatility, while if the model actually were
correct, the computed volatility would be the same for all options.

The uniroot() can be used to find the value of σ that solves the equation.
To apply uniroot() in this way, for call options, the user would write a
function of the form

fun <- function(x, S, K, r, Tt, Ct)

d1 <- (log(S/K) + (r + x^2/2)*Tt) / (x*sqrt(Tt))

d2 <- d1 - x*sqrt(Tt)

value <- S*pnorm(d1) - K*exp(-r*Tt)*pnorm(d2) - Ct

return(value)

where S, K, r, and Tt correspond to the values in the Black-Scholes formula,
and Ct is the observed market price of the call option. The put option formula
could be used similarly.
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In addition to these practical considerations, the model of prices does not
take into account the behavior of traders. The Black-Scholes model, neverthe-
less, remains one of the most useful approaches to modeling options prices.

Option pricing is one of the most important areas in finance. There are
various approaches, generally based either on a discrete binary stochastic pro-
cess or on a stochastic differential equation, as in the Black-Scholes approach.
Careful consideration of the issues is beyond the scope of this book. The pur-
pose here is just to illustrate a formulaic basic approach. The interested reader
is referred to the many references on the topic, such as Hull (2017).

1.4.3 R Functions for Graphics

R has a rich set of functions for graphics, and there are several packages that
contain more graphics functions. We will discuss the graphics capabilities of
R more fully in Chapter 4, but here we will briefly introduce functions for two
simple types of graphs, a histogram and a scatterplot. One class of statistical
graphs shows the relative frequencies of observational data. The other main
class shows the actual values of one or more observed variables. The generic
plot() function produces a number of types of graphs depending on the class
of the object to be plotted and on the options chosen in the arguments in
plot().

Graphs to Illustrate Frequency Distributions

Our interest is not always in the individual values of a sample of data, but
rather in the general properties of the frequency distribution. These proper-
ties include the general values of the data (their “location”), how much the
values are spread out (their “scale”), whether they seem to be symmetrically
distributed (their “skewness”), how concentrated they are and to what extent
a small proportion are far away from the central location (their “kurtosis”).
These properties correspond to the sample moments we have discussed previ-
ously, but a graph that represents the frequency distribution visually can be
more useful.

Histograms

An easy way to get a picture of the frequency distribution of a set of data is
to form nonoverlapping subregions of the full set of data, and then to count
the numbers of the observations within these bins.

A histogram is a simple visual representation of the density of a sample.
For a sample of a single variable, a histogram has a horizontal axis that has
been partitioned into nonoverlapping bins spanning the range of values in the
sample.

Figure 1.43 shows a histogram of the simple daily returns for the S&P 500
Index for the year 2019.
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Figure 1.43. Histogram of Daily S&P 500 Simple Returns for 2019

One of the most important types of financial data is returns, either simple
or log, on stocks or on stock indexes. The histogram reveals many aspects
of the distribution of the daily simple returns of one of the major US stock
indexes. From the histogram, we see that the returns are very heavily con-
centrated around 0, yet there are a few that are very extreme relative to the
bulk of the returns. (This is a well-known property of equity returns.) In ad-
dition to the properties of the distribution shown in this histogram, graphical
objects could be added to this plot to reveal or illustrate other aspects of
the distribution. Histograms of other datasets could also be superimposed or
juxtaposed to reveal comparative properties of the distributions.

The histogram in Figure 1.43 was produced by the R function hist().

hist(SPret, freq=FALSE, main="Daily Simple Returns, 2019",

xlab="Daily Return", ylab="Relative Frequency", border="blue")

In this R statement, we see three options that most R graphics functions
provide: main, xlab, and ylab. They all have obvious meanings.

There are many variations on histograms. A histogram can show the fre-

quencies of the various ranges of values, that is, the total numbers, or it can
show the relative frequencies. The histogram in Figure 1.43 shows relative fre-
quencies, which are determined so that the total area within the histogram
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is 1. In the R function hist this choice is controlled by the logical variable
freq. If freq is TRUE, frequencies are plotted; if freq is FALSE, as in the
example on page 111, relative frequencies are plotted.

The general appearance of the histogram depends on the breakpoints.
These can be controlled in the hist function by use of the breaks keyword
argument. The breakpoints are not necessarily evenly spaced. If this keyword
is not used in the function reference, the function will makes judicious choices,
as in the code above and as shown in Figure 1.43.

In a histogram regions within the range of the data are chosen. These
regions can be noncontiguous. They can even be just discrete points, which
would be appropriate for categorical data. The R function barplot() is gen-
erally designed for discrete data. In financial applications, the plot produced
is usually called a “barchart”.

Kernel Density Estimates

While histograms are based on a division of the data into bins, another ap-
proach to making a visual representation of the frequency distribution is based
on estimating the density of the population at a given point. This is a funda-
mental distinction. There is no basis for doing this with categorical data.

To estimate the density of the population at a given point using a his-
togram, first, the bin containing the point is identified, and then the estimated
density at that point is just the height of the histogram bar containing the
point. The estimate is the same for all points within a given bin.

If the objective is to estimate the density at a given point, it might be
better to form the histogram bins so that one bin is centered on the point
of interest. The other bins are not of interest. The estimated density only
depends on the width of this bin and the count of observations within the
bin.

Now suppose we do this at another point. Then we do it at yet another
point.

We assume that we have a set of data, x1, . . . , xn, that is a sample from
some data-generating process, and we want to estimate the probability density
of the data-generating process at a given point, x, not necessarily one of the
observations in the dataset.

We form a bin enclosing x. Let h be the width of the bin. Let k be the
number of observations within the bin.

Then the estimated density at x is

f̂(x) =
k

nh
. (1.17)

This is the same estimate as we would get from a histogram, if one of the bins
happens to be centered on x.

If we define an indicator function I(xi) so that I(xi) = 1 if |x− xi| ≤ h/2
and I(xi) = 0 otherwise, then the count in the bin, k, is
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k =

n∑

i=1

I(xi). (1.18)

These ideas generalize easily. Suppose that instead of 0 or 1 depending of
whether or not |x−xi| ≤ h/2, we allow a range of values from 0 to some large
value, n/(2h) say, such that if xi is close to x, a large value is assigned and
if xi is farther from x, a smaller value is assigned. Instead of a simple count
of the number of close values, we assign weights to all values in the dataset
based on their closeness to the point of interest, and then total up the points.
We scale these distances by h. This allows us to preserved the basic form of
equation (1.17).

There are many ways we could assign weights to the data point based on
their scaled distance to x. Let K be a function that assigns these weights. We
use

K

(
x− xi

h

)
.

We call K a kernel function.
Instead of a simple count for k as in equation (1.18), we have

k =

n∑

i=1

K

(
x− xi

h

)

for use in equation (1.17), yielding the nonparametric kernel density estimate
at the point x,

f̂(x) =
1

nh

n∑

i=1

K

(
x− xi

h

)
. (1.19)

There many reasonable possibilities for the kernel function. For example,
let

KR(t) =

{
1 if |t| ≤ 1/2
0 otherwise.

(1.20)

Note that this simple rectangular kernel yields the estimate in equation (1.17).
Generally, a kernel function should decrease the farther x− i is from x; or

the closer t is to 0 in a formulation such as equation (1.20) Another choice,
for example, is the triangular kernel,

KT(t) =

{
1 − |t| if |t| ≤ 1/2
0 otherwise.

(1.21)

The kernel function does not have to be of finite domain. The normal PDF
with a mean of 0 and a standard deviation of h for example, is often used as a
kernel function. As it turns out, the appearance and the statistical properties
of the density estimates do not depend crucially on the kernel function. The
smoothing parameter, however, can result in major differences.

The R function density() computes the density estimates at a number
of points and produces an object of class density. The density() function
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allows the user to choose the kernel and the smoothing parameter, h, called
the bandwidth.

The generic plot() function produces a smooth plot of the estimates. For
the S&P 500 simple returns for 2019, discussed above, we can fit the density
using default settings and plot it with the R statements.

dens <- density(SPret)

plot(dens, main="Daily Simple Returns, 2019",

xlab="Daily Return", ylab="Probability Density", col="blue")

In plot() function, we see three common options in R graphics, main, xlab,
and ylab. This produces the plot shown in Figure 1.44.
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Figure 1.44. Kernel Fit of the Probability Density of Daily S&P 500 Simple Returns
for 2019; Compare the Histogram in Figure 1.43

Scatterplots and Lineplots

Plots of two variables are generally produced on a pair of coordinate axes.
A scatterplot of two variables displays a point for each observation, and a
lineplot displays a broken line connecting various points on the graph. The
broken line may be a single line and it may not connect points in the data.
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Plots of just one variable are often made the same way as plots of two
variables by using the index of the variable as a second variable.

Figure 1.45 shows a scatterplot of the simple daily returns for Tesla stock
(TSLA) and the S&P 500 Index for the year 2019.
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Figure 1.45. Scatterplot of Daily Tesla and S&P 500 Simple Returns for 2019

The scatterplot was produced by the R function plot().

plot(SPret, TSret, type="p", main="S&P 500 and Tesla Daily Return, 2019",

xlab="S&P 500 Daily Return", ylab="Tesla Daily Return", col="blue")

Notice that the first argument in plot() is plotted on the horizontal axis and
the second argument on the vertical axis.

The R function plot() has some of the same options as the hist()

function. Another option in plot() is type, which produces a scatterplot
if type="p" and a lineplot if type="p" or both if type="b". The type also
allows for a variety of additional types of graphs. If type is not specified,
the plot() function produces a plot appropriate for the class of objects be-
ing plotted. For atomic numerical vectors, the default is a scatterplot; the
type="p" argument in the example above was not needed.
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When plot() is used to produce a plot of a single variable, the vector
containing values of that variable is used in place of the second argument,
and the index of the vector is used as the first argument.

The col argument is common to many R graphics functions, and allows
specification of color by a variety of codes, including simple English words in
some cases. The col argument in hist() fills in the bars with the specified
color, as opposed to the border argument that we used in the example above.

Adding Elements to a Graph

While the plot() and hist() functions initiate a new graph, many of the
graphics functions in R allow graphical elements to be added to an existing
graph. Some functions have a logical argument add, which if TRUE, adds the
elements they produce to an existing graph. The legend() function can be
used to annotate the graph so as to distinguish the graphical elements.

The add argument in hist() allows the addition of a histogram to an
existing histogram. The first histogram must have a range that encloses the
range of all subsequent histograms. This can be accomplished with the xlim

argument in hist(), or just by making sure that the the range of the first
histogram is at least as great as that in any subsequent histogram. Histograms
of both Tesla stock and the S&P 500 Index can be produced on the same set
of axes with this code

hist(SPret, freq=FALSE, main="Daily Simple Returns, 2019",

xlab="Daily Return", ylab="Relative Frequency", border="blue")

xlim=c(min(TSret),max(TSret)))

hist(TSret, freq=FALSE, add=TRUE, border="red")

legend("topleft", legend=c("Tesla","S&P 500"), col=c("red","blue"), lty=c(1,1))

yielding the histograms in Figure 1.46.

Four functions that are designed to add elements to an existing graph
are lines(), points(), abline(), and text(), which in most cases add the
obvious elements. While lines() adds line segments connecting points, the
abline() function draws a line across the entire graph with an intercept a

and a slope b. The additional elements merely overplot existing elements.
For example, to add a least squares regression line for Tesla returns re-

gressed on the “market returns”, following the plot() statement in the code
above, we can use

lsfit <- lm(TSret~SPret)

abline(lsfit$coeff[1], lsfit$coeff[2], col="red")
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Figure 1.46. Histograms of S&P 500 and Tesla Daily Returns for 2019

The lm() R function computes a least squares fit of a linear regression line.
To highlight some outlying points in the graph, we can plot those points

in a different color. Since the points() function overplots an existing graph,
we can use

points(SPret[abs(TSret)>=0.1], TSret[abs(TSret)>=0.1], col="red")

Figure 1.47 shows a scatterplot from Figure 1.45 with the additional elements.

Plotting Time Series Objects

A time series plot is a lineplot in which the horizontal axis represents time.
The generic plot() function is used to plot time series. Both ts and xts

objects have their own plot methods in plot(). Among other aspects of the
time series methods is the use of the standard type argument with type="l".
The plot.ts() function uses the ts methods on any numeric vector.

The data on the daily simple returns of the S&P 500 Index plotted in the
histogram in Figure 1.43 is a time series, but the histogram does not show
any aspects related to time. The returns shown the histogram are plotted as
a time series as shown in Figure 1.48. It was produced by the R function
plot.ts(), which is a method within the generic plot() function.
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Figure 1.47. Scatterplot of Daily Tesla and S&P 500 Simple Returns for 2019

plot.ts(ret, main="Daily Simple Returns, 2019",

xlab="Time (Days)", ylab="Returns", col="blue")

From the time series plot, we can make some general observations. The
data do not seem to exhibit any trend in the mean; the data are centered
about 0 for the full year. On the other hand, we note that the distribution of
the data is not constant. The data are highly variable at the beginning of the
year, and then go through periods of lower and higher volatility. This relates
to a problem we alluded to earlier in options pricing. The volatility σ is an
important component in that model, yet from the plot in Figure 1.48, it does
not appear to be a constant quantity.

Some time series data, such as the returns, should be studied both as a
time series and as a static sample, as in the histogram. The prices or the index
itself can be studied only as time series because the series is not stationary,
and so the most common type of graph is a time series plot, in which the
horizontal axis represents time. Multiple time series can be plotted on the
same graph.

Figure 1.49 shows the time series plot of the closing values of the index
over the same period as the histogram and time series plot of the S&P 500
Index.
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Figure 1.48. Time Series Plot of Daily S&P 500 Simple Returns for 2019

The plot method for an xts object (plot.xts()) accesses the dates and
uses them to label tick marks on the time axis. It is much more difficult for
software to choose the dates to print than it is to choose which integers to
print. The plot.xts() function does a good job of choosing these dates, as
in Figure 1.50 below.

An xts object that contains OHLC data can be plotted in a candlestick
chart by the chartSeries() function in the quantmod package. If the OHLC
dataset also contains a volume variable, chartSeries() plots the volume in
a separate panel, as shown in Figure 1.51.

Colors can be used to enhance the information content in a candlestick
plot. In Figure 1.51, green is used on days when the price increased from open
to close, and red is used on days when the price decreased. The colors are
used both in the candlestick and in the volume barchart.
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Daily Closes of the S&P 500 Index, 2019
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Figure 1.49. Time Series Plot of Daily S&P 500 Closes for 2019

Exercises: R Functions

1.4.1. Install and load the e1071 package (if not already done). Gener-
ate 100 standard normal random numbers. Compute their sample
skewness and sample excess kurtosis.
Are the sample values consistent with the model parameters?

1.4.2. This exercise assumes a knowledge of elementary statistics.
A common statistical hypothesis test has the null hypothesis of the
form µ = 100, where µ is the mean of some population from which
we have a random sample. The size of the sample is important.
Let n be the sample size.
The standard alternative hypothesis is µ 6= 100. In this case, we
perform a “two-sided” test.
Often, the hypothesis is “one-sided”, of the form µ ≤ 100, for
example.
If we assume that the population is normal, either test is per-
formed by computing the t value and then determining its signifi-
cance or “p-value”; that is, the probability of a more extreme value
given the null hypothesis. The specific t distribution is determined
by the degrees of freedom, which in this case is n− 1.

R for Data Science and Applications in Finance James E. Gentle



1.4 R Functions 121

Jan 02 2019 Mar 01 2019 May 01 2019 Jul 01 2019 Sep 03 2019 Nov 01 2019 Dec 31 2019

Daily Closes of S&P 500, 2010 2019−01−02 / 2019−12−31

2600

2800

3000

3200

2600

2800

3000

3200

Figure 1.50. Time Series Plot of Daily Closes of S&P 500 as xts Object (Compare
Figure 1.49)

Suppose we have a sample of size 50, and we use R to do the
computations for a statistical hypothesis regarding the mean of
an assumed normally-distributed population. Suppose we obtain
the computed t value in the R object tcomp.
Write the R expression to determine the p-value of tcomp for a
two-sided test.
Write the R expression to determine the p-value of tcomp for a
one-sided test in which the null hypothesis is that the population
mean is less than or equal to a specified value.

1.4.3. Shiny apps.
Write a Shiny app to determine the two-sided p-value of a com-
puted t value. The user supplies to the app the computed t value
and the degrees of freedom.

1.4.4. Black-Scholes formulas.
a) Write an R function, BlackScholes, to compute either value

of either a call or a put with strike K and time to expiry T
for a stock whose price is S and whose return volatility is σ
when the risk-free interest rate is r. The defining function is
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Figure 1.51. Candlestick Plot of Daily Prices and Volume Traded for Tesla for the
Second Half of 2019

BlackScholes <- function(type, S, K, r, T, sd) {

b) Suppose that the volatility of a stock is 0.33. On a day when
the market price of the stock is $63.49, what is the fair value
of a $65 call 37 days out, if the risk-free interest is 0.02?

c) Use the Black-Scholes formulas to determine the implied volatil-

ity of the underlying based on the following observed data.
(These data were observed on June 10, 2020, for the July 2020
options on the stock of Intel Corporation (INTC). (The expiry
for July 2020 options was July 17.)
i. The 65 call 37 days out has a market price of $2.00. The

price of the stock is $63.49 and the risk-free interest is
0.02. (These values correspond to those in Exercise 1.4.4b.)
What is the implied volatility of the underlying?

ii. The 60 call 37 days out has a market price of $4.90. (The
price and the interest is the same as in Exercise 1.4.4(c)i.)
What is the implied volatility of the underlying?

iii. The 70 call 37 days out has a market price of $0.59. (The
price and the interest is the same as in the previous exer-
cise.) What is the implied volatility of the underlying?
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d)
i. The 65 call 8 days out has a market price of $0.78. (The

price and the interest is the same as in Exercise 1.4.4c.)
What is the implied volatility of the underlying?

ii. The 65 call 68 days out has a market price of $3.10. (The
price and the interest is the same as in the previous exer-
cise.) What is the implied volatility of the underlying?

e) What do you observe about the implied volatilities at different
strikes and at different expiries in Exercise 1.4.4c and 1.4.4d?

1.4.5.
a) Generate a sample of 100 standard normal random numbers.

Plot a histogram of the sample.
b) Now generate a sample of 100 normal random numbers with

mean 100 and variance 100. Make a scatterplot of the two
samples.

1.4.6. Install and load the pracma package (if not already done).
a) Primes. Use the appropriate functions form pracma().

i. Determine the prime factorization of 1,000,000.
ii. Determine the prime factorization of 999,999.
iii. Is 999957 a prime?
iv. Is 999959 a prime?
v. Is 999961 a prime? (twin prime?)
vi. Determine all primes up to 1,000,000. Just print the first

6 and the last 6.
vii. Determine 100! using fact{pracma}(). This is a very large

number.
Now determine 100! using factorial{base}(). Compare
the two computed values to 17 significant digits. The value
computed by fact() is more accurate.

b) Matlab has many utility functions that are not implemented
in the basic R system. The bits() function is an example.
Use bits() to determine the binary representation of π to 56
bits (54 bits after the binary point).

1.5 Models

Data analysis involves the study of a data-generating process. A data-generating
process is any activity or entity that yields observable data. Trading of stocks,
bonds, and futures are the most prominent data-generating processes in fi-
nance. A statistical model is a description of a data-generating process that
focuses on the distribution of the observable data and relationships among
the observable variables.
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1.5.1 Statistical Models

Two important classes of statistical models are distributional models and mod-

els of relationships.

