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Preface: Mathematical Statistics

After teaching mathematical statistics for several years using chalk on a black-
board (and, later, smelly “dry erase markers” on a whiteboard) mostly doing
proofs of theorems, I decided to lecture from computer slides that provide
an outline of the “big picture”. Rather than spend class time “doing” proofs
that are given in standard texts, I decided that time would be better spent
discussing the material from a different, higher-level perspective.

While lecturing from canned slides, I cannot, however, ignore certain de-
tails of proofs and minutiae of examples. But what details and which minutiae?
To be effective, my approach depends on an understanding between students
and the instructor, an understanding that is possibly implicit. I lecture; but I
ask “what is ... ?” and “why is ... ?”; and I encourage students to ask “what is
... ?” and “why is ... ?”. I adopt the attitude that there are many things that I
don’t know, but if there’s something that I wonder about, I’ll admit ignorance
and pursue the problem until I’ve attained some resolution. I encourage my
students to adopt a similar attitude.

I am completely dissatisfied with a class that sits like stumps on a log
when I ask “what is ... ?” or “why is ... ?” during a lecture. What can I say?

After writing class slides (in LATEX2ε, of course), mostly in bullet form, I
began writing text around the bullets, and I put the notes on the class website.
Later I decided that a single document would be useful to serve as a companion
for the study of mathematical statistics, especially if it had a comprehensive
subject index, and extensive cross refererences within the document. In the
electronic form, both the subject index and the internal cross references have
active links to the appropriate pages in the book. This is not something that
can be done with a hardcopy book. (One thing I must warn you about is that
there is a (known) bug in the LATEX package hyperref; if the referenced point
happens to occur at the top of a page, the link takes you to the previous page
– so if you don’t see what you expect, try going to the next page.)

Much of the present document reflects its origin as classroom notes; it
contains incomplete sentences or sentence fragments, and it lacks connective
material in some places. (The connective material was (probably!) supplied
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orally during the lectures. I’m working on the incomplete sentences, but that’s
pretty low priority.)

Another characteristic of this document that results from the nature of its
origin, as well as from the medium itself (electronic), is its length. A long book
doesn’t use any more paper or “kill any more trees” than a short book. Usually,
however, we can expect the density of “importance” in a short document to
be greater than that in a long document. If I had more time I could make this
book shorter by prioritizing its content, and I may do that someday.

Several sections are incomplete and several proofs are omitted.
Also, I plan to add more examples. I just have not had time to type up
the material.

I do not recommend that you print these notes. First of all, they are evolv-
ing, so a printed version is just a snapshot. Secondly, the PDF file contains
active internal links, so navigation is easy. (For versions without active links, I
try to be friendly to the reader by providing page numbers with most internal
references.)

This document is directed toward students for whom the theory of statis-
tics is or will become an important part of their lives. Obviously, such students
should be able to work through the details of “hard” proofs and derivations;
that is, students should master the fundamentals of mathematical statistics.
In addition, students at this level should acquire, or begin acquiring, a deep
appreciation for the field, including its historical development and its rela-
tion to other areas of mathematics and science generally; that is, students
should master the fundamentals of the broader theory of statistics. Some of
the chapter endnotes are intended to help students gain such an appreciation
by leading them to background sources and also by making more subjective
statements than might be made in the main body.

It is important to understand the intellectual underpinnings of our science.
There are certain principles (such as sufficiency, for example) that guide our
approaches to statistical inference. There are various general approaches (see
page 239) that we follow. Within these general approaches there are a number
of specific methods (see page 240). The student should develop an appreciation
for the relations between principles, approaches, and methods.

This book on mathematical statistics assumes a certain amount of back-
ground in mathematics. Following the final chapter on mathematical statistics
Chapter 8, there is Chapter 0 on “statistical mathematics” (that is, mathe-
matics with strong relevance to statistical theory) that provides much of the
general mathematical background for probability and statistics. The mathe-
matics in this chapter is prerequisite for the main part of the book, and it
is hoped that the reader already has command of the material; otherwise,
Chapter 0 can be viewed as providing “just in time” mathematics. Chapter 0
grew (and is growing) recursively. Every time I add material, it seems that I
need to add some background for the new material. This is obviously a game
one cannot win.
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Probability theory is the most directly relevant mathematical background.
It is assumed that the reader has a working knowledge of measure-theory-
based probability theory, but I provide a complete refresher in Chapter 1. I
treat probability as a real-valued measure in [0, 1] (in the mathematical sense
of “measure”), rather than as a “belief” or some other vague type of quantity.
Chapter 1 covers this theory at a fairly rapid pace. The objective in the discus-
sion of probability theory in Chapter 1, as in that of the other mathematical
background, is to provide some of the most relevant material for statistics,
which is the real topic of this text. Chapter 2 is also on probability, but the
focus is on the applications in statistics. In that chapter, I address some im-
portant properties of probability distributions that determine properties of
statistical methods when applied to observations from those distributions.

Chapter 3 covers many of the fundamentals of statistics. It provides an
overview of the topics that will be addressed in more detail in Chapters 4
through 8.

This document is organized in the order in which I cover the topics (more-
or-less!). Material from Chapter 0 may be covered from time to time during
the course, but I generally expect this chapter to be used for reference as
needed for the statistical topics being covered.

The primary textbooks I have used in the past few years are Shao
(2003), Lehmann and Casella (1998), and Lehmann (1986) (the precursor to
Lehmann and Romano (2005)). At various places in this document, references
are given to the related sections of Shao (2003) (“MS2”), Lehmann and Casella
(1998) (“TPE2”), and Lehmann and Romano (2005) (“TSH3”). These texts
state all of the important theorems, and in most cases, provide the proofs.
They are also replete with examples. Full bibliographic citations for these
references, as well as several other resources are given in the bibliography
beginning on page 873.

It is of course expected that the student will read the primary
textbook, as well as various other texts, and to work through all
proofs and examples in the primary textbook. As a practical matter,
obviously, even if I attempted to cover all of these in class, there just is not
enough class time to do it.

The purpose of this evolving document is not just to repeat all
of the material in those other texts. Its purpose, rather, is to provide
some additional background material, and to serve as an outline and a handy
reference of terms and concepts. The nature of the propositions vary consider-
ably; in some cases, a fairly trivial statement will be followed by a proof, and
in other cases, a rather obtuse statement will not be supported by proof. In all
cases, the student should understand why the statement is true (or, if it’s not,
immediately send me email to let me know of the error!). More importantly,
the student should understand why it’s relevant.

Each student should read this and other texts and work through the proofs
and examples at a rate that matches the individual student’s understanding
of the individual problem. What one student thinks is rather obtuse, another
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student comprehends quickly, and then the tables are turned when a different
problem is encountered. There is a lot of lonely work required, and this is why
lectures that just go through the details are often not useful.

It is commonplace for textbooks in mathematics to include examples
and exercises without reference to the source of the examples or exercises
and yet without implying any claim of originality. (A notable exception is
Graham et al. (1994).) My book is not intended to present new and origi-
nal work, and it follows the time-honored tradition of reusing examples and
exercises from long-forgotten sources.

Notation

Adoption of notation is an overhead in communication. I try to minimize that
overhead by using notation that is “standard”, and using it locally consis-
tently.

Examples of sloppy notation abound in mathematical statistics. Functions
seem particularly susceptible to abusive notation. It is common to see “f(x)”
and “f(y)” used in the same sentence to represent two different functions.
(These symbols are often used to represent two different PDFs, one for a
random variable X and the other for a random variable Y . When I want to
talk about two different things, I denote them by different symbols, so when
I want to talk about two different PDFs, I often use notation such as “fX(·)”
and “fY (·)”. If x = y, which is of course very different from saying X = Y ,
then fX(x) = fX(y); however, fX(x) 6= fY (x) in general.)

For a function and a value of a function, there is a certain amount of
ambiguity that is almost necessary. I generally try to use notation such as
“f(x)” or “Y (ω)” to denote the value of the function f at x or Y at ω, and
I use “f”, “f(·)”, or “Y ” to denote the function itself (although occasionally,
I do use “f(x)” to represent the function — notice the word “try” in this
discussion).

If in the notation “f(x)”, “x” denotes an element of a set A, and B ⊆ A
(that is, B is a set of the same kinds of elements as A), then “f(B)” does not
make much sense. For the image of B under f , I use “f [B]”.

I also freely use the notation f−1(y) or f−1 [B] to denote the preimage,
whether or not f−1 is actually a function; that is, whether or not f is invert-
ible.

There are two other areas in which my notation may be slightly different
from common notation. First, to designate the open interval between the real
numbers a < b, I use the Bourbaki notation “]a, b[”. (I eschew most of the
weird Bourbaki notation, however. This particular notation is also used in my
favorite book on analysis, Hewitt and Stromberg (1965).) Second, I do not
use any special notation, such as boldface, for vectors; thus, x may represent
a scalar or a vector.

All vectors are “column vectors”. This is only relevant in vector-vector or
vector-matrix operations, and has nothing to do with the way we represent a
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vector. It is far more convenient to represent the vector x as

x = (x1, . . . , xd)

than as

x =



x1

...
xd


 ,

and there is certainly no need to use the silly notation

x = (x1, . . . , xd)
T.

The fact that it is displayed in a horizontal fashion does not mean it is a “row”
vector.

A vector is not a matrix. There are times, however, when a vector may be
treated like a matrix in certain operations. In such cases, the vector is treated
as a matrix with one column.

Appendix C provides a list of the common notation that I use. The reader
is encouraged to look over that list both to see the notation itself and to get
some idea of the objects that I discuss.

Solving Problems

The main ingredient for success in a course in mathematical statistics is the
ability to work problems. The only way to enhance one’s ability to work
problems is to work problems. It is not sufficient to read, to watch, or to
hear solutions to problems. One of the most serious mistakes students make in
courses in mathematical statistics is to work through a solution that somebody
else has done and to think they have worked the problem.

While sometimes it may not be possible to solve a given problem, rather
than looking for a solution that someone else has come up with, it is much
better to stop with a partial solution or a hint and then sometime later return
to the effort of completing the solution. Studying a problem without its solution
is much more worthwhile than studying the solution to the problem.

Do you need to see a solution to a problem that you have solved? Except
in rare cases, if you have solved a problem, you know whether or not your
purported solution is correct. It is like a Sudoku puzzle; although solutions
to these are always published in the back of the puzzle book or in a later
edition of the medium, I don’t know what these are for. If you have solved
the puzzle you know that your solution is correct. If you cannot solve it, I
don’t see any value in looking at the solution. It’s not going to make you a
better Sudoku solver. (Sudoku is different from crossword puzzles, another
of my pastimes. Seeing the solution or partial solution to a crossword puzzle
can make you a better crossword solver.) There is an important difference in
Sudoku puzzles and mathematical problems. In Sudoku puzzles, there is only
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one correct solution. In mathematical problems, there may be more than one
way to solve a problem, so occasionally it is worthwhile to see someone else’s
solution.

The common wisdom (or cliché, depending on your viewpoint) that it takes
10000 hours to master a field or a skill is probably applicable to statistics.
This means working on this stuff for about 40 hours a week for 5 years. This
is approximately the amount of work that a student should do for receipt of
a PhD degree (preferably in less than 5 years).

Many problems serve as models of “standard operations” for solving other
problems. Some problems should become “easy pieces”.

Standard Operations

There are a number of operations and mathematical objects that occur over
and over in deriving results or in proving propositions. These operations are
sometimes pejoratively called “tricks”. In some sense, perhaps they are; but
it is useful to identify these operations outside of the context of a specific
application. Some of these standard operations and useful objects are listed
in Section 0.0.9 on page 676.

Easy Pieces

I recommend that all students develop a list of easy pieces. These are proposi-
tions or examples and counterexamples that the student can state and prove
or describe and work through without resort to notes. An easy piece is some-
thing that is important in its own right, but also may serve as a model or
template for many other problems. A student should attempt to accumulate
a large bag of easy pieces. If development of this bag involves some memo-
rization, that is OK, but things should just naturally get into the bag in the
process of working problems and observing similarities among problems —
and by seeing the same problem over and over.

Some examples of easy pieces are

• State and prove the information inequality (CRLB) for a d-vector param-
eter. (Get the regularity conditions correct.)

• Give an example to distinguish the asymptotic bias from the limiting bias.
• State and prove Basu’s theorem.
• Give an example of a function of some parameter in some family of distri-

butions that is not U-estimable.
• A statement of the Neyman-Pearson Lemma (with or without the ran-

domization) and its proof.

Some easy pieces in the background area of “statistical mathematics” are

• Let C be the class of all closed intervals in IR. Show that σ(C) = B(IR)
(the real Borel σ-field).
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• Define induced measure and prove that it is a measure. That is, prove: If
(Ω,F , ν) is a measure space and (Λ, G) is a measurable space, and f is a
function from Ω to Λ that is measurable with respect to F/G, then ν ◦f−1

is a measure with domain G.
• Define the Lebesgue integral for a general Borel function.
• State and prove Fatou’s lemma conditional on a sub-σ-field.

If you cannot handle these latter pieces, you should work through Chap-
ter 0 before going to Chapter 1.

Make your own list of easy pieces.

Relevance and Boundaries

For any proposition or example, you should have a clear understanding of why
the proposition or example is important. Where is it subsequently used? Is
it used to prove something else important, or does it justify some statistical
procedure?

Propositions and definitions have boundaries; that is, they apply to a spe-
cific situation. You should look at the “edges” or “boundaries” of the hypothe-
ses. What would happen if you were to remove one or more assumptions? (This
is the idea behind counterexamples.) What would happen if you make stronger
assumptions?

“It is clear” and “It can be shown”

I tend to use the phrase “it is clear ...” often. (I only realized this recently,
because someone pointed it out to me.) When I say “it is clear ...”, I expect
the reader to agree with me actively, not passively.

I use this phrase only when the statement is “clearly” true to me. I must
admit, however, sometimes when I read the statement a few weeks later, it’s
not very clear! It may require many minutes of difficult reasoning. In any
event, the reader should attempt to supply the reasoning for everything that
I say is clear.

I also use the phrase “it can be shown ...” in connection with a fact (the-
orem) whose proof at that point would be distracting, or else whose proof I
just don’t want to write out. (In later iterations of this document, however, I
may decide to give the proof.) A statement of fact preceded by the phrase “it
can be shown”, is likely to require more thought or background information
than a statement preceded by the phrase “it is clear”, although this may be
a matter of judgement.

Study of mathematical statistics at the level appropriate for this document
is generally facilitated by reference to a number of texts and journal articles;
and I assume that the student does refer to various sources.
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My Courses

The courses in mathematical statistics at George Mason University are
CSI/STAT 972 and CSI/STAT 973. The prerequisites for these courses
include measure-theoretic-based probability theory, such as is covered in
CSI/STAT 971. Chapters 0 and 1 address the prerequisite material briefly,
and in CSI/STAT 972 some class time is devoted to this material. Although
Chapters 1 and 2 are on “probability”, some of their focus is more on what
is usually covered in “statistics” courses, such as families of distributions, in
particular, the exponential class of families.

My notes on these courses are available at

http://mason.gmu.edu/~jgentle/csi9723/
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1

Probability Theory

Probability theory provides the basis for mathematical statistics.
Probability theory has two distinct elements. One is just a special case

of measure theory and can be approached in that way. For this aspect, the
presentation in this chapter assumes familiarity with the material in
Section 0.1 beginning on page 692. This aspect is “pure” mathematics. The
other aspect of probability theory is essentially built on a gedanken experiment
involving drawing balls from an urn that contains balls of different colors, and
noting the colors of the balls drawn. In this aspect of probability theory, we
may treat “probability” as a primitive (that is, undefined) concept. In this line
of development, we relate “probability” informally to some notion of long-term
frequency or to expectations or beliefs relating to the types of balls that will
be drawn. Following some additional axiomatic developments, however, this
aspect of probability theory is also essentially “pure” mathematics, and can
be couched in the context of a measure.

Because it is just mathematics, in probability theory per se, we do not ask
“what do you think is the probability that ...?” Given an axiomatic frame-
work, one’s beliefs are irrelevant, whether probability is a measure or is a
primitive concept. In statistical theory or applications, however, we may ask
questions about “beliefs”, and the answer(s) may depend on deep philosoph-
ical considerations in connecting the mathematical concepts of probability
theory with decisions about the “real world”. This may lead to a different
definition of probability. For example, Lindley and Phillips (1976), page 115,
state “Probability is a relation between you and the external world, expressing
your opinion of some aspect of that world...” I am sure that an intellectually
interesting theory could be developed based on ways of “expressing your opin-
ion[s]”, but I will not use “probability” in this way; rather, throughout this
book, I will use the term probability as a measure (see Section 0.1.3, beginning
on page 704). For specific events in a given application, of course, certain val-
ues of the probability measure may be assigned based on “opinions”, “beliefs”,
or whatever.
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2 1 Probability Theory

Another useful view of “probability” is expressed by Gnedenko and Kolmogorov
(1954) (page 1): “The very concept of mathematical probability [their empha-
sis] would be fruitless if it did not find its realization in the frequency [their
emphasis] of occurrence of events under large-scale repetition of uniform con-
ditions.” (See a more complete quotation on page 144.)

Ranks of Mathematical Objects

In probability theory we deal with various types of mathematical objects.
We would like to develop concepts and identify properties that are indepen-
dent of the type of the underlying objects, but that is not always possible.
Occasionally we will find it necessary to discuss scalar objects, rank one ob-
jects (vectors), and rank two objects (matrices) separately. In general, most
degree-one properties, such as expectations of linear functions, can be consid-
ered uniformly across the different types of mathematical objects. Degree-two
properties, such as variances, however, must usually be considered separately
for scalars, vectors, and matrices.

Overview of Chapter

This chapter covers important topics in probability theory at a fairly fast
pace. Some of the material in this chapter, such as the properties of certain
families of distributions, is often considered part of “mathematical statistics”,
rather than a part of probability theory. Unless the interest is in use of data
for describing a distribution or for making inferences about the distribution,
however, the study of properties of the distribution is part of probability
theory, rather than statistics.

We begin in Section 1.1 with statements of definitions and some basic
properties. The initial development of this section parallels the first few sub-
sections of Section 0.1 for more general measures, and then the development
of expectations depends on the results of Section 0.1.6 for integration.

Sections 1.3 and 1.4 are concerned with sequences of independent random
variables. The limiting properties of such sequences are important. Many of
the limiting properties can be studied using expansions in power series, which
is the topic of Section 1.2.

In Section 1.5 we do a fairly careful development of the concept of condi-
tioning. We do not take conditional probability to be a fundamental concept,
as we take (unconditional) probability itself to be. Conditional probability,
rather, is based on conditional expectation as the fundamental concept, so we
begin that discussion by considering conditional expectation. This provides a
more general foundation for conditional probability than we would have if we
defined it more directly in terms of a measurable space. Conditional probabil-
ity plays an important role in sequences that lack a simplifying assumption
of independence. We discuss sequences that lack independence in Section 1.6.
Many interesting sequences also do not have identical marginal distributions,
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1.1 Some Important Probability Facts 3

but rather follow some kind of evolving model whose form depends on, but is
not necessarily determined by, previous variates in the sequence.

In the next chapter, beginning on page 155, I identify and describe useful
classes of probability distributions. These classes are important because they
are good models of observable random phenomena, and because they are
easy to work with. The properties of various statistical methods discussed in
subsequent chapters depend on the underlying probability model, and some of
the properties of the statistical methods can be worked out easily for particular
models discussed in Chapter 2.

1.1 Some Important Probability Definitions and Facts

A probability distribution is built from a measure space in which the measure
is a probability measure.

Definition 1.1 (probability measure)
A measure ν whose domain is a σ-field defined on the sample space Ω with
the property that ν(Ω) = 1 is called a probability measure.

We often use P to denote a probability measure, just as we often use λ, µ, or
ν to denote a general measure.

Properties of the distribution and statistical inferences regarding a prob-
abilities or a probability measure. are derived and evaluated in the context of
the “probability triple”,

(Ω,F , P ). (1.1)

Definition 1.2 (probability space)
If P in the measure space (Ω,F , P ) is a probability measure, the triple
(Ω,F , P ) is called a probability space.

Probability spaces are the basic structures we will consider in this chapter. In
a probability space (Ω,F , P ), a set A ∈ F is called an “event”.

The full σ-field F in the probability space (Ω,F , P ) may not be necessary
to define the space.

Definition 1.3 (determining class)
If P and Q are probability measures defined on the measurable space (Ω,F),
a collection of sets C ⊆ F is called a determining class of P and Q, iff

P (A) = Q(A) ∀A ∈ C =⇒ P (B) = Q(B) ∀B ∈ F .

For measures P and Q defined on the measurable space (Ω,F), the condition
P (B) = Q(B)∀B ∈ F , of course, is the same as the condition P = Q.
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4 1 Probability Theory

Notice that the determining class is not necessarily a sub-σ-field. If it is,
however, a probability measure on the measurable space of the determining
class results in a probability space that is essentially the same as that formed
by the probability measure on the original measurable space. That is, in the
notation of Definition 1.3, if C is a determining class, then the probability
space (Ω, σ(C), P ) is essentially equivalent to (Ω,F , P ) in so far as properties
of the probability measure are concerned.

We now define complete probability measures and spaces as special cases of
complete measures and complete measure spaces (Definitions 0.1.16 and 0.1.21
on pages 707 and 709). Completeness is often necessary in order to ensure
convergence of sequences of probabilities.

Definition 1.4 (complete probability space)
A probability measure P defined on the σ-field F is said to be complete if
A1 ⊆ A ∈ F and P (A) = 0 implies A1 ∈ F . If the probability measure P in
the probability space (Ω,F , P ) is complete, we also say that the probability
space is a complete probability space.

An event A such that P (A) = 0 is called a negligible event or negligible
set. For a set A1 that is a subset of a negligible set, as in Definition 1.4, it is
clear that A1 is also negligible.

Definition 1.5 (almost surely (a.s.))
Given a probability space (Ω,F , P ), a property that holds for all elements of
F with positive probability is said to hold almost surely, or a.s.

This is the same as almost everywhere for general measures, and there is no
essential difference in “almost everywhere” and “almost surely”.

The Axioms of Probability

Instead of the definition as a probability measure as above, probability can be
defined as a set function satisfying three properties, which Kolmogorov stated
as axioms of probability. Kolmogorov’s axioms are based on a measurable
space (Ω,F). Kolmogorov called the elements of F , as I did above.

A set function P on F is a probability if it satisfies the three axioms of
probability:

1. P (E) ∈ IR, P (E) ≥ 0 ∀E ∈ F .
2. P (Ω) = 1.
3. For any countable sequence of disjoint sets E1, E2, ...,
P (∪∞i=1Ei) =

∑∞
i=1 P (Ei).

It is clear that this axiomatic setup is equivalent to the simple approach
of defining probability as a measure, as I did above. All of the properties
mentioned above and in the following sections follow under either basic setup.
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1.1 Some Important Probability Facts 5

1.1.1 Probability and Probability Distributions

The elements in the probability space can be any kind of objects. They do not
need to be numbers. Later, on page 9, we will define a real-valued measurable
function (to be called a “random variable”), and consider the measure on IR
induced or “pushed forward” by this function. (See page 712 for definition of
an induced measure.) This induced measure, which is usually based either on
the counting measure (defined on countable sets as their cardinality) or on
the Lebesgue measure (the length of intervals), is also a probability measure.

First, however, we continue with some definitions that do not involve ran-
dom variables.

Probability Measures on Events; Independence and
Exchangeability

Definition 1.6 (probability of an event)
In a probability space (Ω,F , P ), the probability of the event A is P (A). This
is also written as Pr(A).

In the probability space (Ω,F , P ), for A ∈ F , we have

Pr(A) = P (A) =

∫

A

dP. (1.2)

We use notation such as “Pr(·)”, “E(·)”, “V(·)”, and so on (to be intro-
duced later) as generic symbols to represent specific quantities within the
context of a given probability space. Whenever we discuss more than one
probability space, it may be necessary to qualify the generic notation or else
use an alternative notation for the same concept. For example, when dealing
with the probability spaces (Ω,F , P ) and (Λ, G, Q), we may use notation of
the form “PrP (·)” or “PrQ(·)”; but in this case, of course, the notation “P (·)”
or “Q(·)”is simpler.

One of the most important properties that involves more than one event or
more than one function or more than one measurable function is independence.
We define independence in a probability space in three steps.

Definition 1.7 (independence)
Let (Ω,F , P ) be a probability space.

1. Independence of events (within a collection of events).
Let C be a collection of events; that is, a collection of subsets of F . The
events in C are independent iff for a positive integer n and distinct events
A1, . . . , An in C,

P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An). (1.3)
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6 1 Probability Theory

2. Independence of collections of events (and, hence, of σ-fields).
For any index set I, let Ci be a collection of sets with Ci ⊆ F . The
collections Ci are independent iff the events in any union of the Ci are
independent; that is, {Ai ∈ Ci : i ∈ I} are independent events.

3. Independence of Borel functions (and, hence, of random variables,
which are special functions defined below).
For i in some index set I, the Borel-measurable functions Xi are indepen-
dent iff σ(Xi) for i ∈ I are independent.

While we have defined independence in terms of a single probability measure
(which gives meaning to the left side of equation (1.3)), we could define the
concept over different probability spaces in the obvious way that requires the
probability of all events simultaneously to be the product of the probabilities
of the individual events.

Notice that Definition 1.7 provides meaning to mixed phrases such as “the
event A is independent of the σ-field F” or “the random variable X (defined
below) is independent of the event A”.

We will often consider a sequence or a process of events, σ-fields, and so
on. In this case, the collection C in Definition 1.7 is a sequence. For events C =
A1, A2, . . ., which we may write as {An}, we say the sequence is a sequence of
independent events. We also may abuse the terminology slightly and say that
“the sequence is independent”. Similarly, we speak of independent sequences
of collections of events or of Borel functions.

Notice that each pair of events within a collection of events may be inde-
pendent, but the collection itself is not independent.

Example 1.1 pairwise independence
Consider an experiment of tossing a coin twice. Let

A be “heads on the first toss”
B be “heads on the second toss”
C be “exactly one head and one tail on the two tosses”

We see immediately that any pair is independent, but that the three events
are not independent; in fact, the intersection is ∅.

We refer to this situation as “pairwise independent”. The phrase “mutually
independent”, is ambiguous, and hence, is best avoided. Sometimes people use
the phrase “mutually independent” to try to emphasize that we are referring to
independence of all events, but the phrase can also be interpreted as “pairwise
independent”.

Notice that an event is independent of itself if its probability is 0 or 1.
If collections of sets that are independent are closed wrt intersection, then

the σ-fields generated by those collections are independent, as the following
theorem asserts.
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1.1 Some Important Probability Facts 7

Theorem 1.1
Let (Ω,F , P ) be a probability space and suppose Ci ⊆ F for i ∈ I are inde-
pendent collections of events. If ∀i ∈ I, A, B ∈ Ci ⇒ A ∩ B ∈ Ci, then σ(Ci)
for i ∈ I are independent.

Proof. Exercise.
Independence also applies to the complement of a set, as we see next.

Theorem 1.2
Let (Ω,F , P ) be a probability space. Suppose A,B ∈ F are independent. Then
A and Bc are independent.

Proof. We have
P (A) = P (A ∩B) + P (A ∩Bc),

hence,

P (A ∩Bc) = P (A)(1− P (B))

= P (A)P (Bc),

and so A and Bc are independent.
In the interesting cases in which the events have equal probability, a con-

cept closely related to independence is exchangeability. We define exchange-
ability in a probability space in three steps, similar to those in the definition
of independence.

Definition 1.8 (exchangeability)
Let (Ω,F , P ) be a probability space.

1. Exchangeability of events within a collection of events.
Let C = {Ai : i ∈ I}} for some index set I be a collection of events; that
is, a collection of subsets of F . Let n be any positive integer (less than
or equal to #(C) if #(C) < ∞) and let {i1, . . . , in} and {j1, . . . , jn} each
be sets of distinct positive integers in I. The events in C are exchangeable
iff for any positive integer n and distinct events Ai1 , . . . , Ain and distinct
events Aj1 , . . . , Ajn in C,

P (∪n
k=1Aik) = P (∪n

k=1Ajk). (1.4)

2. Exchangeability of collections of events (and, hence, of σ-fields).
For any index set I, let Ci be a collection of sets with Ci ⊆ F . The
collections Ci are exchangeable iff the events in any collection of the form
{Ai ∈ Ci : i ∈ I} are exchangeable.