Distributional Models

Distributional models describe the relative frequencies of occurrence of values
of a variable. Standard forms of such a model are a probability density function

or PDF and a probability function.
The normal distribution, also called the Gaussian distribution, is a com-

mon distributional model. It depends on two quantities, the mean µ and the
variance σ. The PDF of the normal distribution is

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (1.22)

This density has the familiar bell-shaped graph.
The normal PDF serves as a model for the frequency distribution of many

familiar phenomena. To denote the distribution of a random variable X as
normal with mean µ and variance σ, we may write

X ∼ N(µ, σ2). (1.23)

Other distributions are used as models of other observational data, and
R provides a set of functions for various computations on these distributions,
including their PDFs. The R functions for working with various probability
distributions are discussed beginning on page 104.

Relational Models

Another general type of statistical model in one that describes the relationship
among variables. There are various forms of relational models. In a common
form of this model, all variables are treated more-or-less equally. The objec-
tive is to determine some lower-dimensional structure, such as a hyperplane,
that expresses the relationships among the variables. Many techniques in mul-
tivariate analysis, such as principal component analysis, are bases on models
in which all variables are treated symmetrically.

Another common form of a relational model is asymmetric; some variables
are considered to be dependent on other variables. In this form of the model,
we consider one variable to be the response and the other variables to be
“independent” variables, or factors, or regressors. (I often use quotation marks
in this context, because the word “independent” has another common meaning
in statistics.)
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Letting y represent the response variable, and x1, . . . , xm represent the
other variables, we write a model of the relationship as

y ≈ f(x1 , . . . , xm), (1.24)

where f is some function that expresses this relationship. It is not assumed
that the xs determine y, certainly not determine y exactly.

We often write this relationship in the form

y = f(x1 , . . . , xm) + ε, (1.25)

where ε represents some random error. (“Error” is not meant to represent a
mistake; it just represents an additive deviation of any particular response
from the model response.)

A common instance of the model (1.27) is the linear regression model

y = β0 + β1x1 + · · ·+ βmxm + ε, (1.26)

in which β0, β1, . . . , βm are assumed to be unobservable constants.

Time Series Models

In another form of a relational model, a time value is associated with each
observation, and the time variable is the most important “independent” vari-
able. In a time series model, the response variable is a variable at a particular
point in time, say xt. A general time series model is of the same general form
as equation (1.27), but the variables independent variables include previous
values of the same response variable. The general form is

xt = f(t, xt1 , . . . , xtr
, yt, yt1 , . . . , yts

) + ε, (1.27)

where ti < t (that is, ti represents previous times), and yt, yt1, . . . , yts
rep-

resent covariates measured at the same time or previously. Many time series
models do not include any covariates.

Estimation and Fitting Models

Use of a statistical model in data analysis generally involves estimation of
various components of the model using observed data. For example, if we
assume a model of the form in expression (1.23), we may use the data to
estimate the mean and variance, perhaps using the sample mean and variance.

There are many specific methods that can be used to estimate parameters
or other components of models, such as maximum likelihood, least squares,
and the method of moments. Much of the theory of statistics is directed toward
development of good methods of statistical estimation, and the evaluation of
properties of statistical estimators. We will not consider the details of these
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methods in this book, but we may mention a specific method from time to
time, such as maximum likelihood methods in time series models and least
squares in regression models.

R provides many functions for estimation and fitting of models of various
types. We will consider R functions for fitting time series models in Chapter 5
and various linear models in Chapter 7. In Chapter 6, we will consider some
R functions for working with Bayesian models.

Prediction with Models

In a relational model, estimation of the components of the model by fitting it
to observed data results in predicted values of the response.

We often denote estimated or predicted values with a caret or hat:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂mxm. (1.28)

More generally, we may represent a fitted model as

ŷ = f̂(x1, . . . , xm). (1.29)

1.5.2 Defining a Model in Computer Software

Specifying a mathematical expression to be evaluated or defining a character
string is relatively straightforward in most computer languages. To evaluate
x+ ey, for example, we define variables x and y and write x+exp(y). To form
“ab” from “a” and “b”, for example, if we have character variables ca set to
"a" and cb set to "b", we write paste(ca,cb,sep="").

A regression model such as

yi = β0 + β1x1i + · · ·+ βmxmi + εi,

along with standard distributional assumptions about ε may be relatively
easy to specify in computer code. Variations and generalizations of the model,
however, such as AOV models with covariates, generalized linear models, and
nonlinear models, may be quite complicated. Standard forms of time series
models, such as ARIMA models, can be represented fairly simply. We will
describe those methods in Chapter 5. Bayesian models present additional
problems for describing the model in computer code. We will consider some
methods of specifying Bayesian models in Chapter 6.

Relational Models in R

An important aspect of any statistical software system is how the user specifies
relational models in the system.

Wilkinson and Rogers (1973) described a scheme for representing relational
models in an early statistical software package called GENSTAT. That scheme
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has been expanded, and a version of the Wilkinson-Rogers notation is used to
specify models in other computer software systems, including Matlab and R.
We will consider some simple statistical relational models, and the way they
are specified in R.

Statistical models of relationships are specified in R by a formula, which is
a an R object of class formula. A formula class object consists of three parts,

response ~ terms, (1.30)

where “response” is a numeric response vector and “terms” is a series of terms
specifying the predictors and their form in the model. The symbol ~ indicates
“equals” “plus an additive error term”, with no specification of the nature of
that error term.

The form of the model is indicated by operators such as “+”, “*”, and
“:”. The model is assumed to contain an additive constant, unless a “no-
intercept” model is specified by “0+” or “-1”. Most mathematical functions
and operators can be included in the formula. The exponentiation operator
has a special meaning. It refers to an interaction, unless it is escaped using
the I() function (see the example). Table 1.9 shows some examples, using the
standard statistical notation, and with the obvious interpretation of the R
objects as statistical variables. Notice, in particular, that (x1+x2+x3)^2 yields
the interactions (cross-products) but not the squared terms. The operators
“*”, “:”, and “^” are used primarily in classification (AOV) models.

Table 1.9. Some Example Model Formulas in R

y ~ x1+x2 yi = β0 + β1x1i + β2x2i + εi

y ~ 0+x1+x2 yi = β1x1i + β2x2i + εi

y ~ x1+x2-1 yi = β1x1i + β2x2i + εi

y ~ x1+x2+x1:x2 yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi

y ~ x1*x2 yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi

y ~ (x1+x2+x3)^2 yi = β0 + β1x1i + β2x2i + β3x3i +
β4x1ix2i + β5x1ix3i + β6x2ix3i + εi

y ~ x1+I(x1^2)+log(x2) yi = β0 + β1x1i + β2x
2

1i + β3 log(x2i) + εi

A formula object can be constructed by the formula function, as shown
in Figure 1.52.

Exercises: Models

1.5.1. Write the R formula that corresponds to the polynomial regression
model,

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi.
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> model1<-formula("y~x1+x1^2+log(x2)")

> model1

y ~ x1 + x1^2 + log(x2)

> class(model1)

[1] "formula"

> reg <- lm(model1)

...

Figure 1.52. A Formula in R

1.5.2. Write the R formula that corresponds to the full factorial model
with no intercept,

yi = β1x1i + β2x2i + β3x1ix2i + β4x
2
1i + β5x

2
2i + εi.

1.6 Inputting and Wrangling Data in R

There are many different ways to input data into R. Data can be read from
a file or directly from the computer console. We must tell the system three
things: where the data are; how it is stored; and what R object to put it into.

We will consider some of the more common ways of inputting data here,
but caution the reader that there are many details we will not go into.

Two primary considerations in bringing data into an R object are how the
items in the input file or typed onto the console are to be interpreted, that is,
what type of R object is to be created, and how the items are to be separated
one from another. Another consideration is the class of the R object to be
created to contain the data.

One of the simplest functions for inputting data is scan(), which produces
an atomic vector if all elements are of the same type or else produces a list.
If no file to be read is specified, then R will read data from the console until
a line feed is entered with no other characters on the line. The R function
readline() is also useful for inputting data directly from the console.

Sources of Data

Much of the financial data of interest to a data scientist or even to an or-
dinary participant in the market is freely available at a number of sites on
the internet. There are other sources available for various fees, often substan-
tial. Some major commercial database are Bloomberg, Datastream, FactSet,
CRSP, and Global Financial Data. They differ in coverage in various ways: in
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the instruments included, in geographical coverage, and in time periods cov-
ered. We will consider some of the open repositories and methods of accessing
data from them in Section 1.6.2.

Other types of data feeds stream all transactions in a given market. These
transactions occur at the rate of millions per minute. Such “high frequency”
data exhibits some different statistical properties from daily data. We will not
consider high frequency data in this book.

Data Quality and Derived Data

Except for occasional missing values, raw data such as closing prices, daily
highs and lows, trading volume, and so on, are generally accurate and are
consistent from one source to another. Simple derived data such as PE ra-
tios are also generally consistent from one source to another, except for clear
distinctions in definitions, such as in the case of PE, whether it is trailing or
future (based on projected earnings).

Derived data that depends on more complicated models, such as beta, may
differ because of different definitions of the quantities, and in some cases may
differ further because they depend on different methods of fitting the models.

1.6.1 Inputting Data into R from External Files

For data stored in a tabular form in an external file, the R program read.table(),
which allows various kinds of metadata (headers, field separators, and so
on), produces an R data frame from the data in the external file. Because
read.table() produces a data frame, columns in the table can be of differ-
ent classes, and character data by default will be of class factor by default.
The class of each column can be specified by the colClasses argument. If
the classes are not specified, read.table() attempts to determine the class
from the elements in the first line of data. Numbers stored in common for-
mats and character strings beginning with a letter are usually interpreted
correctly, but it is generally a good idea to specify the classes explicitly using
the colClasses argument.

The complementary function write.table() can be used to create an
external file and to store data in an R matrix or data frame in the external
file.

Comma Separated (CSV) Files and Spreadsheets

A simple but useful structure for storing data is called “comma separated
value” (or just “comma separated”) or “CSV”. The storage is of plain text,
and commas are used to separate the fields. (In locales where commas are
used as decimal points, the fields are usually separated by semicolons, but the
structure is also called “CSV”.) Blanks between fields are generally ignored.
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The basic CSV structure is the same as that of a spreadsheet, so spreadsheet
data are often stored as CSV files because they are portable from one system
to another. Most spreadsheets, of course, contain formatting characteristics
and other relationships such as formulas that cannot be saved as plain text.

Although the R function read.table() allows the user to specify various
things as field separators, the function read.csv() assumes that the separa-
tors are commas; hence, it may be more useful for inputting data from a CSV
file. The read.csv() function behaves similarly to the read.table() func-
tion in other respects, and just as the read.table() function, read.csv()
produces an R data frame.

Consider, for example, a text file named datRF10110.csv in the working
directory, as shown below:

Location, Date, Number of Cases

Alabama, 2020-1-20, 10

Alabama, 2020-2-15, 30

Alaska, 2020-1-20, 5

Alaska, 2020-2-15, 18

This can be read into an R data frame as shown. Notice that read.csv()
assumes by default that the first line is a header, and note how blanks in the
header are handled. Note further that the character variable is interpreted to
be of factor class.

> dat <- read.csv("datRF10110.csv", colClasses=c("character","Date","numeric"))

> dat

Location Date Number.of.Cases

1 Alabama 2020-01-20 10

2 Alabama 2020-02-15 30

3 Alaska 2020-01-20 5

4 Alaska 2020-02-15 18

> split(dat, dat$Location)

$Alabama

Location Date Number.of.Cases

1 Alabama 2020-01-20 10

2 Alabama 2020-02-15 30

$Alaska

Location Date Number.of.Cases

3 Alaska 2020-01-20 5

4 Alaska 2020-02-15 18

Although most spreadsheet programs provide facilities for converting date
formats, for example from “mm/dd/yyyy” to a POSIX format, often a CSV
file contains dates in an non-POSIX format. In this case, a simple expediency
is to read the dates as characters and then convert them to a POSIX format
using the as.Date() function.

Suppose, for example that the data above are stored in a CSV file named
datRF10120.csv, and the dates are as shown in plain text.
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Location, Date, Number of Cases

Alabama, 1/20/20, 10

Alabama, 2/15/20, 30

Alaska, 1/20/20, 5

Alaska, 2/15/20, 18

We build the same data frame as above using the following R statements.

> dat<-read.csv("datRF10120.csv",

colClasses=c("character","character","numeric"))

> dat$Date <- as.Date(dat$Date, "%m/%d/%y")

> dat

Location Date Number.of.Cases

1 Alabama 2020-01-20 10

2 Alabama 2020-02-15 30

3 Alaska 2020-01-20 5

4 Alaska 2020-02-15 18

Note that if a CSV file is stored by a spreadsheet program, the exact format
of the file may depend on the spreadsheet program and display settings within
the program. Also, when a CSV file is opened by a spreadsheet program, the
spreadsheet program may make certain assumptions about the formatting. If
the spreadsheet program subsequently saves the file as a CSV file, it may not
be the same as the original file. For example, if Microsoft Excel reads in the
CSV file datRF10110.csv above, it will interpret the second column as dates.
If Excel than saves it as a CSV file, the actual text of the file depends on the
formatting choices made in the Excel program. If, for example, the format
for dates corresponds to the standard American format, the CSV file stored
will be the same as the text of datRF10120.csv above (along with some non-
ASCII characters corresponding to a heading indicator and line breaks, which
may differ from the line break characters in the datRF10110.csv file).

The complementary function write.csv() can be used to create an ex-
ternal CSV file and to store data in an R matrix or data frame in the CSV
format in the file.

CSV files provide the simplest means for exchanging data between R and
a spreadsheet program, such as Microsoft Excel. The spreadsheet program
can input data from a CSV file and can save many types of data in its native
format as CSV files.

1.6.2 Obtaining Financial Data Directly from the Internet

There are various sources of financial data on the internet, and data can be
input to R in a number of ways.

The data in many internet repositories are stored in CSV files. These data
can often be read directly into R.
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Data Repositories; URLs, HTTP(S), and XML

Sites on the internet are addressed in a standard way, and data at the sites
are accessed through specific protocols. A Uniform Resource Locator or URL

is used to specify the access scheme and the address of the data file to be
accessed. The most common scheme to access internet data is the Hypertext

Transfer Protocol or HTTP. An encrypted version of the protocol is called
HTTPS, and many sites use the encrypted protocol. An example of a URL
that we use often is

https://finance.yahoo.com/

HTTP interacts with data stored in a Hypertext Markup Language or
HTML format, which is a standard ASCII (or text) format. HTML deter-
mines the way the data are presented, or how it appears in a web browser.
For example, the text string

< b > First < /b >

causes a web browser to display the text in boldface: First. (Of course, exactly
how the text would appear depends on other environmental settings of the
display device and scheme.)

XML, or the eXtensible Markup Language is used to specify the organiza-
tion and meaning of data at a web site.

A web browser provides a simple method for accessing data on the internet.
(“Data” includes text and pictures as well as what we usually think of as data:
stock prices, interest rates, and so on.) Data accessed in a web browser can
often be downloaded into a file that can then be used by a program like R,
but this is often inconvenient. There are various ways that a program like R
can read data at a website. In R, many of the functions for doing this depend
on the RCurl package. RCurl provides the capability of reading the XML or
HTML directly, and sometimes this is necessary in order to determine the
parameters to use in a program to access data. We will not discuss this lower-
level package, but instead refer the interested reader to other texts, such as
Nolan and Temple Lang (2014).

Yahoo Finance

FRED

R Software for Reading Data from the Internet

As we have seen, there are various sources of financial data on the internet
and data can be input to R in a number of ways.

The data in many internet repositories are stored in CSV files. These data
can often be read directly into R.
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The quantmod Package

One of the best ways of obtaining financial data from the internet is by use
of the getSymbols() in the quantmod package written by Jeffrey A. Ryan.

The getSymbols() in the quantmod package is user-friendly, and provides
access to a variety of financial data at various repositories, which is specified
in the src. The default repository is Yahoo Finance.

Arguments in getSymbols() may be specific to the data source and/or to
the type of data. For example, the from and to arguments in getSymbols()

are not implemented when the source is FRED. Whenever specific time peri-
ods are not selected in getSymbols() data just for those periods can be put
into an R object using the subsetting mechanism for xts objects.

There are also other functions in quantmod for retrieval of specific types
of financial data, such as getDividends(), getFX(), getMetals(), and
getOptionChain().

For a specified stock, the getOptionChain() function returns the option
chain, which, for each expiry, is a list with two components, one for calls and
and one for puts. For each strike price, each component consists of last, bid,
and ask prices, volume (of previous trading day), and open interest for the
option.

The quantmod functions are also used in other R packages; for example, the
tq get() function in the tidyquant package and the get.hist.quote() func-
tion in the tseries package use the data acquisition functions in quantmod.

Other useful functions to obtain data are the Quandl() function in the
Quandl package and the getYieldCurve() function in the ustyc package.
The data source in Quandl() is specified as part of the Quandl code. The
data source in getYieldCurve() is the US Treasury Department website.

Another useful package for processing financial data is TTR by Joshua
Ulrich. This package includes several functions for smoothing financial data.

There are also a number of R packages and other software to process HTTP
requests and data acquisition from the internet. Some of these are listed and
briefly described, with links, under the “WebTechnologies” section of the task
views webpage:

https://https://cran.r-project.org/web/views/

One of the best ways of obtaining financial data from the internet is by
use of the getSymbols() function in the quantmod package written by Jeffrey
A. Ryan.

The getSymbols() function is user-friendly, and provides access to a vari-
ety of financial data at various repositories, which is specified in the src. The
default repository is Yahoo Finance. The quantmod() functions produce xts

objects (see Section 1.3.6).
Arguments in getSymbols() may be specific to the data source and/or to

the type of data. For example, the from and to arguments in getSymbols()

are not implemented when the source is FRED. Whenever specific time peri-
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ods are not selected in getSymbols() data just for those periods can be put
into an R object using the subsetting mechanism for xts objects.

The log returns for the S&P 500 Index for 2019 that were shown in the
histogram of Figure 1.43 and the time series plot of Figure 1.48 were com-
puted from closing data obtained from the website for Yahoo Finance using
getSymbols(). The getSymbols() function normally produces an environ-
ment with many useful properties, and in later discussions I will make use of
the quantmod environment. Often, however, I want to keep all objects simple
so that I know what to expect in using standard R functions. The following R
code does not use the quantmod environment and it treats the data as in the
regular numeric class. By using head(), we see that the closing prices are in
the 4th column.

> library(quantmod)

> z <- getSymbols("^GSPC", env=NULL, from="2019-1-1",

+ to="2020-1-1", periodicity="daily")

> head(z, n=3)

GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted

2019-01-02 2476.96 2519.49 2467.47 2510.03 3733160000 2510.03

2019-01-03 2491.92 2493.14 2443.96 2447.89 3822860000 2447.89

2019-01-04 2474.33 2538.07 2474.33 2531.94 4213410000 2531.94

> plot.ts(as.numeric(z[,4]),

+ main="Daily Closes of the S&P 500 Index, 2019",

+ xlab="Time (Days)", ylab="Prices", col="blue")

***Figure 1.49
For a specified stock, there are also quantmod functions to obtain dividend

data, getDividends(), and and to obtain prices of listed put and call options
on the stock, getOptionChain(). The getOptionChain() function returns
the option chain, which, for each expiry, is a list with two components, one
for calls and and one for puts. For each strike price, each component consists
of last, bid, and ask prices, volume (of previous trading day), and open interest
for the option.

There are also other functions in quantmod for retrieval of other types of
financial data, such as getFX() for foreign exchange rates and getMetals()

for metal commodities.
The quantmod functions are also used in other R packages; for example, the

tq get() function in the tidyquant package and the get.hist.quote() func-
tion in the tseries package use the data acquisition functions in quantmod.

Other useful functions to obtain data are the Quandl() function in the
Quandl package and the getYieldCurve() function in the ustyc package.
The data source in Quandl is specified as part of the Quandl code. The data
source in getYieldCurve() is the US Treasury Department website.

Another useful package for processing financial data is TTR by Joshua
Ulrich. This package includes several functions for smoothing financial data.
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There are also a number of R packages and other software to process HTTP
requests and data acquisition from the internet. Some of these are listed and
briefly described, with links, under the “WebTechnologies” section of the task
views webpage:

https://https://cran.r-project.org/web/views/

1.6.3 Data Cleansing

Often the first step in getting data ready for analysis is just to get the data
into a proper format. The format required may depend on the model that
guides the analysis, or it may depend on requirements of the software. Some
R functions, for example, may require that the data be stored in a data frame.
This initial step may also involve acquisition and assemblage of data from
disparate sources. These data preparation activities are often called “data
wrangling” or “data munging”.

Individual items in a dataset in a repository such as Yahoo Finance or
FRED may be missing or invalid. Also, a program such as getSymbols() or
Quandl() that obtains the data may not work properly. This kind of prob-
lem may be due to a change in the structure of the data repository. Such a
problem occurred in April 2017 when, due to changes made at Yahoo Finance,
getSymbols() and other programs to access data at Yahoo Finance quit work-
ing properly. (The initial problems have been fixed, but these programs still
sometimes return incorrect data; see the notes to this appendix.)

Unexpected things should always be expected. Consider, for example, the
weekly data series from FRED. Suppose we want to regress weekly data from
Moody’s corporate bond rates on weekly effective fed funds rates (or the
weekly differences. If we want the weekly data for these two series for the
period from 2015 through 2017, an obvious way to get them is to use the
following code.

getSymbols("WBAA", src = "FRED")

WBAA1 <- WBAA["20150101/20171231"]

getSymbols("FF", src = "FRED")

FF1 <- FF["20150101/20171231"]

Surprisingly, however, WBAA1 has 157 rows and FF1 has 156. This is
because the WBAA data are for Fridays and the FF data are for Wednesdays,
and the number of Fridays in the period from 2015 through 2017 is different
from the number of Wednesdays in that period.

Head and Tail

When a dataset is first brought into R, before performing any analyses, it is a
good idea to look at the first few and last few values. This can be done using

R for Data Science and Applications in Finance James E. Gentle



136 1 R: The System and the Language

the head() and tail() functions. The number of rows can be specified by
the n argument.

head(x, n=2)

tail(x, n=2)

Whenever there are known relations that should exist among variables or
among observations, it is a good idea to perform some simple consistency
checks to ensure that those relations hold in the dataset. This can often be
done visually using head().

sum(is.na(x))

The function complete.cases() can be used to determine which cases in
a data.frame() or which rows in a matrix contain no missing values.

The function na.omit() produces a copy of an R object with the missing
values omitted. The logical parameter na.rm is available in many R func-
tions to specify that missing values are to be removed before performing any
computations, if possible.

> x <- c(1, 2, NA, 3)

> mean(x)

[1] NA

> mean(x, na.rm=TRUE)

[1] 2

> mean(na.omit(x))

[1] 2

In var() and cov(), if na.rm is true, then any observation (or “case”) with
a missing value is omitted from the computations. These functions, however,
provide more options through the use keyword. If use="pairwise.complete.obs"
is specified, for example, the computation of the covariance of two variables
will use all complete pairs of the two.

The zoo package (and hence quantmod) has a function na.approx() that
will replace missing values with a linearly interpolated value and a function
na.spline() that will use a cubic spline to approximate the missing value.

Missing Data

*** refer to previous discussion
The Yahoo Finance data generally go back to January 1962 or to the date

of the initial public offering. If the from date specified in getSymbols() is
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a long time prior to the IPO, some meaningless numerical values may be
supplied along with NAs in some fields prior to the date of the IPO. When
using getSymbols() for a period back to the IPO, the from date must not
be “too long” before the IPO date. Most of the fields before the IPO are NA,
but to find where the valid data begin, we cannot just search for the first NA

(processing the data in reverse chronological order). As mentioned elsewhere,
the data from Yahoo Finance or the data returned by getSymbols() may
occasionally contain NAs, for which I have no explanation.

As emphasized earlier, when processing financial data, we take the attitude
of “big data” processing; we do not want to look up the IPO date and hard-
code it into the from date in getSymbols(). If a from date prior to the IPO
is specified, the output can be inspected automatically by the computer and
the from date can be adjusted.

Merging Datasets

*** refer back to previous discussion
Problems sometimes arise when merging data sets. Sometimes this is be-

cause one of the datasets is messy. Other times it is because some rows are
missing in one or the other of the datasets. The join keyword in merge() can
ensure that only the proper rows are matched with each other. Sometimes,
the best cleanup is just to use the na.omit() function.

Another problem in merging datasets by the dates is that the actual dates
associated with different comparable time series may never match. For exam-
ple, the weekly series of FRED data may be computed on different days of the
week. The weekly fed funds rate is as of Wednesday and the weekly Moody’s
bond rates are as of Friday. Hence, if a data frame containing FF is merged
with a data frame containing AAA over any given period, the resulting data
frame would have twice as many observations as in those for FF and AAA, and
each variable would have NAs in every other row.

Data cleansing is an important step in any financial analysis. If the data
are garbage, the results of the analysis are garbage. In addition to the issues
of misinterpreting the data format, unfortunately, there are many errors in
the data repositories.

Exercises: Inputting and Wrangling Data in R

1.6.1. Write a CSV file named Prices.csv corresponding to the data
frame Prices in Exercise 1.3.6.

1.6.2. Read the CSV file Prices.csv from Exercise 1.6.1 into an R data
frame called Pricesdf.
Print Pricesdf. (It should be exactly the same as the data frame
Prices.)
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1.6.3. Read from the internet the daily closing prices of Intel Corporation
(INTC) for the period January 1, 2017, through September 30,
2017.
a) Plot the closing prices as a time series.
b) Compute the simple daily returns.

Plot the simple daily returns as a time series, and make a
histogram of the simple daily returns.

c) Compute the daily log returns.
Plot the daily log returns as a time series, and make a his-
togram of the daily log returns.

1.6.4. Obtain the weekly rates on the 3-Month US T-Bill (WTB3MS)
and the weekly on the 10-Year US T-Treasuries (WGS10YR) from
FRED.
Plot these rates from 2000-01-01 through 2020-04-30 as time series
on the same set of axes.
Was “the yield curve” inverted during this period?
Were the rates ever negative?

1.6.5. getOptionChain
Exercises 1.4.4 and 2.1.1 Black-Scholes

1.6.6. Shiny apps.
Write a Shiny app to compute the beta of a specified security with
respect to a specified “market”, where the historic statistics are
computed at a specified frequency for a specified time period.
If the market is “M” and market returns at the specified frequency
over the specified period is RM , and the specified security is “i”
with returns Ri, the beta for the security for the given frequency
computed over the given time period is

βi =
Cov(Ri, RM)

V(RM)

Your app should accept the symbols for the security and the mar-
ket (assuming the correct form), the frequency (“periodicity” in
quantmod terminology), and the beginning and ending dates (in
POSIX form).
Once the values are entered, your app should compute and display
the security’s beta.
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Financial Data in R

While in Chapter 1 we discussed general capabilities of the R system and
methods of acquiring financial data, in this chapter, we will focus on the data
itself.

There are many types of financial and economic data. Some general types
of data include measurements of economic activities, such as employment
and production data; prices and changes in prices of commodities, equities,
and real properties; and earnings accruing from business activities or from
ownership of financial or real assets.

Most financial data are parts of time series, because they refer to charac-
teristics measured or observed at particular points in time.

In this book, although we will occasionally discuss various types of finan-
cial data, we will focus primarily on prices of equities and on returns on equity
assets. The examples will illustrate important characteristics of the data, but
our main interest will be in the methods and the software to reveal the char-
acteristics.

The sequence of daily closes of the S&P 500 Index for the year 2019, as
shown in Figure 1.49 on page 120, is a time series. It would not be very
informative to compute aggregated statistics such as the mean or standard
deviation of the prices, or to make a histogram of the prices. Other types of
financial data, however, can be analyzed and studied either as a time series
in which the relationship of the data to time is important, or the data can
be aggregated over a specific time period and the sample can be analyzed
without any reference to time. For example, the daily S&P 500 returns can
be viewed as a daily time series, as in Figure 1.48 on page 119, or they can
be viewed as a static aggregation, as in the histogram in Figure 1.43.

2.1 Aggregated Data

For data on a single variable, if we ignore any aspect of differing times asso-
ciated with the data, the properties of interest are the simple statistics that
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correspond to characteristics of the distribution, such as the sample mean, the
sample variance, the sample skewness, and the sample kurtosis. The overall
shape of the frequency distribution may be of interest. and graphical displays
are useful in assessing the shape of the distribution.

2.1.1 Frequency Distributions; Graphical Displays

The frequency distribution of data is similar to a probability function or a
probability density function (PDF). A probability model expresses the proba-
bility of a random variable taking on a specific value or being within a specified
region of its domain. A frequency distribution shows the relative frequencies
of data within specified regions of the range of the data.

Binned Data; Histograms

A histogram, as in Figure 1.43 on page 111, provides a simple picture of the
frequency distribution of a variable. It shows the range of the values of the
variable and the general shape of the distribution.

Figure 1.43 is a histogram of the daily simple returns of the S&P 500 Index
for the year 2019. Since these are simple returns, they can be interpreted
directly as percentage changes.

From the histogram, we see that the returns were generally between −1%
and 1%. They were more-or-less symmetrically distributed about 0. There
were a few daily moves of between 1% and 2%, and even fewer greater than
±2%.

The histogram in Figure 1.43 was produced by the R statement shown on
page 114. The R function hist produces output that allows us to inspect the
data more closely. The object produced by hist is a list with various com-
ponents including breaks, with an obvious meaning, and density, which is
the relative frequency of occurrence between each pair of breaks. We illustrate
the use of these list components using some R functions that we mentioned
in Chapter 1.

> SPhist <- hist(ret, freq=FALSE, main="Daily Simple Returns, 2019",

+ xlab="Daily Return", ylab="Relative Frequency", border="blue")

> SPhist$breaks

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

> SPhist$density

[1] 0.079681 0.079681 0.876494 8.446215 9.880478 0.557769 0.000000 0.079681

> round(diff(SPhist$breaks)*SPhist$density, 3)

[1] 0.004 0.004 0.044 0.422 0.494 0.028 0.000 0.004

> sum(diff(SPhist$breaks)*SPhist$density)

[1] 1

From this, we see that the percentage between −1% and 0% was 42.2%, and
between 0% and 1% was 49.4%.
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The daily simple returns of the Index have been consistent with the returns
shown in the histogram for 2019, and a financial analyst should be generally
familiar with these properties of the S&P 500 Index. In some years, 2020, for
example, the Index experienced some more extreme daily changes, as we will
see below.

First, however, let us consider some variations on histograms. The gen-
eral appearance of the histogram depends on the breakpoints. These can be
controlled in the hist function by use of the breaks keyword argument. The
breakpoints are not necessarily evenly spaced. If this keyword is not used in
the function reference, as in the code on page 114, the function will makes
judicious choices, as shown in the histogram. We show some histograms with
other choices of breakpoints in Figure 2.1.
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Figure 2.1. Histogram of Daily S&P 500 Simple Returns for 2019

The histogram in the top left in Figure 2.1, for example, was produced by the
R statement below.

hist(ret, freq=FALSE, main="Daily Simple Returns, 2019",

xlab="Daily Return", ylab="Relative Frequency", border="blue",

breaks=c(-0.04,-0.03,-0.01,0.01,0.03,0.04)
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Kernel Density Estimation

***kernels

2.1.2 Simple Statistics

**

Univariate Statistics

Multivariate (Bivariate) Statistics

If there are more than two variables, properties of interest include bivariate
statistics such as covariances and correlations. We might also be interested in
fitting relational models involving the variables.

Relational Statistics

PE
beta
Sharpe ratio
Black-Scholes

Exercises: Aggregated Data

2.1.1. Black-Scholes write function
Exercise 1.6.5
Use getOptionChain

put in Solutions

BlackScholes <- function(S, K, r, T, sig, type)

if(type=="C")

d1 <- (log(S/K) + (r + sig^2/2)*T) / (sig*sqrt(T))

d2 <- d1 - sig*sqrt(T)

value <- S*pnorm(d1) - K*exp(-r*T)*pnorm(d2)

return(value)

if(type=="P")

d1 <- (log(S/K) + (r + sig^2/2)*T) / (sig*sqrt(T))

d2 <- d1 - sig*sqrt(T)

value <- (K*exp(-r*T)*pnorm(-d2) - S*pnorm(-d1))

return(value)
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2.2 Time Series

A time series is a sequence of events or a sequence of data in which the
sequence is indexed by time. The order of occurrence of the events is a com-
ponent of the time series. For some time series, only the order characterizes
the sequence; for other time series, the actual time associated with each event
or datum is relevant.

2.2.1 Spacing in a Time Series

For many time series, the actual length of time between events or the observed
data is not important. Annual data, such as the closing value of the Dow Jones
Industrial Index at the end of the year or the total volume of all trades on the
New York Stock Exchange (NYSE) during the year, are essentially equally
spaced from one year to the next, even though different years do not cove the
same length of time, and the closing trading day of any given year can vary by
one or two days. Some daily data, such as total rainfall at a given location, are
equally-spaced, while other daily data, such as the total volume of all trades
on the NYSE, are not equally spaced, because the daily data are trading-day
data and are not recorded on weekends or holidays.

In many cases, even if the time series are not equally spaced, we can
ignore the differences in time intervals. Considering the data to be equally
spaced greatly simplifies analyses or computer processing. A computer object
to handle equally-spaced data requires no field for the date; a simple integral
index suffices. In other cases, however, the effects of weekends or other gaps
in the sequence may be important, and this requires a more complicated
computer object to store the data.

2.2.2 Types of Time Series

Another way of distinguishing types of time series depends on how the data
are collected. There are three common types of time series based on how the
observations are made, aggregated data, sampled data, and tick data.

Aggregated data are summary data made over an interval of time. For
example, the daily trading volume of a given stock, fund, or group of stocks
is an aggregated datum. The lengths of the period are obviously relevant
metadata. Trading volume is routinely measured and reported for days, for
weeks, and for months. Note the each of these periods may vary in actual
length; a day may be shortened, as before a holiday; a week may have four
days or five days, depending on the timing of a holiday; and a month may have
various numbers of days, depending on the timing of weekends and holidays
and on the month itself.

Sampled data are observations made at chosen points in time, for example,
the closing price of a stock, which is generally defined as the price at which
the stock was last traded prior to the close. Note that it could also be defined
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in other ways, as, for example, the weighted average of the best bid and best
ask.

Tick data are time series data recorded at the times of the events that
generates them. For example tick-by-tick stock data are the prices and volumes
of trades made at the time the trades occurred. In an active market, these
data are “high frequency”. The underlying statistical models that tick data
tend to follow are different from data sampled at longer intervals.

For both aggregated data and sampled data, an important distinction is
whether or not the observations are made at equally-spaced (or nearly-equally-
spaced) intervals. Tick data are generally unequally spaced, because they arise
as a result of actions of individual entities.

If the observations are equally-spaced, then if the date of the first obser-
vation is known, and the interval length or the frequency of the observations
is known, then a simple index of positive integers is sufficient to identify the
date of each observation, or to form subsets of the dataset corresponding to
a specified time period.

2.2.3 R Software for Processing and Analyzing Time Series

For equally-spaced time series data, there is no need to have an explicit time-
stamp for each observation. A sequential numerical index together with a
starting time, a frequency, and some knowledge of a calendar mapping is
sufficient to associate a time with each observation.

If the time series is not equally spaced, a column (variable) that contains
the date may provide the necessary abilities to deal with the dates. Instead
of a variables, the dates could be used as names of the rows (observations).
Neither of these methods would allow the kinds of operations we might wish
to perform on the time series data, such as subsetting by dates or merging
two time series by date, as we discussed in Section 1.3.6.

Most of the common techniques for processing and analyzing time series
assume that the data are equally spaced, and hence do not involve an explicit
time stamp for each observation. Fundamental operations, such as lagging
and differencing, have simple meanings only if the data are equally spaced.
Autocorrelations have meaning and can be computed under an assumption
that the data are equally spaced. Familiar linear time series models, such as
AR, MA, ARMA, and ARIMA models apply only to data that are equally
spaced.

The R stats package provides extensive capabilities for working with
equally-spaced time series, including functions to compute the ACF and to fit
various linear time series models. The stats package also provides a time se-
ries class, ts, which causes some R functions to produce results that are more
appropriate for a time series (such as the generic plot producing a graph with
connecting line segments). There are also special functions in the stats pack-
age for working with ts objects, such as the diff function, which produces
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a time series of differences with a specified lag. In Chapter 5 we will discuss
analysis of some of the the basic time series models.

There are a number of other R packages for working with and analyzing
time series. Some of these packages allow more flexibility in date data and some
provide special classes for time series objects, and they provide functions for
various kinds of analyses of time series. Some of the available packages can be
seen under the TimeSeries section at

https://cran.r-project.org/web/views/

Various packages implement irregular time series based on POSIXct time
stamps. These are especially in financial applications, because weekends and
holidays make most financial data unequally spaced.

The R package timeDate contains functions to provide financial date and
time information, including information about weekends and holidays for var-
ious stock exchanges.

The package that I will use most often in this book is xts, written by
Jeffrey A. Ryan, Joshua M. Ulrich, and Ross Bennett. This package is based
on the zoo (“z- ordered observations”) package. Manipulations of xts objects
were discussed in Section 1.3.6.

Time Series Objects with Equal Spacing

Much of the data used in statistical analyses can be contained in a numeric
vector or matrix, and financial data consisting primarily of numbers can be
just stored in R atomic vectors or matrices. Data frames provide more meta-
data and through it allow for a wider range of operations, but data frames do
not provide any special abilities for time series data.

There are two classes of R objects provided in base R that provide simple
metadata for equally-spaced numeric time series, ts and mts.

Plotting ts Time Series Objects

plot(GDPQ, main="US Quarterly GDP", ylab="GDP (billions of USD)")

We notice several things about the plot that may need clarification. There
are 8 data points, which represent values that are each aggregated data over
a period of one quarter. The meaning of the line segments joining the obser-
vations is not clear. (The line segments may represent a smoothed fit of the
instantaneous monthly rate of the GDP, but that is a rather arcane concept.)
The abscissa labels seem to be off by one quarter. The first plotted point cor-
responds to the first quarter of 2018, which, of course is more appropriately
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US Quarterly GDP
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Figure 2.2. Time Series Plot of US Quarterly GDP

associated with the end of the quarter, rather than the beginning. Aside from
those issues, the data correspond fairly closely to equally-spaced intervals.

Stock prices are time series that are widely analyzed. Figure 2.3 shows the
daily closes of INTC for the month of February, 2020. Weekends are excluded
as well as the US holiday of President’s Day, so there were 19 trading days
during that month.