3. Exchangeability of Borel functions (and, hence, of random variables,
which are special functions defined below).
For i in some index set I, the Borel-measurable functions Xi are exchange-
able iff σ(Xi) for i ∈ I are exchangeable.
(This also defines exchangeability of any generators of σ-fields.)
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8 1 Probability Theory

Notice that events being exchangeable requires that they have equal proba-
bilities.

As mentioned following Definition 1.7, we will often consider a sequence
or a process of events, σ-fields, and so on. In this case, the collection C in
Definition 1.8 is a sequence, and we may say the sequence {An} is a sequence
of exchangeable events. Similarly, we speak of exchangeable sequences of col-
lections of events or of Borel functions. As with independence, we also may
abuse the terminology slightly and say that “the sequence is exchangeable”.

For events with equal probabilities, independence implies exchangeability,
but exchangeability does not imply independence.

Theorem 1.3
Let (Ω,F , P ) be a probability space and suppose C ⊆ F is a collection of inde-
pendent events with equal probabilities. Then C is an exchangeable collection
of events.

Proof. Exercise.
The next example shows that exchangeability does not imply indepen-

dence.

Example 1.2 independence and exchangeability
A simple urn example may illustrate the difference in exchangeability and
independence. Suppose an urn contains 3 balls, 2 of which are red and 1 of
which is not red. We “randomly” draw balls from the urn without replacing
them (that is, if there are n balls to draw from, the probability that any
specific one is drawn is 1/n).

Let Ri be the event that a red ball is drawn on the ith draw, and Rc
i be

the event that a non-red ball is drawn. We see the following

Pr(R1) = Pr(R2) = Pr(R3) = 2/3

and
Pr(Rc

1) = Pr(Rc
2) = Pr(Rc

3) = 1/3.

Now
Pr(R1 ∩R2) = 1/3;

hence, R1 and R2 are not independent. Similarly, we can see that R1 and R3

are not independent and that R2 and R3 are not independent. Hence, the col-
lection {R1, R2, R3} is certainly not independent (in fact, Pr(R1 ∩R2∩R3) =
0). The events R1, R2, and R3 are exchangeable, however. The probabilities
of singletons are equal and of course the probability of the full set is equal to
itself however it is ordered, so all we need to check are the probabilities of the
doubletons:

Pr(R1 ∪R2) = Pr(R1 ∪R3) = Pr(R2 ∪R3) = 1.
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1.1 Some Important Probability Facts 9

Using a binomial tree, we could extend the computations in the preceding
example for an urn containing n balls m of which are red, with the events
Ri defined as before, to see that the elements of any subset of the m Ris is
exchangeable, but that they are not independent.

While, of course, checking definitions explicitly is necessary, it is useful to
develop an intuition for such properties as independence and exchangeabil-
ity. A little simple reasoning about the urn problem of Example 1.2 should
provide heuristic justification for exchangeability as well as for the lack of
independence.

1.1.2 Random Variables

In many applications of probability concepts, we define a measurable function
X, called a random variable, from (Ω,F) to (IRd,Bd):

X : (Ω,F) 7→
(
IRd,Bd

)
. (1.5)

The random variable, together with a probability measure, P , on the measur-
able space (Ω,F) determines a new probability space (IRd,Bd, P ◦X−1).

We can study the properties of the probability space (Ω,F , P ) through
the random variable and the probability space (IRd,Bd, P ◦ X−1), which is
easier to work with because the sample space, X[Ω], is IRd or some subset of
it, rather than some abstract set Ω. In most applications, it is more natural
to begin with Ω as some subset, X , of IRd, to develop a vague notion of some
σ-field on X , and to define a random variable that relates in a meaningful way
to the problem being studied.

The mapping of the random variable allows us to assign meaning to the
elements of Ω consistent with the application of interest. The properties of
one space carry over to the other one, subject to the random variable, and we
may refer to objects of either space equivalently. Random variables allow us
to develop a theory of probability that is useful in statistical applications.

Definition 1.9 (random variable)
A measurable function, X(ω) or just X, from a measurable space (Ω,F) to
the measurable space (IRd,Bd) is called a random variable, or, to be more
specific, a d-variate random variable.

This definition means that “Borel function” (see page 719) and “random
variable” are synonymous. Notice that the words “random” and “variable” do
not carry any separate meaning.

Many authors define a random variable only for the case d = 1, and for
the case of d ≥ 1, call the Borel function a “random vector”. I see no reason
for this distinction. Recall that I use “real” to refer to an element of IRd for
any positive integer d. My usage is different from an alternate usage in which
“real” means what I call a “real scalar”; in that alternate usage, a random
variable takes values only in IR.
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10 1 Probability Theory

We often denote the image of X, that is, X[Ω], as X . If B ∈ B(X ), then
X−1[B] ∈ F .

Although we define the random variable X to be real, we could form a
theory of probability and statistics that allowed X to be a function into a
general field. Complex-valued random variables are often useful, especially,
for example, in harmonic analysis of such things as electrical signals, but we
will not consider them in any detail in this text.

Notice that a random variable is finite a.s. If this were not the case, certain
problems would arise in the definitions of some useful functions of the random
variable that we will discuss below.

A random variable could perhaps more appropriately be defined as an
equivalence class of real-valued measurable functions that are equal almost
surely; that is, a class in which if X

a.s.
= Y , then X and Y are the same

random variable.
Note that a real constant is a random variable. If c is a real constant and

if X
a.s.
= c, then we call X a degenerate random variable; that is, any constant

c is a degenerate random variable. We call a random variable that is not a
degenerate random variable a nondegenerate random variable.

Another comment on a.s. may be in order here. The expression “X 6= c
a.s.” means the measure of Ωc = {ω : X(ω) = c} is 0. (That is, the expression
does not mean the there is some set with positive measure on whichX(ω) 6= c.)
Similar interpretations apply to other expressions such as “X > c a.s.”.

Simple Random Variables

Some useful random variables assume only a finite number of different values;
these are called simple random variables because they are simple functions.

Definition 1.10 (simple random variable)
A random variable that has a finitely-countable range is called a simple ran-
dom variable.

This is just the same as a simple function, Definition 0.1.28 on page 719.
We will also speak of “discrete” random variables. A discrete random vari-

able has a countable range. A simple random variable is discrete, but a discrete
random variable is not necessarily simple.

σ-Fields Generated by Random Variables

A random variable defined on (Ω,F) determines a useful sub-σ-field of F .
First, we establish that a certain collection of sets related to a measurable
function is a σ-field.

Theorem 1.4
If X : Ω 7→ X ⊆ IRd is a random variable, then σ(X−1 [B(X )]) is a sub-σ-field
of F .
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Proof. Exercise. (Note that instead of B(X ) we could write Bd.)
Now we give a name to that collection of sets.

Definition 1.11 (σ-field generated by a random variable)
Let X : Ω 7→ IRd be a random variable. We call σ(X−1[Bd]) the σ-field gener-
ated by X and denote it as σ(X).

Theorem 1.4 ensures that σ(X) is a σ-field and in fact a sub-σ-field of F .
If X and Y are random variables defined on the same measurable space,

we may write σ(X, Y ), with the obvious meaning (see equation (0.1.5) on
page 704). As with σ-fields generated by sets or functions discussed in Sec-
tions 0.1.1 and 0.1.2, it is clear that σ(X) ⊆ σ(X, Y ). This idea of sub-σ-fields
generated by random variables is important in the analysis of a sequence of
random variables. (It leads to the ideas of a filtration; see page 126.)

Random Variables and Probability Distributions

Notice that a random variable is defined in terms only of a measurable space
(Ω,F) and a measurable space defined on the reals (X ,Bd). No associated
probability measure is necessary for the definition, but for meaningful appli-
cations of a random variable, we need some probability measure. For a random
variableX defined on (Ω,F) in the probability space (Ω,F , P ), the probability
measure of X is P ◦X−1 . (This is a pushforward measure; see page 712. In
Exercise 1.9, you are asked to show that it is a probability measure.)

A probability space is also called a population, a probability distribution,
a distribution, or a law. The probability measure itself is the final component
that makes a measurable space a probability space, so we associate the distri-
bution most closely with the measure. Thus, “P ” may be used to denote both
a population and the associated probability measure. We use this notational
convention throughout this book.

For a given random variable X, a probability distribution determines
Pr(X ∈ B) for B ⊆ X . The underlying probability measure P of course
determines Pr(X−1 ∈ A) for A ∈ F .

Quantiles

Because the values of random variables are real, we can define various special
values that would have no meaning in an abstract sample space. As we develop
more structure on a probability space characterized by a random variable, we
will define a number of special values relating to the random variable. Without
any further structure, at this point we can define a useful value of a random
variable that just relies on the ordering of the real numbers.

For the random variable X ∈ IR and given π ∈]0, 1[, the quantity xπ

defined as
xπ = inf{x, s.t. Pr(X ≤ x) ≥ π} (1.6)
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12 1 Probability Theory

is called the π quantile of X.
For the random variable X ∈ IRd, there are two ways we can interpret

the quantiles. If the probability associated with the quantile, π, is a scalar,
then the quantile is a level curve or contour in X ∈ IRd. Such a quantile is
obviously much more complicated, and hence, less useful, than a quantile in a
univariate distribution. If π is a d-vector, then the definition in equation (1.6)
applies to each element of X and the quantile is a point in IRd.

Multiple Random Variables on the Same Probability Space

If two random variables X and Y have the same distribution, we write

X
d
= Y. (1.7)

We say that they are identically distributed. Note the difference in this and
the case in which we say X and Y are the same random variable. If X and Y
are the same random variable, then X

a.s.
= Y . It is clear that

X
a.s.
= Y =⇒ X

d
= Y, (1.8)

but the implication does not go the other way. (A simple example, using
notation to be developed later, is the following. Let X ∼ U(0, 1), and let

Y = 1−X. Then X
d
= Y but clearly it is not the case that X

a.s.
= Y .)

Support of a Random Variable

Definition 1.12 (support of a distribution or of a random variable)
The support of the distribution (or of the random variable) is the smallest
closed set XS in the image of X such that P (X−1[XS]) = 1.

We have seen that a useful definition of the support of a general measure
requires some structure on the measure space (see page 710). Because the
range of a random variable has sufficient structure (it is a metric space), in
Definition 1.12, we arrive at a useful concept, while avoiding the ambiguities
of a general probability space.

Product Distribution

If X1 and X2 are independent random variables with distributions P1 and P2,
we call the joint distribution of (X1, X2) the product distribution of P1 and
P2.

Theory of Statistics c©2000–2025 James E. Gentle



1.1 Some Important Probability Facts 13

Parameters, Parameter Spaces, and Parametric Families

We often restrict our attention to a probability family or a family of distribu-
tions, P = {Pθ}, where θ is some convenient index.

Definition 1.13 (parametric family of probability distributions)
A family of distributions on a measurable space (Ω,F) with probability mea-
sures Pθ for θ ∈ Θ is called a parametric family if Θ ⊆ IRk for some fixed
positive integer k and θ fully determines the measure. We call θ the parame-
ter and Θ the parameter space.

If the dimension of Θ is large (there is no precise meaning of “large”
here), we may refrain from calling θ a parameter, because we want to refer
to some statistical methods as “nonparametric”. (In nonparametric methods,
our analysis usually results in some general description of the distribution,
rather than in a specification of the distribution.)

We assume that every parametric family is identifiable; that is, P =
{Pθ, θ ∈ Θ} is an identifiable parametric family if it is a parametric fam-
ily and for θ1, θ2 ∈ Θ if θ1 6= θ2 then Pθ1 6= Pθ2 .

A family that cannot be indexed in this way might be called a nonpara-
metric family. The term “nonparametric” is most commonly used to refer to
a statistical procedure, rather than to a family, however. In general terms, a
nonparametric procedure is one that does not depend on strict assumptions
about a parametric family.

Example 1.3 a parametric family
An example of a parametric family of distributions for the measurable space
(Ω = {0, 1},F = 2Ω) is that formed from the class of the probability measures
Pπ({1}) = π and Pπ({0}) = 1 − π. This is a parametric family, namely, the
Bernoulli distributions. The index of the family, π, is called the parameter of
the distribution. The measures are dominated by the counting measure.

Example 1.4 a nonparametric family
An example of a nonparametric family over a measurable space (IR,B) is
Pc = {P : P � ν}, where ν is the Lebesgue measure. This family contains
all of the parametric families of Tables A.2 through A.6 of Appendix A as
well as many other families.

There are a number of useful parametric distributions to which we give
names. For example, the normal or Gaussian distribution, the binomial dis-
tribution, the chi-squared, and so on. Each of these distributions is actually a
family of distributions. A specific member of the family is specified by speci-
fying the value of each parameter associated with the family of distributions.

For a few distributions, we introduce special symbols to denote the dis-
tribution. We use N(µ, σ2) to denote a univariate normal distribution with
parameters µ and σ2 (the mean and variance). To indicate that a random
variable has a normal distribution, we use notation of the form
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14 1 Probability Theory

X ∼ N(µ, σ2),

which here means that the random variable X has a normal distribution with
parameters µ and σ2. We use

Nd(µ,Σ)

to denote a d-variate normal distribution with parameters µ and Σ
We use

U(θ1, θ2)

to denote a uniform distribution with support [θ1, θ2]. The most common
uniform distribution that we will use is U(0, 1).

In some cases, we also use special symbols to denote random variables with
particular distributions. For example, we often use χ2

ν to denote a random
variable with a chi-squared distribution with ν degrees of freedom.

In Chapter 2 I discuss types of families of probability distributions, and
in Tables A.1 through A.6 beginning on page 838 of Appendix A we give
descriptions of some parametric families.

The Cumulative Distribution Function (CDF)

The cumulative distribution function provides an alternative expression of
a probability measure on IRd. This function gives a clearer picture of the
probability distribution, and also provides the basis for defining other useful
functions for studying a distribution.

Definition 1.14 (cumulative distribution function (CDF))
If (IRd,Bd, P ) is a probability space, and F is defined by

F (x) = P (]−∞, x]) ∀ x ∈ IRd, (1.9)

then F is called a cumulative distribution function, or CDF.

The CDF is also called the distribution function, or DF.
There are various forms of notation used for CDFs. The CDF of a given

random variable X is often denoted as FX . A CDF in a parametric family Pθ

is often denoted as Fθ, or as F (x; θ).
If the probability measure P is dominated by the measure ν , then we also

say that the associated CDF F is dominated by ν .
The probability space completely determines F , and likewise, F completely

determines P a.s.; hence, we often use the CDF and the probability measure
interchangeably. More generally, given the probability space (Ω,F , P ) and the
random variable X defined on that space, if F is the CDF of X, the basic
probability statement for an event A ∈ F given in equation (1.2) can be
written as

P (A) =

∫

A

dP =

∫

X[A]

dF. (1.10)

Theory of Statistics c©2000–2025 James E. Gentle
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If the random variable is assumed to be in a family of distributions indexed
by θ, we may use the notation Fθ(x) or F (x; θ).

For a given random variable X, F (x) = Pr(X ≤ x). We sometimes use the
notation FX(x) to refer to the CDF of the random variable X.

For a given CDF F , we define F called the tail CDF by

F (x) = 1− F (x). (1.11)

This function, which is also denoted by FC, is particularly interesting for
random variables whose support is IR+.

The CDF is particularly useful in the case d = 1. (If X is a vector-valued
random variable, and x is a vector of the same order, X ≤ x is interpreted to
mean that Xi ≤ xi for each respective element.)

Theorem 1.5 (properties of a CDF)
If F is a CDF then

1. limx↓−∞ F (x) = 0.
2. limx↑∞ F (x) = 1.
3. F (x1) ≤ F (x2) if x1 < x2.
4. limε↓0 F (x+ ε) = F (x). (A CDF is continuous from the right.)

Proof. Each property is an immediate consequence of the definition.
These four properties characterize a CDF, as we see in the next theorem.

Theorem 1.6
If F is a function defined on IRd that satisfies the properties of Theorem 1.5,
then F is a CDF (for some probability space).

Proof. Exercise. (Hint: Given (IRd,Bd) and a function F defined on IRd sat-
isfying the properties of Theorem 1.5, define P as

P (]−∞, x]) = F (x) ∀ x ∈ IRd

and show that P is a probability measure.)
Because the four properties of Theorem 1.5 characterize a CDF, they can

serve as an alternate definition of a CDF, without reference to a probability
distribution. Notice, for example, that the Cantor function (see Section 0.1.5)
is a CDF if we extend its definition to be 0 on ]−∞, 0[ and to be 1 on ]1,∞[.
The distribution associated with this CDF has some interesting properties;
see Exercise 1.12.

One of the most useful facts about an absolutely continuous CDF is its
relation to a U(0, 1) distribution.

Theorem 1.7
If X is a random variable with absolutely continuous CDF F then F (X) ∼
U(0, 1).
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Proof. If X is a random variable with CDF F then

Pr(F (X) ≤ t) =





0 t < 0
t 0 ≤ t < 1
1 1 ≤ t.

This set of probabilities characterize the U(0, 1) distribution.
Although Theorem 1.7 applies to continuous random variables, a discrete

random variable has a similar property when we “spread out” the probability
between the mass points.

The Quantile Function: The Inverse of the CDF

Although as I indicated above, quantiles can be defined for random variables
in IRd for general positive integer d, they are more useful for d = 1. I now
define a useful function for that case. (The function could be generalized, but,
again, the generalizations are not as useful.)

Definition 1.15 (quantile function)
If (IR,B, P ) is a probability space with CDF F , and F−1 is defined on ]0, 1[
by

F−1(p) = inf{x, s.t. F (x) ≥ p}, (1.12)

then F−1 is called a quantile function.

Notice that if F is strictly increasing, the quantile function is the ordinary
inverse of the cumulative distribution function. If F is not strictly increasing,
the quantile function can be interpreted as a generalized inverse of the cumu-
lative distribution function. This definition is reasonable (at the expense of
overloading the notation “·−1”) because, while a CDF may not be an invertible
function, it is monotonic nondecreasing.

Notice that for the random variable X with CDF F , if

xπ = F−1(π), (1.13)

then xπ is the π quantile of X as defined in equation (1.6). Equation (1.13)
is usually taken as the definition of the π quantile.

The quantile function, just as the CDF, fully determines a probability
distribution.

Theorem 1.8 (properties of a quantile function)
If F−1 is a quantile function and F is the associated CDF,

1. F−1(F (x)) ≤ x.
2. F (F−1(p)) ≥ p.
3. F−1(p) ≤ x⇐⇒ p ≤ F (x).
4. F−1(p1) ≤ F−1(p2) if p1 ≤ p2.
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Figure 1.1. CDFs and Quantile Functions

5. limε↓0 F−1(p− ε) = F−1(p).
(A quantile function is continuous from the left.)

6. If U is a random variable distributed uniformly over ]0, 1[, then X =
F−1(U) has CDF F .

Proof. Exercise.
The first five properties of a quantile function given in Theorem 1.8 char-

acterize a quantile function, as stated in the following theorem.

Theorem 1.9
Let F be a CDF and let G be function such that

1. G(F (x)) ≤ x,
2. F (G(p)) ≥ p,
3. G(p) ≤ x⇐⇒ p ≤ F (x),
4. G(p1) ≤ G(p2) if p1 ≤ p2, and
5. limε↓0G(p− ε) = G(p).

Then G is the quantile function associated with F , that is, G = F−1.

Proof. Exercise. (The definitions of a CDF and a quantile function are suffi-
cient.)

As we might expect, the quantile function has many applications that
parallel those of the CDF. For example, we have an immediate corollary to
Theorem 1.7.
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Corollary 1.7.1
If F is a CDF and U ∼ U(0, 1), then F−1(U) is a random variable with CDF
F .

Corollary 1.7.1 is actually somewhat stronger than Theorem 1.7 because no
modification is needed for discrete distributions. One of the most common
applications of this fact is in random number generation, because the basic
pseudorandom variable that we can simulate has a U(0, 1) distribution.

The Probability Density Function: The Derivative of the CDF

Another function that may be very useful in describing a probability distribu-
tion is the probability density function. This function also provides a basis for
straightforward definitions of meaningful characteristics of the distribution.

Definition 1.16 (probability density function (PDF))
The derivative of a CDF (or, equivalently, of the probability measure) with
respect to an appropriate measure, if it exists, is called the probability density
function, PDF.

The PDF is also called the density function.
There are various forms of notation used for PDFs. As I mentioned on

page 15, common forms of notation for CDFs are FX , Fθ, and F (x; θ). Of
course, instead of “F ”, other upper case letters such as G and H are often
used similarly. The common notation for the associated PDF parallels that of
the CDF and uses the corresponding lower case letter, for example, fX , fθ, and
f(x; θ). I will use the standard forms of mathematical notation for functions
for denoting CDFs and PDFs. (Other statisticians often use a sloppy notation,
called “generic notation”; see page 22.)

Theorem 1.10 (properties of a PDF)
Let F be a CDF defined on IRd dominated by the measure ν. Let f be the PDF
defined as

f(x) =
dF (x)

dν
.

Then over IRd

f(x) ≥ 0 a.e. ν, (1.14)

f(x) <∞ a.e. ν, (1.15)

and ∫

IRd

fdν = 1. (1.16)

If XS is the support of the distribution, then

0 < f(x) <∞ ∀x ∈ XS .
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Proof. Exercise.
A characteristic of some distributions that is easily defined in terms of the

PDF is the mode.

Definition 1.17 (mode of a probability distribution)
If x0 is a point in the support XS of a distribution with PDF f such that

f(x0) ≥ f(x), ∀x ∈ XS,

then x0 is called a mode of the distribution.

If the mode exists it may or may not be unique.

Dominating Measures

Although we use the term “PDF” and its synonyms for either discrete random
variables and the counting measure or for absolutely continuous random vari-
ables and Lebesgue measure, there are some differences in the interpretation
of a PDF of a discrete random variable and a continuous random variable. In
the case of a discrete random variableX, the value of the PDF at the point x is
the probability that X = x; but this interpretation does not hold for a contin-
uous random variable. For this reason, the PDF of a discrete random variable
is often called a probability mass function, or just probability function. There
are some concepts defined in terms of a PDF, such as self-information, that
depend on the PDF being a probability, as it would be in the case of discrete
random variables.

The general meaning of the term “discrete random variable” is that the
probability measure is dominated by the counting measure; and likewise for
a “absolutely continuous random variable” the general meaning is that the
probability measure is dominated by Lebesgue measure. Any simple CDF
has a PDF wrt the counting measure, but not every continuous CDF has a
PDF wrt Lebesgue measure (the Cantor function, see page 723, is a classic
counterexample – see Exercise 1.12b), but every absolutely continuous CDF
does have a PDF wrt Lebesgue measure.

The “appropriate measure” in the definition of PDF above must be σ-
finite and must dominate the CDF. For a random variable X = (X1, . . . , Xd)
with CDF FX(x) dominated by Lebesgue measure, the PDF, if it exists, is
∂dFX(x)/∂x1 · · ·∂xd.

In most distributions of interest there will be a PDF wrt a σ-finite measure.
Many of our definitions and theorems will begin with a statement that includes
a phrase similar to “a distribution with a PDF wrt a σ-finite measure”. In
the case of a discrete random variable, that σ-finite measure is the counting
measure (Definition 0.1.20 on page 708), and in the case of an absolutely
continuous random variable, it is the Lebesgue measure (see page 717).
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Parameters and PDFs

In addition to being functions of points x in the support, the PDFs of the
distributions within a given parametric family Pθ, are also functions of θ.
There may also be other constants in the PDF that can be separated from
the functional dependence on x. It is often of interest to focus on the PDF
solely as a function of x. (This may be because in applications, the “inverse”
problem of deciding on the form of the PDF is simpler if we consider only the
role of the observable x.) Given a PDF fθ(x), a useful decomposition is

fθ(x) = g(θ)k(x), (1.17)

where 0 < g and 0 ≤ k, and k(x) encodes all of the dependence of fθ(x) on
x. In this decomposition, we call k(x) the “kernel”.

From equation (1.16), we have

1

g(θ)
=

∫

IRd

k(x)dν(x). (1.18)

The function (g(θ))−1 is called the “normalizing function” or the “partition
function”. (The latter name comes from statistical physics, and in many areas
of application, the partition function is a meaningful characteristic of the
problem. Both or either of these names is sometimes applied to g(θ).)

The Likelihood; A Function of the Parameters

It is often useful to consider the PDF (or CDF) as a function of the param-
eter instead of the range of the random variable. We call such a function, a
likelihood function, and for the parametric PDF fθ(x) with support XS and
parameter space Θ, we denote the corresponding likelihood function as L(θ; x):

L(θ; x) = fθ(x), ∀θ ∈ Θ, ∀x ∈ XS . (1.19)

(Actually, any positive scalar multiple of L(θ; x) in (1.19), is called a likelihood
function corresponding to fθ(x). I will discuss likelihood functions later in
more detail, particularly in Chapter 6, where their use in statistical inference
is discussed.)

While the likelihood and the PDF are the same, at any two fixed points x
and θ, they differ fundamentally as functions.

Example 1.5 likelihood in the exponential family
Consider the exponential family of distributions with parameter θ. The PDF
is

pX(x ; θ) = θ−1e−x/θIĪR+
(x), (1.20)

for θ ∈ IR+. Plots of this PDF for θ = 1 and θ = 5 are shown on the left side
of Figure 1.2.
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Given a single observation x, the likelihood is

L(θ ; x) = θ−1e−x/θIIR+(θ). (1.21)

Plots of this likelihood for x = 1 and x = 5 are shown on the right side of
Figure 1.2.

PDF   pX(x;θ)

.5

0 x

θ=1
θ=5

Likelihood   L(θ;x)

.5

0 θ

x=1
x=5

Figure 1.2. PDF and Likelihood for Exponential Distribution

The log of the likelihood, called the log-likelihood function,

lL(θ ; x) = logL(θ ; x), (1.22)

is also useful. We often denote the log-likelihood without the “L” subscript.
(The notation for the likelihood and the log-likelihood varies with authors. My
own choice of an uppercase “L” for the likelihood and a lowercase “l” for the
log-likelihood is long-standing, and not based on any notational optimality
consideration. Because of the variation in the notation for the log-likelihood,
I will often use the “lL” notation because this expression is suggestive of the
meaning.)

In cases when the likelihood or the log-likelihood is differentiable wrt the
parameter, the derivative is of interest because it indicates the sensitivity of
the parametric family to the parameter when it is considered to be a variable.
The most useful derivative is that of the log-likelihood, ∂lL(θ; x)/∂θ. The
expectation of the square of this appears in a useful quantity in statistics, the
Cramér-Rao lower bound, inequality (3.39) on page 234.
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Parametric Families

As mentioned above, if a specific CDF is Fθ, we often write the corresponding
PDF as fθ:

fθ =
dFθ

dν
. (1.23)

There may be some ambiguity in the use of such subscripts, however, because
when we have defined a specific random variable, we may use the symbol
for the random variable as the identifier of the CDF or PDF. The CDF and
the PDF corresponding to a given random variable X are often denoted,
respectively, as FX and fX . Adding to this confusion is the common usage by
statisticians of the “generic notation”, that is, for given random variables X
and Y , the notation f(x) may refer to a different function than the notation
f(y). I will not use the “generic” notation for CDFs and PDFs.

We assume that every parametric family is identifiable; that is, if Fθ and
fθ are the CDF and PDF for distributions within the family and these are
dominated by the measure ν , then over the parameter space Θ for θ1 6= θ2,

ν({x : Fθ1(x) 6= Fθ2(x)}) > 0 (1.24)

and
ν({x : fθ1(x) 6= fθ2 (x)}) > 0. (1.25)

Dominating Measures

The dominating measure for a given probability distribution is not unique,
but use of a different dominating measure may change the representation of
the distribution. For example, suppose that the support of a distribution is
S, and so we write the PDF as

dFθ(x)

dν
= gθ(x)IS(x). (1.26)

If we define a measure λ by

λ(A) =

∫

A

ISdν ∀A ∈ F , (1.27)

then we could write the PDF as

dFθ

dλ
= gθ. (1.28)

Mixtures of Distributions

If F1, F2, . . . are CDFs and π1, π2, . . .≥ 0 are real constants such that
∑

i πi =
1, then
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F =
∑

i

πiFi (1.29)

is a CDF (exercise). If each Fi in equation (1.29) is dominated by Lebesgue
measure, then F is dominated by Lebesgue measure. Likewise, if each Fi is
dominated by the counting measure, then F is dominated by the counting
measure.