The graph in Figure 2.3 would seem to suggest that the intervals between
the data are equal, when, in fact, there were wide differences, as we see in a
more accurate plot in Figure 1.50.
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Daily Closes of INTC for February, 2020
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Figure 2.3. Time Series Plot of Daily Closes of INTC, Treated as Equally Spaced
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Simulating Data in R

We have mentioned the useful collection of built-in functions involving several
common probability distributions that compute the value of the density or
probability function at a specified point, the value of the CDF at a specified
point, or the quantile for a given probability. These functions have names that
begin with “d”, “p”, or “q”, and with another part that is a mnemonic referring
to the name of the distribution. In addition to these three functions for a given
distribution, there is another function that begins with “r” that indicates
that a “random sample” of data from that distribution is to be simulated.
The sample is not actually random, because it it generated according to fixed
rules in the software. (Sometimes we use the term “pseudorandom”.) The rules
generate a rather haphazard sequence from a given starting point, which the
user can specify using the R function set.seed.

The general starting point is to generate numbers that seem to be dis-
tributed uniformly and independently over the interval (0, 1). There are several
ways that pseudorandom uniform numbers can be generated, and R provides
a function RNGkind that allows the user to choose the type of basic generator.

A slightly different approach is to put restrictions on the process so as to
make the numbers more uniform, at the expense of being less “random”. Such
numbers are called “quasirandom”. The randtoolbox package contains the
functions halton, sobol, and torus that generate quasirandom uniform num-
bers. By default, these functions generate the same sequence each time. The
package also has functions to perform statistical tests on samples of random
numbers.

For a given probability distribution, the arguments to the “r” function are
the same as in the other functions for that distribution, except instead of the
point at which the function value is to be computed, the first argument is a
positive integer or a vector.

For the Poisson family of distributions for which we defined the three
functions that evaluate the density, probability, and quantile in equation (??),
we also have the function
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rpois(n, lambda)

that generates a vector of n values (where n is some positive integer) that will
be similar in their statistical properties as the corresponding properties of a
sample of the same size from a Poisson distribution with parameter lambda.
The mean of a random variable with parameter λ is λ and the standard
deviation is

√
λ. For example, we have the results shown in Figure 3.1.

> set.seed(12345)

> lambda <- 5

> n <- 1000

> x <- rpois(n, lambda=lambda)

> mean(x)

[1] 5.077

> sd(x)

[1] 2.17389

Figure 3.1. Simulating a Sample of Poisson Data in R

For the univariate normal distribution for which we defined the three func-
tions that evaluate the density, probability, and quantile in equation (1.9), we
also have the function

rnorm(n, mean, sd),

that generates a vector of n (where n is some positive integer) values that will
be similar in their statistical properties as the corresponding properties of a
sample of the same size from a normal distribution with mean m and standard
deviation s. For example, we have the results shown in Figure 3.2.

> set.seed(12345)

> m <- 100

> s <- 10

> n <- 1000

> x <- rnorm(n, mean=m, sd = s)

> mean(x)

[1] 100.462

> sd(x)

[1] 9.987476

Figure 3.2. Simulating a Sample of Normal Data in R
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3.1 Generating “Random Numbers”

3.1.1 Methods

3.2 Simulating Data in R

3.2.1 Managing the Seed

3.3 Simulating Time Series

Brownian motion |rwe1071::rwiener

Brownian bridge |rwe1071::rbridge
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Graphics in R

Murrell, Paul (2018)
R provides several functions to produce graphical displays of various types.

Most of these functions have a very simple interface with default settings, but
they also allow specification of several graphical characteristics, such as line
color and thickness, labeling of the axes, size of characters, and so on. All of
the graphics in this book were produced using R.

A graphical display has many elements. A well-designed graphics software
system (R is such a system!) allows the user to control these elements, but does
not impose an onerous burden of requiring specification of every little detail.
Most of the graphics functions in R have simple interfaces with intelligent
defaults for the various graphical components. The R function par allows the
user to set many graphical parameters, such as margins, colors, line types,
and so on. (Just type ?par to see all of these options.)

I highly recommend use of the ggplot2 package for graphics in R (see
Wickham 2016). Some plotting functions in ggplot2 are similar to those in
the basic graphics package of R, but they make more visually appealing
choices in the displays. Graphical displays in ggplot2 are built by adding
successive layers to an initial plot. Options can be set in ggplot2 by use of
the opt function. General graphics elements are determined by “themes”, and
there are a number of functions with names of the form theme xxx to control
the themes.

4.1 Types of Graphs

Two-dimensional graphs display the relationship between two variables. There
are different kinds of graphs depending on the interpretation of one of the
variables.

A display surface is essentially two-dimensional, whether it is a sheet of
paper or a monitor. When there are more than two variables, we generally
display them two at a time, possibly in a square array.
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There are some situations, however, in which we wish to display a third
dimension. A common instance of this occurs when we have just two variables,
but we wish to represent another special variable, such as a frequency density.
Likewise, with two variables, we may have a third variable, measuring their
joint frequency density. Those graphs were produced by the standard generic
plot applied to a kde object produced by the kde function in the ks package
using the keyword argument display to specify "persp" or "image".

When the object to be viewed is a surface, as in this case, a contour plot is
useful. The R function contour produces contour plots. The R function image

also produces special, colored contour plots. The function contourplot in the
lattice package provides more functionality for contour plotting. Another
R function useful for viewing a three-dimensional surface is persp, which
shows a surface from an angle that the user specifies. As mentioned above,
the standard generic plot function has been instrumented to produce contour
and three-dimensional surface plots of objects of certain classes.

There are also some R packages that provide functions for producing three-
dimensional scatterplots, for example, scatterplot3d in the scatterplot3d

package.

• scatterplot: points in two-dimensions that represent the two variables;
R: plot, qplot, ggplot, points
– matrix of scatterplots (or other bivariate plots)

R: pairs
– superimposed scatterplots of the columns of two matrices

R: matplot
– fan chart

R:fanplot
• line plot: continuous functions in two-dimensions

R: plot, qplot, ggplot, lines, curve
• bar plot: bars whose heights represent values of a single variable

R: barplot
• grouped data: one variable is a factor (an indicator of group membership)

R: hist; boxplot; or use graphical parameters to distinguish groups
• time series: one variable represents time over an interval

R: plot, plot.ts
• frequency distribution: one variable represents a frequency count or

density
– histogram; R: hist
– q-q plot; R: qqplot
– boxplot; R: boxplot
– density plot; R: density, plot.density
– bivariate density plot R: kde in ke plot with kde methods

• special graphics for financial data candlesticks, bars, bands, and so
on.
R: plot, plot.xts, chartSeries
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*** adding graphic elements
Figure 1.50 page 121
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Figure 4.1. Simple Time Series Plot (Figure 1.50) with Added Lines

Plots of different types of objects may have slightly different appearances.
For example, a scatterplot of a time series will have line segments connecting
the points, whereas a scatterplot of a vector will not have those lines, unless
the user expressly requests them.

4.2 Graphics in R

A graph in R may be completed with one function call. For example, the
histogram in Figure 1.43 was produced by one simple call to hist.
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Many graphs are composed of multiple plots or multiple graphic compo-
nents such as titles or legends. These graphs are built up from calls to various
R functions. Some R functions, such as plot, barplot, qqplot, and hist, are
designed to initiate a plot. Other R functions, such as lines, text, title,
and legend, are designed to add components to an existing plot. Some R
functions, such as curve, can initiate a plot or add to a plot. (The keyword
add determines this.) Each separate component is a layer on the graph.

One R function is called to produce the basic plot and then other functions
are called to add other plots or components. For example, Figure ?? was
produced by a call to hist to make the basic histogram followed by a call to
curve to add the normal probability density function.

To produce the graph in Figure ??, first of all, the data were scaled so
that each series would begin with the same value. The a call to plot was to
make the basic line graph using type="l". In this call, the ylim parameter
was set so that it would accommodate the largest value in any of the series.
The labeling of the axes and the tick marks for the horizontal axis were set,
either in the call to plot or immediately afterwards. Next, two calls to lines

were made to plot the logs of the other two series. Finally legend was called
to add the legend.

Color in Graphics

The argument col causes a specific color to be used to plot a line or a
point. Some colors can be specified by name, for example, col="red" spec-
ifies some shade of red. Colors can also be specified using an additive RGB
scheme. A color in this scheme is specified by six hexadecimal digits pre-
ceded by “#”, in which the first two digits specify the intensity of red, from
0 (none) to 254 (full saturation), the second two digits specify the intensity
of green, from 0 to 254, and the last two digits specify the intensity of blue.
For example, col="#00FF00" represents green, col="#FF00FF" represents ma-
genta, and col="#780078" represents a light magenta. The default color for
a line and for points is black, col="#000000", that is, no reflection. (White
is col="#FFFFFF", full reflection of all colors.)

4.3 Layouts of Graphs

Many figures, such as Figures ??, ??, and ??, consist of rectangular arrays
of multiple plots. These can be set up in R by use of the multiple figure
parameter mfrow or mfcol in par. (The difference is the order in which the
individual plots are put into the rectangular array; mfrow indicates that they
should be produced row by row.) The side-by-side plots in Figure ?? were
produced using par(mfrow=c(1,2)), and the four plots in Figure ?? were
produced using par(mfrow=c(2,2)). The R function layout can also be used
to control the arrangement of multiple figures.
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The mar parameter in par can be used to control the margins around a
plot. This is particularly useful in multiple figure graphs.

4.4 Graphics with xts Objects

In plots of time series, the labels of the tick marks of the time axis are often
just the positive integers, corresponding to the indexes of the observations.
The software that chooses these labels usually does so in a “pretty” fashion;
the labels are chosen in a reasonable way so that the sequence of printed values
follows a regular pattern. In many cases, of course, the time series object does
not even contain the actual date information.

For financial data collected over an interval of several days or even of
several years, a desirable alternative to using integers is to use labels that
actually correspond to the calendar time. One of the major advantages of xts
objects is that they do contain the date information, and the methods for
processing these objects can actually use this information; that is, the date
information in an xts object is more than just names of the rows, as in an
ordinary R data frame.

The plot method for an xts object (plot.xts) accesses the dates and
uses them to label tick marks on the time axis. It is much more difficult for
software to choose the dates to print than it is to choose which integers to
print. The plot.xts does a good job of choosing these dates. The time labels
on the graphs in Figure 1.50 on page 121 is an example.

4.4.1 Building Plots with xts Objects

Simple plots; add line

4.4.2 Graphics with OHLC Objects

Many xts objects are OHLC datasets. The plotting methods for OHLC xts

object provide an option for candlestick graphs.
A candlestick plot
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Figure 4.2. Daily Open, High, Low, and Closing (OHLC) Prices and Volume of
INTC January 1, 2017 through March 31, 2017; Source: Yahoo Finance
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Time Series Analysis in R

strucchange structural changes
The mathematical model for a time series is a stochastic process, which is

a sequence of random variables,

. . . , Xt−1, Xt, Xt+1, . . . , (5.1)

often denoted in general as {Xt}.
The term “time series” also refers to a sequence of data corresponding to

a sequence of times. Since a sequence of random variables is different from
a sequence of data or observations, a careful treatment of time series would
make precise distinctions between the model and the realizations. Certain
terms, such as “expectation”, “stationarity”, and so, only apply to the model.
Terms such as “mean” and “variance” can apply either to the model or to
the observed data. They are related, of course, but they are different, and I
will often use the terms “sample mean” and “sample variance” for clarity. (To
emphasize the difference, we may note, for example, the the model variance
can be infinite, but the sample variance must always be finite.)

We often denote random variables using upper-case letters, as in {Xt},
and we denote data or observations, which we consider to be realizations of
random variables, using lower-case letters, as in {xt}. Unless it is important
for clarity, I do not always make this distinction in my notation.

In Chapter 2 we discussed the nature of time series data, and the important
difference between data that we can assume is equally spaced in time and
data with more general time stamps. As we have pointed out there, weekends
and holidays make most financial data unequally spaced. The R objects that
handle unequally-spaced data must be somewhat more complicated than those
for equally-spaced data.

Relationships among the Observations

In any statistical analysis, a major concern whether a single model can apply
to all of the data in a given sample. In most analyses we just assume that a sin-
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gle constant model is appropriate, and this is often a reasonable assumption.
In models used in ordinary statistical analysis, we assume certain measures
such as means and variances are constant. We often assume that the data
come from a constant probability distribution, and that one observation does
not affect any other observation. In this case, we say the data are “identi-
cally and independently distributed”, or iid. A slightly weaker assumption to
replace independence is “uncorrelated”; that is, the observations have 0 cor-
relation with each other. (Independence implies 0 correlation, but in general,
0 correlation does not imply independence. In the special case of a normal
distribution, 0 correlation does imply independence. A normal distribution is
also called a “Gaussian distribution”, especially by people working in time
series analysis.)

In time series analysis, the question of constancy becomes more pertinent
because we do expect changes over time. Time series analysis, in fact, is the
study of the changes in time. If the time series were just a sequence of unrelated
events, the methods of statistical inference, which involve aggregation of data,
could not be used.

In models used in time series analysis, we may also assume that certain
measures are constant. For some types of measures, we are more interested
in a conditional measure; that is, the property of one element in the series
conditional on previous elements. The conditional mean of Xt, for example,
is

E(Xt |Xt−1, Xt−2, . . .).

It is a function of preceding observations. If function is constant, we can use
statistical methods to make inferences about the data-generating process.

There are various extents to which a model may be constant, or “station-
ary”. The concept of stationarity is important throughout the analysis of time
series. We will define types of stationarity precisely in later sections.

Autocovariance and Autocorrelation

The property of a time series model that distinguishes it from other statistical
models is the relationship between elements within the sequence. As with
other statistical models, the most useful measure of this relationship is the
covariance or the related correlation, both of which are based on deviations
from the means. In a time series model, these measures that are of interest are
those between elements of the sequence, so we refer to them as autocovariance

and autocorrelation.
For a time series {Xt}, the autocovariance between two elements Xs and

Xt that have finite means µs and µt is the ordinary covariance,

Cov(Xs, Xt) = E ((Xs − µs)(Xt − µt)) . (5.2)

The variance of Xs, V(Xs), sometimes denoted as σ2
s , is the covariance

Cov(Xs, Xs).
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The autocorrelation between two elements Xs and Xt that have finite vari-
ances σ2

s and σ2
t is the ordinary correlation,

Cor(Xs, Xt) =
Cov(Xs, Xt)√

σ2
sσ

2
t

. (5.3)

These general definitions allow for the six measures, µs, µt, σ
2
s , σ2

t ,
Cov(Xs, Xt), and Cor(Xs, Xt) to be different for different values of s and
t. If there is no constancy, that is, stationarity, among these quantities or if
there is no model of deterministic relationships among them, there would be
no basis for statistical inference. In time series analysis, we make various levels
of assumptions about what is constant.

Stationarity

One of the most common levels of assumptions is that µs and σ2
s are constant

for all s, and Cov(Xs, Xt) is constant for any fixed lag |s− t|. This is usually
what we mean by the unqualified term “stationary”.

Under an assumption of stationarity, we can simplify the notations in the
expressions of equations (5.2) and (5.3). We can denote the means and vari-
ances by µ and σ2 without subscripts. The autocovariance and autocorrelation
are functions only of the lag, h = s− t, and not of s and t. Let us denote the
autocovariance at lag h as the function γ(h),

γ(h) = E ((Xt − µ)(Xt−h − µ)) . (5.4)

We see that the constant variance σ2 with this notation is

σ2 = γ(0). (5.5)

Let us denote the autocorrelation at lag h as the function ρ(h). We have

ρ(h) =
γ(h)

γ(0)
. (5.6)

Because we often deal with different time series, say {Xt} and {Yt}, we
often use the notation for the separate time series to distinguish the measures
that correspond to the different time series, for example, µX and µY , σ2

X and
σ2

Y , γX(h) and γY (h), and ρX(h) and ρY (h).
The quantities defined in equations (5.2) and (5.3) or (5.4) and (5.6) are

properties of the random variables in the time series model. There are also
analogues of these model quantities for observed data. We call them the sam-

ple autocovariance and sample autocorrelation, although often we drop the
“sample” when it is clear what we are referring to.

Sometimes to be precise, I will distinguish model quantities, as {Xt} in
expression (5.1), from corresponding sample quantities by the use of upper
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case letters for the random variables and lower case letters for the realizations
or observations, {xt},

. . . , xt−1, xt, xt+1, . . . . (5.7)

We will discuss the sample autocovariance and sample autocorrelation in
Section 5.2.3, beginning on page 170.

5.1 White Noise and Related Time Series

In the analysis of time series, we begin with a few basic models that we often
use as null cases in the analysis. The simplest of these models is white noise. A
data-generating process yielding white noise has no properties of real interest.
The time series itself has no interesting features that relate to passage of time.
Hence, if we can establish that a given time series is not white noise, there
must be something of interest in the data-generating process.

This approach, setting up a null strawman, is a fundamental plank in the

scientific statistical method.

White noise is the basic strawman in time series analysis.

5.1.1 White Noise

A process {wt} that is a sequence of random variables with mean 0, constant
finite variance, and 0 autocorrelations at all lags is called white noise. Because
there is a similar model in continuous time, we sometimes call this discrete

white noise. The 0 autocorrelation condition can be stated as

Cor(wt, wt+h) = 0 for h = 1, 2, . . . (5.8)

We will indicate that a sequence {wt} is a white noise by the notation

wt ∼ WN(0, σ2
w).

(A more appropriate notation would be “{Wt} ∼ WN(0, σ2
w)”, but in this

book, I have generally chosen simpler notation unless it is incorrect or con-
fusing.)

A white noise process does not need to have a “beginning”, and for any t,
E(wt) = 0 and V(wt) = σ2

w.
A special type of white noise is Gaussian white noise, defined as white

noise in which the random variables have a normal (Gaussian) distribution.
In this case, the sequence is iid.

A Gaussian white noise of length 100 and with σ2
w = 16 can be simulated

with the R statement
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w <- rnorm(100, sd=4)

A white noise process in which the sequence is iid is called a strict white

noise whether Gaussian or not, and the white noise process without inde-
pendence is sometimes called a weak white noise. (Note that other authors
use these terms somewhat differently. Some may impose further conditions
on a sequence in order to call it a white noise. Some require that each term
in the sequence has the same distribution in addition to equal first two mo-
ments, and/or require that the sequence be independent, instead of just zero-
correlated, and/or may allow the mean to be nonzero.)

A strict white noise of length 100 following a t distribution with 3 degrees
of freedom can be simulated with the R statement

w <- rt(100, df=4)

In this case, σ2
w = 2.

A simple linear regression with time as the independent variable and a
white noise error term,

xt ≈ βt + wt,

is a white noise with drift.

5.1.2 Linear Combinations of White Noise

A simple model based on white noise is a linear combination of white noise
variates wt of the form

xt = µ+
∑

ψtjwtj, (5.9)

where µ and ψtj are constants.
A general linear process may have no beginning or ending; that is, the

summation in the model may go from −∞ to ∞. We require that

∞∑

j=−∞

ψj <∞.

Linear processes that depend only on the past are of interest. A one-sided

linear process is a linear process that can be written in the form

xt = µ+

∞∑

j=0

ψjwt−j. (5.10)

In a finite linear process, ψj = 0 for j < k1 or j > k2 for some finite
constants k1 and k2.
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A moving average of a white noise is a finite linear process of normalized
sums of the form

xt =
1

k

k∑

j=1

wt−j. (5.11)

We call k the “window width” or the “band width”.
We will also use the term “moving average” to refer to more general linear

combinations of the form xt =
∑

j ψjwt−j, with various restrictions on ψj ,
but the word “average” in this case does not imply a weighted mean.

Notice that for a finite moving average of white noise,

xt =

k∑

j=1

ψjwt−j,

we have

E(xt) =

k∑

j=1

ψjE(wt−j) = 0, (5.12)

and

V(xt) =

k∑

j=1

ψ2
j V(wt−j) =

k∑

j=1

ψ2
jσ

2
w. (5.13)

The covariance of two terms, Cov(xt, xt+h), depends on whether there is any
overlap in the white noise terms in xt and xt+h. If there is no overlap, the
covariance is 0.

5.1.3 Random Walk

A simple model of a time series is the random walk, in which f is just xt−1,

xt = xt−1 + wt, (5.14)

and {wt} is a white noise.
Although many time series models do not have a “beginning”, a random

walk process needs to have a starting point, which we usually denote as x0,
and run t over the positive integers.

A random walk is a simple constant diffusion process, but not all diffusion
processes are random walks.

With a starting point of x0, the random walk process in equation (5.14)
can be expressed as

xt = x0 +

t∑

i=1

wi. (5.15)

The mean of a random variable following a random walk process starting
at x0 is
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E(xt) = E(x0) + E

(
t∑

i=1

wi

)

= x0; (5.16)

that is, the unconditional mean of a random walk is constant, depending only
on x0. The variance of a random walk variable, on the other hand, is

V(xt) = V(x0) + V

(
t∑

i=1

wi

)

= 0 +

t∑

i=1

V(wi)

= tσ2
w, (5.17)

that is, it depends on t and in fact grows linearly as t grows.
The R function cumsum together with a source of white noise can be used

to generate a random walk.

w <- rnorm(100, sd=4)

x <- cumsum(w) + 10

In financial applications, we often model log returns as random walks.
We use the standard deviation more often than the variance. The standard
deviation grows as

√
t. This is why we annualize daily volatility σd by

√
253σd.

5.1.4 Aggregated Log Returns

Because log returns are additive, for any time period, the accumulated return
of a sequence of daily returns r1, . . . , rt over that period form a walk:

rt =

t∑

i=1

ri. (5.18)

This is a random walk if, for the individual sub-periods, the log returns
correspond to a random variable with 0 mean and constant finite variance,
and if they have 0 correlation with each other. One form of the Random Walk
Hypothesis assumes log returns follow a white noise process; hence, the log
returns are a random walk under that hypothesis.

5.1.5 Random Walk with Drift

A variation is a random walk with drift, given by
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xt = δ + xt−1 + wt, (5.19)

or

xt = x0 + tδ +

t∑

i=1

wi. (5.20)

In financial applications, fixed payments constitute a drift, for example.
The random walk with drift δ has E(xt) = tδ + x0. This is an impor-

tant difference; the mean of a random walk is independent of the time (it is
constant), but the mean of the random walk with drift is dependent on the
time.

5.1.6 Geometric Random Walk

A geometric random walk is a process whose logarithm is a random walk:

xt = xt−1e
wt , (5.21)

or, starting at x0,
xt = x0 exp(wt + · · ·+w1). (5.22)

Under a form of the Random Walk Hypothesis, cumulative log returns are
a random walk, and so asset prices follow a geometric random walk.

The additive nature of log returns allows us to relate a principal amount
at time t, Pt, in terms of the initial amount P0, as

Pt = P0 exp(rt + · · ·+ r1), (5.23)

where r1, . . . , rt are log returns. (This results from equation (5.18).) If the log
returns ri are a white noise process, that is, if their sums form a random walk,
the process {Pt} forms a geometric random walk. Simple returns do not have
this property.

If the log returns are from a Gaussian white noise process, that is, if the
ri in equation (5.23) are random variables distributed iid as N(0, σ2), then
Pt has a lognormal distribution. The process is called a lognormal geometric

random walk with parameter σ.

5.1.7 General Autoregressive Processes

An extension of the random walk with drift model (5.19) is the autoregressive
model,

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + wt. (5.24)

We will discuss autoregressive models more fully in Section 5.3. In the random
walk, p = 1, and in the simple random walk φ0 = 0.
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5.1.8 Multivariate Processes

All of the models we have described above are univariate; that is, the in-
dividual observations and random variables are scalars. Each model has a
multivariate generalization, however.

The multivariate generalization of any of these models retains the model’s
essential characteristics from one observation to another; that is, from one
point in time to another point in time. The elements of the vector variables
in the multivariate models at a given point in time, however, may have any
kind of relationships to each other.

For example, the elements of a multivariate white noise process may have
nonzero correlations among themselves, but the correlations of a given element
over time are zero. If

. . . , w−1, w0, w1, . . .

are random d-vectors with constant mean 0 and constant d × d variance-
covariance matrix Σw, the process {wt} is a multivariate white noise process
if the covariance matrix of ws and wt, E(wsw

T
t ), for s 6= t is zero.

Likewise, we can define multivariate moving averages of white noise, multi-
variate linear processes, multivariate random walks, and so on. A multivariate
random walk, for example, has the same form as the model (5.14),

xt = xt−1 + wt,

except that xt and xt−1 are vectors, and {wt} is a multivariate white noise.
There are several simple models of time series that are the be
The R function cumsum together with a source of white noise can be used

to generate a random walk.

Exercises: White Noise and Related Time Series

5.1.1. xxx.
5.1.2. yyy.

5.2 Basic Operations on Time Series Data

In this section we describe some simple operations on time series. Most of
the operations can be performed whether or not the data are equally spaced,
but in some cases the interpretation of the results of the operation are not
meaningful if the data are not equally spaced.

The R stats package provides extensive capabilities for working with time
series with equally-spaced times. The stats package provides a time series
class, ts, which causes some R functions to produce results that are more
appropriate for a time series (such as the generic plot producing a graph
with connecting line segments). There are also special functions in the stats
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package for working with ts objects, such as the diff function, which pro-
duces a time series of differences with a specified lag. Class ts only deals with
numeric time stamps.

There are a number of R packages for working with and analyzing time
series. Some of these packages allow more flexibility in date data and some
provide special classes for time series objects, and they provide functions for
various kinds of analyses of time series. Some of the available packages can be
seen under the TimeSeries section at

https://cran.r-project.org/web/views/

Various packages implement irregular time series based on POSIXct time
stamps.

The R package timeDate contains functions to provide financial date and
time information, including information about weekends and holidays for var-
ious stock exchanges.

5.2.1 The Shift and Difference Operators

One of the most useful linear filters is the backshift operator, B(·), which for
the time series

. . . , xi−1, xi, xi+1, . . .

is defined by
B(xt) ≡ xt−1. (5.25)

This is also called a lag operator, and it is sometimes denoted as L(·).
A backshift on a time series in R can be performed simply by manipulating

the index of a vector (or matrix).

> x <- c(1, 2, 3, 3, 2, 1)

> n <- length(x)

> x

[1] 1 2 3 3 2 1

> c(NA,x[-n]) # backshift once
[1] 2 3 3 2 1

> c(NA,NA,x[-c(n-1,n)]) # backshift twice
[1] NA NA 1 2 3 3

> k <- 2

> c(rep(NA,k),x[-c((n+1-k):n)]) # backshift k times
[1] NA NA 1 2 3 3

> c(x[-c(1,2)],NA,NA) # forward shift twice
[1] 3 3 2 1 NA NA

The lag function in the dplyr package of the tidyverse suite does backshifts
as above, and the associated lead does forward shifts. The resulting vectors
are the same length as the operand vector, so they contain some NA entries
as above. (The lag function in the R stats package does not do a backshift.)
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In R, the diff function performs differencing on a time series. On a nu-
meric vector or an object of class ts, the diff function yields an object of
shorter length than the operand; that is, there are no NAs, as in the lag filter
illustrated above. By default, the diff function performs differencing at lag
1. Differencing at a lag greater than 1 can be specified by a second argument.

> x <- c(1, 2, 3, 3, 2, 1)

> x

[1] 1 2 3 3 2 1

> diff(x) # difference of order 1
[1] 1 1 0 -1 -1

> x[-1] - x[-length(x)] # difference of order 1
[1] 1 1 0 -1 -1

> diff(diff(x)) # difference of order 2
[1] 0 -1 -1 0

> diff(diff(diff(x))) # difference of order 3
[1] -1 0 1

> diff(x,2) # difference at lag 2
[1] 2 1 -1 -2

The diff function performs differently on an object of class xts. It yields
NAs in that case, similar to the NAs in the lag filter illustrated on page 168.

5.2.2 Returns

The backshift and difference operators are central to the computation of re-
turns. A one-period simple return (equation (1.3), page 101) is

R = 4(xt)/B(xt),

and the log return is
r = 4(log(xt)).

The sequence of returns is a filter of the time series of prices.
In R, these returns are computed using the diff function:

xsimpret <- diff(x)/x[-length(x)]

xlogret <- diff(log(x))

(Again, recall the difference in operations on xts objects.)
For any filter on a finite vector that results in a shorter vector, such as

computation of returns, differencing, or backshifting, the computer software
designer must decide whether to return a shorter vector (as diff in the base

package) or to return a vector of the same length with some meaningless
values, usually NAs (as diff in the quantmod package or lag in the dplyr

package). And, of course, the software user must be aware of the decision.
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5.2.3 The Sample Autocorrelation Function

We defined the autocovariance and autocorrelation, Cov(Xs, Xt) and Cor(Xs, Xt),
for general time series in equations (5.2) and (5.3). If the terms in these ex-
pressions are different for different values of s and t, then with a sample of
multiple observations, we have only one statistic each for µs and µt, and we
have no statistic for the quantities σ2

s and σ2
t or Cov(Xs, Xt) and Cor(Xs, Xt).

Statistical analysis has no basis unless we assume some degree of constancy.
In time series analysis, we generally assume that µt and σ2

t are constant
for all t.

We also generally assume weak stationarity; that is Cov(Xs, Xt) and
Cor(Xs, Xt) do not depend on s and t individually, but only on the lag
h = s− t. Hence, for stationary time series, we have the autocovariance and
autocorrelation functions, γ(h) and ρ(h) in equations (5.4) and (5.6), which
depend only on the lag h.

Under this assumption, given observations x1, . . . , xn, we have a basis for
estimating γ(h) and ρ(h), using sample analogues of the autocovariance and
autocorrelation functions.

We will denote the sample quantities as γ̂(h) and ρ̂(h).
The basic rule is to replace an expectation in a model with an average of

observed sample quantities; for example, the model quantity

µ = E(X)

is replaced by the sample mean

x̄ =
1

n

n∑

t=1

xt.

Often in statistical data analysis, especially for second order quantities such
as variances and covariances, instead of dividing by n, we divide by a modified
quantity such as n− 1 in the familiar expression for the sample variance,

s2 =
1

n− 1

n∑

t=1

(xt − x̄)2. (5.26)

Such adjustments may be done to make the sample quantity have better
statistical properties, such as unbiasedness in the case of s2.

Now, consider the autocovariance at lag h:

E ((Xt − µ)(Xt−h − µ)) .

From a sample x1, . . . , xn, the obvious analogue is some average of all (xt −
x̄)(xt−h− x̄), that is the products using all observations the are h steps apart.

There are obviously n − k such pairs; however, by convention, we define
the sample autocovariance function as
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γ̂(h) =
1

n

n∑

t=h+1

(xt − x̄)(xt−h − x̄). (5.27)

The statistic γ̂(h) is not unbiased for γ(h) at any value of h, but it is consistent
at any fixed value of h.

From (5.27), we have

σ̂2 = γ̂(0) =
1

n

n∑

t=1

(xt − x̄)2. (5.28)

Although this is not unbiased for σ2 as s2 is, it is consistent.
This yields the sample autocorrelation function:

ρ̂(h) =
γ̂(h)

γ̂(0)

=

∑n
t=h+1(xt − x̄)(xt−h − x̄)
∑n

t=1(xt − x̄)2
. (5.29)

We sometimes denote the sample autocorrelation function as SACF, or just
as ACF, the same as the model autocorrelation function ρ(h). The sample
autocorrelation function ρ̂(h) is consistent for ρ(h) at each value of h.

5.2.4 The Partial Autocorrelation Function

5.2.5 Autocorrelation Functions in R

acf Acf forecast

pacf

Exercises: Basic Operations on Time Series Data

5.2.1. xxx.
5.2.2. yyy.

5.3 Linear Models for Time Series

Hyndman and Khandakar (2008), Automatic time series forecasting: The fore-
cast package for R,

As we have emphasized, statistical analysis begins with a model. The
model may just describe a probability distribution or it may describe rela-
tionships among observable variables. The model may be very general, it may
have unspecified parameters, or it may be very specific.
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A model provides a smoothing of the data. This means an equation, a
line, or just a rule that provides “smoothed” values for components of each
observation in the data such that the smoothed values appear less noisy that
the original observed values. Examining the smoothed values rather than the
raw data is akin to studying a forest without being distracted by the trees.

The main objectives of statistical data analysis are to understand the
data-generating process and/or to make predictions of events that have not
yet been observed.

We accomplish these objectives using various coordinated approaches.
For a given dataset or data-generating process, we may

• develop and fit a model
• compute and model overall summary properties
• identify and analyze anomalous data
• subregions of the data that correspond to different generating processes

These steps are performed iteratively, more or less in the order shown.
A common form of statistical models for the relationship of the variable y

to the variables x1, . . . , xm is as shown in equation (1.27) on page 125,

y ≈ f(x1 , . . . , xm),

or
y = f(x1 , . . . , xm) + ε,

where ε represents a random error.
A more specific form of this model is the familiar linear regression model

y = β0 + β1x1 + · · ·+ βmxm + ε.

Models for time series naturally involve observations of the same variable
at different times. A model for a univariate time series {xt} is of the form

xt ≈ f(xt−1, xt−2, . . .). (5.30)

A linear model for a univariate time series {xt} is of the form

xt ≈ φ0 + φ1xt−1 + · · ·+ φpxt−p. (5.31)

We may rewrite this expression with an additive error term. In a time series,
an appropriate error term may be a white noise, so we have

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + wt,

where {wt} is a white noise process. This is called an “autoregressive” model.
Another useful linear time series model represents {xt} as a linear combi-

nation of the past elements in a white noise process:

xt = wt + θ1wt−1 + · · ·+ θqwt−q,

This is called a “moving average” model.
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5.3.1 Fitting Parametric Models

The autoregressive and moving average models mentioned above are paramet-
ric linear models. There are other linear parametric time series models that
are variations on these

A first step in the analysis of data following a parametric model is to
estimate the parameters in the model. This means to fit the model.

As we have mentioned there are several methods that have been developed
and studied in the theory of statistics to estimate parameters. In the case of
both autoregressive and moving average models, the most common estimators
are based on a maximum likelihood approach (assuming the white noise is
Gaussian white noise).

Denoting the estimates of the parameters using a caret or hat, we may
write a fitted autoregressive model as

xt = φ̂0 + φ̂1xt−1 + · · ·+ φ̂pxt−p.

A model evolves during statistical analysis. It may begin with a tentative
identification of the relevant variables. If there is just one variable of interest,
the model may just be a probability distribution. A realistic probability dis-
tribution, even for just one variable, is rarely a single simple distribution; it is
almost always a mixture of distributions, each of which may be similar to some
standard distribution, such as a normal distribution or a Pareto distribution,
for example.

After fitting a model, it should be evaluated using various summary statis-
tics computed from the available data. Any observations that do not seem
consistent with the model should be identified and studied further.

A model obviously applies only to some specified population or time pe-
riod. The limits of applicability of a model should be noted. In the case of
time series models, even for a single variable, the model may change over time.
Identification of changepoints is an important aspect of time series analysis.

5.3.2 Autoregressive Models

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + wt, (5.32)

where {wt} is a white noise process.

5.3.3 Moving Average Models

xt = wt + θ1wt−1 + · · ·+ θqwt−q, (5.33)
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5.3.4 Integrating Models; Differencing

5.3.5 ARIMA Models

5.3.6 R Packages and Functions

5.3.7 Extensions

Exercises: Linear Models for Time Series

5.3.1. xxx.
5.3.2. yyy.

5.4 Nonparametric Analysis of Time Series

A nonparametric model is a general model whose main objective is to smooth
the data or to provide predictions. A nonparametric model is often an algo-
rithm or a formula, rather than a simple equation, as is used in most para-
metric models.

The general form of a nonparametric model for a time series model is the
same as a parametric model,

xt ≈ f(xt−1, xt−2, . . .),

except that the function f cannot be written as some simple equation in-
volving the xt−1, xt−2, . . ., and we do not attempt to express the functional
relationship f completely.

While time series models may not have a beginning point, in applica-
tions, all datasets are finite. We assume a given finite set of observations,
x1, . . . , xt−1.

The objective is to use the set of observations to determine a function S
that predicts xt,

x̂t = S(xt−1, . . . , x1). (5.34)

We call S a smoothing function.

5.4.1 A General Approach to Smoothing Time Series

Smoothing a time series is based on a general assumption that xt is related in
some systematic way to x1, . . . , xt−1; for example, xt may be approximately
the mean,

xt ≈
1

t− 1

t−1∑

i=1

xt−i.

This is an intuitively appealing approach.
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Moving Averages

At time t, instead of taking x̂t as the average of all preceding values, it might
be appropriate to limit the averaging to values closer in time to t. We introduce
a positive integer h ≤ t − 1 and define the smoother as

x̂t = SMA(h)(xt−1, . . . , xt−h)

=
1

h

h∑

i=1

xt−i. (5.35)

The smoother SMA(h) is a moving average with a window of length h. For a
time series in which the unit of time is a day, this is an “h-day moving average”.
In smoothing daily financial time series such as stock prices, a 50-day moving
average or a 200-day moving average. The larger is h, the more slowly the
moving average changes from on day to the next; that is, the “smoother” is
the fitted series.

Weighted Moving Averages

At time t, instead of averaging all previous h values equally, it may be better
to use a weighted average in which values closer in time are weighted more
heavily. We have a smoother of the form

x̂t = SK(h)(xt−1, . . . , x1)

=
1

h

t−1∑

i=1

xt−iK

(
t− i

h

)
, (5.36)

where h is a positive number less than t. The function K(·), which must be
nonnegative, is called a kernel function and the smoother in equation (5.36)
a time series kernel smoother.

We discussed kernel functions on page 112 for use in probability density es-
timation, and gave examples, such as the triangular kernel in equation (1.21),

KT(t) =

{
1 − |t| if |t| ≤ 1/2
0 otherwise.

Kernel methods generally depend on a smoothing parameter, h, used both
in the kernel density estimate in equation (1.19) and in the smoother in equa-
tion (5.36). The smoothing parameter is sometimes called a “window width”
just as in the moving average smoother, but it does not delimit the distance
back in time that observations can be used in the smoothing function.

Kernel functions and kernel-based smoothing methods are used in many
areas of nonparametric data analysis, but time series smoothing is a spe-
cial kind of smoothing. A time series smoother at any given point can only
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depend on values before that point in time. Note that the summation in equa-
tion (5.36) includes all observations up to time t. Of the various kernels used
in density estimation, most are symmetric about 0, such as the rectangular,
triangular, and Gaussian (normal) that we mentioned. The kernel used in time
series smoothing, however, must be one-sided. A folded version of a symmetric
kernel can be used. A folded triangular kernel, for example, is

KFT(t) =

{
1 + t if − 1 ≤ t ≤ 0
0 otherwise.

Just as a histogram corresponds to a kernel density estimate with a rect-
angular kernel, a moving average smoother corresponds to a kernel smoother
in which the kernel is a folded rectangular kernel; thst is, instead of equa-
tion (1.20), we have

KFR(t) =

{
1 if − 1 ≤ t ≤ 0
0 otherwise.