The PDF corresponding to F is also the same linear combination of the
corresponding PDFs.

It is often useful to form mixtures of distributions of continuous random
variables with distributions of discrete random variables. The ε-mixture dis-
tribution, whose CDF is given in equation (2.45) on page 194, is an example.

A mixture distribution can also be thought of as a random variable X
whose distribution, randomly, is the same as that of some other random vari-
able X1, X2, . . .; that is,

X
d
= XI ,

where I is a random variable taking values in the index set of X1, X2, . . .. In
terms of the πi in equation (1.29), we can define the random variable of the
mixture X by

X
d
= Xi with probability πi.

We must be careful not to think of the linear combination of the CDFs or
PDFs as applying to the random variables; the random variable of the mixture
is not a linear combination of the constituent random variables.

Joint and Marginal Distributions

For a random variable consisting of two components, (X1, X2), we speak of its
distribution as a “joint distribution”, and we call the separate distributions the
“marginal distributions”. We might denote the PDF of the joint distribution
as fX1,X2 and the PDF for X1 alone as fX1 . We call fX1,X2 a joint PDF and
fX1 a marginal PDF.

We have the simple relationship

fX1(x1) =

∫
fX1,X2(x1, x2) dx2. (1.30)

Independence and Exchangeability of Random Variables

We have defined independence and exchangeability in general. We now give
equivalent definitions for random variables.

Definition 1.18 (independence of random variables)
The random variables X1, . . . , Xk on (Ω,F , P ) are said to be independent iff
for any sets B1, . . . , Bk in the σ-field of the image space,
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P (X1 ∈ B1, . . . , Xk ∈ Bk) =

k∏

i=1

P (Xi ∈ Bi).

Notice that this definition is essentially the same as Definition 1.7.3 on
page 6, and it corresponds to the definition of independence of events; that is,
independence of X−1

i [Bi] (Definition 1.7.1). These are not just separate defi-
nitions of independence of various objects. The following theorem (which we
could have stated analogously following Definition 1.7) relates Definition 1.18
above to Definition 1.7.2.

Theorem 1.11
The random variables X1, . . . , Xk on (Ω,F , P ) are independent iff the σ-fields
σ(X1), . . . , σ(Xk) are independent.

Proof. Exercise.
The following factorization theorem is often useful in establishing inde-

pendence of random variables.

Theorem 1.12
If X1 and X2 are random variables with joint PDF fX1,X2 and marginal PDFs
fX1 and fX2 , then X1 and X2 are independent iff

fX1,X2 (x1, x2) = fX1(x1)fX2 (x2). (1.31)

Proof. Exercise.
We are often interested in random variables that have the same distribu-

tions. In that case, exchangeability of the random variables is of interest.
The following definition of exchangeability is essentially the same as Def-

inition 1.8.3, and similar comments relating to exchangeability of random
variables, sets, and σ-fields as made above relating to independence hold.

Definition 1.19 (exchangeability of random variables)
The random variables X1, . . . , Xk on (Ω,F , P ) are said to be exchangeable
iff the joint distribution of X1, . . . , Xk is the same as the joint distribution
of Π({X1, . . . , Xk}), for any Π , where Π(A) denotes a permutation of the
elements of the set A.

As we have seen, exchangeability requires identical distributions, but, given
that, it is a weaker property than independence.

Example 1.6 Polya’s urn process
Consider an urn that initially contains r red and b blue balls. One ball is
chosen randomly from the urn, and its color noted. The ball is then put back
into the urn together with c balls of the same color. (Hence, the number of
total balls in the urn changes. We can allow c = −1, in which case, the drawn
ball is not returned to the urn.) Now define a binary random variable Ri = 1
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if a red ball is drawn and Ri = 0 if a blue ball is drawn. (The random variable
Ri in this example is the indicator function for the event Ri in Example 1.2.)
The sequence R1, R2, . . . is exchangeable, but not independent.

An interesting fact about infinite sequences of exchangeable binary random
variables, such as those in Example 1.6 with c ≥ 0, is that they are mixtures
of independent Bernoulli sequences; see page 76. This provides a link between
exchangeability and independence. This connection between exchangeability
and independence does not necessarily hold in finite sequences, as in the urn
process of Example 1.2.

Random Samples

If the random variables X1, . . . , Xk are independent and

X1
d
= · · · d

= Xk,

we say X1, . . . , Xk are identically and independently distributed, which we
denote as iid. A set of iid random variables is called a simple random sample,
and the cardinality of the set is called the “size” of the simple random sample.
The common distribution of the variables is called the parent distribution of
the simple random sample. We also often use the phrase “excangeable random
sample”, with the obvious meaning.

There are many situations in which a sample is generated randomly, but
the sample is not a simple random sample or even an exchangeable random
sample. Two of the most common such situations are in finite population
sampling (see Section 5.5.2) and a process with a stopping rule that depends
on the realizations of the random variable, such as sampling from an urn until
a ball of a certain color is drawn or sampling from a binary (Bernoulli) process
until a specified number of 1s have occurred (see Example 3.12).

Despite the more general meaning of random sample, we often call a simple
random sample just a “random sample”.

In statistical applications we often form functions of a random sample,
and use known or assumed distributions of those functions to make inferences
abput the parent distribution. Two of the most common functions of a random
sample are the sample mean and the sample variance. Given a random sample
X1, . . . , Xn, the sample mean is defined as

X =

n∑

i=1

Xi/n, (1.32)

and if n ≥ 2, the sample variance is defined as

S2 =

n∑

i=1

(Xi −X)2/(n− 1). (1.33)
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(Notice that the divisor in the sample variance is n− 1.)
If the parent distribution is N(µ, σ2), the sample mean and sample variance

have simple and useful distributions (see page 187).
For functions of a random sample such as the sample mean and variance,

we often include the sample size in the notation for the function, as Xn or
S2

n, and we may be interested in the properties of these functions as n gets
larger (see Example 1.23).

The Empirical Distribution Function

Given a random sample X1, . . . , Xn, we can form a conditional discrete dis-
tribution, dominated by a counting measure on {1, . . . , n}, with CDF

Fn(x) = #{Xi |Xi ≤ x}/n, for i = 1, . . . , n. (1.34)

The simple CDF Fn is called the empirical cumulative distribution function
(ECDF) for the sample. It has at most n+ 1 distinct values.

The ECDF has wide-ranging applications in statistics.

1.1.3 Definitions and Properties of Expected Values

First we define the expected value of a random variable.

Definition 1.20 (expected value of a random variable)
Given a probability space (Ω,F , P ) and a d-variate random variableX defined
on F , we define the expected value of X with respect to P , which we denote
by E(X) or for clarity by EP (X), as

E(X) =

∫

Ω

X dP, (1.35)

if this integral exists.

For the random variable X, E(X), if it exists, is called the first moment of X.
Although by properties following immediately from the definition, Pr(−∞ <

X <∞) = 1, it could happen that
∫
IRd X dP =∞. In that case we say the ex-

pected value, or first moment, is infinite. It could also happen that
∫
IRd X dP

does not exist (see Definition 0.1.41 on page 728), and in that case we say the
expected value does not exist. Recall, however, what we mean by the expres-
sion “integrable function”. This carries over to a random variable; we say the
random variable X is integrable (or L1 integrable) iff −∞ <

∫
IRd X dP <∞.

Example 1.7 existence and finiteness of expectations
Let the random variable X have the PDF

fX(x) =
1

(1 + x)2
IIR+

(x). (1.36)
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We have

E(X) =

∫ ∞

0

x

(1 + x)2
dx

=

(
log(1 + x) +

1

1 + x

)∣∣∣∣
∞

0
= ∞.

That is, E(X) is infinite. (Although E(X) /∈ IR, and some people would say
that it does not exist in this case, we consider E(X) “to exist”, just as we speak
of the existence of infinite integrals (page 727). Just as we identify conditions
in which integrals do not exist because of indeterminancy (page 728), however,
we likewise will identify situations in which the expectations do not exist.)

Let the random variable Y have the PDF

fY (y) =
1

π(1 + y2)
. (1.37)

We have

E(Y ) =

∫ ∞

−∞

x

π(1 + x2)
dx

=
1

2π
log(1 + x2)

∣∣∣∣
∞

−∞
.

That is, E(Y ) is not infinite; it does not exist.
The random variable X has the same distribution as the ratio of two

standard exponential random variables, and the random variable Y has the
same distribution as the ratio of two standard normal random variables, called
a Cauchy distribution. (It is an exercise to show these facts.)

It is clear that E is a linear operator; that is, for random variables X and
Y defined on the same probability space, and constant a,

E(aX + Y ) = aE(X) + E(Y ), (1.38)

if E(X) and E(Y ) are finite.
Look carefully at the integral (1.35). It is the integral of a function, X,

over Ω with respect to a measure, P , over the σ-field that together with Ω
forms the measurable space. To emphasize the meaning more precisely, we
could write the integral in the definition as

E(X) =

∫

Ω

X(ω) dP (ω).

The integral (1.35) is over an abstract domain Ω. We can also write the
expectation over the real range of the random variable and an equivalent
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measure on that range. If the CDF of the random variable is F , we have, in
the abbreviated form of the first expression given in the definition,

E(X) =

∫

IRd

x dF, (1.39)

or in the more precise form,

E(X) =

∫

IRd

x dF (x).

If the PDF exists and is f , we also have

E(X) =

∫

IRd

xf(x) dx.

An important and useful fact about expected values is given in the next
theorem.

Theorem 1.13
Let X be a random variable in IRd such that E(‖X‖2) <∞. Then

E(X) = arg min
a∈IRd

E(‖X − a‖2). (1.40)

Proof. Exercise. Also, see equation (0.0.101).
In statistical applications this result states that E(X) is the best prediction

of X given a quadratic loss function in the absence of additional information
about X.

Expected Values of Functions of Random Variables

We define the expected value of a Borel function of a random variable in the
same way as above for a random variable.

Definition 1.21 (expected value of a Borel function)
If g is a Borel function of the random variable X with CDF F , then the
expected value of g(X) is defined as

E(g(X)) =

∫

IRd

g(x) dF (x). (1.41)

Theorem 1.14
If X and Y are random variables defined over the same probability space and
g is a Borel function of the random variable X, then

X ≥ Y a.s. ⇒ E(X) ≥ E(Y ), (1.42)

and
g(X) ≥ 0 a.s. ⇒ E(g(X)) ≥ 0. (1.43)
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Proof. Each property is an immediate consequence of the definition.
The relationship of the expected value of a function of a random variable

to the expected value of the random variable itself depends on the nature of
the function. If g is a linear function and X is a random variable for which
E(X) exists, then

E(g(X)) = g(E(X)). (1.44)

Equation (1.44) is a characterization of a linear function g over a domain
corresponding to the support of X. The relationship of E(g(X)) to g(E(X))
is an interesting property of functions; in general of course, equality does not
hold. Jensen’s inequality (page 849) states the relationship for either convex
or concave functions.

Expected Values of Probability Density Functions

Expected values of PDFs or of functionals of PDFs are useful in applications
of probability theory. The expectation of the negative of the log of a PDF,
− log(f(X)), is the entropy (Definition 1.26 on page 42), which is related to
the concept of “information”. We have also mentioned the expectation of the
square of ∂ log(f(X; θ))/∂θ, which appears in the Cramér-Rao lower bound.
The expectation of ∂ log(f(X; θ))/∂θ is zero (see page 230).

There are several interesting expectations of the PDFs of two different
distributions, some of which we will mention on page 37.

Expected Values and Quantile Functions of Univariate Random
Variables

As we mentioned earlier, the quantile function has many applications that
parallel those of the CDF.

If X is a univariate random variable with CDF F , then the expected value
of X is

E(X) =

∫ 1

0

F−1(x)dx. (1.45)

See Exercise 1.25.

Expected Value and Probability

There are many interesting relationships between expected values and proba-
bilities, such as the following.

Theorem 1.15
If X is a random variable such that X > 0 a.s., then

E(X) =

∫ ∞

0

Pr(X > t)dt. (1.46)
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Proof. This is a simple application of Fubini’s theorem, using the CDF F of
X:

E(X) =

∫ ∞

0

x dF (x)

=

∫ ∞

0

∫

]0,x[

dt dF (x)

=

∫ ∞

0

∫

]t,∞[

dF (x)dt

=

∫ ∞

0

(1− F (t))dt

=

∫ ∞

0

Pr(X > t)dt

Theorem 1.15 leads in general to the following useful property for any
given random variable X for which E(X) exists:

E(X) =

∫ ∞

0

(1− F (t))dt−
∫ 0

−∞
F (t)dt. (1.47)

It is an exercise to write a proof of this statement.
Another useful fact in applications involving the Bernoulli distribution

with parameter π is the relationship

E(X) = Pr(X = 1) = π.

Expected Value of the Indicator Function

We define the indicator function, IA(x), as

IA(x) =

{
1 if x ∈ A
0 otherwise.

(1.48)

(This is also sometimes called the “characteristic function”, but we use that
term to refer to something else.) If X is an integrable random variable over
A, then IA(X) is an integrable random variable, and

Pr(A) = E(IA(X)). (1.49)

It is an exercise to write a proof of this statement. When it is clear from the
context, we may omit the X, and merely write E(IA).
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Expected Value over a Measurable Set

The expected value of an integrable random variable over a measurable set
A ⊆ IRd is

E(XIA(X)) =

∫

A

X dP. (1.50)

It is an exercise to write a proof of this statement. We often denote this as
E(XIA).

Expected Value of General Measurable Functions

A real-valued measurable function g of a random variable X is itself a random
variable, possibly with a different probability measure. Its expected value is
defined in exactly the same way as above. If the probability triple associated
with the random variable X is (Ω,F , P ) and Y = g(X), we could identify a
probability triple associated with Y . Being measurable, the relevant measur-
able space of g(X) is (Ω,F), but the probability measure is not necessarily
P . If we denote the probability triple associated with the random variable Y
is (Ω,F , Q), we may distinguish the defining integrals with respect to dP and
dQ by EP and EQ.

We can also write the expected value of Y in terms of the CDF of the origi-
nal random variable. The expected value of a real-valued measurable function
g of a random variable X with CDF F is E(g(X)) =

∫
g(x)dF (x).

Moments of Scalar Random Variables

The higher-order moments are the expected values of positive integral powers
of the random variable. If X is a scalar-valued random variable, the rth raw
moment of X, if it exists, is E(Xr). We often denote the rth raw moment as
µ′

r. There is no requirement, except notational convenience, to require that r
be an integer, and we will often allow it non-integral values, although “first
moment”, “second moment”, and so on refer to the integral values.

For r ≥ 2, central moments or moments about E(X) are often more useful.
The rth central moment of the univariate random variable X, denoted as µr ,
is E((X − E(X))r):

µr =

∫
(x − µ)rdF (x). (1.51)

if it exists. We also take µ1 to be µ, which is also µ′
1. For a discrete distribution,

this expression can be interpreted as a sum of the values at the mass points
times their associated probabilities.

Notice that the moment may or may not exist, and if it exists, it may or
may not be finite. (As usual, whenever I speak of some property of a moment,
such as that it is finite, I am assuming that the moment exists, even though
I may not make a statement to that effect.)
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The first two central moments are usually the most important; µ1 is called
the mean and µ2 is called the variance. The variance of X is denoted by
V(·). Because (X − E(X))2 ≥ 0 a.s., we see that the variance is nonnegative.

Further, unless X
a.s.
= E(X), the variance is positive.

The square root of the variance is called the standard deviation.
E(|X|) is called the first absolute moment of X; and generally, E(|X|r) is

called the rth absolute moment.

Theorem 1.16
If the rth absolute moment of a scalar random variable is finite, then the
absolute moments of order 1, 2, . . . , r− 1 are finite.

Proof. For s ≤ r, |x|s ≤ 1 + |x|r.

Example 1.8 moments of random variables in the t family
Consider the t family of distributions (page 841) with PDF

f(y) =
Γ((ν + 1)/2)

Γ(ν/2)
√
νπ

(1 + y2/ν)−(ν+1)/2,

in which the parameter ν is called the degrees of freedom. By direct integra-
tion, it is easy to see that the rth absolute moment moment exists iff r ≤ ν−1.

We define the rth standardized moment as

ηr = µr/µ
r/2
2 . (1.52)

The first raw moment or the mean, is an indicator of the general “location”
of the distribution. The second central moment or the variance, denoted as
µ2 or σ2 is a measure of the “spread” of the distribution. The nonnegative
square root, σ, is sometimes called the “scale” of the distribution. The third
standardized moment, η3, is an indicator of whether the distribution is skewed;
it is called the skewness coefficient. If η3 6= 0, the distribution is asymmetric,
but η3 = 0 does not mean that the distribution is symmetric.

The fourth standardized moment, η4 is called the kurtosis coefficient. It
is an indicator of how “peaked” the distribution is, or how “heavy” the tails
of the distribution are. (Actually, exactly what this standardized moment
measures cannot be described simply. Because, for the random variableX, we
have

η4 = V

(
(X − µ)2

σ2

)
+ 1,

it can be seen that the minimum value for η4 is attained for a discrete dis-
tribution with mass points −σ and σ. We might therefore interpret η4 as a
measure of variation about the two points −σ and σ. This, of course, leads
to the two characteristics mentioned above: peakedness and heaviness in the
tails.)
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The sequence of (raw) moments is very useful in characterizing a distri-
bution of a scalar random variable, but often the central moments are to be
preferred because the second and higher central moments are invariant to
change in the first moment (the “location”).

Uniqueness of Moments of Scalar Random Variables

An interesting question is whether the full set of moments fully determines a
distribution of a scalar random variable.

It seems reasonable to guess that this would not be the case if not all
moments of all orders exist; and, indeed, it is a simple matter to construct
two different distributions whose moments beyond the kth are infinite but
whose first k moments are the same. The question of interest, therefore, is
whether the full set of moments fully determine a distribution, given that
moments of all orders are finite. In general, they do not.

Example 1.9 different distributions with equal finite moments of all
orders
Consider the complex integral related to the gamma function,

∫ ∞

0

tα−1e−t/βdt = βαΓ(α),

where α > 0 and β = 1/(γ + iξ) with γ > 0. Now, make a change of variable,
xρ = t for 0 < ρ < 1/2; and for a nonnegative integer k, choose α = (k+1)/ρ,
and ξ/γ = tan(ρπ). Noting that (1 + i tan(ρπ))(k+1)/ρ is real, we have that
the imaginary part of the integral after substitution is 0:

∫ ∞

0

xke−γxρ

sin(ξxρ)dx = 0. (1.53)

Hence, for all |α| ≤ 1, the distributions over ĪR+ with PDF

p(x) = ce−γxρ

(1 + α sin(ξxρ))IĪR+
(x), (1.54)

where γ > 0 and 0 < ρ < 1/2 have the same moments of all orders k =
0, 1, 2, . . ..

We could in a similar way develop a family of distributions over IR that
have the same moments. (In that case, the ρ is required to be in the range
]−1, 1[.) The essential characteristic of these examples is that there exists x0,
such that for γ > 0,

p(x) > e−γ|x|ρ for x > x0, (1.55)

because we can add a function all of whose moments are 0. (Such a function
would necessarily take on negative values, but not sufficiently small to make
p(x) plus that function be negative.)
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A distribution all of whose moments are the same as some other distribu-
tion is called a moment-indeterminant distribution. The distributions within a
family of distributions all of which have the same moments are called moment-
equivalent distributions. In Exercise 1.28, you are asked to show that there
are other distributions moment-equivalent to the lognormal family of distri-
butions.

So can we identify conditions that are sufficient for the moments to char-
acterize a probability distribution? The answer is yes; in fact, there are several
criteria that ensure that the moments uniquely determine a distribution. For
scalar random variables, one criterion is given in the following theorem.

Theorem 1.17
Let ν0, ν1, . . . ∈ IR be the moments of some probability distribution. (The mo-
ments can be about any origin.) The probability distribution is uniquely deter-
mined by those moments if

∞∑

j=0

νjt
j

j!
(1.56)

converges for some real nonzero t.

A simple proof of this theorem is based on the uniqueness of the character-
istic function, so we defer its proof to page 50, after we have discussed the
characteristic function.

Corollary 1.17.1 The moments of a probability distribution with finite sup-
port uniquely determine the distribution.

The following theorem, which we state without proof, tells us that the
moments determine the distribution if the central moments are close enough
to zero.

Theorem 1.18
Let µ0, µ1, . . . be the central moments of some probability distribution. If the
support of the probability distribution is IR, it is uniquely determined by those
moments if

∞∑

j=0

1

µ
1/2j
2j

(1.57)

diverges.
If the support of the probability distribution is ĪR+, it is uniquely deter-

mined by those moments if
∞∑

j=0

1

µ
1/2j
j

(1.58)

diverges.
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Corollary 1.18.1
If a probability distribution has a PDF p(x) with support IR, then the moments
uniquely determine p(x) if

p(x) < M |x|λ−1e−γ|x|ρ for x > x0, (1.59)

where M,λ, γ > 0 and ρ ≥ 1.
If a probability distribution has a PDF p(x) with support ĪR+, then the

moments uniquely determine p(x) if

p(x) < Mxλ−1e−γxρ

for x > 0, (1.60)

where M,λ, γ > 0 and ρ ≥ 1/2.

The conditions in Theorem 1.18 are called the Carleman criteria (after Torsten
Carleman). Compare the conditions in the corollary with inequality (1.55).

Within a specific family of distributions, the full set of moments can usu-
ally be expected to identify the distribution. For narrowly-defined families of
distributions, such as the normal or gamma families, often only one or two
moments completely identify the family.

Cumulants of Scalar Random Variables

Another useful sequence of constants for describing the distribution of a scalar
random variables are called cumulants, if they exist. Cumulants, except for
the first, are also invariant to change in the first moment. The cumulants and
the moments are closely related, and cumulants can be defined in terms of
raw moments, if they exist. For the first few cumulants, κ1, κ2, . . ., and raw
moments, µ′

1, µ
′
2, . . ., of a scalar random variable, for example,

µ′
1 = κ1

µ′
2 = κ2 + κ2

1

µ′
3 = κ3 + 3κ2κ1 + κ3

1.
(1.61)

The expressions for the cumulants are a little more complicated, but can be
obtained easily from the triangular system (1.61).

Factorial Moments of Discrete Scalar Random Variables

A discrete distribution with support x1, x2, . . . ∈ IR is equivalent to a discrete
distribution with support 0, 1, . . ., and for such a distribution, another kind
of moment is sometimes useful. It is the factorial moment, related to the rth

factorial of the real number y:

y[r] = y(y − 1) · · · (y − (r − 1)). (1.62)

(We see that y[y] = y!. It is, of course, not necessary that y be an integer, but
factorials are generally more useful in the context of nonnegative integers.)
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The rth factorial moment of the random variable X above is

µ′
[r] =

∞∑

i=0

x
[r]
i pi. (1.63)

We see that µ′
[1] = µ′

1 = µ1.

The rth central factorial moment, denoted µ[r] is the rth factorial moment
about µ.

1.1.4 Relations among Random Variables

In many applications there are two or more random variables of interest. For
a given probability space (Ω,F , P ), there may be a collection of random vari-
ables,W. If the random variables have some common properties, for example,
if either all are discrete or all are continuous and if all have the same structure,
we may identify the collection as a “space”.

If the random variables have some relationship to each other, that is, if
they are not independent, we seek useful measures of their dependence. The
appropriate measure depends on the nature of their dependence. If they are
quadratically related, a measure that is appropriate for linear relationships
may be inappropriate, and vice versa.

We will consider two ways of studying the relationships among random
variables. The first is based on second-degree moments, called covariances,
between pairs of variables, and the other is based on functions that relate the
CDF of one variable or one set of variables to the CDFs of other variables.
These functions, called copulas, can involve more than single pairs of variables.

Random Variable Spaces

As with any function space, W may have interesting and useful properties.
For example, W may be a linear space; that is, for X, Y ∈ W and a ∈ IR,
aX + Y ∈ W.

The concept of Lp random variable spaces follows immediately from the
general property of function spaces, discussed on page 741. for random vari-
ables in an Lp random variable space, the pth absolute is finite.

The closure of random variable spaces is often of interest. We define various
forms of closure depending on types of convergence of a sequence Xn in the

space. For example, given any sequence Xn ∈ W if Xn
Lr→ X implies X ∈ W

then W is closed for the rth moment.

Expectations

We may take expectations of functions of random variables in terms of their
joint distribution or in terms of their marginal distributions. To indicate the
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distribution used in an expectation, we may use notation for the expectation
operator similar to that we use on the individual distribution, as described
on page 23. Given the random variables X1 and X2, we use the notation EX1

to indicate an expectation taken with respect to the marginal distribution of
X1.

We often denote the expectation taken with respect to the joint distribu-
tion as simply E, but for emphasis, we may use the notation EX1,X2 .

We also use notation of the form EP , where P denotes the relevant proba-
bility distribution of whatever form, or Eθ in a parametric family of probability
distributions.

Expectations of PDFs and of Likelihoods

If the marginal PDFs of the random variables X1 and X2 are fX1 and fX2 ,
we have the equalities

EX1

(
fX2 (X1)

fX1 (X1)

)
= EX2

(
fX1 (X2)

fX2 (X2)

)
= 1. (1.64)

On the other hand,

EX1 (− log(fX1 (X1))) ≤ EX1 (− log(fX2(X1))), (1.65)

with equality only if fX1 (x) = fX2 (x) a.e. (see page 42).
When the distributions are in the same parametric family, we may write

fθ with different values of θ instead of fX1 and fX2 . In that case, it is more
natural to think of the functions as likelihoods since the parameter is the
variable. From equation (1.64), for example, we have for the likelihood ratio,

Eθ1

(
L(θ2 ;X)

L(θ1 ;X)

)
= 1. (1.66)

Covariance and Correlation

Expectations are also used to define relationships among random variables.
We will first consider expectations of scalar random variables, and then discuss
expectations of vector and matrix random variables.

For two scalar random variables, X and Y , useful measures of a linear
relationship between them are the covariance and correlation. The covariance
of X and X, if it exists, is denoted by Cov(X, Y ), and is defined as

Cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) (1.67)

From the Cauchy-Schwarz inequality (B.21) (see page 853), we see that

(Cov(X, Y ))2 ≤ V(X)V(Y ). (1.68)
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The correlation of X and Y , written Cor(X, Y ), is defined as

Cor(X, Y ) = Cov(X, Y )
/√

V(X)V(Y ) . (1.69)

The correlation is also called the correlation coefficient and is often written
as ρX,Y .

From inequality (1.68), we see that the correlation coefficient is in [−1, 1].
If X and Y are independent, then Cov(X, Y ) = Cor(X, Y ) = 0 (exercise).

Structure of Random Variables

Random variables may consist of individual IR elements arrayed in some struc-
ture, such as a vector so that the random variable itself is in IRd or as a matrix
so that the random variable is in IRd×m. Many of the properties of random
variables are essentially the same whatever their structure, except of course
those properties may have structures dependent on that of the random vari-
able.

Multiplication is an operation that depends very strongly on the structure
of the operand. If x is a scalar, x2 is a scalar. If x is a is vector, however, there
are various operations that could be interpreted as extensions of a squaring
operation. First, of course, is elementwise squaring. In this interpretation x2

has the same structure as x. Salient relationships among the individual ele-
ments of x may be lost by this operation, however. Other interpretations are
xTx, which preserves none of the structure of x, and xxT, which is in IRd×d.
The point of this is that what can reasonably be done in the analysis of ran-
dom variables depends on the structure of the random variables, and such
relatively simple concepts as moments require some careful consideration. In
many cases, a third-order or higher-order moment is not useful because of its
complexity.

Structural Moments

For random variables that have a structure such as a vector or matrix, the
elementwise moments are the same as those for a scalar-valued random vari-
able as described above, and hence, the first moment, the mean, has the same
structure as the random variable itself.

Higher order moments of vectors and matrices present some problems be-
cause the number of individual scalar moments is greater than the number of
elements in the random object itself. For multivariate distributions, the higher-
order marginal moments are generally more useful than the higher-order joint
moments. We define the second-order moments (variances and covariances)
for random vectors and for random matrices below.