Exponentially Weighted Moving Average

A moving average or a kernel-based smoother with a finite window can be
updated recursively.

***
A variation of an MA is called an exponentially weighted moving average

(EWMA). An EWMA is a weighted average of the current price (in financial
applications, the previous day’s price) and the previous EWMA. If at time t,
the current price is pt, and the proportion assigned to the current price is α,
then

EWMAt = αpt + (1 − α)EWMAt−1. (5.37)

The recursive formula (5.39) does not indicate how to get a value of the
EWMA to get started. In practice, this is usually done by taking as a starting
point an MA for some chosen number of periods k. Although an EWMA
at any point in time includes all previous prices since the inception of the
average, it is often expressed in terms of a number of periods, say k, just as
in ordinary MAs. The number of periods is defined as 2/α − 1. Other ways
of sequentially weighting the prices are often used. A popular one is called
“Wilder smoothing”. Some MAs with different names are different only in
how the “period” is used in forming the weight.

The movavg function in the pracma package does not use [e - “exponential”]
computes the exponentially weighted moving average. The exponential moving
average is a weighted moving average that reduces influences by applying more
weight to recent data points () reduction factor 2/(n+1); or

Summary Statistics

Statistics resulting from use of the model to smooth the data ... ***
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Outliers

Observations that do not seem consistent with the model ... ***

Changepoints

Time points at which the model changes in some way ... ***

Local Smoothing

Most nonparametric methods of smoothing are called “local”. At any observa-
tion in the time series, nearby observations are used to compute the smoothed
value to associate with the given observation.

***two main types - averaged values or “representative values”
One of the simplest ways of local smoothing time series data is just to

replace each value with an average of it and its nearby values. The more
nearby values used, the smoother the result will be.

***window width
Figure 5.1 shows a simple time series with 37 observations. The smoothed

version shown in red was formed by averaging three values around and in-
cluding each observation. The smoothed version shown in blue was formed by
averaging five values around and including each observation. It is smoother
than the version using only three values. The ultimate of this smoothing would
be to use all available values. This is what is shown in green in Figure 5.1.

how to average? *** kernel weighting
how to average? ***mean or median – order statistics within the window
*** what to do at beginning and end?

see below
other methods not based on averaging (ATS e.g.)
*** any smoothing method can be iterated: smooth the smooth

Smoothing of Time Series

simple questions: centered or lagging?

Datasets for Examples and Illustrations

To explore various method of nonparametric smoothing of time series, we will
use the same few example datasets.

• Small simple example, x. This is the example shown in Figure 5.1.
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Figure 5.1. Smoothing by Local Averaging

x <-

c(6,8,7,9,8,5,6,6,4,5,3,6,5,4,3,6,5,3,3,2,7,8,9,1,3,4,6,4,3,2,5,4,3,4,5,6,7)

• INTC daily closes, first three quarters, 2017.

library(quantmod)

z <- getSymbols("INTC", env=NULL, from="2017-1-1",

to="2017-10-1", periodicity="daily")

INTCd2017Q3 <- as.numeric(z[,6])

• IBM daily closes, 1970 through 2014.

library(quantmod)

z <- getSymbols("IBM", from="1970-1-1",

to="2014-12-31", periodicity="daily", warnings=FALSE)

IBMd <- as.numeric(z[,6])
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These three time series are shown in Figure 5.2. Note that the time scales are
very different.

Simple Time Series; 37 Observations
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Figure 5.2. Times Series for Examples
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5.4.2 Moving Averages

Moving averages are averages of nearby observations within a specified window
width, as shown in Figure 5.1. The averages can be computed using the data
on either side of the given point, or they can use only data on one side or the
other. In financial applications, obviously only use of prior data makes any
sense.

There are two simple remaining issues; what to do at the beginning of the
time series before there are enough data to fill a window width, and secondly,
whether to include the current observation, or only the previous observations.

There is no function in the basic R package that computes a moving aver-
age, but several packages, including pracma and quantmod, provide functions
for computing moving averages. Functions from different packages do compu-
tations in different ways.

The simplest way that we will generally use for illustration is as follows.
Given the time series x1, x2, . . ., for the window width T , the moving average
values m1, m2, . . . are

m1 = x1

mi = 1
i−1

∑i−1
j=1 xj for 2 ≤ i ≤ T

mi = 1
T

∑i−1
j=i−T−1 xj for T < i

(5.38)

Variations on the Averaging

An obvious modification of simple averaging within a moving window is to
weight the observations differently, giving higher weight to the observations
nearer to the point where the average is computed. Again, for a time series, the
moving average should be based only on prior values, although if the current
value is included, the effect is negligible, depending on the window width of
course.

The movavg function in the pracma package does not use the observations
farther ahead in time, so it is appropriate for practical usage in time series.
The movavg function allows for both a simple moving average based on the
mean and a weighted moving average, in which the which the ***

various types of weighted moving averages. In each case, however, the
moving average includes the current point. A “simple” moving average is the
mean described above, except that the current point is included. A

c computes the simple moving average. n indicates the number of previous
data points used with the current data point when calculating the moving
average.

[t - “triangular”] computes the triangular moving average by calculating
the first simple moving average with window width of ceil(n+1)/2; then it
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Simple Time Series; 37 Observations
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Figure 5.3. Moving Averages of Various Window Widths for the Examples

calculates a second simple moving average on the first moving average with
the same window size.

[w - “weighted”] calculates the weighted moving average by supplying
weights for each element in the moving window. Here the reduction of weights
follows a linear trend.
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Exponentially Weighted Moving Average

A variation of an MA is called an exponentially weighted moving average

(EWMA). An EWMA is a weighted average of the current price (in finan-
cial applications, the previous day’s price) and the previous EWMA. If at
time t, the current price is pt, and the proportion assigned to the current
price is α, then

EWMAt = αpt + (1 − α)EWMAt−1. (5.39)

The recursive formula (5.39) does not indicate how to get a value of the
EWMA to get started. In practice, this is usually done by taking as a starting
point an MA for some chosen number of periods k. Although an EWMA
at any point in time includes all previous prices since the inception of the
average, it is often expressed in terms of a number of periods, say k, just as
in ordinary MAs. The number of periods is defined as 2/α − 1. Other ways
of sequentially weighting the prices are often used. A popular one is called
“Wilder smoothing”. Some MAs with different names are different only in
how the “period” is used in forming the weight.

The movavg function in the pracma package does not use [e - “exponential”]
computes the exponentially weighted moving average. The exponential moving
average is a weighted moving average that reduces influences by applying more
weight to recent data points () reduction factor 2/(n+1); or

Moving Averages in quantmod

addDEMA Add Moving Average to Chart
addEMA Add Moving Average to Chart
addEVWMA Add Moving Average to Chart
addMA Add Moving Average to Chart
addSMA Add Moving Average to Chart
addWMA Add Moving Average to Chart
addZLEMA Add Moving Average to Chart

add DEMA Add Moving Average to Chart
add EMA Add Moving Average to Chart
add EVWMA Add Moving Average to Chart
add GMMA Add Moving Average to Chart
add SMA Add Moving Average to Chart
add VMA Add Moving Average to Chart
add VWAP Add Moving Average to Chart
add WMA Add Moving Average to Chart

addMACD Add Moving Average Convergence Divergence to Chart
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5.4.3 Variations on the Averaging: Kernel Smoothing

The term “kernel” is used in various areas of mathematics to denote various
types of mathematical objects. In statistics and data science, it usually is
a function that allows local aggregation of data. If the data are counts of
observations at or near a given point, a kernel function provides a weighting
of the nearby points to compute a local density, as we discussed in Section 2.1.
This application is discussed in Silverman (1986), as well as in many other
places.

Another application of a kernel function is in local smoothing of the rela-
tionship of one variable y to another variable x. Instead of a linear regression
of y on x, we can fit a local smooth

ŷ ≈ f(x),

in which the function f is not explicitly identified. This type of application is
discussed in Wand and Jones (1994), as well as in many other places.

For a given set of observations on y on x, we can use observations on either
side of a given point to fit ŷ. In a time series, it is not possible to use future
observations in the fit; hence the kernel used to weight the observations must
apply only to the prior observations, or give 0 weight to future observations.
Ghosh (2018) discussed this type of application, even with irregularly-spaced
observations in the time series.

It would make sense for a smoothing kernel for a time series to be asym-
metric, tailing off for observations farther back in time. Asymmetric kernels
are just as tractable as the more common symmetric ones. Silverman (1986)
discussed their use and possible advantages in density estimation. A simple
compact asymmetric kernel is a beta density.

Hirukawa (2018) disucsses asymmetric kernels, primarily one with support
on the positive real line, IR+. These kernels could include the densities of
common distributions such as gamma, lognormal, and so on.

Folded Kernels

We propose a new class of asymmetric kernels: folded kernels.
folded Gaussian
folded Epanechnikov
folded triangular
folded biweight

Nonparametric Smoothing of Time Series Using Folded Kernels

folded triangular is same as “weighted” in movavg{pracma} except that
movavg includes the current point
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5.4.4 Alternating Trend Smoothing

Works by fitting line segments with alternating up-down trends between
changepoints.

identifies changepoints, which can be used for further smoothing, either
with ATS or with other methods; e.g. knots in splines

Simple use: find patterns

Smoothing Parameter

The smoothing parameter ***

Changepoints

*** mentioned use of changepoints for further smoothing.
*** how about for a second ATS smoothing
Figure 5.7 shows an ATS smooth of the changepoints identified in a pre-

vious ATS smooth of the raw data.

Evolution in Time

5.4.5 Smoothing Splines

Splines are piecewise polynomials each of which approximate data over some
region and connects smoothly with the adjoining polynomials. If the approx-
imations are exact, that is, if the polynomials interpolate the data, the set of
polynomials is called an interpolating spline.

Figure 5.9 shows a cubic smoothing spline fit changepoints identified by
ATS smooth for the knots.

Exercises: Nonparametric Analysis of Time Series

5.4.1. xxx.
5.4.2. yyy.
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Simple Time Series; 37 Observations
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Figure 5.4. ATS of Various Step Sizes for the Examples
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Figure 5.5. Effect of Different Smoothing Parameters
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IBM Daily Closes; 1100 Observations; Step Size 1100
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Figure 5.6. Very Wide Window on a Long Time Series
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Figure 5.7. ATS Fit to ATS-Identified Changepoints
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Figure 5.8. The Evolution of an ATS Fit over Time
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Figure 5.9. Cubic Spline Fit Using ATS-Identified Changepoints as Knots ***
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Bayesian Analysis in R

intro... Kruschke (2015), Doing Bayesian Data Analysis. A Tutorial with R,
JAGS, and Stan

6.1 Bayesian Analysis

In the Bayesian paradigm for data analysis, all variables in the model are
random variables; some observable, and some latent. Model parameters are
unobservable, but random, so statistical inferences concern the probability
distributions of the parameters.

The model begins with a probability distribution that expresses beliefs
about the properties of the random parameters, and a conditional probability
distribution of the observables, given the parameters. The analysis involves
forming joint and marginal distribution from those two distributions, so as
to form a conditional probability distribution of the parameters, given the
observations. (This process is outlined in Section ?? beginning on page ??.)
The observed data are then plugged into this conditional distribution to form
the “posterior distribution”, which is the basis for any inferences about the
parameters.

A problem with performing a Bayesian analysis is the step in forming the
marginal distribution of the observables, which may involve a rather com-
plicated integration. Rather than forming this distribution analytically, the
standard way of doing it is to use Monte Carlo simulation, in particular, to
identify a Markov chain whose stationary distribution is the posterior distri-
bution of interest and then simulate it. There are several ways this simulation
can be performed. Techniques of this type are called Markov chain Monte
Carlo (MCMC). A major problem with this procedure arises from the diffi-
culty in determining when a stationary distribution has been identified. Much
of the computational effort in using MCMC for Bayesian analysis is devoted to
assessing the analysis process, rather than to the analysis itself. These issues
are discussed further in Section ?? beginning on page ??.
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Another practical problem with performing a Bayesian analysis is the com-
plexity of communicating with computer software to specify the model. One
of the more successful software systems for Bayesian analysis was developed in
the MRC Biostatistics Unit at the University of Cambridge. There are various
versions of the software, all having a name that includes “BUGS” (Bayesian
inference Using Gibbs Sampling), such as WinBUGS and OpenBUGS (see
Lunn et al., 2012). A similar program, called JAGS (“Just Another Gibbs
Sampler”), was developed by Martyn Plummer. It uses essentially the same
model description language, but was developed independently of the BUGS
project and is open source (available from SourceForge).

The BUGS and JAGS programs can be run as standalone systems, but
for the power and flexibility for general data manipulations, the programs can
be executed from within R. There are various R packages to facilitate this,
but none are completely self-contained. A BUGS or JAGS executable must be
available in a place where R can invoke it. The appropriate excecutable may
be found by searching the internet. The program that I use is JAGS. There
are various R packages to incorporate it into R; the one I use is rjags.

BUGS and JAGS share a clunky design that requires an external text file
that specifies the model, which can be represented as a directed acyclic graph
(DAG).

The BUGS/JAGS language is somewhat similar to the R language, but
it has some functions with the same or similar names that have different
meanings for the arguments. There is also a class of functions that specify a

distribution. The names of these functions all begin with “d”, and the other
component is a mnemonic similar to the R functions for probability distri-
butions (Table ??). For example, in the BUGS/JAGS language, dnorm just
means “the normal distribution”, not the CDF of the normal distribution,
as in R. BUGS/JAGS provides many common distributions. These distribu-
tions are used in the model statement to specify how a particular variable is
distributed.

An important difference in the BUGS/JAGS functions that specify a dis-
tribution and the R functions that evaluate distributional functions is that
arguments of some BUGS/JAGS functions may specify a precision, whereas
the corresponding R functions specify a standard deviation. (The term “pre-
cision” is used in various ways in statistics, often in a nontechnical, general
sense. It is quantified in two different ways in the literature. In one definition,
it is the reciprocal of the standard deviation; in the other, it is the recipro-
cal of the variance. In most literature on Bayesian methods, including the
BUGS/JAGS language, it is the reciprocal of the variance.)

BUGS/JAGS : dnorm(mu, tau) ⇔ R : prenorm(arg , mu, 1/sqrt(tau))

The text file specifying the model is saved in an accessible directory with
a filename extension of “bug”.

After defining the model using the BUGS/JAGS language and storing
the file in the R working directory, we can process it, and use it to analyze
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data using R commands. The R function jags.model in the rjags package
performs the usual BUGS/JAGS operations using the appropriate executable
file. The function requires starting values, which can be obtained by ordinary
R functions. The R function coda.samples in the rjags package organizes
the output into an object of class mcmc.list, and the standard R function
summary displays the output.

CODA (“Convergence Diagnostic and Output Analysis”) is a software
system that monitors and reports on the MCMC performance in the analysis.
There are separate versions of CODA that are incorporated into JAGS and
the various versions of BUGS. There are many types of diagnostic output
about the performance of the method of analysis, which is not the same as the
analysis itself.

6.2 MCMC Methods

6.3 R Packages
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Linear Algebra and Linear Models with R

intro ...
assumed to know basic definitions
inner products, norms, metrics
The matrixcalc package contains many useful functions for working with

matrices.

7.1 Matrix Transformations and Factorizations

the pracma package provides many of the rich set of Matlab matrix computa-
tions

7.2 Eigenanalysis

7.3 Linear Systems of Equations

7.4 Linear Regression Models

A simple example is linear regression.
Linear regression models are smoothers.
Given a set of observations on a number of possibly related variables, we

may assume an asymmetric model of the relationships in which one variable,
y, is linearly “dependent” on the other variables, x1, x2, . . . , xm:

yi = β0 + β1x1i + · · ·+ βmxmi + εi, (7.1)

where εi is a random “error” term accounting for the fact that the relation
between y and x1, x2, . . . , xm is not exact. When the model (7.1) is fit to data,

that is, specific values of the βs, β̂0, β̂0, . . . , β̂m, are chosen or estimated, then
the fitted ys, ŷi, are “smoother”. The smoothed ys all on the hyperplane
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yi = β̂0 + β̂1x1i + · · ·+ β̂mxmi. (7.2)

*** missing value options ****promise
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Optimization and Applications in R

intro ...

8.1 Finding Roots of Equations

8.2 Unconstrained Descent Methods

8.3 Unconstrained Combinatorial Methods

8.4 Constrained Optimization
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Big Data and High Performance Computing in

R

In this section we will briefly consider some of the issues in handling big data.
There are two main considerations, speeding up the computations and com-
puter memory usage. We not cover those methods in any detail; for more infor-
mation we refer the interested reader to Kane, Emerson, and Weston (2013),
or other sources on high-performance and distributed computing.

9.1 Long Vectors

Because the elements of arrays are accessed by integer indexes, the dimensions
of arrays are generally limited by the maximum size of integers supported by
the computing platform. Computing systems are characterized by their “word
size”, which is the number of bits used in the basic representation of numeric
quantities. In some systems, called “32-bit systems”, the number is 32. In
“64-bit systems”, which are now the most common ones. the number is 64.
The word size places a limit on the magnitude and precision of the numbers
that can be represented in the computer. In a 32-bit system, a scheme for all
representing signed integers with any given magnitude up to some maximum,
that maximum is obviously 231−1. Many 64-bit systems also lack support for
integers larger than 231 − 1, although that limit is not due to the hardware.

Software systems such as R generally have to provide special support for
arrays with dimensions greater than 231 − 1. R has limited support for such
large arrays, called generically “long vectors”.

9.2 Parallel Processing

Advances in the design and construction of the central processing unit steadily
increase computational speed. Even greater increases in speed can be achieved
by performing operations in parallel. Some tasks, such as data access and
numerical computations, can easily be performed in parallel. It is because
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the are very different kinds of operations. In a given task, some numerical
computations can be performed in parallel because they are independent of
each other. Even if a set of numerical computations are dependent on each
other, there may be some subsets that can be performed in parallel. Cross
validation and use of the bootstrap are two examples of statistical analyses
that are computationally intensive, with substantial amounts of repetitive
computations.

Most computers have multiple “cores” or processing units. These are gen-
erally just used on separate jobs or on different types of tasks in a single job. In
order to make use of them for numerical computations in a single job the pro-
gram itself must be structured to fork off separate sequences of computations.
It is also often necessary for the user to provide some ad hoc directives.

An R package that provides a facility for parallel processing is the foreach
package. The package includes a directive, foreach, that allows the user to
specify that a function or a group of operations are to be performed in parallel
over separate cores. An example of one form of the command is

foreach(i in I, j in J) %dopar% parfun(i,j,x)

where parfun is some function to be executed in parallel. The foreach func-
tion also provides options for combining the outputs of the function after
execution.

The foreach directive requires a “parallel backend” to distribute the tasks
over the separate processors. The parallel backend must be loaded and must
be “registered”, or otherwise all operations specified by foreach will be exe-
cuted serially. The doMC package provides a parallel backend for the foreach

package, and the registerDoMC function in the doMC package registers the
backend and specifies the number of cores to be used, if they are available. An
example of statements that must precede invocation of the foreach directive
is shown below.

library(foreach)

library(doMC)

registerDoMC(4)

The standard processing unit in a computer is called a central processing
unit (CPU) and may consist of one or a small number of cores. On the other
hand, a graphical processing unit or GPU may contain thousands of cores.
When GPUs were first introduced by Nvidia Corporation, the cores only per-
formed very simple operations (essentially, just addition). Over time Nvidia
has developed GPUs further to perform more general arithmetic operations,
and has integrated GPUs with CPUs in a “compute unified device architec-
ture”, or CUDA. “CUDA” now refers to a programming interface at both a
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low and a high level to allow programs to utilize an architecture that combines
GPUs and CPUs. Some computations are very simple to set up and perform
using CUDA, and many financial research firms make heavy use of GPUs,
especially in simulations of trading scenarios. There are some R packages (for
example, gpuR) designed to provide partial interfaces to CUDA, but at this
time (2019), it is not straightforward to integrate any significant number of
R facilities into a GPU environment. This will change, however.

9.3 Distributed Computing

Statistical analyses increasingly rely on data from disparate sources. In this
book we refer to only a few standard sources, and the access to them is
straightforward. Other financial analyses may involve data that are stored at
multiple sites and that are being updated continually.

In the examples in this book, all processing of the data is done on a sin-
gle machine (my computer), but in many applications, the processing is dis-
tributed over the locations where the data are stored. Tools, such as Hadoop
and Spark, have been developed that facilitate use of R or other analysis pro-
grams on multiple datasets and on multiple processors. We refer the interested
reader to a book on this subject such as Parsian (2015).

9.4 Use of Compiled Program Units

When a program executes slowly, it is often because only a few statements are
requiring an inordinate amount of time. These statements may be in a loop.
To improve the computational efficiency of a program, the first thing is to
identify the statements in the program that are taking most of the time. How
to do this profiling, of course, depends on the programming system. There is
a good profiling system for R called lineprof. I will not discuss its use here,
but rather refer the interested reader to Wickham (2019), Chapter 23.

R performs a computation by first interpreting the user’s R statement
requesting the computation, and then sending the actual instruction to do
the computation to the computer. The interpretation step takes time, which
can be eliminated by processing the user’s initial request along with the user’s
other requested computations, and submitting the compiled requests as one
task. The mechanism for doing this is the use of a compiled programming
language such as Fortran or C.

Exactly how to link a program written in Fortran, C, or some other com-
piler language into R depends on the operating system and the compiler/linker
for the other language. A very useful R package called Rcpp, developed by Dirk
Eddelbuettel and others facilitates the linkage of C++ programs into R. In
fact, using the cppFunction function in Rcpp, the C++ code can be written
inline, and cppFunction does the compilation and linkage automatically. Only
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a few things are necessary to do prior to using Rcpp. On Microsoft Windows
systems, for example, the only thing required is to obtain Rtoolsxx.exe from
CRAN and execute it. ( Here, “xx” is the version number. Because Rtools

interacts so intimately with the R system, the version number of Rtools must
be compatible with the version of R itself.) Rtools includes a C++ compiler
and other necessary components. Eddelbuettel (2013) provides a complete
reference for the use of Rcpp.

Figure 9.1 shows an example of the use of cppFunction to form a function
that does the same thing as the function in Figure 1.1 on page 17. The Rcpp

package uses a class called NumericVector with an obvious meaning, and
other classes for vectors with similar names.

library(Rcpp)

cppFunction("NumericVector myFunC(double x1,double y1, double x2,double y2,

NumericVector x) {
// Given the points (x1,y1) and (x2,y2) and a set of abscissas x,

// determine the ordinates at x for the line that goes through all of them.
int n = x.size();

NumericVector y(n);

double slope = (y2-y1)/(x2-x1);

double intercept = y1 - slope*x1;

for (int i = 0; i<n; ++i) {
y[i] = slope*x[i] + intercept;

}
return(y);

}")

Figure 9.1. A Simple Function in C++; Compare Figure 1.1

Two things to remember when programming in C++: array indexes start
at 0; statements are terminated by “;”. (This is not rocket science, but it’s
one reason I use Fortran instead of C++ as my programming language. It
may be why C++ programmers don’t like Fortran.)

After the code in Figure 9.1 has been processed by R, the function myFunC

is available for use. This function does the same thing as the function myFun

written in R and shown in Figure ??. After that function has been processed,
it is also available for use, and Figure 9.2 shows both of these functions being
executed. (In this case, these functions take the pair of points (0,1) and (5,11)
and determine the straight line, y = a+bx, that goes through these two points.
Then, at x = 1, 2, 3 the function determines the corresponding y values that
are on the line. The other points on the line are (1,3), (2,5), and 3,7).)
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> x1<-0; y1<-1; x2<-5; y2<-11

> x <- c(1, 2, 3)

> myFun(x1, y1, x2, y2, x)

[1] 3 5 7

> myFunC(x1, y1, x2, y2, x)

[1] 3 5 7

Figure 9.2. Execution of myFun (Figure 1.1) and myFunC (Figure 9.1)

Exercises: Incorporating C++ into R

Incorporating a C++ function into R.
Install Rcpp and Rtools or any other system software necessary on
your system (or get somebody else to do it), and then write a C++
function to determine the sum of the elements in a numeric vector in
R.

9.5 Memory Management

Data are stored in a computer’s random-access memory (RAM) prior to and
after performing computations on the data. The size of the RAM of course
varies with the computer. If the amount of data in an analysis exceeds the size
of the RAM, then the data must be swapped in and out of RAM from and to
external memory, such as a “hard drive”. The term “big data” is often used
to refer to an amount of data that exceeds the size of the RAM on a given
computer. In this sense, it depends on the available computing resources. “Big
data” is also applied to an amount of data that requires an excessive amount
of computational time. Obviously, these are rather vague meanings, but it is
not important for me to try to be more precise. We will use the term in this
general way.

None of the examples used in this book, such as daily stock prices even
going back a century or more, would even be close to being considered big
data. Every stock transaction of every publicly-traded stock over a period of
a year or so does constitute big data.

To determine how much computer memory is being used by an R object,
the R package pryr provides two useful functions, object size and mem used

with obvious uses. Figure 9.3 illustrates their usage. (Note also the use of ls
and mget from the base package.)

We note that the xts OHLC data frame DJId, which we have used in sev-
eral examples, takes up only 439 kilobytes of memory, even though it contains
data for 31 years. Each datum in an R object takes up a known amount of

R for Data Science and Applications in Finance James E. Gentle



204 9 Big Data and High Performance Computing in R

> library(pryr)

> library(quantmod)

> DJId <- getSymbols("^DJI", env=NULL, from="1987-1-1",

+ to="2017-12-31", periodicity="daily", warnings=FALSE)

> object_size(DJId)

439 kB

> object_size(mget(ls())) # the output depends on the current R session
3.64 MB

> mem_used() # the output depends on the current R session
48.4 MB

Figure 9.3. Functions in pryr for Memory Information

space, integers, 4 bytes; real numbers, 8 bytes; dates, 4 or 8 bytes; and so on.
Knowing this, is is possible to determine approximately how much memory
any R object will occupy. (I say “approximately” for two reasons; there is a
small amount of slop associated with any object, and secondly, object size

does not return an exact amount.) In the case of the daily Dow Jones xts

OHLC data frame there are 6 columns of real numbers taking up 8 bytes
each and 1 column of labels taking up 8 bytes in this case. For 31 years with
approximately 253 days per year, we have

253× 31× 8(6 + 1) = 439, 208,

which is close to the reported value of 439 KB. (Note that object size calls
the units “kB”.)

Occasionally, of course, we do encounter datasets that are too big to fit
in memory. Two R packages that allow for data to be swapped in and out of
memory are bigmemory and ff. The ff package produces an R object of class
ffdf. A simple function that inputs an ffdf object, from a CSV file or other
tabular format, is read.table.ffdf.

Another approach to handling large dataset is to use the database manage-
ment system MySQL. The R package RMySQL provides a convenient interface
for this. Database management systems typically do not store the data in
memory.

Finally, I will mention a version of the lm function that processes the data
in chunks. It is the biglm function in the biglm package. The methods for
performing linear least squares computations have been a staple of statistical
computing for years.
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Solutions to Selected Exercises

Some exercises require use of a browser to navigate the web and perform cer-
tain activities within the browser. These are generally straightforward exer-
cises, and no solutions are provided here. The general rule for solving problems
of this type is to try things until the solution is found. This is the approach
that is used by “tech savvy” children.

Exercises beginning on page 8

1.1.1a Using help.search("principal components"), we find stats::prcomp

and stats::princomp, both in the basic stats package.
1.1.1b Using help(prcomp) and help(princomp), we find that the main dif-

ference is that prcomp allows either raw data or a covariance/correlation
matrix to be input and prcomp requires raw data. There are also several
relatively minor differences, including for example, whether n or n − 1 is
used in the computation of a covariance matrix from the raw data input.
(This does not change the computation of a correlation matrix.

1.1.2 The %in% operator is a binary logical operator that returns TRUE if the
first operand is included at the primary level in the second operand; other-
wise, it returns FALSE. A simple example is with x being a numeric vari-
able with the value 3, and d being an atomic vector with value (1,2,3).
The expression x%in%d is TRUE. Likewise if e is the list (1,"a",3,"b")
The expression x%in%e is TRUE.
More examples are seen in the following. The primary objects at the first
level of the second operand object are the elements of the set.

> f <- list(1,c(2,3),list(1,"a"),"b")

> 1 %in% f

[1] TRUE

> 2 %in% f

[1] FALSE

> 5 %in% f
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[1] FALSE

> "a" %in% f

[1] FALSE

> "b" %in% f

[1] TRUE

The components of the first operand object are treated as atomic elements
to which the operator is applied sequentially.

> c(1,2) %in% f

[1] TRUE FALSE

> c(2,3) %in% f

[1] FALSE FALSE

> "a" %in% f

[1] FALSE

> list(1,"a") %in% f

[1] TRUE FALSE

> "b" %in% f

[1] TRUE

Exercises beginning on page 44

1.2.1a Let i be the index into x. The expression is

assign(paste("x",x[i],sep=""), x[i])

We can test it as follows.

> x <- c("d","c","b","a")

> for (i in 1:4) assign(paste("x",x[i],sep=""),x[i])

> xd

[1] "d"

> xc

[1] "c"

1.2.1b Let i be the index into x. The expression is

assign(paste("x",as.character(i),sep=""),x[i])

We can test it as follows.

> x <- c("d","c","b","a")

> for (i in 1:4) assign(paste("x",as.character(i),sep=""),x[i])

> x1

[1] "d"

> x2

[1] "c"

1.2.2a 2*(1:10)

1.2.2b 2*(1:10)-1

1.2.2c (2*(1:10)-1)^2
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1.2.2d sqrt(2*(1:10)-1)

1.2.2e 1:40/2

1.2.3

evens <- function(x1,x2)

if (x1>x2) return(NULL)

return(2*((ceiling(x1/2)):((floor(x2/2)))))

> x1 <- -2.5

> x2 <- 4.5

> evens(x1,x2)

[1] -2 0 2 4

> evens(x1+10,x2)

NULL

1.2.4a

> xf <- factor(c("d","c","b","a"))

> as.character(xf[3])

[1] "b"

1.2.4b

> yf <- factor(1:4)

> 7*as.numeric(yf[3])

[1] 21

1.2.5

> n <- 500

> xm <- 5.333333

> print(paste("The mean of ", as.character(n), " random numbers is ",

as.character(round(xm,2)), sep=""))

[1] "The mean of 500 random numbers is 5.33"

1.2.6
1.2.7

if (is.na(x)) x <- 0

is.na() is TRUE for both NaNa ans NAs.

Exercises beginning on page 93

1.3.1
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> x <- c(3,4,5,7,8,9,10)

> y <- x[x%%4==0]

> z <- x[x%%4!=0]

> y

[1] 4 8

> z

[1] 3 5 7 9 10

1.3.2

A <- matrix(c(3,2, 2,7), nrow=2, byrow=TRUE)

B <- matrix(c(1,2,3, 4,5,6), nrow=2, byrow=TRUE)

x <- c(2,4)

y <- c(-3,1)

z <- c(1,2,3)

> A*A

[,1] [,2]

[1,] 9 4

[2,] 4 49

> A%*%A

[,1] [,2]

[1,] 13 20

[2,] 20 53

> t(A)%*%A

[,1] [,2]

[1,] 13 20

[2,] 20 53

> t(A)*A

[,1] [,2]

[1,] 9 4

[2,] 4 49

> x*x

[1] 4 16

> t(x)%*%x

[,1]

[1,] 20

> x%*%t(x)

[,1] [,2]

[1,] 4 8

[2,] 8 16

> t(y)%*%x

[,1]

[1,] -2

> x%*%t(y)

[,1] [,2]

[1,] -6 2

[2,] -12 4

> t(x)%*%A%*%y

[,1]

[1,] -10

> t(y)%*%A%*%x

[,1]

[1,] -10
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> A%*%B

[,1] [,2] [,3]

[1,] 11 16 21

[2,] 30 39 48

> t(B)%*%A

[,1] [,2]

[1,] 11 30

[2,] 16 39

[3,] 21 48

1.3.3a

> set.seed(12345)

> prmon <- ts(round(rnorm(17),2)+100, start=c(2020,5), frequency=12)

> prhimon <- prmon+5

> prlomon <- prmon-5

> volmon <- ts(round(3*rnorm(17))+10000, start=c(2020,5), frequency=12)

> prmon

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2020 100.59 100.71 99.89 99.55 100.61 98.18 100.63 99.72

2021 99.72 99.08 99.88 101.82 100.37 100.52 99.25 100.82 99.11

> prhimon

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2020 105.59 105.71 104.89 104.55 105.61 103.18 105.63 104.72

2021 104.72 104.08 104.88 106.82 105.37 105.52 104.25 105.82 104.11

> prlomon

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2020 95.59 95.71 94.89 94.55 95.61 93.18 95.63 94.72

2021 94.72 94.08 94.88 96.82 95.37 95.52 94.25 95.82 94.11

> volmon

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2020 9999 10003 10001 10002 10004 9998 9995 9995

2021 10005 9999 10002 10002 10000 10002 10007 10006 10005

1.3.3b

> strtyr <- start(prmon)[1]

> strtmo <- start(prmon)[2]

> endyr <- end(prmon)[1]

> endmo <- end(prmon)[2]

> ind1 <- strtmo:(12*(endyr-strtyr)+endmo)

> ind <- ind1[ind1%%3==0]

> prqrt <- ts(prmon[ind+1-strtmo], start=c(strtyr,ceiling(strtmo/3)),

+ frequency=4)

> prqrt

Qtr1 Qtr2 Qtr3 Qtr4

2020 100.71 100.61 99.72

2021 99.88 100.52 99.11

1.3.3c

> strtyr <- start(prhimon)[1]

> strtmo <- start(prhimon)[2]

> prhiqrt <- aggregate(window(prhimon, start=c(strtyr,3*ceiling(strtmo/3)+1)),

+ nfrequency=4, FUN=max)
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> prhiqrt

Qtr1 Qtr2 Qtr3 Qtr4

2020 105.61 105.63

2021 104.88 106.82 105.82

1.3.3d

> strtyr <- start(prlomon)[1]

> strtmo <- start(prlomon)[2]

> prloqrt <- aggregate(window(prlomon, start=c(strtyr,3*ceiling(strtmo/3)+1)),

+ nfrequency=4, FUN=min)

> prloqrt

Qtr1 Qtr2 Qtr3 Qtr4

2020 94.55 93.18

2021 94.08 95.37 94.11

1.3.3e

> strtyr <- start(volmon)[1]

> strtmo <- start(volmon)[2]

> volqrt <- aggregate(window(volmon, start=c(strtyr,3*ceiling(strtmo/3)+1)),

+ nfrequency=4, FUN=sum)

> volqrt

Qtr1 Qtr2 Qtr3 Qtr4

2020 30007 29988

2021 30006 30004 30018

1.3.3f

> ts.intersect(prqrt, prhiqrt, prloqrt, volqrt)

prqrt prhiqrt prloqrt volqrt

2020 Q3 100.61 105.61 94.55 30007

2020 Q4 99.72 105.63 93.18 29988

2021 Q1 99.88 104.88 94.08 30006

2021 Q2 100.52 106.82 95.37 30004

2021 Q3 99.11 105.82 94.11 30018

1.3.4a

meanwts <- tapply(Xdf$weight, sizes, mean)

1.3.4b Here, we assume that the index of the factor levels is specified as i.

print(paste("The mean weight of the ",

as.character(levels(sizes)[i]), " items is ",

as.character(round(as.numeric(meanwts[i]),2)), sep=""))

Here is a test.

> sizes <-factor(

c("medium","large","small","medium","small","medium","large"))

> weight <- c(2,4,3,2,3,4,7)

> Xdf <- data.frame(sizes, weight)

> meanwts <- tapply(Xdf$weight, sizes, mean)
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> # print the mean corresponding to "medium",

> # that is, the second level

> i <- 2

> print(paste("The mean weight of the ",

+ as.character(levels(sizes)[i]), " items is ",

+ as.character(round(as.numeric(meanwts[i]),2)), sep=""))

[1] "The mean weight of the medium items is 2.67"

1.3.5

Date <- as.Date(c(rep("2018-12-31",5),rep("2019-12-31",5)))

Sector <- factor(rep(c("Tech", "Fin", "Fin", "Tech", "Tech"),2))

Stock <- rep(c("AAPL", "BAC", "COF", "INTC", "MSFT"),2)

Price <- c(157.74, 24.64, 75.59, 46.93, 101.57,

293.68, 35.26, 103.06, 59.93, 157.77)

Stocks <- data.frame(Date, Sector, Stock, Price)

Stocks

We get

Date Sector Stock Price

1 2018-12-31 Tech AAPL 157.74

2 2018-12-31 Fin BAC 46.93

3 2018-12-31 Fin COF 101.57

4 2018-12-31 Tech INTC 24.64

5 2018-12-31 Tech MSFT 75.59

6 2019-12-31 Tech AAPL 157.74

7 2019-12-31 Fin BAC 46.93

8 2019-12-31 Fin COF 101.57

9 2019-12-31 Tech INTC 24.64

10 2019-12-31 Tech MSFT 75.59

1.3.6

> splits <- split(Stocks,Stock)

> D1 <- splits[[1]][-c(2,3)]

> names(D1) <- c("Date", as.character(Stocks$Stock[1]))

> D2 <- splits[[2]][-c(2,3)]

> names(D2) <- c("Date", as.character(Stocks$Stock[2]))

> D3 <- splits[[3]][-c(2,3)]

> names(D3) <- c("Date", as.character(Stocks$Stock[3]))

> D4 <- splits[[4]][-c(2,3)]

> names(D4) <- c("Date", as.character(Stocks$Stock[4]))

> D5 <- splits[[5]][-c(2,3)]

> names(D5) <- c("Date", as.character(Stocks$Stock[5]))

>

> Prices <- merge(merge(merge(merge(D1,D2,by="Date"),

+ D3,by="Date"),D4,by="Date"),D5,by="Date")

> Prices

Date AAPL BAC COF INTC MSFT

1 2018-12-31 157.74 24.64 75.59 46.93 101.57

2 2019-12-31 293.68 35.26 103.06 59.93 157.77

1.3.7 We assume that there is a data frame named Prices, as constructed in
Exercise 1.3.6.
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> libray(xts)

> Pricesxts <- xts(Prices[, -1], order.by=Prices$Date)

> Pricesxts

AAPL BAC COF INTC MSFT

2018-12-31 157.74 24.64 75.59 46.93 101.57

2019-12-31 293.68 35.26 103.06 59.93 157.77

1.3.8a

Dates <- as.Date(c("2020-05-31","2020-06-30","2020-07-31","2020-08-31",

"2020-09-30","2020-10-31","2020-11-30","2020-12-31",

"2021-01-31","2021-02-28","2021-03-31","2021-04-30",

"2021-05-31","2021-06-30","2021-07-31","2021-08-31",

"2021-09-30"))

for (i in 1:length(Dates))

if (weekdays(Dates[i])=="Sunday") Dates[i] <- Dates[i] - 2

if (weekdays(Dates[i])=="Saturday") Dates[i] <- Dates[i] - 1

> Dates

[1] "2020-05-29" "2020-06-30" "2020-07-31" "2020-08-31" "2020-09-30" "2020-10-30"