Definition 1.22 (variance-covariance of a random vector)
The variance-covariance of a vector-valued random variable X is the expec-
tation of the outer product,
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V(X) = E
(
(X − E(X))(X − E(X))T

)
, (1.70)

if it exists.

For a constant vector, the rank of an outer product is no greater than 1,
but unless X

a.s.
= E(X), V(X) is nonnegative definite. We see this by forming

the scalar random variable Y = cTX for any c 6= 0, and writing

0 ≤ V(Y )

= E((cTX − cTE(X))2)

= E((cT(X − E(X))(X − E(X))c)

= cTV(X)c.

(If X
a.s.
= E(X), then V(X) = 0, and while it is true that cT0c = 0 ≥ 0, we do

not say that the 0 matrix is nonnegative definite. Recall further that whenever
I write a term such as V(X), I am implicitly assuming its existence.)

Furthermore, if it is not the case that X
a.s.
= E(X), unless some element

Xi of a vector X is such that

Xi
a.s.
=
∑

j 6=i

(aj + bjXj),

then V(X) is positive definite a.s. To show this, we show that V(X) is full
rank a.s. (exercise).

The elements of V(X) are the bivariate moments of the respective elements
of X; the (i, j) element of V(X) is the covariance of Xi and Xj , Cov(Xi, Xj).

If V(X) is nonsingular, then the correlation matrix of X, written Cor(X)
is

Cor(X) =
(
E(X − E(X))T

)
(V(X))

−1
E(X − E(X)). (1.71)

The (i, j) element of Cor(X) is the correlation of Xi and Xj , and so the
diagonal elements are all 1.

Definition 1.23 (variance-covariance of a random matrix)
The variance-covariance of a matrix random variable X is defined as the
variance-covariance of vec(X):

V(X) = V(vec(X)) = E
(
vec(X − E(X))(vec(X − E(X)))T

)
, (1.72)

if it exists.

Linearity of Moments

The linearity property of the expectation operator yields some simple linearity
properties for moments of first or second degree of random variables over the
same probability space.
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For random variables X, Y , and Z with finite variances and constants a,
b, and c, we have

V(aX + Y + c) = a2V(X) + V(Y ) + 2aCov(X, Y ); (1.73)

that is, V(·) is not a linear operator (but it simplifies nicely), and

Cov(aX+ bY + c, X+Z) = aV(X)+aCov(X,Z)+ bCov(X, Y )+ bCov(Y, Z);
(1.74)

that is, Cov(·, ·) is a bilinear operator. Proofs of these two facts are left as
exercises.

Copulas

A copula is a function that relates a multivariate CDF to lower dimensional
marginal CDFs. The basic ideas of copulas can all be explored in the context
of a bivariate distribution and the two associated univariate distributions, and
the ideas extend in a natural way to higher dimensions.

Definition 1.24 (two-dimensional copula)
A two-dimensional copula is a function C that maps [0, 1]2 onto [0, 1] with the
following properties:

1. for every u ∈ [0, 1],
C(0, u) = C(u, 0) = 0, (1.75)

and
C(1, u) = C(u, 1) = u, (1.76)

2. for every (u1, u2), (v1, v2) ∈ [0, 1]2 with u1 ≤ v1 and u2 ≤ v2,
C(u1, u2) −C(u1, v2)−C(v1, u2) + C(v1, v2) ≥ 0. (1.77)

A two-dimensional copula is also called a 2-copula.
The arguments to a copula C are often taken to be CDFs, which of course

take values in [0, 1].
The usefulness of copulas derive from Sklar’s theorem, which we state

without proof.

Theorem 1.19 (Sklar’s theorem)
Let PXY be a bivariate CDF with marginal CDFs PX and PY . Then there
exists a copula C such that for every x, y ∈ IR,

PXY (x, y) = C(PX(x), PY (y)). (1.78)

If PX and PY are continuous everywhere, then C is unique; otherwise C is
unique over the support of the distributions defined by PX and PY .

Conversely, if C is a copula and PX and PY are CDFs, then the function
PXY (x, y) defined by equation (1.78) is a CDF with marginal CDFs PX(x)
and PY (y).
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Thus, a copula is a joint CDF of random variables with U(0, 1) marginals.
The proof of the first part of the theorem is given in Nelsen (2006), among
other places. The proof of the converse portion is straightforward and is left
as an exercise.

For many bivariate distributions the copula is the most useful way to
relate the joint distribution to the marginals, because it provides a separate
description of the individual distributions and their association with each
other.

One of the most important uses of copulas is to combine two marginal
distributions to form a joint distribution with known bivariate characteristics.

Certain standard copulas are useful in specific applications. The copula
that corresponds to a bivariate normal distribution with correlation coefficient
ρ is

CNρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φρ(t1, t2) dt2dt1, (1.79)

where Φ(·) is the standard (univariate) normal CDF, and φρ(·, ·) is the bi-
variate normal PDF with means 0, variances 1, and correlation coefficient ρ.
This copula is usually called the Gaussian copula and has been widely used
in financial applications.

The association determined by a copula is not the same as that determined
by a correlation; that is, two pairs of random variables may have the same
copula but different correlations.

1.1.5 Entropy

Probability theory is developed from models that characterize uncertainty
inherent in random events. Information theory is developed in terms of the
information revealed by random events. The premise is that the occurrence
of an event with low probability is more informative than the occurrence of
an event of high probability. For a discrete random variable we can effec-
tively associate a value of the random variable with an event, and we quantify
information in such a way that the information revealed by a particular out-
come decreases as the probability increases. Thus, there is more information
revealed by a rare event than by a common event.

Definition 1.25 (self-information)
Let X be a discrete random variable with probability mass function pX . The
self-information of X = x is − log2(pX(x)).

Self-information is also called Shannon information. The logarithm to the base
2 comes from the basic representation of information in base 2, but we can
equivalently use any base, and it is common to use the natural log in the
definition of self-information.

The logarithm of the PDF is an important function in studying random
variables. It is used to define logconcave families (see page 165). The negative
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of its expected value is called “entropy”, or sometimes, “Shannon entropy” to
distinguish it from other measures of entropy.

Definition 1.26 (entropy)
Let X be a random variable with PDF pX with respect to a σ-finite measure.
The entropy of the random variable X is

E(− log(pX(X))). (1.80)

The expected value of the derivative of the logarithm of the PDF with
respect to a parameter of a distributional family yields another definition of
“information” (see Section 1.1.6), and it appears in an important inequality
in statistical theory (see pages 399 and 854).

The expected value in expression (1.80) is smallest when the it is taken
wrt the distribution with PDF pX , as we see in the following theorem, known
as the Gibbs lemma.

Theorem 1.20 (Gibbs lemma)
Let P1 and P2 be probability distributions with PDFs p1 and p2 respectively.
Then

EP1 (− log(p1(X))) ≤ EP1(− log(p2(X))), (1.81)

with equality only if p1(x) = p2(x) a.e.

Proof. I give a proof for distributions with PDFs dominated by Lebesgue
measure, but it is clear that a similar argument would hold for other measures.

Let p1 and p2 be PDFs dominated by Lebesgue measure. Let X be the set
of x such that p1(x) > 0. Over X

log

(
p2(x)

p1(x)

)
≤ p2(x)

p1(x)
− 1,

with inequality iff p2(x) = p1(x). So we have

p1(x) log

(
p2(x)

p1(x)

)
≤ p2(x)− p1(x).

Now

EP1 (− log(p1(X))) − EP1 (− log(p2(X))) = −
∫

X
p1(x) log(p1(x))dx

+

∫

X
p1(x) log(p2(x))dx

≤
∫

X
p2(x)dx−

∫

X
p1(x)dx

≤
∫

IRd

p2(x)dx−
∫

IRd

p1(x)dx

= 0.
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The definitions of information theory are generally given in the context of
a countable sample space, and in that case, we can see that the entropy is the
expected value of the self-information, and equation (1.80) becomes

H(X) = −
∑

x

pX(x) log(pX(x)), (1.82)

which is the more familiar form in information theory.
We can likewise define the joint entropy H(X, Y ) in terms of the joint

PDF pX,Y .
We can see that the entropy is maximized if all outcomes are equally

probable. In the case of a discrete random variable with two outcomes with
probabilities π and 1−π (a Bernoulli random variable with parameter π), the
entropy is

−π log(π) − (1− π) log(1 − π).

We note that it is maximized when π = 1/2.

1.1.6 Fisher Information

The concept of “information” is important in applications of probability the-
ory. We have given one formal meaning of the term in Section 1.1.5. We will
give another formal definition in this section, and in Section 1.6.1, we will give
an informal meaning of the term in the context of evolution of σ-Fields.

If a random variable X has a PDF f(x; θ) wrt a σ-finite measure that is
differentiable in θ, the rate of change of the PDF at a given x with respect to
different values of θ intuitively is an indication of the amount of information
x provides. For such distributions, we define the “information” (or “Fisher
information”) that X contains about θ as

I(θ) = Eθ

((
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T
)
. (1.83)

1.1.7 Generating Functions

There are various functionals of the PDF or CDF that are useful for de-
termining properties of a distribution. One important type are “generating
functions”. These are functions whose derivatives evaluated at specific points
yield important quantities that describe the distribution, such as moments, or
as in the case of discrete distributions, the probabilities of the points in the
support.

We will describe these functions in terms of d-variate random variables,
although, as we discussed on pages 31 through 40, the higher-order moments
of d-variate random variables have structures that depends on d.
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Moment-Generating Functions

Definition 1.27 (moment-generating function)
For the random d-variate X, the moment-generating function (MGF) is

ψX(t) = E
(
etTX

)
, t ∈ Nε(0) ⊆ IRd, (1.84)

if this expectation is finite for some ε > 0.

The moment-generating function is obviously nonnegative.
Many common distributions do not have moment-generating functions.

Two examples are the Cauchy distribution (exercise) and the lognormal dis-
tribution (Example 1.10).

For a scalar random variable X, the MGF yields the (raw) moments di-
rectly (assuming existence of all quantities):

dkψX(t)

dtk

∣∣∣∣
t=0

= E(Xk). (1.85)

For vector-valued random variables, the moments become tensors, but the
first two moments are very simple:

∇ψX(t)|t=0 = E(X) (1.86)

and
∇∇ψX(t)|t=0 = E(XTX). (1.87)

Because of the foregoing and the fact that for ∀k ≥ 1, |t| > 0, ∃x0 3 |x| ≥
x0 ⇒ etx > xk, we have the following fact.

Theorem 1.21
If for the scalar random variable X the MGF ψX(t) exists, then E(|X|k) <∞
and E(Xk) = ψ

(k)
X (0).

The theorem also holds for vector-valued random variables, with the appro-
priate definition of Xk.

The converse does not hold, as the following example shows.

Example 1.10 a distribution whose moments exist but whose moment-
generating function does not exist
The lognormal distribution provides some interesting examples with regard
to moments. First, recall from page 34 that the moments do not uniquely
determine a lognormal distribution (see also Exercise 1.28).

The standard lognormal distribution is related to the standard normal
distribution. If Y has a standard normal distribution, then X = eY has a
lognormal distribution (that is, the log of a lognormal random variable has a
normal distribution).
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Let Y be a standard normal variable and let X = eY . We see that the
moments of the lognormal random variable X exist for all orders k = 1, 2, . . .:

E
(
Xk
)

= E
(
ekY

)

=
1√
2π

∫ ∞

−∞
ekye−y2/2dy

= ek2/2.

However, for t > 0,

E
(
etX
)

= E
(
eteY

)

=
1√
2π

∫ ∞

−∞
etey−y2/2dy.

By expanding ey in the exponent of the integrand as 1+y+y2/2+y3/3!+ · · · ,
we see that the integrand is greater than exp(t(1 + y + y3/3!)). However,

∫ ∞

−∞
exp(t(1 + y + y3/3!))dy =∞;

hence, the MGF does not exist.

When it exists, the MGF is very similar to the characteristic function,
which we will define and discuss in Section 1.1.8 beginning on page 46.

Generating Functions for Discrete Distributions

Frequency-generating functions or probability-generating functions (the terms
are synonymous) are useful for discrete random variables.

Definition 1.28 (probability-generating function)
For the discrete random variable X taking values x1, x2, . . . with probabili-
ties 0 < p1, p2, . . ., the frequency-generating function or probability-generating
function is the polynomial

P (t) =

∞∑

i=0

pi+1t
i. (1.88)

The probability of xr is

dr+1

dtr+1
P (t) |t=0 (1.89)
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The probability-generating function for the binomial distribution with pa-
rameters π and n, for example, is

P (t) = (πt + (1− π))n.

For a discrete distribution, there is also a generating function for the fac-
torial moments. We see immediately that the factorial-moment-generating
function is the same as the probability-generating function evaluated at t+1:

P (t+ 1) =

∞∑

j=0

pj+1(t+ 1)j

=

∞∑

j=0

pj+1

j∑

i=1

(
j

i

)
ti

=

∞∑

i=0

ti

i!

∞∑

j=0

(pj+1j(j − 1) · · · (j − i+ 1))

=

∞∑

i=0

ti

i!
µ′

[i]. (1.90)

1.1.8 Characteristic Functions

One of the most useful functions determining a probability distribution is the
characteristic function, or CF. The CF is also a generating function for the
moments.

Definition and Properties

Definition 1.29 (characteristic function)
For the random d-variate variable X, the characteristic function (CF), with
t ∈ IRd, is

ϕX(t) = E
(
eitTX

)
(1.91)

where i =
√
−1.

The characteristic function is the Fourier transform of the density with argu-
ment −t/(2π).

The function ez has many useful properties. There are several relationships
to trigonometric functions, series expansions, limits, and inequalities involving
this function that are useful in working with characteristic functions.

We see that the integral in equation (1.84) exists (as opposed to the in-
tegral in equation (1.91) defining the MGF) by use of Euler’s formula (equa-
tion (0.0.67)) to observe that

∣∣∣eitTx
∣∣∣ =

∣∣cos
(
tTx
)

+ i sin
(
tTx
)∣∣ =

√
cos2 (tTx) + sin2 (tTx) = 1.

Theory of Statistics c©2000–2025 James E. Gentle



1.1 Some Important Probability Facts 47

Euler’s formula also provides an alternate expression for the CF that is
sometimes useful:

ϕX(t) = E
(
cos
(
tTX

))
+ iE

(
sin
(
tTX

))
. (1.92)

Although the CF always exists, it may not have an explicit representation.
The CF for the lognormal distribution, for example, cannot be represented
explicitly, but can be approximated to any tolerance by a divergent series
(exercise).

Note that the integration in the expectation operator defining the CF is
not complex integration; we interpret it as ordinary Lebesgue integration in
the real dummy variable in the PDF (or dF ). Hence, if the MGF is finite
for all t such that |t| < ε for some ε > 0, then the CF can be obtained by
replacing t in ψX(t) by it. Note also that the MGF may be defined only in a
neighborhood of 0, but the CF is defined over IR.

There are some properties of the characteristic function that are immediate
from the definition:

ϕX(−t) = ϕX(t) (1.93)

and
ϕX(0) = 1. (1.94)

The CF is real if the distribution is symmetric about 0. We see this from
equation (1.92).

The CF is bounded:
|ϕX(t)| ≤ 1. (1.95)

We see this property by first observing that

∣∣∣E
(
eitTX

)∣∣∣ ≤ E
(∣∣∣eitTX

∣∣∣
)
,

and then by using Euler’s formula on
∣∣∣eitTx

∣∣∣.
The CF and the moments of the distribution if they exist are closely re-

lated, as we will see below. Another useful property provides a bound on the
difference of the CF at any point and a partial series in the moments in terms
of expected absolute moments.

∣∣∣∣∣ϕX(t)−
n∑

k=0

(it)k

k!
E(Xk)

∣∣∣∣∣ ≤ E

(
min

(
2|tX|n
n!

,
|tX|n+1

(n+ 1)!

))
, (1.96)

This property follows immediately from inequality 0.0.71 on page 663.
Another slightly less obvious fact is

Theorem 1.22
The CF is uniformly continuous on IR.
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Proof. We want to show that for any t ∈ IR, |ϕX(t + h) − ϕX(t)| → 0 as
h→ 0.

|ϕX(t + h)− ϕX(t)| =
∣∣∣∣
∫

eitTX
(
eihTX − 1

)
dF

∣∣∣∣

≤
∫ ∣∣∣eihTX − 1

∣∣∣ dF

By the bounded convergence theorem (Corollary 0.1.25.1 on page 734), the
last integral goes to 0 as h→ 0, so we have the desired result.

Moments and the CF

As with the MGF, the (raw) moments of X, if they exist, can be obtained
from the derivatives of the CF evaluated at 0. For a scalar random variable
X, if the kth derivative of the CF exists in a neighborhood of 0, then

dkϕX(t)

dtk

∣∣∣∣
t=0

= (−1)k/2E(Xk). (1.97)

For vector-valued random variables, the moments become tensors of course,
but the first two moments are very simple:

∇ϕX(t)|t=0 = iE(X) (1.98)

and
∇∇ϕX(t)|t=0 = −E(XTX). (1.99)

Note that these derivatives are wrt a real variable. This means, for example,
that existence of the first derivative in a neighborhood does not imply the
existence of all derivatives in that neighborhood.

There is a type of converse to the statement that includes equation (1.97).

Theorem 1.23
Let X be a scalar random variable. If E(Xk) exists and is finite, then the kth

derivative of the CF of X exists and satisfies equation (1.97).

We will not give a formal proof here; But note that we have the existence
of the derivative of the CF because we can interchange the differentiation
and integration operators. For example, for the first moment (and the first
derivative) we have

∞ >

∣∣∣∣
∫
xdF

∣∣∣∣ =
∣∣∣∣
∫

d

dt
eitx
∣∣
t=0

dF

∣∣∣∣ =
∣∣∣∣
d

dt

∫
eitxdF

∣∣
t=0

∣∣∣∣ .

This is very different from the situation for MGFs; we saw in Example 1.10
that the moment may exist but the MGF, let alone its derivative, may not
exist.
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The converse of Theorem 1.23 is true for even moments (see Chung (2000)
or Gut (2005), for example); that is, if the CF has a finite even derivative of
even order k at 0, then the random variable has a finite moment of order k.

Perhaps surprisingly, however, the converse does not hold for odd moments
(see Exercise 1.36).

CF and MGF of Multiples and Sums

The CF or MGF for scalar multiples of a random variable or for sums of iid
random variables is easily obtained from the CF or MGF of the underlying
random variable(s). It is easy to see from the definition that if the random
variable X has CF ϕX(t) and Z = aX, for a fixed scalar a, then

ϕZ(t) = ϕX(at). (1.100)

Likewise, if X1, . . . , Xn are iid with CF ϕX(t), and Y = X1 + · · ·+Xn, then
the CF or MGF is just the nth power of the CF or MGF of Xi:

ϕY (t) = (ϕX(t))n. (1.101)

Combining these and generalizing (for independent but not necessarily
identically distributed Xi), for W =

∑
i aiXi, we have

ϕW (t) =
∏

i

ϕXi(ait). (1.102)

On page 60, we discuss the use of CFs and MGFs in studying general
transformations of random variables.

Uniqueness

The importance of the characteristic function or of the moment-generating
function if it exists is that it is unique to a given distribution. This fact is
asserted formally in the following theorem.

Theorem 1.24 (inversion theorem)
The CF (or MGF if it exists) completely determines the distribution.

We will not prove this theorem here; its proof can be found in a number of
places, for example, Billingsley (1995), page 346. It is essentially the same
theorem as the one often used in working with Fourier transforms.

The limit of a sequence of CFs or MGFs also determines the limiting
distribution if it exists, as we will see in Theorem 1.37. This fact, of course,
also depends on the uniqueness of CFs or MGFs, if they exist.

We now illustrate an application of the CF by proving Theorem 1.17 stated
on page 34. This is a standard result, and its method of proof using analytic
continuation is standard.
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Proof. (Theorem 1.17)
We are given the finite scalar moments ν0, ν1, . . . (about any origin) of some
probability distribution, and the condition that

∞∑

j=0

νjt
j

j!

converges for some real nonzero t. We want to show that the moments uniquely
determine the distribution. We will do this by showing that the moments
uniquely determine the CF.

Because the moments exist, the characteristic function ϕ(t) is continuous
and its derivatives exist at t = 0. We have for t in a neighborhood of 0,

ϕ(t) =

r∑

j=0

(it)jµj

j!
+Rr, (1.103)

where |Rr| < νr+1|t|r+1/(r + 1)!.
Now because

∑
νjt

j/j! converges, νjt
j/j! goes to 0 and hence the right

hand side of equation (1.103) is the infinite series
∑∞

j=0
(it)jµj

j!
if it con-

verges. This series does indeed converge because it is dominated termwise
by
∑
νjt

j/j! which converges. Thus, ϕ(t) is uniquely determined within a
neighborhood of t = 0. This is not sufficient, however, to say that ϕ(t) is
uniquely determined a.e.

We must extend the region of convergence to IR. We do this by analytic
continuation. Let t0 be arbitrary, and consider a neighborhood of t = t0.
Analogous to equation (1.103), we have

ϕ(t) =
r∑

j=0

ij(t− t0)j

j!

∫ ∞

−∞
xjeit0xdF + R̃r.

Now, the modulus of the coefficient of (t− t0)j/j! is less than or equal to νj;
hence, in a neighborhood of t0, ϕ(t) can be represented as a convergent Taylor
series. But t0 was arbitrary, and so ϕ(t) can be extended through any finite
interval by taking it as the convergent series. Hence, ϕ(t) is uniquely defined
over IR in terms of the moments; and therefore the distribution function is
uniquely determined.

Characteristic Functions for Functions of Random Variables;
Joint and Marginal Distributions

If X ∈ IRd is a random variable and for a Borel function g, g(X) ∈ IRm, the
characteristic function of g(X) is

ϕg(X)(t) = EX

(
eitTg(X)

)
, t ∈ IRm, (1.104)
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where EX represents expectation wrt the distribution of X. Other generating
functions for g(X) are defined similarly.

In some cases of interest, the Borel function may just be a projection. For a
random variableX consisting of two components, (X1, X2), either component
is just a projection of X. In this case, we can factor the generating functions
to correspond to the two components.

If ϕX(t) is the CF ofX, and if we decompose the vector t to be conformable
to X = (X1, X2), then we have the CF of X1 as ϕX1 (t1) = ϕX(t1, 0).

Note that ϕX1 (t1) is not (necessarily) the CF of the marginal distribution
of X1. The expectation is taken with respect to the joint distribution.

Following equation (1.31), we see immediately that X1 and X2 are inde-
pendent iff

ϕX(t) = ϕX1 (t1)ϕX2(t2). (1.105)

Cumulant-Generating Function

The cumulant-generating function, defined in terms of the characteristic func-
tion, can be used to generate the cumulants if they exist.

Definition 1.30 (cumulant-generating function)
For the random variable X with characteristic function ϕ(t) the cumulant-
generating function is

K(t) = log(ϕ(t)). (1.106)

(The “K” in the notation for the cumulant-generating function is the Greek
letter kappa.) The cumulant-generating function is often called the “second
characteristic function”.

The derivatives of the cumulant-generating function can be used to evalu-
ate the cumulants, similarly to the use of the CF to generate the raw moments,
as in equation (1.97).

If Z = X + Y , given the random variables X and Y , we see that

KZ(t) = KX(t) +KY (t). (1.107)

The cumulant-generating function has useful properties for working with
random variables of a form such as

Yn =
(∑

Xi − nµ
)
/
√
nσ,

that appeared in the central limit theorem above. If X1, . . . , Xn are iid with
cumulant-generating function KX(t), mean µ, and variance 0 < σ2 <∞, then
the cumulant-generating function of Yn is

KYn(t) = −
√
nµt

σ
+ nKX

(
t√
nσ

)
. (1.108)
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A Taylor series expansion of this gives

KYn(t) = −1

2
t2 +

K′′′(0)

6
√
nσ3

t3 + · · · , (1.109)

from which we see, as n → ∞, that KYn(t) converges to −t2/2, which is the
cumulant-generating function of the standard normal distribution.

1.1.9 Functionals of the CDF; Distribution “Measures”

We often use the term “functional” to mean a function whose arguments
are functions. The value of a functional may be any kind of object, a real
number or another function, for example. The domain of a functional is a set
of functions. I will use notation of the following form: for the functional, a
capital Greek or Latin letter, Υ , M , etc.; for the domain, a calligraphic Latin
letter, F , G, etc.; for a function, an italic letter, g, F , G, etc.; and for the
value, the usual notation for functions, Υ (G) where G ∈ G, for example.

Parameters of distributions as well as other interesting characteristics of
distributions can often be defined in terms of functionals of the CDF. For ex-
ample, the mean of a distribution, if it exists, may be written as the functional
M of the CDF F :

M(F ) =

∫
y dF (y). (1.110)

Viewing this mean functional as a Riemann–Stieltjes integral, for a discrete
distribution, it reduces to a sum of the mass points times their associated
probabilities.

A functional operating on a CDF is called a statistical functional or sta-
tistical function. (This is because they are often applied to the ECDF, and
in that case are “statistics”.) I will refer to the values of such functionals as
distributional measures. (Although the distinction is not important, “M” in
equation (1.110) is a capital Greek letter mu. I usually—but not always—
will use upper-case Greek letters to denote functionals, especially functionals
of CDFs and in those cases, I usually will use the corresponding lower-case
letters to represent the measures defined by the functionals.)

Many statistical functions, such as M(F ) above, are expectations; but not
all are expectations. For example, the quantile functional in equation (1.114)
below cannot be written as an expectation. (This was shown by Bickel and Lehmann
(1969).)

Linear functionals are often of interest. The statistical functionM in equa-
tion (1.110), for example, is linear over the distribution function space of CDFs
for which the integral exists.

It is important to recognize that a given functional may not exist at a
given CDF. For example, if

F (y) = 1/2 + tan−1((y − α)/β))/π (1.111)
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(that is, the distribution is Cauchy), then M(F ) does not exist. (Recall that I
follow the convention that when I write an expression such as M(F ) or Υ (F ),
I generally imply the existence of the functional for the given F . That is, I do
not always use a phrase about existence of something that I implicitly assume
exists.)

Also, for some parametric distributions, such as the family of beta distri-
butions, there may not be a “nice” functional that yields the parameter.

A functional of a CDF is generally a function of any parameters associated
with the distribution, and in fact we often define a parameter as a statistical
function. For example, if µ and σ are parameters of a distribution with CDF
F (y ; µ, σ) and Υ is some functional, we have

Υ (F (y ; µ, σ)) = g(µ, σ),

for some function g. If, for example, the M in equation (1.110) above is Υ and
the F is the normal CDF F (y ; µ, σ), then Υ (F (y ; µ, σ)) = µ.

Moments

For a univariate distribution with CDF F , the rth central moment from equa-
tion (1.51), if it exists, is the functional

µr = Mr(F )
=
∫
(y − µ)rdF (y).

(1.112)

For general random vectors or random variables with more complicated
structures, this expression may be rather complicated. For r = 2, the matrix
of joint moments for a random vector, as given in equation (1.70), is the
functional

Σ(F ) =

∫
(y − µ)(y − µ)T dF (y). (1.113)

Quantiles

Another set of useful distributional measures for describing a univariate dis-
tribution with CDF F are the quantiles. For π ∈]0, 1[, the π quantile is given
by the functional Ξπ(F ):

Ξπ(F ) = inf{y, s.t. F (y) ≥ π}. (1.114)

This functional is the same as the quantile function or the generalized inverse
CDF,

Ξπ(F ) = F−1(π), (1.115)

as given in Definition 1.15.
The 0.5 quantile is an important one; it is called the median. For the

Cauchy distribution, for example, the moment functionals do not exist, but
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the median does. An important functional for the Cauchy distribution is,
therefore, Ξ0.5(F ) because that is the location of the “middle” of the distri-
bution.

Quantiles can be used for measures of scale and of characteristics of the
shape of a distribution. A measure of the scale of a distribution, for example,
is the interquartile range:

Ξ0.75 − Ξ0.25. (1.116)

Various measures of skewness can be defined as

(Ξ1−π −Ξ0.5)− (Ξ0.5 −Ξπ)

Ξ1−π − Ξπ
, (1.117)

for 0 < π < 0.5. For π = 0.25, this is called the quartile skewness or the
Bowley coefficient. For π = 0.125, it is called the octile skewness. These can
be especially useful with the measures based on moments do not exist. The
extent of the peakedness and tail weight can be indicated by the ratio of
interquantile ranges:

Ξ1−π1 − Ξπ1

Ξ1−π2 − Ξπ2

. (1.118)

These measures can be more useful than the kurtosis coefficient based on the
fourth moment, because different choices of π1 and π2 emphasize different
aspects of the distribution. In expression (1.118), π1 = 0.025 and π2 = 0.125
yield a good measure of tail weight, and π1 = 0.125 and π2 = 0.25 in expres-
sion (1.118) yield a good measure of peakedness.

LJ Functionals

Various modifications of the mean functional M in equation (1.110) are often
useful, especially in robust statistics. A functional of the form

LJ (F ) =

∫
yJ(y) dF (y), (1.119)

for some given function J , is called an LJ functional. If J ≡ 1, this is the
mean functional. Often J is defined as a function of F (y).

A “trimmed mean”, for example, is defined by an LJ functional with
J(y) = (β − α)−1I]α,β[(F (y)), for constants 0 ≤ α < β ≤ 1 and where I
is the indicator function. In this case, the LJ functional is often denoted as
Tα,β. Often β is taken to be 1−α, so the trimming is symmetric in probability
content.

Mρ Functionals

Another family of functionals that generalize the mean functional are defined
as a solution to the minimization problem
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∫
ρ(y,Mρ(F )) dF (y) = min

θ∈Θ

∫
ρ(y, θ) dF (y), (1.120)

for some function ρ and where Θ is some open subset of IRd. A functional de-
fined as the solution to this optimization problem is called an Mρ functional.
(Note the similarity in names and notation: we call the M in equation (1.110)
the mean functional; and we call the Mρ in equation (1.120) the Mρ func-
tional.)

Two related functions that play important roles in the analysis of Mρ

functionals are

ψ(y, t) =
∂ρ(y, t)

∂t
, (1.121)

and

λF (t) =

∫
ψ(y, t)dF (y) =

∂

∂t

∫
ρ(y, t)dF (y) (1.122)

If y is a scalar and ρ(y, θ) = (y − θ)2 then Mρ(F ) is the mean functional
from equation (1.110). Other common functionals also yield solutions to the
optimization problem (1.120); for example, for ρ(y, θ) = |y− θ|, Ξ0.5(F ) from
equation (1.114) is an Mρ functional (possibly nonunique).

We often choose the ρ in an Mρ functional to be a function of y − θ, and
to be convex and differentiable. In this case, the Mρ functional is the solution
to

E(ψ(Y − θ)) = 0, (1.123)

where
ψ(y − θ) = dρ(y − θ)/dθ,

if that solution is in the interior of Θ.

1.1.10 Transformations of Random Variables

We often need to determine the distribution of some transformation of a given
random variable or a set of random variables. In the simplest case, we have
a random variable X with known distribution and we want to determine the
distribution of Y = h(X), where h is a full-rank transformation; that is, there
is a function h−1 such that X = h−1(Y ). In other cases, the function may not
be full-rank, for example, X may be an n-vector, and Y =

∑n
i=1Xi.

There are three general approaches to the problem: the method of CDFs;
the method of direct change of variables, including convolutions; and the
method of CFs or MGFs. Sometimes one method works best, and other times
some other method works best.

Method of CDFs

Given X with known CDF FX and Y = h(X) is invertible as above, we can
write the CDF FY of Y as
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FY (y) = Pr(Y ≤ y)
= Pr(h(X) ≤ y)
= Pr(X ≤ h−1(y))

= FX(h−1(y)).

Example 1.11 distribution of the minimum order statistic in a two-
parameter exponential distribution
Consider a shifted version of the exponential family of distributions, called
the two-parameter exponential with parameter (α, θ). Suppose the random
variables X1, . . . , Xn are iid with Lebesgue PDF

pα,θ(x) = θ−1e−(x−α)/θI]α,∞[(x).

We want to find the distribution of the minimum of {X1, . . . , Xn}. Let us
denote that minimum by Y . (This is an order statistic, for which we use a
general notation, Y = X(1). We discuss distributions of order statistics more
fully in Section 1.1.12.) We have

Pr(Y ≤ t) = 1− Pr(Y > t)

= 1− Pr(Xi > t for i = 1, . . . , n)

= 1− (Pr(Xi > t ∀Xi))
n

= 1− (1− Pr(Xi ≤ t ∀Xi))
n

= 1− (e−(t−α)/θ)n

= 1− e−n(t−α)/θ.

This is the CDF for a two-parameter exponential distribution with param-
eters α and θ/n. If instead of a two-parameter exponential distribution, we
began with the more common one-parameter exponential distribution with
parameter θ, the distribution of Y would be the one-parameter exponential
distribution with parameter θ/n.

Example 1.12 distribution of the square of a continuous random
variable
Given X with CDF FX and Lebesgue PDF fX . Let Y = X2. For x < 0,
Y −1[]−∞, x]] = ∅, and Y −1[]−∞, x]] = X−1[[−√x,√x]], otherwise. Therefore
the CDF FY of Y is

FY (x) = Pr(Y −1[]−∞, x]])
= Pr(X−1[[−√x,√x]])
= (FX(

√
x) − FX(−√x))IĪR+

(x).

Differentiating, we have the Lebesgue PDF of Y :

fY (x) =
1

2
√
x

(fX(
√
x) + fX(−√x))IĪR+

(x). (1.124)
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Method of Change of Variables

If X has density pX(x|α, θ) and Y = h(X), where h is a full-rank transforma-
tion (that is, there is a function h−1 such that X = h−1(Y )), then the density
of Y is

pY (y|α, θ) = pX

(
h−1(y)|α, θ

)
|Jh−1 (y)|, (1.125)

where Jh−1 (y) is the Jacobian of the inverse transformation, and | · | is the
determinant.

Constant linear transformations are particularly simple. IfX is an n-vector
random variable with PDF fX and A is an n×n constant matrix of full rank,
the PDF of Y = AX is fX |det(A−1)|.

In the change of variable method, we think of h as a mapping of the range
X of the random variable X to the range Y of the random variable Y , and
the method works by expressing the probability content of small regions in Y
in terms of the probability content of the pre-image of those regions in X .

For a given function h, we often must decompose X into disjoint sets over
each of which h is one-to-one.

Example 1.13 distribution of the square of a standard normal ran-
dom variable
Suppose X ∼ N(0, 1), and let Y = h(X) = X2. The function h is one-to-one
over ] − ∞, 0[ and, separately, one-to-one over [0,∞[. We could, of course,
determine the PDF of Y using equation (1.124), but we will use the change-
of-variables technique.

The absolute value of the Jacobian of the inverse over both regions is
x−1/2. The Lebesgue PDF of X is

fX(x) =
1√
2π

e−x2/2;

hence, the Lebesgue PDF of Y is

fY (y) =
1√
2π
y−1/2e−y/2IĪR+

(y). (1.126)

This is the PDF of a chi-squared random variable with one degree of freedom
χ2

1 (see Table A.3).

Sums

A simple application of the change of variables method is in the common
situation of finding the distribution of the sum of two scalar random variables
that are independent but not necessarily identically distributed.

Suppose X is a d-variate random variable with PDF fX , Y is a d-variate
random variable with PDF fY , and X and Y are independent. We want the
density of U = X + Y . We form another variable V = Y and the matrix
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A =

(
Id Id
0 Id

)
,

so that we have a full-rank transformation, (U, V )T = A(X, Y )T The inverse
of the transformation matrix is

A−1 =

(
Id −Id
0 Id

)
,

and the Jacobian is 1. Because X and Y are independent, their joint PDF
is fXY (x, y) = fX(x)fY (y), and the joint PDF of U and V is fUV (u, v) =
fX(u − v)fY (v); hence, the PDF of U is

fU (u) =
∫
IRd fX(u− v)fY (v)dv

=
∫
IRd fY (u− v)fX(v)dv.

(1.127)

We call fU the convolution of fX and fY . The commutative operation of
convolution occurs often in applied mathematics, and we denote it by fU =
fX ? fY . We often denote the convolution of a function f with itself by f(2);

hence, the PDF of X1 +X2 where X1, X2 are iid with PDF fX is f
(2)
X . From

equation (1.127), we see that the CDF of U is the convolution of the CDF of
one of the summands with the PDF of the other:

FU = FX ? fY = FY ? fX . (1.128)

In the literature, this operation is often referred to as the convolution of the
two CDFs, and instead of as in equation (1.128), may be written as

FU = FX ? FY .

Note the inconsistency in notation. The symbol “?” is overloaded. Following
the latter notation, we also denote the convolution of the CDF F with itself
as F (2).

Example 1.14 sum of two independent Poissons
Suppose X1 is distributed as Poisson(θ1) and X2 is distributed independently
as Poisson(θ2). By equation (1.127), we have the probability function of the
sum U = X1 +X2 to be

fU (u) =
u∑

v=0

θu−v
1 eθ1

(u− v)!
θv
2eθ2

v!

=
1

u!
eθ1+θ2 (θ1 + θ2)

u.

The sum of the two independent Poissons is distributed as Poisson(θ1 +θ2).
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Table 1.1. Distributions of the Sums of Independent Random Variables

Distributions of Xi

for i = 1, . . . , k Distribution of
P

Xi

Poisson(θi) Poisson(
P

θi)
Bernoulli(π) binomial(k, π)
binomial(ni, π) binomial(

P

ni, π)
geometric(π) negative binomial(k, π)
negative binomial(ni, π) negative binomial(

P

ni, π)
normal(µi, σ

2
i ) normal(

P

µi,
P

σ2
i )

exponential(β) gamma(k, β)
gamma(αi, β) gamma(

P

αi, β)

The property shown in Example 1.14 obviously extends to k independent
Poissons. Other common distributions also have this kind of property for sums,
as shown in Table 1.1. For some families of distributions such as binomial,
negative binomial, and gamma, the general case is the sum of special cases.

The additive property of the gamma distribution carries over to the special
cases: the sum of k iid exponentials with parameter θ is gamma(k, θ) and the
sum of independent chi-squared variates with ν1, . . . , νk degrees of freedom is
distributed as χ2P

νi
.

The are other distributions that could be included in Table 1.1 if the
parameters met certain restrictions, such as being equal; that is, the random
variables in the sum are iid.

In the case of the inverse Gaussian(µ, λ) distribution, a slightly weaker
restriction than iid allows a useful result on the distribution of the sum so long
as the parameters have a fixed relationship. If X1, . . . , Xk are independent and
Xi is distributed as inverse Gaussian(µ0αi, λ0α

2
i ), then

∑
Xi is distributed as

inverse Gaussian(µ0

∑
αi, λ0(

∑
αi)

2).

Products

Another simple application of the change of variables method is for finding
the distribution of the product or the quotient of two scalar random variables
that are independent but not necessarily identically distributed.

Suppose X is a random variable with PDF fX and Y is a random variable
with PDF fY and X and Y are independent, and we want the density of
the product U = XY . As for the case with sums, we form another variable
V = Y , form the joint distribution of U and V using the Jacobian of the inverse
transformation, and finally integrate out V . Analogous to equation (1.127),
we have

fU (u) =

∫ ∞

−∞
fX(u/v)fY (v)v−1dv, (1.129)

and for the quotient W = X/Y , we have
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fW (w) =

∫ ∞

−∞
fX(wv)fY (v)vdv. (1.130)

Example 1.15 the F family of distributions
Suppose Y1 and Y2 are independent chi-squared random variables with ν1 and
ν2 degrees of freedom respectively. We want to find the distribution of W =
Y1/Y2. Along with the PDFs of chi-squared random variables, equation (1.130)
yields

fW (w) ∝ wν1/2−1

∫ ∞

0

v(ν1+ν2)/2−1e−(w+1)v/2dv.

This integral can be evaluated by making the change of variables z = (w+1)v.
After separating out the factors involving w, the remaining integrand is the
PDF of a chi-squared random variable with ν1 + ν2 − 1 degrees of freedom.
Finally, we make one more change of variables: F = Wν2/ν1. This yields

fF (f) ∝ fν1/2−1

(ν2 + ν1f)(ν1+ν2)/2
. (1.131)

This is the PDF of an F random variable with ν1 and ν2 degrees of freedom
(see Table A.3). It is interesting to note that the mean of such a random
variable depends only on ν2.

Method of MGFs or CFs

In this method, for the transformation Y = h(X) we write the MGF of Y as

E
(
etTY

)
= E

(
etTh(X)

)
, or we write the CF in a similar way. If we can work

out the expectation (with respect to the known distribution of X), we have
the MGF or CF of Y , which determines its distribution.

The MGF or CF technique is particularly useful in the case when Y is the
sum from a simple random sample. If

Y = X1 + · · ·+Xn,

where X1, . . . , Xn are iid with CF ϕX(t), we see from the linearity of the
expectation operator that the CF of Y is

ϕY (t) = (ϕX(t))n. (1.132)

We use this approach in the proof of the simple CLT, Theorem 1.38 on page 88.
The MGF or CF for a linear transformation of a random variable has a

simple relationship to the MGF or CF of the random variable itself, as we
can easily see from the definition. Let X be a random variable in IRd, A be a
d×m matrix of constants, and b be a constant m-vector. Now let

Y = ATX + b.

Then
ϕY (t) = eibTtϕX(At), t ∈ IRm. (1.133)
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Example 1.16 distribution of the sum of squares of independent
standard normal random variables
Suppose X1, . . . , Xn

iid∼ N(0, 1), and let Y =
∑
X2

i . In Example 1.13, we saw

that Yi = X2
i

d
= χ2

1. Because the Xi are iid, the Yi are iid. Now the MGF of
a χ2

1 is

E
(
etYi

)
=

∫ ∞

0

1√
2π
y−1/2e−y(1−2t)/2dy

= (1− 2t)−1/2 for t <
1

2
.

Hence, the MGF of Y is (1−2t)−n/2 for t < 1/2, which is seen to be the MGF
of a chi-squared random variable with n degrees of freedom.

This is a very important result for applications in statistics.

1.1.11 Decomposition of Random Variables

We are often interested in the sum of random numbers,

Sk = X1 + · · ·+Xk. (1.134)

Because the sum may grow unwieldy as k increases, we may work with normed
sums of the form Sk/ak.

In order to develop interesting properties of Sk, there must be some com-
monality among the individual Xi. The most restrictive condition is that the
Xi be iid. Another condition for which we can develop meaningful results is
that the Xi be independent, but different subsequences of them may have
different distributions.

The finite sums that we consider in this section have relevance in the limit
theorems discussed in Sections 1.4.1 and 1.4.2.

Infinitely Divisible Distributions

Instead of beginning with the Xi and forming their sum, we can think of
the problem as beginning with a random variable X and decomposing it into
additive components. A property of a random variable that allows a particular
kind of additive decomposition is called divisibility.

Definition 1.31 (n-divisibility of random variables)
Given a random variable X and an integer n ≥ 2, we say X is n-divisible if
there exist iid random variables X1, . . . , Xn such that

X
d
= X1 + · · ·+Xn.
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Notice that (n + 1)-divisibility does not imply n-divisibility. We can see
this in the example of a random variableX with a binomial (3, π) distribution,
which is clearly 3-divisible (as the sum of three Bernoullis). We see, however,
that X is not 2-divisible; that is, there cannot be iid X1 and X2 such that
X = X1 + X2, because if there were, each Xi would take values in [0, 3/2]
with Pr(Xi = 0) > 0 and Pr(Xi = 0) > 0, but in that case Pr(X = 3/2) > 0.

Rather than divisibility for some fixed n, a more useful form of divisibility
is infinite divisibility; that is, divisibility for any n ≥ 2.

Definition 1.32 (infinite divisibility of random variables)
A nondegenerate random variable X is said to be infinitely divisible if for
every positive integer n, there are iid random variables Xn1, . . . , Xnn, such
that

X
d
= Xn1 + · · ·+Xnn. (1.135)

Note that the distributions of the Xns may be different from each other,
but for a given n, Xn1, . . . , Xnn are identically distributed.

The random variables Xn1, . . . , Xnn in the definition above are a special
case of a triangular array in which for given n, the Xn1, . . . , Xnn are iid. We
encounter similar, more general triangular arrays in some of the limit theorems
of Section 1.4.2 (on page 107).

Because infinite divisibility is associated with the distribution of the ran-
dom variable, we will refer to other characteristics of an infinitely divisible
random variable, such as the PDF or CDF, as being infinitely divisible. In
the same form as equation (1.132), the characteristic function of an infinitely
divisible random variable for any positive integer n can be written as

ϕX(t) = (ϕXn(t))n,

for some characteristic function ϕXn(t). Furthermore, if the characteristic
function of a random variable X can be expressed in this way for any n,
then X is infinitely divisible.

The normal, the Cauchy, and the Poisson families of distributions are all
infinitely divisible (exercise).

Divisibility properties are particularly useful in stochastic processes.

Stable Distributions

Another type of decomposition leads to the concept of stability. In this setup
we require that the full set of random variables be iid.

Definition 1.33 (stable random variables) ˜
Let X,X1, . . . , Xn be iid nondegenerate random variables. If for each n there
exist numbers dn and positive numbers cn, such that
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X1 + · · ·+Xn
d
= cnX + dn, (1.136)

then X is said to have a stable distribution (or to be a stable random variable).

This family of distributions is symmetric. We see this by noting that for the
variables X1 and X2 in Definition 1.33 or in equations (1.136) or (1.137),
Y = X1 −X2 has a stable distribution that is symmetric about 0 (exercise).
Because there is a generalization of the stable family of distributions that is
not symmetric (see page 184), the family defined here is sometimes called the
symmetric stable family.

Definition 1.33 is equivalent to the requirement that there be three iid
nondegenerate random variables, X, X1, and X2, such that for arbitrary con-
stants a1 and a2, there exists constants c and d such that

a1X1 + a2X2
d
= cX + d. (1.137)

In this case, X is has a stable distribution (or is a stable random variable). It
is an exercise to show that this is the case.

If X is a stable random variable as defined in equation (1.136), then there
exists a number α ∈]0, 2] such that

cα = n1/α. (1.138)

(See Feller (1971), Section VI.1, for a proof.) The number α is called the index
of stability or the characteristic exponent, and the random variable with that
index is said to be α-stable. The normal family of distributions is stable with
characteristic exponent of 2 and the Cauchy family is stable with characteristic
exponent of 1 (exercise).

An infinitely divisible family of distributions is stable (exercise). The Pois-
son family is an example of a family of distributions that is infinitely divisible,
but not stable (exercise).

1.1.12 Order Statistics

In a set of iid random variables X1, . . . , Xn, it is often of interest to consider
the ranked values Xi1 ≤ · · · ≤ Xin . These are called the order statistics and
are denoted as X(1:n), . . . , X(n:n). For 1 ≤ k ≤ n, we refer to X(k:n) as the kth

order statistic. We often use the simpler notation X(k), assuming that n is
some fixed and known value. Also, many other authors drop the parentheses
in the other representation, Xk:n.

Theorem 1.25
In a random sample of size n from a distribution with PDF f dominated by a
σ-finite measure and CDF F given the kth order statistic X(k) = a, the k− 1
random variables less than X(k) are iid with PDF
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fright(x) =
1

F (a)
f(x)I]−∞,a[(x),

and the n− k random variables greater than X(k) are iid with PDF

fleft(x) =
1

1− F (a)
f(x)I]a,∞[(x).

Proof. Exercise.
Using Theorem 1.25, forming the joint density, and integrating out all

variables except the kth order statistic, we can easily work out the density of
the kth order statistic as

fX(k)
(x) =

(
n

k

)(
F (x)

)k−1(
1− F (x)

)n−k

f(x). (1.139)

Example 1.17 distribution of order statistics from U(0, 1)
The distribution of the kth order statistic from a U(0, 1) is the beta distri-
bution with parameters k and n − k + 1, as we see from equation (1.139).

From equation (1.139), the CDF of the kth order statistic in a sample
from a distribution with CDF F can be expressed in terms of the regularized
incomplete beta function (equation (C.10) on page 866) as

FX(k)
(x) = IF (x)(k, n− k + 1). (1.140)

The joint density of all order statistics is

n!

n∏

i=1

f(x(i))Ix(1)≤···≤x(n)
(x(1), . . . , x(n)) (1.141)

The joint density of the ith and jth (i < j) order statistics is

n!

(i− 1)!(j − i− 1)!(n− j)! ·

(
F (x(i))

)i−1(
F (x(j)) − F (x(i))

)j−i−1(
1− F (x(j))

)n−j

f(x(i))f(x(j)).

(1.142)
Although order statistics are obviously not independent, differences of or-

der statistics or functions of those differences are sometimes independent, as
we see in the case of the exponential family a uniform family in the following
examples. These functions of differences of order statistics often are useful in
statistical applications.

Example 1.18 another distribution from a two-parameter exponen-
tial distribution (continuation of Example 1.11)
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Suppose the random variables X1, X2, . . . , Xn
iid∼exponential(α, θ). (Note that

n ≥ 2.) Let Y = X(1) as before and let Y1 =
∑

(Xi −X(1)). We want to find
the distribution of Y1.

Note that

Y1 =
∑(

Xi −X(1)

)

=
∑

Xi − nX(1)

=
∑(

X(i) −X(1)

)
.

Now, for k = 2, . . . , n, let

Yk = (n− k + 1)
(
X(k) −X(k−1)

)
.

Using the change-of-variables technique, we see that Yk
iid∼exponential(0, θ),

and are independent of X(i). We have independence because the resulting
joint density function factorizes. (This is the well-known exponential spacings
property.)

Now,
∑n

k=2 Yk =
∑

(X(i) −X(1)) = Y1, and the distribution of the sum of
n− 1 iid exponentials with parameters 0 and θ, multiplied by θ, is a gamma
with parameters n− 1 and 1.

Example 1.19 distribution of order statistics from U(θ1 , θ2)
Let X(1), . . . , X(n) be the order statistics in a sample of size n from the
U(θ1, θ2) distribution. While it is clear that X(1) and X(n) are not indepen-
dent, the random variables

Yi =
X(i) −X(1)

X(n) −X(1)
, for i = 2, . . . , n− 1,

are independent of both X(1) and X(n). (Proving this is Exercise 1.47.)

Quantiles and Expected Values of Order Statistics

We would expect the kth order statistic in an iid sample of size n to have
some relationship to the k/n quantile of the underlying distribution. Because
of the limited set of values that k/n can take on for any given n, there are
obvious problems in determining a direct relationship between quantiles and
order statistics. For given 0 < π < 1, we call the (dnπe)th order statistic,
X(dnπe:n), the sample quantile of order π.

The expected value of the kth order statistic in a sample of size n, if it
exists, should be approximately the same as the k/n quantile of the underlying
distribution; and indeed, this is the case. We will consider this issue for large
n in Theorem 1.48, but for now, the first question is whether E(X(k:n)) exists.

For simplicity in the following, let µ(k:n) = E(X(k:n)). It is easy to see that
µ(k:n) exists and is finite if E(X) exists and is finite, where the distribution of
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X is the underlying distribution of the sample (exercise). The converse of this
statement is not true, and there are important cases in which µ(k:n) exists and
is finite, but the E(X) does not exist. For example, in the Cauchy distribution,
µ(k:n) exists and is finite unless k = 1 or n (see Exercise 1.48b).

For the iid random variables X1, X2, . . . if the expectations µ(k:n) exist, we
have the following relationship:

(n− k)µ(k:n) + kµ(k+1:n) = nµ(k:n−1). (1.143)

(See Exercise 1.49.)

1.2 Series Expansions

Series expansions are useful in studying properties of probability distributions.
We may represent a CDF or PDF as a series of some basis functions. For
example, the density may be written as

f(x) =

∞∑

r=0

crgr(x).

In such an expansion, the basis functions are often chosen as derivatives of
the normal distribution function, as in the Edgeworth expansions discussed
in Section 1.2.4.

1.2.1 Asymptotic Properties of Functions

***The development of the series representation allows us to investigate the
rate of convergence of the moments.

*** Consider a set of iid random variables, X1, . . . , Xn, and a function
Tn of those random variables. Suppose Tn converges in distribution to the
distribution of the normal variate Z. A simple example of such a Tn is the
standardized sample mean n1/2(Xn − µ)/σ from a sample of size n. If

Tn
d→ Z,

then the characteristic function converges:

ϕTn(t) = E(eitTn)→ E(eitZ).

***The question is how fast does it converge. At what rate (in n) do the
moments of Tn approach those of Z?

***fix Taylor series expansion *** equation (1.109) κ3 = K′′′(0)

KYn(t) =
1

2
t2 +

κ3

6
√
nσ3

t3 + · · · ,

Theory of Statistics c©2000–2025 James E. Gentle



1.2 Series Expansions 67

Thus, if the characteristic function for a random variable Tn, ϕTn(t), can
be written as a series in terms involving n, it may be possible to determine
the order of convergence of the moments (because the derivatives of the cf
yield the moments).

expansion of statistical functionals

1.2.2 Expansion of the Characteristic Function

The characteristic function

ϕX(t) = E(eitX)

is useful for determining moments or cumulants of the random variable X, for
example, ϕ′(0) = iE(X) and ϕ′′(0) = −E(X2).

If Tn = n1/2(Xn−µ)/σ, it has an asymptotic standard normal distribution,
and

ϕTn(t) = E(eitTn)

= E(eitn1/2Z)

=
(
ϕZ(t/n1/2)

)n

,

where Z is standard normal.
Now the jth cumulant, κj, of Z is the coefficient of (it)j/j! in a power

series expansion of the log of the characteristic function, so

ϕZ(t) = exp

(
κ1it +

1

2
κ2(it)

2 + . . .+
1

j!
κj(it)

j + . . .

)
,

but also

ϕZ(t) = 1 + E(Z)it +
1

2
E(Z2)(it)2 + . . .+

1

j!
E(Zj)(it)j + . . . .

1.2.3 Cumulants and Expected Values

With some algebra, we can write the cumulants in terms of the expected
values as

∑

j≥1

1

j!
κj(it)

j = log


1 +

∑

j≥1

1

j!
E(Zj)(it)j




=
∑

k≥1

(−1)k+1 1

k


∑

j≥1

1

j!
E(Zj)(it)j




k

.

Equating coefficients, we get
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κ1 = E(Z)

κ2 = E(Z2)− (E(Z))2 = V(Z)

κ3 = E((Z − E(Z))3)

κ4 = E((Z − E(Z))4)− 3(V(Z))2

and so on. (There’s a lot of algebra here!)
One thing to notice is that the cumulant κj is a homogeneous polynomial

of degree j in the moments (i.e., each term is of degree j).
Now, back to the characteristic function of Tn: ϕTn(t) = (ϕZ(t/n1/2))n.

Using the fact that Z is standard normal (so κ1 = 0 and κ2 = 1), we can
write (using the series expansion of the exponential function the last step),

ϕTn(t) = exp

(
1

2
(it)2 + n−1/2 1

3!
κ3(it)

3 + . . .+

n−(j−2)/2 1

j!
κj(it)

j + . . .

)
,

= e−t2/2 exp

(
n−1/2 1

3!
κ3(it)

3 + . . .+

n−(j−2)/2 1

j!
κj(it)

j + . . .

)
,

= e−t2/2
(
1 + n−1/2r1(it)n

−1r2(it) + . . .+

n−j/2rj(it) + . . .
)
,

where rj is a polynomial of degree 3j, with real coefficients, and depends on
the cumulants κ3, . . . , κj+2, but does not depend on n.

r1(x) =
1

6
κ3x

3

and

r2(x) =
1

24
κ4x

4 +
1

72
κ2

3x
6

for example. Note that rj is an even polynomial when j is even and is odd
when j is odd.

The relevance of this is that it indicates the rate of convergence of the
moments.

1.2.4 Edgeworth Expansions in Hermite Polynomials

An Edgeworth expansion represents a distribution function as a series in
derivatives of the normal distribution function, or of the density, φ(x). Tak-
ing successive derivatives of the normal distribution function yields a series of
polynomials that are orthogonal with respect to the normal density.
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If D = d
dx , we have,

Dφ(x) = −xφ(x),

D2φ(x) = (x2 − 1)φ(x),

D3φ(x) = (−x3 + 3x)φ(x)

· · ·
... · · ·

Letting pi(x) = D(i)φ(x), we see that the pi(x) are orthogonal with respect
to the normal density, that is,

∫ ∞

−∞
pi(x)pj(x)φ(x) dx = 0,

when i 6= j.
From the polynomial factors of *****************, we identify the Her-

mite polynomials

H0 = 1

H1 = x

H2 = x2 − 1

H3 = x3 − 3x

· · ·
... · · ·

which as we discuss on page 753, is a series in Hermite polynomials times φ(x)
and in the cumulants (or moments). A series using these Hermite polynomials
is often called a Gram-Charlier series Edgeworth series.