[7] "2020-11-30" "2020-12-31" "2021-01-29" "2021-02-26" "2021-03-31" "2021-04-30"

[13] "2021-05-31" "2021-06-30" "2021-07-30" "2021-08-31" "2021-09-30"

1.3.8b

set.seed(12345)

A.Open <- round(rnorm(17),2)+100

A.Close <- A.Open

A.High <- A.Close+5

A.Low <- A.Close-5

A.Volume <- round(3*rnorm(17))+10000

1.3.8c

> library(quantmod)

> Adata <- xts(cbind(A.Open, A.High, A.Low, A.Close, A.Volume),

+ order.by=Dates)

> Adata

A.Open A.High A.Low A.Close A.Volume

2020-05-29 100.59 105.59 95.59 100.59 9999

2020-06-30 100.71 105.71 95.71 100.71 10003

2020-07-31 99.89 104.89 94.89 99.89 10001

2020-08-31 99.55 104.55 94.55 99.55 10002

2020-09-30 100.61 105.61 95.61 100.61 10004

2020-10-30 98.18 103.18 93.18 98.18 9998

2020-11-30 100.63 105.63 95.63 100.63 9995

2020-12-31 99.72 104.72 94.72 99.72 9995

2021-01-29 99.72 104.72 94.72 99.72 10005

2021-02-26 99.08 104.08 94.08 99.08 9999

2021-03-31 99.88 104.88 94.88 99.88 10002

2021-04-30 101.82 106.82 96.82 101.82 10002

2021-05-31 100.37 105.37 95.37 100.37 10000
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2021-06-30 100.52 105.52 95.52 100.52 10002

2021-07-30 99.25 104.25 94.25 99.25 10007

2021-08-31 100.82 105.82 95.82 100.82 10006

2021-09-30 99.11 104.11 94.11 99.11 10005

1.3.8d

> to.period(Adata, "quarters")

Adata.Open Adata.High Adata.Low Adata.Close Adata.Volume

2020-06-30 100.59 105.71 95.59 100.71 20002

2020-09-30 99.89 105.61 94.55 100.61 30007

2020-12-31 98.18 105.63 93.18 99.72 29988

2021-03-31 99.72 104.88 94.08 99.88 30006

2021-06-30 101.82 106.82 95.37 100.52 30004

2021-09-30 99.25 105.82 94.11 99.11 30018

1.3.8e

> Adata["2020"]

A.Open A.High A.Low A.Close A.Volume

2020-05-29 100.59 105.59 95.59 100.59 9999

2020-06-30 100.71 105.71 95.71 100.71 10003

2020-07-31 99.89 104.89 94.89 99.89 10001

2020-08-31 99.55 104.55 94.55 99.55 10002

2020-09-30 100.61 105.61 95.61 100.61 10004

2020-10-30 98.18 103.18 93.18 98.18 9998

2020-11-30 100.63 105.63 95.63 100.63 9995

2020-12-31 99.72 104.72 94.72 99.72 9995

Exercises beginning on page 120

1.4.1 The actual values generated depend on the seed when the statements
are executed.

> libray(e1071)

> x <- rnorm(100)

> skewness(x)

[1] 0.09904714

> kurtosis(x)

[1] -0.3086477

The kurtosis of the normal distribution is 3 and the excess kurtosis is
0. The e1071::kurtosis function computes the excess kurtosis, so the
computed value is consistent with the population value.
The skewness of the normal distribution is 0, so the computed value is
consistent with that value.

1.4.2 For the two-sided test: 2*pt(tcomp,49).
For the one-sided test: 1-pt(tcomp,49).

1.4.4a
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BlackScholes <- function(type, S, K, r, Tt, sig)

if(type=="C")

d1 <- (log(S/K) + (r + sig^2/2)*Tt) / (sig*sqrt(Tt))

d2 <- d1 - sig*sqrt(Tt)

value <- S*pnorm(d1) - K*exp(-r*Tt)*pnorm(d2)

return(value)

if(type=="P")

d1 <- (log(S/K) + (r + sig^2/2)*Tt) / (sig*sqrt(Tt))

d2 <- d1 - sig*sqrt(Tt)

value <- (K*exp(-r*Tt)*pnorm(-d2) - S*pnorm(-d1))

return(value)

1.4.4b

> S <- 63.49

> K <- 65

> r <- 0.02

> Tt <- 37/365

> sig <- 0.33

> BlackScholes(type="C", S, K, r, Tt, sig)

[1] 2.055642

The Black-Scholes price based on the assumed volatility is $2.06.
1.4.4c For call options, we first write a function as in the text for use in the

uniroot() function.

fun <- function(x, S, K, r, Tt, Ct)

d1 <- (log(S/K) + (r + x^2/2)*Tt) / (x*sqrt(Tt))

d2 <- d1 - x*sqrt(Tt)

value <- S*pnorm(d1) - K*exp(-r*Tt)*pnorm(d2) - Ct

return(value)

1.4.4(c)i The stock price, the strike price, the risk-free rate, and the time
to expiry are the same as in Exercise 1.4.4b. We initiate theobserved
price of the call option, and then invoke uniroot().

> Ct <- 2.00

> uniroot(fun,interval=c(0.1, 4.0),S,K,r,Tt,Ct=2)

$root

[1] 0.3230405

The implied volatility is 0.32.
1.4.4(c)ii

> S <- 63.49

> K <- 65

> r <- 0.02
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> Tt <- 37/365

> Ct <- 2.00

1.4.4(c)iii

> S <- 63.49

> K <- 65

> r <- 0.02

> Tt <- 37/365

> Ct <- 2.00

1.4.5 To generate 100 standard normal random numbers and plot a his-
togram:

x <- rnorm(100)

hist(x, main="Histogram")

To generate 100 normal random numbers and plot a histogram:

y <- rnorm(100, mean=100, sd=10)

plot(x, y, main="Scatterplot")

The plots are shown below.
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1.4.6(a)i

> libray(pracma)

> factors(1000000)

[1] 2 2 2 2 2 2 5 5 5 5 5 5

1.4.6(a)ii

> factors(999999)

[1] 3 3 3 7 11 13 37

1.4.6(a)iii
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> head(primes(1000000), n=6)

[1] 2 3 5 7 11 13

> tail(primes(1000000), n=6)

[1] 999931 999953 999959 999961 999979 999983

1.4.6(a)iv

> isprime(999957)

[1] 0

999957 is not a prime
1.4.6(a)v

> isprime(999959)

[1] 1

1.4.6(a)vi

> isprime(999961)

[1] 1

999959 and 999961 are twin primes. How many twin primes are there?
1.4.6(a)vii

> sprintf("%.16e", fact(100))

[1] "9.3326215443944103e+157"

> sprintf("%.16e", factorial(100))

[1] "9.3326215443942249e+157"

1.4.6b

> bits(pi)

[1] "11.001001000011111101101010100010001000010110100011000000"

Exercises beginning on page 127

1.5.1 y ~ x1+I(x1^2)+I(x1^3)

1.5.2 y ~ 0+x1+x2+x1*x2+I(x1^2)+I(x1^2)

or
y ~ 0+(x1+x2)^2+I(x1^2)+I(x1^2)

Exercises beginning on page 137

1.6.1 The data frame created in Exercise 1.3.6 is called Prices.

setwd("c:/Books/Data/")

write.csv(Prices, "Prices.csv", row.names=FALSE)
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1.6.2 We create a data frame called Pricesdf. It is the same as Prices

> setwd("c:/Books/Data/")

> Pricesdf <- read.csv("Prices.csv")

> Pricesdf

Date AAPL BAC COF INTC MSFT

1 2018-12-31 157.74 24.64 75.59 46.93 101.57

2 2019-12-31 293.68 35.26 103.06 59.93 157.77

1.6.3a

library(quantmod)

z <- getSymbols("INTC", env=NULL, from="2017-1-1",

to="2017-10-1", periodicity="daily")

prices <- as.numeric(z[,4])

plot.ts(prices, main="INTC Daily Closing Prices")

The plot is shown below.
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1.6.3b Using the data from the previous exercise, we have

sreturn <- diff(prices)/prices[-1]

plot.ts(sreturn, main="Simple Returns")

hist(sreturn, main="Simple Returns")

The plots are shown below.
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Simple Returns
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1.6.3c

logreturn <- diff(log(prices))

plot.ts(logreturn, main="Log Returns")

hist(logreturn, main="Log Returns")

The plots are shown below.
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1.6.4

xxx<-getSymbols("WTB3MS", src="FRED", env=NULL)

yyy<-getSymbols("WGS10YR", src="FRED", env=NULL)

plot.ts(as.numeric(xxx["2000/",1]), col="red", ylab="Rates (Percent)",

xlab="Weeks (from 2000-01-01)",

main="Rates on 3-Month T-Bills and 10-Year Treasuries")

lines(as.numeric(yyy["2000/",1]), col="blue")

xxx[xxx<0,1]

The plot is shown below.
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Rates on 3−Month T−Bills and 10−Year Treasuries
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The yield curve defined in terms of the 3-month and 10-year was briefly
inverted at three times during this period.
The weekly rate on the 3-Month T-Bill was negative on one occasion.
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Φ(·), 107
φ(·), 107
4(xt), 100, 168
N(µ,σ2), 124

ACF (autocorrelation function),
160–162, 170–171

aggregate data, 66
aggregated data, 143
annualized volatility, 165
API (application programming

interface), 44
application programming interface

(API), 44
apply (R function), 60
by(), 77
tapply(), 77

as.Date (R function), 32, 131
assertive (R package), 17
assignment function, statement, 9
autocorrelation function (ACF),

160–162, 170–171
sample, 170–171

autocorrelation function (PACF), 171
sample, 171

autocovariance function, 160, 161,
170–171

sample, 170–171
autoregressive model, 166

backshift operator, B, 168
barchart, 112
Bayesian model, 191–193

big data, 199–204
bigmemory (R package), 204
Bioconductor, 2

Black Monday (October 19, 1987), 35
Black Thursday (October 24, 1929), 35

Black Tuesday (October 29, 1929), 35
bootstrap, 200
Brownian bridge, 151

simulation, 151
Brownian motion, 151

simulation, 151
browser (R function), 17

BUGS (software), 192
by (R function), 77

candlestick graphic, 85, 119

categorical variable, 20, 22, 73, 90
changepoint, 173
character data, 28–31

chi-squared distribution, 106
class (R object), 46

cleaning data, 135–137
comma separated file (CSV), 129–131
complex data, 25–28

conditional, 12
contingency table, 90

contour plot, 154
CRAN (Comprehensive R Archive

Network), 2, 43
cross validation, 200

CSV file (comma separated file),
129–131
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CUDA, 201

data cleansing, 135–137
data frame, 70–81

join, 76
merge, 76
merging, 81
splitting, 77, 81
tall, 80
wide, 80

data type
character, 28–31
complex, 25–28
date, 32–36
integer, 24
logical, 31
numeric, 23–25

data wrangling and munging, 135
date data, 32–36, 83, 130
as.Date (R function), 32, 131
ISO 8601, 32, 85
POSIX, 32, 85

demo(), 6
diff (R function), 90, 91, 101, 102, 169

on xts object, 90
difference operator, 4, 100
difference operator, 4 or (1− B), 168
diffusion process, 164
digits in numeric data, 24
distribution family

beta, 106
binomial, 106
Cauchy, 106
chi-squared, 106
Dirichlet, 106
double exponential, 106
exponential, 106
F, 106
gamma, 106
Gaussian, 105, 150
geometric, 106
hypergeometric, 106
Laplace, 106
logistic, 106
lognormal, 106
multinomial, 106
multivariate normal, 106
multivariate t, 106
negative binomial, 106

normal, 105, 106, 150
Pareto, 106
Poisson, 105, 106, 150
R functions for, 104, 106
stable, 106
t, 106
uniform, 106
Weibull, 106

dividend, 133, 134
getDividends (R function), 133, 134

double exponential distribution, 106
dplyr (R package), 168

e1071 (R package), 104
EWMA (exponentially weighted moving

average), 176, 182
Excel R©, 18, 131
exponentially weighted moving average

(EWMA), 176, 182

F distribution, 106
factor (R object), 22–23, 73–75
ff (R package), 204
folded kernel, 183
foreach, 200
formula in R, 126

Wilkinson-Rogers notation, 126
FRED, 132

Gaussian distribution, 105, 150
Gaussian white noise, 162
generating random numbers

quasirandom numbers, 149
generic function, 97
geometric random walk, 166
getSymbols (R function), 131–135

missing data, 136
GitHub, 2
GPU (graphical processing unit), 201
graphical processing unit (GPU), 201
graphics, 153–157

color, 156
layer, 153, 156
OHLC dataset, 85, 119
R, 153–157
scatterplot, 154
scatterplot matrix, 154
three-dimensional, 154
xts object, 157
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greatest integer function, 24
GUI, 1

help

demo(), 6
help.search(), 8
Task View, 3
vignette(), 7

high frequency data, 144
high performance computing, 199
histogram, 110–112, 140–141

bin width, 141
relative frequency, 112

HTTP(S), 132
Hypertext Transfer Protocol, 132

iid, 160
implied volatility, 109
inputting data from the internet
getSymbols, 131, 132

installing a package, 42
integer data, 24
Intel Math Kernel Library (MKL), 3
interpolating spline, 184
ISO 8601 date format, 32, 85

JAGS (software), 192
join datasets, 76

kernel density estimation, 112–114, 142,
154

kernel function, 113, 175
kernel smoothing, 183

folded kernel, 183
kurtosis

in R, 104

lag, 168
backshift operator, B, 168

Laplace distribution, 106
linear process, 163

one-sided, 163
loading a package, 43
log return, 90, 91, 165, 169

in R, 102
logical data, 31
logical operator, 11
lognormal distribution, 166
lognormal geometric random walk, 166

Markov chain Monte Carlo (MCMC),
193

Matlab, 18, 103, 195
matrix transpose, 55
MCMC, 193
merge (R function), 76, 81
merge datasets, 76
merging datasets, 81, 88
Microsoft Excel R©, 18, 131
Microsoft R Open, 3
missing data, 36–38, 136–137
missing value, 36–38
MKL (Intel Math Kernel Library), 3
model, 123–128

autoregressive, 166
estimation and fitting, 125
prediction, 126

model specification in R, 126
moving average

of white noise, 163
mts object, 61
munging data, 135
MySQL, 44

NA (“Not Available”), 36–38
NaN, 36

NaN (“Not a Number”), 36
normal distribution, 105, 150
numeric data, 23–25

precision, 24
Nvidia, 201

object, R, 46–47
class, 46
mode, 46
time series, 60
type, 46

Octave, 18, 103, 195
ODBC (Open DataBase Connectivity),

44
OHLC dataset, 85, 157
Open DataBase Connectivity (ODBC),

44
option, 133, 134

chain, 133, 134
getOptionChain (R function), 133,

134

PACF (autocorrelation function), 171
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package, 2, 42–44
installing, 42
loading, 43

parallel processing, 199
pipe, 13
Poisson distribution, 105, 150
POSIX, 32, 83
pracma (R package), 103, 104, 195
precision, 24, 192
round(), 24

probability distribution, 104–107
R functions for, 104, 106

pryr, 203
pseudorandom number, 149

quantmod (R package), 131, 132
quasirandom number, 149

R software, 1–138
$ (list extractor), 69, 71–73, 84
[[ (list extractor), 71
Bayesian methods, 191–193
big data, 199–204
browser(), 17
BUGS, 192
data frame, 70–81

from xts object, 82, 84
reshaping, 79
subsetting, 75

debugging, 17
environment, 38
factor, 22–23, 73–75
formula, 126
function, 46, 98–123
generic function, 46, 97
global options, 74
graphics, 110–119, 153–157

color, 156
three-dimensional, 154

GUI, 1
GUI app, 18
high performance computing, 199
inputting data, 128–135
linear algebra, 55–57
list, 68–70
log return, 102
long vector, 199
matrix, 55
matrixcalc, 195

merging datasets, 137
Microsoft R Open, 3
mts object, 61
object, 46–47

downcasting, 51, 57, 75
time series, 60

options, 74
package, 42–44
parallel processing, 199–200
pipe, 13
probability distributions, 104
quantmod, 131, 132
random number generation, 149

quasirandom number, 149
randtoolbox, 149

Rcpp, 201, 203
rjags, 192
RMySQL, 204
RStudio, 3, 18
Shiny, 18
table, 90–93
three-dimensional graphics, 154
time series, 168, 169
ts object, 61–68

merging, 68
subsetting, 65

TTR, 133, 135
vector, 20–21, 24–25
web technologies, 133, 135
xts object, 82–90

OHLC dataset, 85
zoo object, 82–90

R-Forge, 2
random number generation, 149

quasirandom number, 149
random walk, 164–166
cumsum (R), 165
multivariate, 167
with drift, 165

Random Walk Hypothesis, 165
Rcpp (R package), 201, 203
RCurl, 132
reserved word, 5
reshape array or matrix, 48, 55, 79, 93
return, 101, 102

compounding, 102
log, 102
log return, 165, 169
R functions for, 169
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simple, 101, 169
compounding, 102

RMySQL, 44
RMySQL (R package), 44, 204
RODBC (R package), 44
RStudio, 1, 3, 18

SACF (sample autocorrelation
function), 170–171

sample autocorrelation function
(SACF), 170–171

sample autocovariance function,
170–171

sampled data, 143
scatterplot

three-dimensional, 154
scatterplot matrix, 154
Shiny (R GUI apps), 18, 46, 121, 138
simple return, 169

in R, 101
simulating random numbers

quasirandom number, 149
skewness

in R, 104
special character, 5, 19
split (R function), 77, 81
splitting datasets, 77, 81
spreadsheet, 129–131
stable distribution, 106
statistical model, 123–128

estimation and fitting, 125
prediction, 126

t distribution, 106
location-scale, 106
multivariate, 106

tall dataset, 80
tapply (R function), 77
testthat (R package), 17
three-dimensional graphics, 154
tick data, 143
time series, 143–146

data structures, 61–68, 77, 82–90
Gaussian white noise, 162
geometric random walk, 166
linear process, 163
moving average of white noise, 163
multivariate random walk, 167
multivariate white noise, 167

object, 60
random walk, 164
random walk with drift, 165
ts object, 61–68

merging, 68
subsetting, 65

white noise, 162
xts object, 82–90, 157

OHLC dataset, 85
zoo object, 82–90

transpose of matrix, 55
ts object, 61–68

merging, 68
subsetting, 65

TTR (R package), 133, 135

Ulrich, Joshua, 133, 135
Uniform Resource Locator (URL), 132
URL (Uniform Resource Locator), 132

vectorized function, 21, 31, 98
vignette(), 7
volatility, 102

annualized, 165
implied, 109

white noise, 162
multivariate, 167
with drift, 163

wide dataset, 80
Wiener process, 151

simulation, 151
Wilkinson-Rogers notation, 127
working directory, 42
workspace image, 41
wrangling data, 135

XML, 132
xts object, 82–90, 157

changing time period, 88
forming from data frame, 83
merging, 88, 137
OHLC dataset, 85
plotting, 157
subsetting, 85

Yahoo Finance, 132–133, 136
missing data, 136

zoo object, 82–90
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