The Edgeworth expansion for a given CDF FX is

FX(x) =
∑

crHr(x)φ(x).

The series representation is developed by equating terms in the characteristic
functions.

The adequacy of the series representation depends on how “close” the
distribution of the random variable is to normal. If the random variable is
asymptotically normal, the adequacy of the series representation of course
depends on the rate of convergence of the distribution of the random variable
to a normality.

1.2.5 The Edgeworth Expansion

Inverting the characteristic function transform yields a power series for the
distribution function, FTn . After some more algebra, we can get this series in
the form
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FTn(x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + . . . ,

where the pj’s are polynomials containing the cumulants and simple combi-
nations of Hermite polynomials.

This is the Edgeworth expansion of the distribution function of Tn.
The degree of pj is 3j − 1, and is even for odd j, and odd for even j. This

is one of the most important properties of this representation.
In this expansion, heuristically, the term of order n−1/2 corrects the ap-

proximation for the effect of skewness, and the term of order n−1 corrects the
approximation for the effect of kurtosis.

The first few Hermite polynomials are shown in equation (0.1.98) on
page 753.

This is an instance of the more general method of representing a given
function in terms of basis functions, as we discuss beginning on page 750.

1.3 Sequences of Spaces, Events, and Random Variables

Countably infinite sequences play the main role in the definition of the basic
concept of a σ-field, and consequently, in the development of a theory of prob-
ability. Sequences of sets correspond to sequences of events and, consequently,
to sequences of random variables. Unions, intersections, and complements of
sequences of sets are important for studying sequences of random variables.
The material in this section depends heavily on the properties of sequences of
sets discussed on page 626 and the following pages.

At the most general level, we could consider a sequence of sample spaces,
{(Ωn,Fn, Pn)}, but this level of generality is not often useful. Sequences of
σ-fields and probability measures over a fixed sample space, or sequences of
probability measures over a fixed sample space and fixed σ-field are often of
interest, however.

Sequences of σ-Fields and Associated Probability Measures

Given a sample space Ω, we may be interested in a sequence of probability
spaces, {(Ω,Fn, Pn)}. Such a sequence could arise naturally from a sequence
of events {An} that generates a sequence of σ-fields. Beginning with some
base σ-field F0, we have the increasing sequence

F0 ⊆ F1 = σ(F0 ∪ {A1}) ⊆ F2 = σ(F1 ∪ {A2}) ⊆ · · · . (1.144)

We have a sequence of probability spaces,

{(Ω,Fn, Pn) | F0 ⊆ F1 ⊆ · · · ⊆ F}, (1.145)

where the domains of the measures Pn are evolving, but otherwise the sample
space and the other characteristics of P are not changing. This evolving se-
quence is the underlying paradigm of some stochastic processes, particularly
martingales, that we discuss in Section 1.6.
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Such a sequence of σ-fields could of course equivalently be generated by a
sequence of random variables, instead of by a sequence of sets.

The sequence of probability measures exists and the measures are unique,
as the Carathéodory extension theorem ensures (see page 712).

Sequences of Probability Measures

It is also of interest to consider a sequence of probability measures {Pn} over
a fixed measurable space (Ω,F). Such sequences have important applications
in statistics. Convergent sequences of probability measures form the basis
for asymptotic inference. We will consider the basic properties beginning on
page 79, and then consider asymptotic inference in Section 3.8 beginning on
page 306.

Sequences of Events; lim sup and lim inf

In most of our discussion of sequences of events and of random variables, we
will assume that we have a single probability space, (Ω,F , P ). This assump-
tion is implicit in a phrase such as “a sequence of events and an associated
probability measure”.

We begin by recalling a basic fact about a sequence of events and an
associated probability measure:

limP (Ai) ≤ P (limAi), (1.146)

and it is possible that
limP (Ai) 6= P (limAi).

Compare this with the related fact about a useful sequence of intervals
(page 647):

lim
n→∞

n⋃

i=1

[
a+

1

i
, b− 1

i

]
6=
⋃

lim
i→∞

[
a+

1

i
, b− 1

i

]
.

Consider a sequence of probabilities defined in terms of a sequence of
events, {P (An)}. Two important types of limits of such sequences of proba-
bilities are, similar to the analogous limits for sets defined on page 626,

lim sup
n

P (An)
def
= inf

n
sup
i≥n

P (Ai) (1.147)

lim inf
n

P (An)
def
= sup

n
inf
i≥n

P (Ai). (1.148)

Similarly to the corresponding relationship between unions and intersec-
tions of sequences of sets, we have the relationships in the following theorem.
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Theorem 1.26
Let {An} be a sequence of events in a probability space. Then

P (lim sup
n

An) ≤ lim sup
n

P (An) (1.149)

and
P (lim inf

n
An) ≥ lim inf

n
P (An). (1.150)

Proof.
Consider

Bn = ∪∞i=nAi

and
Cn = ∩∞i=nAi.

We see
Bn ↘ lim sup

n
An,

and likewise
Cn ↗ lim inf

n
An.

Now we use the continuity of the measure to get

P (An) ≤ P (Bn)→ P (lim sup
n

An)

and
P (An) ≥ P (Cn)→ P (lim inf

n
An).

For a sequence of sets {An}, we recall the intuitive interpretations of
lim supnAn and lim infn An:

• An element ω is in lim supnAn iff for each n, there is some i ≥ n for which
ω ∈ Ai. This means that ω must lie in infinitely many of the An.

• An element ω is in lim infn An iff there is some n such that for all i ≥ n,
ω ∈ Ai. This means that ω must lie in all but finitely many of the An.

In applications of probability theory, the sets correspond to events, and
generally we are more interested in those events that occur infinitely often;
that is, we are more interested in lim supnAn. We often denote this as “i.o.”,
and we define

{An i.o.} = lim sup
n

An. (1.151)
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Sequences of Random Variables; lim sup and lim inf

The lim sup and lim inf of a sequence of random variables {Xn} mean the lim
sup and lim inf of a sequence of functions, which we defined on page 725:

lim sup
n

Xn
def
= inf

n
sup
i≥n

Xi (1.152)

and
lim inf

n
Xn

def
= sup

n
inf
i≥n

Xi. (1.153)

1.3.1 The Borel-Cantelli Lemmas

The analysis of any finite sequence is straightforward, so the interesting be-
havior of a sequence is determined by what happens as n gets large.

Tail Events and the Kolmogorov Zero-One Law

As n gets large, our interest will be in the “tail” of the sequence. In the fol-
lowing, we consider sequences of σ-fields that are not necessarily increasing
or increasing, as were the collections of events used in discussing inequali-
ties (1.149) and (1.150).

Definition 1.34 (tail σ-field; tail event)
Let {Fn} be a sequence of σ-fields. The σ-field

T = ∩∞n=1Fn

is called the tail σ-field of the sequence.
An event A ∈ T is called a tail event of the sequence.

A tail event occurs infinitely often (exercise).
We are often interested in tail σ-fields of sequences of σ-fields generated by

given sequences of events or sequences of random variables. Given the sequence
of events {An}, we are interested in the σ-fields Fi = σ(Ai, Ai+1, . . .). A tail
event in the sequence {Fi} is also called a tail event of the sequence of events
{An}.

Given the sequence of random variables {Xn}, we are also often interested
in the σ-fields σ(Xi, Xi+1, . . .).

If the events, σ-fields, or random variables in the sequence are independent,
the independence carries over to subsequences and sub-σ-fields in a useful way.
We will focus on sequences of random variables that define tail events, but
the generating sequence could also be of events or of σ-fields.

Lemma 1.27.1
Let {Xn} be a sequence of independent random variables and let T be
the tail σ-field, ∩∞i=1σ(Xi, Xi+2, . . .). Then the events A ∈ T and B ∈
σ(X1, . . . , Xi−1) are independent for each i. Furthermore, A is independent
of σ(X1 , X2, . . .).
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Proof.
Because the random variablesX1, X2, . . . are independent, T and σ(X1, . . . , Xi−1)
are independent and hence the events A ∈ T and B ∈ σ(X1, . . . , Xi−1) are
independent. (This is the same reasoning as in the proof of Theorem 1.11,
which applies to random.) Therefore, A is independent of σ(X1, . . . , Xi−1)
and hence, also independent of F0 = ∪∞i=1σ(X1 , . . . , Xi). By Theorem 1.1
then, A is independent of σ(X1, X2, . . .).

Lemma 1.27.1 has an interesting implication. Tail events in sequences gen-
erated by independent events or random variables are independent of them-
selves.

Theorem 1.27 (Kolmogorov’s Zero-One Law)
Let {Xn} be a sequence of independent random variables and A be an event
in the tail σ-field of the sequence of σ-fields generated by {Xn}. Then P (A)
is either zero or one.

Proof. An event A be an event in the tail σ-field is independent of itself;
hence

P (A) = P (A ∪A) = P (A)P (A),

and so P (A) must have a probability of 0 or 1.
For a sequence of events in a given probability space, the Borel-Cantelli

lemmas address the question implied by the Kolmogorov zero-one law. These
lemmas tell us the probability of the lim sup. Under one condition, we get a
probability of 0 without requiring independence. Under the other condition,
with a requirement of independence, we get a probability of 1.

Theorem 1.28 (Borel-Cantelli Lemma I)
Let {An} be a sequence of events and P be a probability measure. Then

∞∑

n=1

P (An) <∞ =⇒ P (lim sup
n

An) = 0. (1.154)

Proof. First, notice that P (∪∞i=nAi) can be arbitrarily small if n is large
enough. From lim supn An ⊆ ∪∞i=nAi, we have

P (lim sup
n

An) ≤ P (∪∞i=nAi)

≤
∞∑

i=n

P (Ai)

→ 0 as n→∞ because

∞∑

n=1

P (An) <∞.

The requirement that
∑∞

n=1 P (An) < ∞ in Theorem 1.28 means that
An must be approaching sets with ever-smaller probability. If that is not
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the case, say for example, if An is a constant set with positive probability,
then of course

∑∞
n=1 P (An) = ∞, but we cannot say much about about

P (lim supn An). However, if the An are disjoint, then
∑∞

n=1 P (An) =∞ may
have a meaningful implication. The second Borel-Cantelli requires that the
sets be independent.

Theorem 1.29 (Borel-Cantelli Lemma II)
Let {An} be a sequence of independent events and P be a probability measure.
Then ∞∑

n=1

P (An) =∞ =⇒ P (lim sup
n

An) = 1. (1.155)

Proof. Applying de Morgan’s law (equation (0.0.21)), we just need to show
that P (lim infn A

c
n) = 0. We use the fact that for x ≥ 0

1− x ≤ e−x

to get, for any n and j,

P
(
∩n+j

k=nA
c
k

)
=

n+j∏

k=n

(1− P (Ak))

≤ exp

(
−

n+j∑

k=n

P (Ak)

)
.

Since
∑∞

n=1 P (An) diverges, the last expression goes to 0 as j →∞, and so

P (∩∞k=nA
c
k) = lim

j→∞
P
(
∩n+j

k=nA
c
k

)

= 0.

1.3.2 Exchangeability and Independence of Sequences

The sequences that we have discussed may or may not be exchangeable or
independent. The sequences in Theorem 1.29 are independent, for example,
but most sequences that we consider are not necessarily independent. When
we discuss limit theorems in Section 1.4, we will generally require indepen-
dence. In Section 1.6, we will relax the requirement of independence, but
will require some common properties of the elements of the sequence. Before
proceeding, however, in this general section on sequences of random vari-
ables, we will briefly consider exchangeable sequences and state without proof
de Finetti’s representation theorem, which provides a certain connection be-
tween exchangeability and independence. This theorem tells us that infinite
sequences of exchangeable binary random variables are mixtures of indepen-
dent Bernoulli sequences.
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Theorem 1.30 (de Finetti’s representation theorem)
Let {Xi}∞i=1 be an infinite sequence of binary random variables such that for
any n, {Xi}ni=1 is exchangeable. Then there is a unique probability measure P
on [0, 1] such that for each fixed sequence of zeros and ones {ei}ni=1,

Pr(X1 = e1, . . . , Xn = en) =

∫ 1

0

πk(1− π)n−kdµ(π),

where k =
∑n

i=1 ei.

The converse clearly holds; that is, if a P as specified in the theorem exists,
then the sequence is exchangeable.

A proof of a more general version of de Finetti’s representation the-
orem (for random variables that are not necessarily binary) is given by
Hewitt and Stromberg (1965) and in Schervish (1995).

1.3.3 Types of Convergence

The first important point to understand about asymptotic theory is that there
are different kinds of convergence of a sequence of random variables, {Xn}.
Three of these kinds of convergence have analogues in convergence of gen-
eral measurable functions (see Appendix 0.1) and a fourth type applies to
convergence of the measures themselves. Different types of convergence apply
to

• a function, that is, directly to the random variable (Definition 1.35). This
is the convergence that is ordinarily called “strong convergence”.

• expected values of powers of the random variable (Definition 1.36). This
is also a type of strong convergence.

• probabilities of the random variable being within a range of another ran-
dom variable (Definition 1.37). This is a weak convergence.

• the distribution of the random variable (Definition 1.39, stated in terms
of weak convergence of probability measures, Definition 1.38). This is the
convergence that is ordinarily called “weak convergence”.

In statistics, we are interested in various types of convergence of proce-
dures of statistical inference. Depending on the kind of inference, one type
of convergence may be more relevant than another. We will discuss these in
later chapters. At this point, however, it is appropriate to point out that an
important property of point estimators is consistency, and the various types
of consistency of point estimators, which we will discuss in Section 3.8.1, cor-
respond directly to the types of convergence of sequences of random variables
we discuss below.
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Almost Sure Convergence

Definition 1.35 (almost sure (a.s.) convergence)
We say that {Xn} converges almost surely to X if

lim
n→∞

Xn = X a.s. (1.156)

We write
Xn

a.s.→ X.

Writing this definition in the form of Definition 0.1.38 on page 726, with Xn

and X defined on the probability space (Ω,F , P ), we have

P ({ω : lim
n→∞

Xn(ω) = X(ω)}) = 1. (1.157)

This expression provides a very useful heuristic for distinguishing a.s. conver-
gence from other types of convergence.

Almost sure convergence is equivalent to

lim
n→∞

Pr (∪∞m=n‖Xm −X‖ > ε) = 0, (1.158)

for every ε > 0 (exercise).
Almost sure convergence is also called “almost certain” convergence, and

written as Xn
a.c.→ X.

The condition (1.156) can also be written as

Pr
(

lim
n→∞

‖Xn −X‖ < ε
)

= 1, (1.159)

for every ε > 0. For this reason, almost sure convergence is also called conver-

gence with probability 1, and may be indicated by writing Xn
wp1→ X. Hence,

we may encounter three equivalent expressions:

a.s.→ ≡ a.c.→ ≡ wp1→ .

Almost sure convergence of a sequence of random variables {Xn} to a
constant c implies lim supn Xn = lim infnXn = c, and implies {Xn = c i.o.};
by itself, however, {Xn = c i.o.} does not imply any kind of convergence of
{Xn}.

Convergence in rth Moment

Definition 1.36 (convergence in rth moment (convergence in Lr))
For fixed r > 0, we say that {Xn} converges in rth moment to X if

lim
n→∞

E(‖Xn −X‖rr) = 0. (1.160)
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We write
Xn

Lr→ X.

(Compare Definition 0.1.50 on page 748.)
Convergence in rth moment requires that E(‖Xn‖rr) <∞ for each n. Con-

vergence in rth moment implies convergence in sth moment for s ≤ r (and, of
course, it implies that E(‖Xn‖ss) <∞ for each n). (See Theorem 1.16, which
was stated only for scalar random variables.)

For r = 1, convergence in rth moment is called convergence in absolute
mean. For r = 2, it is called convergence in mean square or convergence in
second moment, and of course, it implies convergence in mean. (Recall our
notational convention: ‖Xn −X‖ = ‖Xn −X‖2.)

The Cauchy criterion (see Exercise 0.0.6d on page 690) is often useful for
proving convergence in mean or convergence in mean square, without speci-
fying the limit of the sequence. The sequence {Xn} converges in mean square
(to some real number) iff

lim
n,m→∞

E(‖Xn −Xm‖) = 0. (1.161)

Convergence in Probability

Definition 1.37 (convergence in probability)
We say that {Xn} converges in probability to X if for every ε > 0,

lim
n→∞

Pr(‖Xn −X‖ > ε) = 0. (1.162)

We write
Xn

p→ X.

(Compare Definition 0.1.51 on page 749 for general measures.)
Notice the difference in convergence in probability and convergence in

rth moment. Convergence in probability together with uniform integrability
implies convergence in mean, but not in higher rth moments. It is easy to
construct examples of sequences that converge in probability but that do not
converge in second moment (exercise).

Notice the difference in convergence in probability and almost sure con-
vergence; in the former case the limit of probabilities is taken, in the lat-
ter the case a probability of a limit is evaluated; compare equations (1.158)
and (1.162). It is easy to construct examples of sequences that converge in
probability but that do not converge almost surely (exercise).

Although convergence in probability does not imply almost sure converge,
it does imply the existence of a subsequence that does converge almost surely,
as stated in the following theorem.
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Theorem 1.31
Suppose {Xn} converges in probability to X. Then there exists a subsequence
{Xni} that converges almost surely to X.

Stated another way, this theorem says that if {Xn} converges in probability
to X, then there is an increasing sequence {ni} of positive integers such that

lim
i→∞

Xni

a.s.
= X.

Proof. The proof is an exercise. You could first show that there is an increas-
ing sequence {ni} such that

∞∑

i=1

Pr(|Xni −X| > 1/i) <∞,

and from this conclude that Xni

a.s.→ X.

Weak Convergence

There is another type of convergence that is very important in statistical
applications; in fact, it is the basis for asymptotic statistical inference. This
convergence is defined in terms of pointwise convergence of the sequence of
CDFs; hence it is a weak convergence. We will give the definition in terms of
the sequence of CDFs or, equivalently, of probability measures, and then state
the definition in terms of a sequence of random variables.

Definition 1.38 (weak convergence of probability measures)
Let {Pn} be a sequence of probability measures and {Fn} be the sequence
of corresponding CDFs, and let F be a CDF with corresponding probability
measure P . If at each point of continuity t of F ,

lim
n→∞

Fn(t) = F (t), (1.163)

we say that the sequence of CDFs {Fn} converges weakly to F , and, equiva-
lently, we say that the sequence of probability measures {Pn} converges weakly
to P . We write

Fn
w→ F

or
Pn

w→ P

Definition 1.39 (convergence in distribution (in law))
If {Xn} have CDFs {Fn} and X has CDF F , we say that {Xn} converges in

distribution or in law to X iff Fn
w→ F . We write

Xn
d→ X.
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Because convergence in distribution is not precisely a convergence of the
random variables themselves, it may be preferable to use a notation of the
form

L(Xn)→ L(X),

where the symbol L(·) refers to the distribution or the “law” of the random
variable.

When a random variable converges in distribution to a distribution for
which we have adopted a symbol such as N(µ, σ2), for example, we may use
notation of the form

Xn
∼→ N(µ, σ2).

Because this notation only applies in this kind of situation, we often write it
more simply as just

Xn → N(µ, σ2),

or in the “law” notation, L(Xn)→ N(µ, σ2)
For certain distributions we have special symbols to represent a random

variable. In such cases, we may use notation of the form

Xn
d→ χ2

ν,

which in this case indicates that the sequence {Xn} converges in distribution
to a random variable with a chi-squared distribution with ν degrees of freedom.
The “law” notation for this would be L(Xn)→ L(χ2

ν).

Determining Classes

In the case of multiple probability measures over a measurable space, we
may be interested in how these measures behave over different sub-σ-fields,
in particular, whether there is a determining class smaller than the σ-field of
the given measurable space. For convergent sequences of probability measures,
the determining classes of interest are those that preserve convergence of the
measures for all sets in the σ-field of the given measurable space.

Definition 1.40 (convergence-determining class)
Let {Pn} be a sequence of probability measures defined on the measurable
space (Ω,F) that converges (weakly) to P , also a probability measure defined
on (Ω,F). A collection of subsets C ⊆ F is called a convergence-determining
class of the sequence, iff

Pn(A)→ P (A) ∀A ∈ C 3 P (∂A) = 0 =⇒ Pn(B) → P (B) ∀B ∈ F .

It is easy to see that a convergence-determining class is a determining
class (exercise), but the converse is not true, as the following example from
Romano and Siegel (1986) shows.
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Example 1.20 a determining class that is not a convergence-deter-
mining class
For this example, we use the familiar measurable space (IR,B), and construct
a determining class C whose sets exclude exactly one point, and then define
a probability measure P that puts mass one at that point. All that is then
required is to define a sequence {Pn} that converges to P . The example given
by Romano and Siegel (1986) is the collection C of all finite open intervals
that do not include the single mass point of P . (It is an exercise to show
that this is a determining class.) For definiteness, let that special point be
0, and let Pn be the probability measure that puts mass one at n. Then, for
any A ∈ C, Pn(A) → 0 = P (A), but for any interval (a, b) where a < 0 and
0 < b < 1, Pn((a, b)) = 0 but P ((a, b)) = 1.

Both convergence in probability and convergence in distribution are weak
types of convergence. Convergence in probability, however, means that the
probability is high that the two random variables are close to each other,
while convergence in distribution means that two random variables have the
same distribution. That does not mean that they are very close to each other.

The term “weak convergence” is often used specifically for convergence
in distribution because this type of convergence has so many applications in
asymptotic statistical inference. In many interesting cases the limiting dis-
tribution of a sequence {Xn} may be degenerate, but for some sequence of
constants an, the limiting distribution of {anXn} may not be degenerate and
in fact may be very useful in statistical applications. The limiting distribution
of {anXn} for a reasonable choice of a sequence of normalizing constants {an}
is called the asymptotic distribution of {Xn}. After some consideration of the
relationships among the various types of convergence, in Section 1.3.7, we will
consider the “reasonable” choice of normalizing constants and other proper-
ties of weak convergence in distribution in more detail. The relevance of the
limiting distribution of {anXn} will become more apparent in the statistical
applications in Section 3.8.2 and later sections.

Relationships among Types of Convergence

Almost sure convergence and convergence in rth moment are both strong types
of convergence, but they are not closely related to each other. We have the
logical relations shown in Figure 1.3.

The directions of the arrows in Figure 1.3 correspond to theorems with
straightforward proofs. Where there are no arrows, as between Lr and a.s.,
we can find examples that satisfy one condition but not the other (see Ex-
amples 1.21 and 1.22 below). For relations in the opposite direction of the
arrows, we can construct counterexamples, as for example, the reader is asked
to do in Exercises 1.54a and 1.54b.
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Figure 1.3. Relationships of Convergence Types

Useful Sequences for Studying Types of Convergence

Just as for working with limits of unions and intersections of sets where we
find it useful to identify sequences of sets that behave in some simple way
(such as the intervals [a + 1/n, b − 1/n] on page 646), it is also useful to
identify sequences of random variables that behave in interesting but simple
ways.

One useful sequence begins with {Un}, where Un ∼ U(0, 1/n). We define

Xn = nUn. (1.164)

This sequence can be used to show that an a.s. convergent sequence may not
converge in L1.

Example 1.21 converges a.s. but not in mean
Let {Xn} be the sequence defined in equation (1.164). Since Pr(limn→∞Xn =

0) = 1, Xn
a.s.→ 0. The mean and in fact the rth moment (for r > 0) is 0.

However,

E(|Xn − 0|r) =

∫ 1/n

0

nrdu = nr−1.

For r = 1, this does not converge to the mean of 0, and for r > 1, it diverges;
hence {Xn} does not converge to 0 in rth moment for any r ≥ 1. (It does
converge to the correct rth moment for 0 < r < 1, however.)

This example is also an example of a sequence that converges in probability
(since a.s. convergence implies that), but does not converge in rth moment.

Other kinds of interesting sequences can be constructed as indicators of
events; that is, 0-1 random variables. One such simple sequence is the Bernoulli
random variables {Xn} with probability thatXn = 1 being 1/n. This sequence
can be used to show that a sequence that converges to X in probability does
not necessarily converge to X a.s.
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Other ways of defining 0-1 random variables involve breaking a U(0, 1)
distribution into uniform distributions on partitions of ]0, 1[. For example, for
a positive integer k, we may form 2k subintervals of ]0, 1[ for j = 1, . . . , 2k as

]
j − 1

2k
,
j

2k

[
.

As k gets larger, the Lebesgue measure of these subintervals approaches 0
rapidly. Romano and Siegel (1986) build an indicator sequence using random
variables on these subintervals for various counterexamples. This sequence can
be used to show that an L2 convergent sequence may not converge a.s., as in
the following example.

Example 1.22 converges in second moment but not a.s.
Let U ∼ U(0, 1) and define

Xn =

{
1 if

jn − 1

2kn
< U <

jn
2kn

0 otherwise,

where jn = 1, . . . , 2kn and kn →∞ as n→∞. We see that

E((Xn − 0)2) = 1/(2kn),

hence {Xn} converges in quadratic mean (or in mean square) to 0. We see,
however, that limn→∞Xn does not exist (since for any value of U ,Xn takes on
each of the values 0 and 1 infinitely often). Therefore, {Xn} cannot converge
a.s. (to anything!).

This is another example of a sequence that converges in probability (since
convergence in rth moment implies that), but does not converge a.s.

Convergence of PDFs

The weak convergence of a sequence of CDFs {Fn} is the basis for most
asymptotic statistical inference. The convergence of a sequence of PDFs {fn}
is a stronger form of convergence because it implies uniform convergence of
probability on any given Borel set.

Theorem 1.32 (Scheffé)
Let {fn} be a sequence of PDFs that converge pointwise to a PDF f; that is,
at each x

lim
n→∞

fn(x) = f(x).

Then

lim
n→∞

∫

B

|fn(x)− f(x)|dx = 0 (1.165)

uniformly for any Borel set B.
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For a proof see Scheffé (1947).
Hettmansperger and Klimko (1974) showed that if a weakly convergent

sequence of CDFs {Fn} has an associated sequence of PDFs {fn}, and if
these PDFs are unimodal at a given point, then on any closed interval that
does not contain the modal point the sequence of PDFs converge uniformly
to a PDF.

Big O and Little o Almost Surely

We are often interested in nature of the convergence or the rate of convergence
of a sequence of random variables to another sequence of random variables.
As in general spaces of real numbers that we consider in Section 0.0.5 on
page 652, we distinguish two types of limiting behavior by big O and little
o. These are involve the asymptotic ratio of the elements of one sequence to
the elements of a given sequence {an}. We defined two order classes, O(an)
and o(an). In this section we begin with a given sequence of random variables
{Yn} and define four different order classes, O(Yn) a.s., o(Yn) a.s., OP(Yn),
and oP(Yn), based on whether or not the ratio is approaching 0 (that is, big
O or little o) and on whether the converge is almost sure or in probability.

For sequences of random variables {Xn} and {Yn} defined on a common
probability space, we identify different types of convergence, either almost
sure or in probability.

• Big O almost surely, written O(Yn) a.s.

Xn ∈ O(Yn) a.s. iff Pr (‖Xn‖ ∈ O(‖Yn‖)) = 1

• Little o almost surely, written o(Yn) a.s.

Xn ∈ o(Yn) a.s. iff ‖Xn‖/‖Yn‖ a.s.→ 0.

Compare Xn/Yn
a.s.→ 0 for Xn ∈ IRm and Yn ∈ IR.

Big O and Little o Weakly

We also have relationships in which one sequence converges to another in
probability.

• Big O in probability, written OP(Yn).

Xn ∈ OP(Yn) iff ∀ε > 0 ∃ constant Cε > 0 3 sup
n

Pr(‖Xn‖ ≥ Cε‖Yn‖) < ε.

If Xn ∈ OP(1), Xn is said to be bounded in probability.

If Xn
d→ X for any random variable X, then Xn ∈ OP(1). (Exercise.)
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• Little o in probability, written oP(Yn).

Xn ∈ oP(Yn) iff ‖Xn‖/‖Yn‖ p→ 0.

If Xn ∈ oP(1), then Xn converges in probability to 0, and conversely.
If Xn ∈ oP(1), then also Xn ∈ OP(1). (Exercise.)

Instead of a defining sequence {Yn} of random variables, the sequence of
interest may be a sequence of constants {an}.

Some useful properties are the following, in which {Xn}, {Yn}, and {Zn}
are random variables defined on a common probability space, and {an} and
{bn} are sequences of constants.

Xn ∈ op(an) =⇒ Xn ∈ Op(an) (1.166)

Xn ∈ op(1)⇐⇒ Xn → 0. (1.167)

Xn ∈ Op(1/an), lim bn/an <∞ =⇒ Xn ∈ Op(mn). (1.168)

Xn ∈ Op(an) =⇒ XnYn ∈ Op(anYn). (1.169)

Xn ∈ Op(an), Yn ∈ Op(bn) =⇒ XnYn ∈ Op(anbn). (1.170)

Xn ∈ Op(an), Yn ∈ Op(bn) =⇒ Xn + Yn ∈ Op(‖an‖+ ‖bn‖). (1.171)

Xn ∈ Op(Zn), Yn ∈ Op(Zn) =⇒ Xn + Yn ∈ Op(Zn). (1.172)

Xn ∈ op(an), Yn ∈ op(bn) =⇒ XnYn ∈ op(anbn). (1.173)

Xn ∈ op(an), Yn ∈ op(bn) =⇒ Xn + Yn ∈ op(‖an‖+ ‖bn‖). (1.174)

Xn ∈ op(an), Yn ∈ Op(bn) =⇒ XnYn ∈ op(anbn). (1.175)

You are asked to prove these statements in Exercise 1.61. There are, of course,
other variations on these relationships. The order of convergence of sequence
of absolute expectations can be related to order of convergence in probability:

an ∈ IR+, E(|Xn|) ∈ O(an) =⇒ Xn ∈ Op(an). (1.176)

Almost sure convergence implies that the sup is bounded in probability. For
any random variable X (recall that a random variable is finite a.s.),

Xn
a.s.→ X =⇒ sup |Xn| ∈ Op(1). (1.177)

You are asked to prove these statements in Exercise 1.62.
The defining sequence of interest is often an expression in n; for examples,

OP(n−1), OP(n−1/2), and so on. For such orders of convergence, we have
relationships similar to those given in statement (0.0.59) for nonstochastic
convergence.

OP(n−1) ⊆ OP(n−1/2) etc. (1.178)
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Example 1.23 order in probability of the sample mean
Suppose Xn is the sample mean (equation (1.32)) from a random sample
X1, . . . , Xn from a distribution with finite mean, µ, and finite variance, σ2.
We first note that E(Xn) = µ and V(Xn) = σ2/n. By Chebyshev’s inequality
(page 848), we have for ε > 0,

Pr(|Xn − µ| ≥ ε) ≤
σ2/n

ε2
,

which goes to 0 as n→∞. Hence, Xn
p→ µ or Xn − µ ∈ oP(1).

Now, rewriting the inequality above, we have, for δ(ε) > 0,

Pr(
√
n|Xn − µ| ≥ δ(ε)) ≤

σ2/n

δ(ε)2/n
.

Now letting δ(ε) = σ/
√
ε, we have Xn − µ ∈ OP(n−1/2).

1.3.4 Weak Convergence in Distribution

Convergence in distribution, sometimes just called “weak convergence”, plays
a fundamental role in statistical inference. It is the type of convergence in
the central limits (see Section 1.4.2) and it is the basis for the definition of
asymptotic expectation (see Section 1.3.8), which, in turn is the basis for most
of the concepts of asymptotic inference. (Asymptotic inference is not based on
the limits of the properties of the statistics in a sequence, and in Section 3.8.3,
beginning on page 311, we will consider some differences between “aysmptotic”
properties and “limiting” properties.)

In studying the properties of a sequence of random variables {Xn}, the holy
grail often is to establish that anXn → N(µ, σ2) for some sequence {an}, and
to determine reasonable estimates of µ and σ2. In this section we will show how
this is sometimes possible, and we will consider it further in Section 1.3.7, and
later in Section 3.8, where we will emphasize the statistical applications. Weak
convergence to normality under less rigorous assumptions will be discussed in
Section 1.4.

Convergence in distribution of a sequence of random variables is defined in
terms of convergence of a sequence of CDFs. For a sequence that converges to
a continuous CDF F , the Chebyshev norm of the difference between a function
in the sequence and F goes to zero, as stated in the following theorem.

Theorem 1.33 (Polya’s theorem)

If Fn
w→ F and F is continuous in IRk, then

lim
n→∞

sup
t∈IRk

|Fn(t)− F (t)| = 0.

Proof. The proof proceeds directly by use of the δ-ε definition of continuity.
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Theorem 1.34
Let {Fn} be a sequence of CDFs on IR. Let

Gn(x) = Fn(bgnx+ agn)

and
Hn(x) = Fn(bhnx+ ahn),

where {bdn} and {bhn} are sequences of positive real numbers and {agn} and
{ahn} are sequences of real numbers. Suppose

Gn
w→ G

and
Hn

w→ H,

where G and H are nondegenerate CDFs. Then

bgn/bhn → b > 0,

(agn − ahn)/bgn → a ∈ IR,

and
H(bx+ a) = G(x) ∀x ∈ IR.

Proof. ** fix
The distributions in Theorem 1.34 are in a location-scale family (see Sec-

tion 2.6, beginning on page 178).
There are several necessary and sufficient conditions for convergence in

distribution. A set of such conditions is given in the following “portmanteau”
theorem.

Theorem 1.35 (characterizations of convergence in distribution;
“portmanteau” theorem)
Given the sequence of random variables Xn and the random variable X, all de-
fined on a common probability space, then each of the following is a necessary

and sufficient condition that Xn
d→ X.

(i) E(g(Xn))→ E(g(X)) for all real bounded continuous functions g.
(ii) E(g(Xn))→ E(g(X)) for all real functions g such that g(x)→ 0 as |x| →
∞.

(iii) Pr(Xn ∈ B) → Pr(X ∈ B) for all Borel sets B such that Pr(X ∈ ∂B) = 0.
(iv) lim inf Pr(Xn ∈ S) ≥ Pr(X ∈ S) for all open sets S.
(v) lim supPr(Xn ∈ T ) ≤ Pr(X ∈ T ) for all closed sets T .

Proof. The proofs of the various parts of this theorem are in Billingsley
(1995), among other resources.

Although convergence in distribution does not imply a.s. convergence, con-
vergence in distribution does allow us to construct an a.s. convergent sequence.
This is stated in Skorokhod’s representation theorem.
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Theorem 1.36 (Skorokhod’s representation theorem)

If for the random variables (vectors!) X1, X2, . . ., we have Xn
d→ X, then

there exist random variables Y1
d
= X1, Y2

d
= X2, . . ., and Y

d
= X, such that

Yn
a.s.→ Y .

Proof. Exercise.

Theorem 1.37 (continuity theorem)
Let X1, X2, · · · be a sequence of random variables (not necessarily indepen-
dent) with characteristic functions ϕX1 , ϕX2 , · · · and let X be a random vari-
able with characteristic function ϕX. Then

Xn
d→ X ⇐⇒ ϕXn(t)→ ϕX(t) ∀t.

Proof. Exercise.
The⇐= part of the continuity theorem is called the Lévy-Cramér theorem

and the =⇒ part is sometimes called the first limit theorem.
The continuity theorem also applies to MGFs if they exist for all Xn.
A nice use of the continuity theorem is in the proof of a simple form

of the central limit theorem, or CLT. Here I will give the proof for scalar
random variables. There are other forms of the CLT, and other important
limit theorems, which will be the topic of Section 1.4. Another reason for
introducing this simple CLT now is so we can use it for some other results
that we discuss before Section 1.4.

Theorem 1.38 (central limit theorem)
If X1, . . . , Xn are iid with mean µ and variance 0 < σ2 < ∞, then Yn =
(
∑
Xi − nµ)/

√
nσ has limiting distribution N(0, 1).

Proof. It will be convenient to define a function related to the CF: let h(t) =
eµtϕX(t); hence h(0) = 1, h′(0) = 0, and h′′(0) = σ2. Now expand h in a
Taylor series about 0:

h(t) = h(0) + h′(0)it− 1

2
h′′(ξ)t2,

for some ξ between 0 and t. Substituting for h(0) and h′(0), and adding and
subtracting σ2t/2 to this, we have

h(t) = 1− σ2t2

2
− (h′′(ξ)− σ2)t2

2
.

This is the form we will find useful. Now, consider the CF of Yn:

ϕYn(t) = E

(
exp

(
it

(∑
Xi − nµ)√
nσ

)))

=

(
E

(
exp

(
it

(
X − µ)√

nσ

))))n

=

(
h

(
it√
nσ

))n

.
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From the expansion of h, we have

h

(
it√
nσ

)
= 1− t2

2n
− (h′′(ξ) − σ2)t2

2nσ2
.

So,

ϕYn(t) =

(
1− t2

2n
− (h′′(ξ) − σ2)t2

2nσ2

)n

.

Now we need a well-known (but maybe forgotten) result (see page 652): If
limn→∞ f(n) = 0, then

lim
n→∞

(
1 +

a

n
+
f(n)

n

)b

n = eab.

Therefore, because limn→∞ h′′(ξ) = h′′(0) = σ2, limn→∞ ϕYn(t) = e−t2/2,
which is the CF of the N(0, 1) distribution. (Actually, the conclusion relies
on the Lévy-Cramér theorem, the ⇐= part of the continuity theorem, The-
orem 1.37 on page 88; that is, while we know that the CF determines the
distribution, we must also know that the convergent of a sequence of CFs
determines a convergent distribution.)

An important CLT has a weaker hypothesis than the simple one above;
instead of iid random variables, we only require that they be independent (and
have finite first and second moments, of course). In Section 1.6, we relax the
hypothesis in the other direction; that is, we allow dependence in the random
variables. (In that case, we must impose some conditions of similarity of the
distributions of the random variables.)

Tightness of Sequences

In a convergent sequence of probability measures on a metric space, we may
be interested in how concentrated the measures in the sequence are. (If the
space does not have a metric, this question would not make sense.) We refer
to this as “tightness” of the sequence, and we will define it only on the metric
space IRd.

Definition 1.41 (tightness of a sequence of probability measures)
Let {Pn} be a sequence of probability measures on (IRd,Bd). The sequence is
said to be tight iff for every ε > 0, there is a compact (bounded and closed)
set C ∈ Bd such that

inf
n
Pn(C) > 1− ε.

Notice that this definition does not require that {Pn} be convergent, but of
course, we are interested primarily in sequences that converge. The following
theorem, whose proof can be found in Billingsley (1995) on page 336, among
other places, connects tightness to convergence.
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Theorem 1.39
Let {Pn} be a sequence of probability measures on (IRd,Bd).
(i) The sequence {Pn} is tight iff for every subsequence {Pni} there exists a
further subsequence {Pnj} ⊆ {Pni} and a probability measure P on (IRd,Bd)
such that

Pnj

w→ P, as j →∞.
(ii) If {Pn} is tight and each weakly convergent subsequence converges to the

same measure P , then Pn
w→ P .

Tightness of a sequence of random variables is defined in terms of tightness
of their associated probability measures.

Definition 1.42 (tightness of a sequence of random variables)
Let {Xn} be a sequence of random variables, with associated probability mea-
sures {Pn}. The sequence {Xn} is said to be tight iff

∀ε > 0 ∃M <∞ 3 sup
n
Pn(|Xn| > M) < ε.

1.3.5 Expectations of Sequences; Sequences of Expectations

The monotonicity of the expectation operator (1.42) of course carries over to
sequences.

The three theorems that relate to the interchange of a Lebesgue integration
operation and a limit operation stated on page 733 (monotone convergence,
Fatou’s lemma, and Lebesgue’s dominated convergence) apply immediately
to expectations:

• monotone convergence
For 0 ≤ X1 ≤ X2 · · · a.s.

Xn
a.s.→ X ⇒ E(Xn)→ E(X) (1.179)

• Fatou’s lemma

0 ≤ Xn a.s.∀n ⇒ E(lim
n

infXn) ≤ lim
n

inf E(Xn) (1.180)

• dominated convergence
Given a fixed Y with E(Y ) <∞,

|Xn| ≤ Y ∀n and Xn
a.s.→ X ⇒ E(Xn)→ E(X). (1.181)

These results require a.s. properties. Skorokhod’s Theorem 1.36, however,
often allows us to extend results based on a.s. convergence to sequences that
converge in distribution. Skorokhod’s theorem is the main tool used in the
proofs of the following theorems, which we state without proof.
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Theorem 1.40
If for the random variables X1, X2, . . ., we have Xn

d→ X and for each k > 0
E(|Xn|k) <∞ and E(|X|k) <∞, then

E(|Xn|k)→ E(|X|k). (1.182)

With additional conditions, we have a useful converse. It requires a limiting
distribution that is not moment-indeterminant (see page 34). In that case, the
converse says that the moments determine the limiting distribution.

Theorem 1.41 Let X be a random variable that does not have a moment-
indeterminant distribution, and let X1, X2, . . . be random variables. If for each
k > 0 E(|Xn|k) < ∞ and E(|X|k) < ∞, and if E(|Xn|k) → E(|X|k), then

Xn
d→ X.

Another useful convergence result for expectations is the Helly-Bray the-
orem (or just the Helly theorem):

Theorem 1.42 (Helly-Bray theorem)
If g is a bounded and continuous Borel function over the support of {Xn},
then

Xn
d→ X ⇔ E(g(Xn))→ E(g(X)). (1.183)

With additional conditions there is also a converse of Theorem 1.42.
The properties we have considered so far are all “nice”, “positive” results.

We now consider an unhappy fact: in general,

lim
n→∞

E(Xn) 6= E( lim
n→∞

Xn), (1.184)

as we see in the following example.

Example 1.24 gambler’s ruin
Let Y1, Y2, . . . be a sequence of iid random variables with

Pr(Yi = 0) = Pr(Yi = 2) =
1

2
∀i = 1, 2, . . . .

Now, let

Xn =

n∏

i=1

Yi. (1.185)

It is intuitive that some Yk will eventually be 0, and in that case Xn = 0 for
any n ≥ k.

*** finish: show that E(Xn) = 1 and limn→∞Xn = 0 a.s.; hence,
limn→∞ E(Xn) = 1 and E(limn→∞Xn) = 0.
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1.3.6 Convergence of Functions

In working with sequences of random variables we often encounter a situation
in which members of the sequence may be represented as sums or products
of elements one of which converges to a constant. Slutsky’s theorem provides
very useful results concerning the convergence of such sequences.

Theorem 1.43 (Slutsky’s theorem)
Let X, {Xn}, {Bn}, and {Cn} be random variables on a common probability
space, and let b, c ∈ IRk. Suppose

Xn
d→ X

and
Bn

p→ b and Cn
p→ c.

Then
BT

nXn +Cn
d→ bTX + c (1.186)

Proof. Exercise.
Slutsky’s theorem is one of the most useful results for showing conver-

gence in distribution, and you should quickly recognize some special cases of

Slutsky’s theorem. If Xn
d→ X, and Yn

p→ c, then

Xn + Yn
d→ X + c (1.187)

Y T
n Xn

d→ cTX (1.188)

and, if Yn ∈ IR (that is, Yn is a scalar), then

Xn/Yn
d→ X/c if c 6= 0. (1.189)

More General Functions

The next issue has to do with functions of convergent sequences. We consider
a sequence X1, X2, . . . in IRk. The first function we consider is a simple linear
projection, tTXn for t ∈ IRk.

Theorem 1.44 (Cramér-Wold “device”)
LetX1, X2, · · · be a sequence of random variables in IRk and letX be a random
variable in IRk.

Xn
d→ X ⇐⇒ tTXn

d→ tTX ∀t ∈ IRk.

Proof. Follows from the continuity theorem and equation (1.133).
Now consider a general function g from (IRk,Bk) to (IRm,Bm). Given

convergence of {Xn}, we consider the convergence of {g(Xn)}. Given the
limiting distribution of a sequence {Xn}, the convergence of {g(Xn)} for a
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general function g is not assured. In the following we will consider the se-
quence {g(Xn)} for the case that g is a continuous Borel function. (To speak
about continuity of a function of random variables, we must add some kind of
qualifier, such as a.s., which, of course, assumes a probability measure.) The
simple facts are given in Theorem 1.45.

Theorem 1.45
Let X and {Xn} be random variables (k-vectors) and let g be a continuous
Borel function from IRk to IRk.

Xn
a.s.→ X ⇒ g(Xn)

a.s.→ g(X) (1.190)

Xn
p→ X ⇒ g(Xn)

p→ g(X) (1.191)

Xn
d→ X ⇒ g(Xn)

d→ g(X) (1.192)

Proof. Exercise.
Theorem 1.45 together with Slutsky’s theorem provide conditions under

which we may say that g(Xn, Yn) converges to g(X, c).
In the following we will consider normalizing constants that may make

a sequence more useful. We may wish consider, for example, the asymptotic
variance of a sequence whose limiting variance is zero.

1.3.7 Asymptotic Distributions

We will now resume the consideration of weak convergence of distributions
that we began in Section 1.3.4. Asymptotic distributions are the basis for the
concept of asymptotic expectation, discussed in Section 1.3.8 below.

In many interesting cases, the limiting distribution of a sequence {Xn}
is degenerate. The fact that {Xn} converges in probability to some given
constant may be of interest, but in statistical applications, we are likely to
be interested in how fast it converges, and what are the characteristics the
sequence of the probability distribution that can be used for “large samples”.

In this section we discuss how to modify a sequence so that the convergence
is not degenerate. Statistical applications are discussed in Section 3.8.

Normalizing Constants

Three common types of sequences {Xn} of interest are iid sequences, sequences
of partial sums, and sequences of order statistics. Rather than focusing on the
sequence {Xn}, it may be more useful to to consider a sequence of linear
transformations of Xn, {Xn − bn}, where the form of bn is generally different
for iid sequences, sequences of partial sums, and sequences of order statistics.

Given a sequence of constants bn, if Xn − bn d→ 0, we may be interested
in the rate of convergence, or other properties of the sequence as n becomes
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large. It may be useful to magnify the difference Xn − bn by use of some
normalizing sequence of constants an:

Yn = an(Xn − bn). (1.193)

While the distribution of the sequence {Xn − bn} may be degenerate, the
sequence {an(Xn − bn)} may have a distribution that is nondegenerate, and
this asymptotic distribution may be useful in statistical inference. (This ap-
proach is called “asymptotic inference”.) We may note that even though we
are using the asymptotic distribution of {an(Xn−bn)}, for a reasonable choice
of a sequence of normalizing constants {an}, we sometimes refer to it as the
asymptotic distribution of {Xn} itself, but we must remember that it is the
distribution of the normalized sequence, {an(Xn − bn)}.

The shift constants generally serve to center the distribution, especially
if the limiting distribution is symmetric. Although linear transformations are
often most useful, we could consider sequences of more general transforma-
tions of Xn; instead of {an(Xn− bn)}, we might consider {hn(Xn)}, for some
sequence of functions {hn}.

The Asymptotic Distribution of {g(Xn)}

Applications often involve a differentiable Borel scalar function g, and we may
be interested in the convergence of {g(Xn)}. (The same general ideas apply
when g is a vector function, but the higher-order derivatives quickly become
almost unmanageable.) When we have {Xn} converging in distribution to
X + b, what we can say about the convergence of {g(Xn)} depends on the
differentiability of g at b.

Theorem 1.46
Let X and {Xn} be random variables (k-vectors) such that

an(Xn − bn)
d→ X, (1.194)

where b1, b2, . . . is a sequence of constants such that limn→∞ bn = b <∞, and
a1, a2, . . . is a sequence of constant scalars such that limn→∞ an =∞ or such
that limn→∞ an = a > 0. Now let g be a Borel function from IRk to IR that is
continuously differentiable at each bn. Then

an(g(Xn) − g(bn))
d→ (∇g(b))TX. (1.195)

Proof. This follows from a Taylor series expansion of g(Xn) and Slutsky’s
theorem.

A common application of Theorem 1.46 arises from the simple corollary for
the case whenX in expression (1.194) has the multivariate normal distribution
Nk(0, Σ) and ∇g(b) 6= 0:
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an(g(Xn)− g(bn))
d→ Y, (1.196)

where Y ∼ Nk(0, (∇g(b))TΣ∇g(b)).
One reason limit theorems such as Theorem 1.46 are important is that they

can provide approximations useful in statistical inference. For example, we
often get the convergence of expression (1.194) from the central limit theorem,
and then the convergence of the sequence {g(Xn)} provides a method for
determining approximate confidence sets using the normal distribution, so
long as ∇g(b) 6= 0. This method in asymptotic inference is called the delta
method, and is illustrated in Example 1.25 below. It is particularly applicable
when the asymptotic distribution is normal.

The Case of ∇g(b) = 0

Suppose ∇g(b) = 0 in equation (1.195). In this case the convergence in distri-
bution is to a degenerate random variable, which may not be very useful. If,
however, Hg(b) 6= 0 (where Hg is the Hessian of g), then we can use a second
order the Taylor series expansion and get something useful:

2a2
n(g(Xn)− g(bn))

d→ XTHg(b)X, (1.197)

where we are using the notation and assuming the conditions of Theorem 1.46.
Note that while an(g(Xn)−g(bn)) may have a degenerate limiting distribution
at 0, a2

n(g(Xn)−g(bn)) may have a nondegenerate distribution. (Recalling that
limn→∞ an =∞, we see that this is plausible.) Equation (1.197) allows us also
to get the asymptotic covariance for the pairs of individual elements of Xn.

Use of expression (1.197) is called a second order delta method, and is
illustrated in Example 1.25.

Example 1.25 an asymptotic distribution in a Bernoulli family
Consider the Bernoulli family of distributions with parameter π. The variance
of a random variable distributed as Bernoulli(π) is g(π) = π(1 − π). Now,

suppose X1, X2, . . .
iid∼ Bernoulli(π). Since E(Xn) = π, we may be interested

in the distribution of Tn = g(Xn) = Xn(1−Xn).
From the central limit theorem (Theorem 1.38),

√
n(Xn − π)→ N(0, π(1− π)), (1.198)

and so if π 6= 1/2, g′(π) 6= 0, we can use the delta method from expres-
sion (1.195) to get

√
n(Tn − g(π))→ N(0, π(1− π)(1 − 2π)2). (1.199)

If π = 1/2, g′(π) = 0 and this is a degenerate distribution, so we cannot
use the delta method. Let’s use expression (1.197). The Hessian is particularly
simple.
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First, we note that in this case, the CLT yields
√
n(X − 1/2)→ N

(
0, 1

4

)
.

Hence, if we scale and square, we get 4n(X − 1
2 )2

d→ χ2
1, or

4n(Tn − g(π))
d→ χ2

1.

We can summarize the previous discussion and the special results of Ex-
ample 1.25 as follows (assuming all of the conditions on the objects involved),

√
n(Tn − bn)→ N(0, σ2)

g′(b) = 0
g′′(b) 6= 0



 =⇒ 2n

(g(Tn) − g(bn))2

σ2g′′(b)
d→ χ2

1. (1.200)

Higher Order Expansions

Suppose the second derivatives of g(b) are zero. We can easily extend this to
higher order Taylor expansions in Theorem 1.47 below. (Note that because
higher order Taylor expansions of vector expressions can become quite messy,
in Theorem 1.47 we use Y = (Y1, . . . , Yk) in place of X as the limiting random
variable.)

Theorem 1.47
Let Y and {Xn} be random variables (k-vectors) such that

an(Xn − bn)
d→ Y,

where bn is a constant sequence and a1, a2, . . . is a sequence of constant scalars
such that limn→∞ an =∞. Now let g be a Borel function from IRk to IR whose
mth order partial derivatives exist and are continuous in a neighborhood of bn,
and whose jth, for 1 ≤ j ≤ m− 1, order partial derivatives vanish at b. Then

m!am
n (g(Xn)− g(bn))

d→
k∑

i1=1

· · ·
k∑

im=1

∂mg

∂xi1 · · ·∂xim

∣∣∣∣∣
x=b

Yi1 · · ·Yim . (1.201)

Expansion of Statistical Functions

*** refer to functional derivatives, Sections 0.1.13 and 0.1.13.

Variance Stabilizing Transformations

The fact that the variance in the asymptotic distribution in expression (1.199)
depends on π may complicate our study of Tn and its relationship to π. Of
course, this dependence results initially from the variance π(1 − π) in the
asymptotic distribution in expression (1.198). If g(π) were chosen so that
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(g(π)′)2 = (π(1−π)−1), the variance in an expression similar to (1.199) would
be constant (in fact, it would be 1).

Instead of g(π) = π(1 − π) as in Example 1.25, we can use a solution to
the differential equation

g′(π) = π(1− π)−1/2.

One solution is g(t) = 2 arcsin(
√
t), and following the same procedure

in Example 1.25 but using this function for the transformations, we have

2
√
n
(
arcsin(

√
Xn)− arcsin(

√
π)
) d→ N(0, 1).

A transformation such as this is called a variance stabilizing transformation
for obvious reasons.

Example 1.26 variance stabilizing transformation in a normal fam-
ily
Consider the normal family of distributions with known mean 0 and variance

σ2, and suppose X1, X2, . . .
iid∼ N(0, σ2). Since E(X2

i ) = σ2, we may be inter-
ested in the distribution of Tn =

∑
X2

i /n. We note that V(X2
i ) = 2σ4, hence,

the central limit theorem gives

√
n

(
1

n

n∑

i=1

X2
i − σ2

)
→ N(0, 2σ4).

Following the ideas above, we seek a transformation g(σ2) such that
(g′(σ2))2σ4 is constant wrt σ2. A solution to the differential equation that
expresses this relationship is g(t) = log(t), and as above, we have

√
n

(
log

(
1

n

n∑

i=1

X2
i

)
− log

(
σ2
)
)
→ N(0, 2). (1.202)

Order Statistics and Quantiles

The asymptotic distributions of order statisticsXkn:n are often of interest. The
asymptotic properties of “central” order statistics are different from those of
“extreme” order statistics.

A sequence of central order statistics {X(k:n)} is one such that for given π ∈
]0, 1[, k/n→ π as n→ ∞. (Notice that k depends on n, but we will generally
not use the notation kn.) As we suggested on page 65, the expected value of the
kth order statistic in a sample of size n, if it exists, should be approximately the
same as the k/n quantile of the underlying distribution. Under mild regularity
conditions, a sequence of asymptotic central order statistics can be shown to
converge in expectation to xπ, the π quantile.
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Sample quantiles (defined on page 65) are the ordinary quantiles in the
sense of equation (1.13) of the discrete distribution defined by the sample,
X1, . . . , Xn, which has CDF Fn(x), the ECDF, as defined in equation (1.34);
that is, the π sample quantile is

xπ = F−1
n (π). (1.203)

Properties of quantiles, of course, are different for discrete and continuous
distributions. In the following, for 0 < π < 1 we will assume that F (xπ)
is twice differentiable in some neighborhood of xπ and F ′′ is bounded and
F ′(xπ) > 0 in that neighborhood. Denote F ′(x) as f(x), and let Fn(x) be the
ECDF. Now, write the kth order statistic as

X(k:n) = xπ −
Fn(xπ) − π
f(xπ)

+Rn(π). (1.204)

This is called the Bahadur representation, after Bahadur (1966), who showed
that Rn(π)→ 0 as n→∞. Kiefer (1967) determined the exact order ofRn(π),
so equation (1.204) is sometimes called the Bahadur-Kiefer representation.
The Bahadur representation is useful in studying asymptotic properties of
central order statistics.

There is some indeterminacy in relating order statistics to quantiles. In
the Bahadur representation, for example, the details are slightly different if
nπ happens to be an integer. (The results are the same, however.) Consider
a slightly different formulation for a set of m order statistics. The following
result is due to Ghosh (1971).

Theorem 1.48
Let X1, . . . , Xn be iid random variables with PDF f. For k = n1, . . . , nm ≤ n,
let λk ∈]0, 1[ be such that nk = dnλke+1. Now suppose 0 < λ1 < · · · < λm < 1
and for each k, f(xλk ) > 0. Then the asymptotic distribution of the random
m-vector (

n1/2(X(n1:n) − xλ1), . . . , n
1/2(X(nm:n) − xλm)

)

is m-variate normal with mean of 0, and covariance matrix whose i, j element
is (

λi(1− λj)

f(xλi)f(xλj )

)
.

For a proof of this theorem, see David and Nagaraja (2003).
A sequence of extreme order statistics {X(k:n)} is one such that k/n→ 0 or

k/n→ 1 as n→∞. Sequences of extreme order statistics from a distribution
with bounded support generally converge to a degenerate distribution, while
those from a distribution with unbounded support do not have a meaningful
distribution unless the sequence is normalized in some way. We will consider
asymptotic distributions of extreme order statistics in Section 1.4.3.

Theory of Statistics c©2000–2025 James E. Gentle



1.3 Sequences of Events and of Random Variables 99

We now consider some examples of sequences of order statistics. In Ex-
amples 1.27 and 1.28 below, we obtain degenerate distributions unless we
introduce a normalizing factor. In Example 1.29, it is necessary to introduce
a sequence of constant shifts.

Example 1.27 asymptotic distribution of min or max order statis-
tics from U(0, 1)
Suppose X1, . . . , Xn are iid U(0, 1). The CDFs of the min and max, X(1:n)

and X(n:n), are easy to work out. For x ∈ [0, 1],

FX(1:n)
(x) = 1− Pr(X1 > x, . . . , Xn > x)

= 1− (1− x)n

and
FX(n:n)

(x) = xn.

Notice that these are beta distributions, as we saw in Example 1.17.
Both of these extreme order statistics have degenerate distributions. For

X(1:n), we have X(1:n)
d→ 0 and

E
(
X(1:n)

)
=

1

n + 1

and so
lim

n→∞
E
(
X(1:n)

)
= 0.

This suggests the normalization nX(1:n). We have

Pr
(
nX(1:n) ≤ x

)
= 1−

(
1− x

n

)n

→ 1− e−x x > 0. (1.205)

This is the CDF of a standard exponential distribution. The distribution of
nX(1:n) is more interesting than that of X(1:n).

For X(n:n), we have X(n:n)
d→ 1 and

E
(
X(n:n)

)
=

n

n + 1

and so
lim

n→∞
E
(
X(n:n)

)
= 1,

and there is no normalization to yield a nondegenerate distribution.

Now consider the asymptotic distribution of central order statistics from
U(0, 1).
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Example 1.28 asymptotic distribution of a central order statistic
from U(0, 1)
Let X(k:n) be the kth order statistic from a random sample of size n from
U(0, 1) and let

Y = nX(k:n).

Using Equation (1.139) with the CDF of U(0, 1), we have

fY (y) =

(
n

k

)( y
n

)k−1(
1− y

n

)n−k

I[0,1](y).

Observing that

lim
n→∞

(
n

k

)
=
nk−1

k!
,

we have for fixed k,

lim
n→∞

fY (y) =
1

Γ(k)
yk−1e−yI[0,∞[(y), (1.206)

that is, the limiting distribution of {nX(k:n)} is gamma with scale parameter
1 and shape parameter k. (Note, of course, k! = kΓ(k).) For finite values
of n, the asymptotic distribution provides better approximations when k/n
is relatively small. When k is large, n must be much larger in order for the
asymptotic distribution to approximate the true distribution closely.

If k = 1, the PDF in equation (1.206) is the exponential distribution, as
shown in Example 1.27. For k → n, however, we must apply a limit similar to
what is done in equation (1.205).

While the min and max of the uniform distribution considered in Exam-
ple 1.27 are “extreme” values, the more interesting extremes are those from
distributions with infinite support. In the next example, we consider an ex-
treme value that has no bound. In such a case, in addition to any normaliza-
tion, we must do a shift.

Example 1.29 extreme value distribution from an exponential dis-
tribution
Let X(n:n) be the largest order statistic from a random sample of size n from
an exponential distribution with PDF e−xIĪR+

(x) and let

Y = X(n:n) − log(n).

We have
lim

n→∞
Pr(Y ≤ y) = e−e−y

(1.207)

(Exercise 1.65). The distribution with CDF given in equation (1.207) is called
an extreme value distribution. There are two other classes of “extreme value
distributions”, which we will discuss in Section 1.4.3. The one in this example,
which is the most common one, is called a type 1 extreme value distribution
or a Gumbel distribution.
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1.3.8 Asymptotic Expectation

The properties of the asymptotic distribution, such as its mean or variance,
are the asymptotic values of the corresponding properties of Tn. Let {Tn}
be a sequence of random variables with E(|Tn|) < ∞ and Tn

d→ T , with
E(|T |) <∞. Theorem 1.40 (on page 91) tells us that

E(|Tn|k)→ E(|T |k).

When Tn is a normalized statistic, such as X, with variance of the form
σ2/n, the limiting value of some properties of Tn may not be very use-
ful in statistical inference. We need an “asymptotic variance” different from
limn→∞ σ2/n.

Because {Tn} may converge to a degenerate random variable, it may be
more useful to generalize the definition of asymptotic expectation slightly. We
will define “an asymptotic expectation”, and distinguish it from the “limiting
expectation”. We will consider a sequence of the form {anTn}.

Definition 1.43 (asymptotic expectation)
Let {Tn} be a sequence of random variables, and let {an} be a sequence of
positive constants with limn→∞ an = ∞ or with limn→∞ an = a > 0, and

such that anTn
d→ T , with E(|T |) <∞. An asymptotic expectation of {Tn} is

E(T/an).

Notice that an asymptotic expectation many include an n; that is, the order
of an asymptotic expression may be expressed in the asymptotic expectation.
For example, the asymptotic variance of a sequence of estimators

√
nTn(X)

may be of the form V(T/n); that is, the order of the asymptotic variance is
n−1.

We refer to limn→∞ E(Sn) as the limiting expectation. It is important to
recognize the difference in limiting expectation and asymptotic expectation.
The limiting variance of a sequence of estimators

√
nTn(X) may be 0, while

the asymptotic variance is of the form V(T/n).
Asymptotic expectation has a certain arbitrariness associated with the

choice of {an}. The range of possibilities for “an” asymptotic expectation,
however, is limited, as the following theorem shows.

Theorem 1.49
Let {Tn} be a sequence of random variables, and let {cn} be a sequence of
positive constants with limn→∞ cn =∞ or with limn→∞ cn = c > 0, and such

that cnTn
d→ R, with E(|R|) <∞. Likewise, let {dn} be a sequence of positive

constants with limn→∞ dn = ∞ or with limn→∞ dn = d > 0, and such that

dnTn
d→ S, with E(|S|) < ∞. (This means that both E(R/cn) and E(S/dn)

are asymptotic expectations of Tn.) Then it must be the case that either

(i) E(R) = E(S) = 0,
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(ii) either E(R) 6= 0, E(S) = 0, and dn/cn → 0 or E(R) = 0, E(S) 6= 0, and
cn/dn → 0,
or

(iii) E(R) 6= 0, E(S) 6= 0, and E(R/cn)/E(S/dn)→ 1.

Proof. Exercise. (Use Theorem 1.34 on page 87.)

Multivariate Asymptotic Expectation

The multivariate generalization of asymptotic expectation is straightforward:
Let {Xn} be a sequence of random k-vectors, and let {An} be a sequence of
k×k positive definite matrices such that either limn→∞An diverges (that is, in
the limit has no negative diagonal elements and some diagonal elements that
are positively infinite) or else limn→∞An = A, where A is positive definite

and such that AnXn
d→ X, with E(|X|) <∞. Then an asymptotic expectation

of {Xn} is E(A−1
n X).

If the asymptotic expectation of {Xn} is B(n)µ for some matrix B(n), and
g is a Borel function from IRk to IRk that is differentiable at µ, then by Theo-
rem 1.46 on page 94 the asymptotic expectation of {g(Xn)} is B(n)Jg(µ))Tµ.

1.4 Limit Theorems

We are interested in functions of a sequence of random variables {Xi | i =
1, . . . , n}, as n increases without bound. The functions of interest involve either
sums or extreme order statistics. There are three general types of important
limit theorems: laws of large numbers, central limit theorems, and extreme
value theorems.

Laws of large numbers give limits for probabilities or for expectations of
sequences of random variables. The convergence to the limits may be weak or
strong.

Historically, the first versions of both laws of large numbers and central
limit theorems applied to sequences of binomial random variables.

Central limit theorems and extreme value theorems provide weak conver-
gence results, but they do even more; they specify a limiting distribution.
Central limit theorems specify a limiting infinitely divisible distribution, often
a normal distribution; and extreme value theorems specify a limiting extreme
value distribution, one of which we encountered in Example 1.29.

The functions of the sequence of interest are of the form

an

(
n∑

i=1

Xi − bn
)

(1.208)

or
an

(
X(n:n) − bn

)
, (1.209)
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where {an} is a sequence of positive real constants and {bn} is a sequence
of real constants. The sequence of normalizing constants {an} for either case
often have the form an = n−p for some fixed p > 0.

For both laws of large numbers and central limit theorems, we will be
interested in a function of the form of expression (1.208), whereas for the
extreme value theorems, we will be interested in a function of the form of
expression (1.209). An extreme value theorem, of course, may involve X(1:n)

instead of X(n:n). The simplest version of a central limit theorem applies to
sequences of iid random variables with finite variance, as in Theorem 1.38.
The simplest version of the extreme value theorem applies to sequences of
exponential random variables, as in Example 1.29.

For the laws of large numbers and the central limit theorems, we will find
it convenient to define

Sn =

n∑

i=1

Xi. (1.210)

We distinguish different types of sequences of random variables based on
the distributions of the individual terms in the sequence and on the corre-
lational structure of the terms. Most of the results discussed in Section 1.3
did not place any restrictions on the distributions or on their correlational
structure. The limit theorems often require identical distributions (or at least
distributions within the same family and which vary in a systematic way).
Even when different distributions are allowed, the limit theorems that we dis-
cuss in this section require that the terms in the sequence be independent.
We will consider sequences of correlated random variables in Section 1.6.

1.4.1 Laws of Large Numbers

The first law of large numbers was Bernoulli’s (Jakob Bernoulli’s) theorem. In
this case Sn is the sum of n iid Bernoullis, so it has a binomial distribution.

Theorem 1.50 (Bernoulli’s theorem (binomial random variables))
If Sn has a binomial distribution with parameters n and π, then

1

n
Sn

p→ π. (1.211)

Proof. This follows from
∫
Ω
(Sn/n−π)2dP = π(1−π)/n, which means Sn/n

converges in mean square to π, which in turn means that it converges in
probability to π.

This is a weak law because the convergence is in probability.
Bernoulli’s theorem applies to binomial random variables. We now state

without proof four theorems about large numbers. Proofs can be found in
Petrov (1995), for example. The first two apply to iid random numbers and
the second two require only independence and finite expectations. Two are
weak laws (WLLN) and two are strong (SLLN). For applications in statistics,
the weak laws are generally more useful than the strong laws.
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A generalization of Bernoulli’s theorem is the weak law of large numbers
(WLLN) for iid random variables:

Theorem 1.51 (WLLN for iid random variables)
Let X1, X2, . . . be a sequence of iid random variables (and Sn =

∑n
i=1Xi).

There exists a sequence of real numbers a1, a2, . . . such that ∀i

nPr(|Xi| > n)→ 0 ⇐⇒ 1

n
Sn − bn p→ 0 (1.212)

The bn can be chosen so that bn ≤ n, as bn = E
(
XiI{|Xi|≤n}

)
, for example.

Theorem 1.52 (SLLN for iid random variables)
Let X1, X2, . . . be a sequence of iid random variables such that ∀i E(|Xi|) =
µ <∞. Then

1

n
Sn

a.s.→ µ. (1.213)

A slight generalization is the alternate conclusion

1

n

n∑

i=1

ai(Xi − E(X1))
a.s.→ 0,

for any bounded sequence of real numbers a1, a2, . . ..
We can generalize these two limit theorems to the case of independence

but not necessarily identical distributions, by putting limits on normalized pth

moments.

Theorem 1.53 (WLLN for independent random variables)
Let X1, X2, . . . be a sequence of independent random variables such for some
constant p ∈ [1, 2],

lim
n→∞

1

np

n∑

i=1

E(|Xi|p) = 0.

Then
1

n

(
Sn −

n∑

i=1

E(Xi)

)
p→ 0. (1.214)

Theorem 1.54 (SLLN for independent random variables)
Let X1, X2, . . . be a sequence of independent random variables such for some
constant p ∈ [1, 2],

∞∑

i=1

E(|Xi|p)
ip

<∞.

Then
1

n

(
Sn −

n∑

i=1

E(Xi)

)
a.s.→ 0. (1.215)
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We notice that the normalizing term in all of the laws of large numbers
has been n−1. We recall that the normalizing term in the simple central limit
theorem 1.38 (and in the central limit theorems we will consider in the next
section) is n−1/2. Since the central limit theorems give convergence to a non-
degenerate distribution, when the normalizing factor is as small as n−1/2, we
cannot expect convergence in probability, and so certainly not almost sure con-
vergence. We might ask if there is some sequence an with n−1/2 < an < n−1,
such that when an is used as a normalizing factor, we have convergence in
probability and possibly almost sure convergence. The “Law of the Iterated
Logarithm (LIL)” provides a very interesting answer for iid random variables
with finite variance. The sequence involves the iterated logarithm, log(log(n));
specifically, an = (n log(log(n)))−1/2.

Without loss of generality we will assume the random variables have mean
0.

Theorem 1.55 (Law of the Iterated Logarithm)
LetX1, X2, . . . be a sequence of independent and identically distributed random
variables with E(Xi) = 0 and V(Xi) = σ2 <∞. Then

1

σ
√

2

1√
n log(log(n))

Sn
p→ 0 (1.216)

and

lim sup
1

σ
√

2

1√
n log(log(n))

Sn
a.s.
= 1. (1.217)

Proof. See Billingsley (1995).
Further generalizations of laws of large numbers apply to sequences of

random variables in triangular arrays, as in the definition of infinite divisibility,
Definition 1.32. We will use triangular arrays in an important central limit
theorem in the next section.

1.4.2 Central Limit Theorems for Independent Sequences

Central limit theorems give conditions that imply that certain standardized
sequences converge to a normal distribution. We will be interested in sequences
of the form of equation (1.208):

an

(
n∑

i=1

Xi − bn
)
.

where {an} is a sequence of positive real constants and {bn} is a sequence of
real constants.

The simplest central limit theorems apply to iid random variables. More
complicated ones apply to independent random variables that are not neces-
sarily identically distributed and/or that are not necessarily independent. In
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this section we consider central limit theorems for independent sequences. On
page 135 we will consider a central limit theorem in which the sequences are
not necessarily independent.

The central limit theorems require finite second moments.

The de Moivre Laplace Central Limit Theorem

The first central limit theorem, called the de Moivre Laplace central limit
theorem followed soon after Bernoulli’s theorem, and like Bernoulli’s theorem,
it applies to Sn that has a binomial distribution with parameters n and π
(because it is the sum of n iid Bernoullis with parameter π.

Theorem 1.56 (De Moivre Laplace Central Limit Theorem)
If Sn has a binomial distribution with parameters n and π, then

1√
π(1− π)

1√
n

(Sn − nπ)
d→ N(0, 1). (1.218)

This central limit theorem is a special case of the classical central limit
theorem for iid random variables with finite mean and variance.

Notice that Bernoulli’s theorem and the de Moivre Laplace central limit
theorem, which are stated in terms of binomial random variables, apply to
normalized limits of sums of Bernoulli random variables. This is the usual
form of these kinds of limit theorems; that is, they apply to normalized lim-
its of sums of random variables. The first generalizations apply to sums of
iid random variables, and then further generalizations apply to sums of just
independent random variables.

The Central Limit Theorem for iid Scalar Random Variables with
Finite Mean and Variance

Theorem 1.57
Let X1, X2, . . . be a sequence of independent random variables that are iden-
tically distributed with mean µ and variance σ2 > 0. Then

1

σ

1√
n

(
n∑

i=1

Xi − nµ
)

d→ N(0, 1). (1.219)

A proof of this uses a limit of a characteristic function and the uniqueness
of the characteristic function (see page 88).

Independent but Not Identical; Triangular Arrays

The more general central limit theorems apply to a triangular array; that is,
to a sequence of finite subsequences. The variances of the sums of the subse-
quences is what is used to standardize the sequence so that it is convergent.
We define the sequence and the subsequences as follows.
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Let {Xnj, j = 1, 2, . . . , kn} be independent random variables with kn →∞
as n→∞. We let

Rn =

kn∑

j=1

Xnj

represent “row sums”, as we visualize the sequence in an array:

X11, X12, . . .X1k1 R1

X21, X22, . . . . . .X2k2 R2

X31, X32, . . . . . . . . .X3k3 R3

...
...

...
...

(1.220)

There is no requirement that kj > ki when j > i, but since kn →∞ as n→∞,
that is certainly the trend. Note that within a row of this triangular array, the
elements are independent, but between rows, there is no such requirement.

Let σ2
n = V(Rn), and assume 0 < σ2

n.
Notice that aside from the finite variance, the only assumption is that

within a row, the elements are independent. There is no assumption regard-
ing different rows; they may be independent and they may or may not have
identical distributions.

In order to say anything about the asymptotic distribution of some func-
tion of {Xnj} we need to impose conditions on the moments. There are three
standard conditions that we consider for sequences satisfying the general con-
ditions on kn and σ2

n.

• Lyapunov’s condition. Lyapunov’s condition applies uniformly to the
sum of central moments of order (2 + δ). Lyapunov’s condition is

kn∑

j=1

E
(
|Xnj − E(Xnj)|2+δ

)
∈ o(σ2+δ

n ) for some δ > 0. (1.221)

• Lindeberg’s condition. Lindeberg’s condition is

kn∑

j=1

E
(
(Xnj − E(Xnj))

2I{|Xnj−EXnj |>εσn}(Xnj)
)
∈ o(σ2

n) ∀ ε > 0,

(1.222)
Instead of a strong uniform condition on a power in terms of a positive
addition δ to 2, as in Lyapunov’s condition, Lindeberg’s condition applies
to a fixed power of 2 over an interval controlled by ε. Lindeberg’s con-
dition requires that the sum of the second central moments over the full
support minus the squared central differences near the mean is ultimately
dominated by the variance of the sum. (That is to say, the sum of the
tail components of the variance is dominated by the variance of the sum.
This means that the distributions cannot be too heavy-tailed.) The re-
quirement is in terms of an ε that tells how much of the central region to
remove before computing the individual central moments.
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Clearly, Lyapunov’s condition implies Lindeberg’s condition.
Although Lyapunov’s condition is more stringent than Lindeberg’s condi-
tion, it is sometimes easier to establish Lyapunov’s condition than Linde-
berg’s condition.

• Feller’s condition. Lindeberg’s condition (or Lyapunov’s condition, of
course) implies Feller’s condition, which is:

lim
n→∞

max
j≤kn

σ2
nj

σ2
n

= 0. (1.223)

This condition comes up in the proof of Lindeberg’s central limit theorem.

A Central Limit Theorem for Independent Scalar Random
Variables with Finite Mean and Variance

A more general central limit theorem is called Lindeberg’s central limit theo-
rem. It is stated in terms of a sequence of the finite subsequences of a triangular
array, as we encountered in the definition of infinite divisibility on page 62.

Theorem 1.58 (Lindeberg’s Central Limit Theorem)
For given n, let {Xnj, j = 1, 2, . . . , kn} be independent random variables with

0 < σ2
n, where σ2

n = V(
∑kn

j=1Xnj) and kn → ∞ as n → ∞. If the Lindeberg
condition (1.222) holds, then

1

σn

kn∑

j=1

(Xnj − E(Xnj))
d→ N(0, 1). (1.224)

Proof. *** From inequality (1.96), we have for each Xnj,

∣∣ϕXnj (t)− (−t2V(Xnj)/2)
∣∣ ≤ E

(
min

(
|tXnj|2, |tXnj|3/6

))
.

***

Multivariate Central Limit Theorems for Independent Random
Variables with Finite Mean and Variance

The central limit theorems stated above have multivariate extensions that
are relatively straightforward. The complications arise from the variance-
covariance matrices, which must replace the simple scalars σ2

n.
The simplest situation is the iid case where each member of the sequence

{Xn} of random k-vectors has the finite variance-covariance matrix Σ. In that
case, similar to equation (1.219) for iid scalar random variables, we have

∑n
i=1(Xi − E(Xi))√

n

d→ Nk(0, Σ). (1.225)

Theory of Statistics c©2000–2025 James E. Gentle



1.4 Limit Theorems 109

Another type of multivariate central limit theorem can be formed by think-
ing of the subsequences in equation (1.224) as multivariate random variables.
Let {kn} be a sequence of constants such that kn → ∞ as n → ∞. Let
Xni ∈ IRmi , where mi ≤ m for some fixed integer m and for i = 1, . . . , kn, be
independent with

inf
i,n
λni > 0,

where λni is the smallest eigenvalue of V(Xni). (Note that this is saying that
variance-covariance matrix is positive definite for every n and i; but it’s saying
a little more than that.) Also suppose that for some δ > 0, we have

sup
i,n

V(‖Xni‖2+δ) <∞.

Now, let cni be a sequence in IRmi with the property that it is diffuse:

lim
n→∞

(
max

1≤i≤kn

‖cni‖2
/

kn∑

i=1

‖cni‖2
)

= 0.

Then we have something similar to equation (1.224):

kn∑

j=1

cTni (Xnj − E(Xnj))

/


kn∑

j=1

V(cTniXnj)




1/2

d→ N(0, 1). (1.226)

1.4.3 Extreme Value Distributions

In Theorem 1.48 we saw that the asymptotic joint distribution of a set of
central order statistics obeys the central limit theorem. The asymptotic dis-
tribution of extreme order statistics, however, is not normal. We have already
considered asymptotic distributions of extreme order statistics in special cases
in Examples 1.27 and 1.28 for random variables with bounded ranges and in
Example 1.29 for a random variable with unbounded range. The latter is the
more interesting case, of course.

Given a sequence of random variables {Xi | i = 1, . . . , n}, we are interested
in the limiting distribution of functions of the form in expression (1.209), that
is,

an

(
X(n:n) − bn

)
.

The first question, of course, is what conditions on an and bn will yield a limit-
ing distribution that is nondegenerate. These conditions clearly must depend
on the distributions of the Xi, and must take into account any dependencies
within the sequence. We will consider only the simple case; that is, we will
assume that the Xi are iid. Let F be the CDF of each Xi. The problem now
is to find a CDF G for a nondegenerate distribution, such that for each point
of continuity x of G,
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lim
n→∞

F n(x/an + bn) = G(x). (1.227)

Fisher and Tippett (1928) The most general answer to this is given in the
following theorem.

Theorem 1.59 (extreme value distribution)
A CDF satisfying equation (1.227) must have one of the following three forms
in which α > 0:

•
G(x) =

0, x ≤ 0
exp(−x−α), x > 0;

(1.228)

•
G(x) = exp(−e−x); (1.229)

•
G(x) =

exp(−(x)α), x < 0
1, x ≥ 0.

(1.230)

The proof of a version of this theorem was given by Fisher and Tippett
(1928), and a more careful statement along with a proof was given by
Gnedenko (1943). See de Haan and Ferreira (2006) for a proof, and see
David and Nagaraja (2003) for further discussion.

*** Combine these in one express and introduce the extreme value index
*** Give names to the three classes.
domain of attraction

1.4.4 Other Limiting Distributions

Asymptotic distributions are very important in statistical applications be-
cause, while the exact distribution of a function of a finite set of random
variables may be very complicated, often the asymptotic distribution is un-
complicated. Often, as we have seen, the limiting distribution is normal if the
sequence is properly normalized. If a normal distribution can be used, even as
an approximation, there is a wealth of statistical theory that can be applied
to the problem.

The random variables of interest are often functions g(X) of simpler ran-
dom variables X. If we know the limiting distribution of {Xn} we can often
work out the limiting distribution of {g(Xn)}, depending on the nature of the
function g. A simple example of this is equation (1.196) for the delta method.
In this case we start with {Xn} that has a limiting normal distribution and
we get that the limiting distribution of {g(Xn)} is also normal.

We also can often get useful limiting distributions from the central limit
theorem and the distributions of functions of normal random variables such
as chi-squared, t, or F, as discussed in Section 2.9.2.
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1.5 Conditional Probability

The concept of conditional distributions provides the basis for the analysis of
relationships among variables.

A simple way of developing the ideas begins by defining the conditional
probability of event A, given event B. If Pr(B) 6= 0, the conditional probability
of event A given event B is

Pr(A|B) =
Pr(A ∩B)

Pr(B)
, (1.231)

which leads to the useful multiplication rule

Pr(A ∩B) = Pr(B)Pr(A|B). (1.232)

We see from this that if A and B are independent

Pr(A|B) = Pr(A).

If we interpret all of this in the context of the probability space (Ω,F , P ),
we can define a new “conditioned” probability space, (Ω,F , PB), where we
define PB by

PB(A) = Pr(A ∩B),

for any A ∈ F . From this conditional probability space we could then proceed
to develop “conditional” versions of the concepts discussed in the previous
sections.

This approach, however, is not entirely satisfactory because of the require-
ment that Pr(B) 6= 0. More importantly, this approach in terms of events
does not provide a basis for the development of conditional probability den-
sity functions.

Another approach is to make use of a concept of conditional expectation,
and that is what we will proceed to do. In this approach, we develop sev-
eral basic ideas before we finally speak of distributions of conditional random
variables in Section 1.5.4.

1.5.1 Conditional Expectation: Definition and Properties

The definition of conditional expectation of one random variable given an-
other random variable is developed in two stages. First, we define conditional
expectation over a sub-σ-field and consider some of its properties, and then
we define conditional expectation with respect to another measurable function
(a random variable, for example) in terms of the conditional expectation over
the sub-σ-field generated by the inverse image of the function.

A major difference in conditional expectations and unconditional expecta-
tions is that conditional expectations may be nondegenerate random variables.
When the expectation is conditioned on a random variable, relations involv-
ing the conditional expectations must be qualified as holding in probability,
or holding with probability 1.
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Conditional Expectation over a Sub-σ-Field

Definition 1.44 (conditional expectation over a sub-σ-field)
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let X be
an integrable random variable over Ω. The conditional expectation of X given
A, denoted by E(X|A), is an A-measurable function from (Ω,F) to (IRd,Bd)
such that ∫

A

E(X|A) dP =

∫

A

X dP, ∀A ∈ A. (1.233)

Clearly, if A = F , then E(X|A) = E(X)
Being a real A-measurable function, the conditional expectation is a ran-

dom variable from the space (Ω,A, P ). Such a random variable exists and is
a.s. unique, as we will see below (Theorem 1.60).

Equation (1.233) in terms of an indicator function is

∫

A

E(X|A) dP = E(XIA), ∀A ∈ A. (1.234)

Another equivalent condition, in terms of bounded A-measurable func-
tions, is

E(E((X|A)Y )) = E(XY ) (1.235)

for all bounded and A-measurable Y for which XY is integrable.

Theorem 1.60
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let X be
an integrable random variable from Ω into IRd. Then there is an a.s. unique
d-variate random variable Y on (Ω,A, PA) such that

∫

A

Y dPA =

∫

A

X dP, ∀A ∈ A.

Proof. Exercise. (Use the Radon-Nikodym theorem 0.1.30, on page 739 to
show the existence. For a.s. uniqueness, assume the A-measurable functions
Y1 and Y2 are such that

∫
A
Y1 dP =

∫
A
Y2 dP ∀A ∈ A and show that Y1 = Y2

a.s. A and P .)

Conditional Expectation with Respect to a Measurable Function

Definition 1.45 (with respect to another measurable function)
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , let X be an
integrable random variable over Ω, and let Y be a measurable function from
(Ω,F , P ) to any measurable space (Λ, G). Then the conditional expectation of
X given Y , denoted by E(X|Y ), is defined as the conditional expectation of
X given the sub-σ-field generated by Y , that is,
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E(X|Y ) = E(X|σ(Y )). (1.236)

Definition 1.44 provides meaning for the expression E(X|σ(Y )) in equa-
tion (1.236).

Sub-σ-fields generated by random variables, such as σ(Y ), play an im-
portant role in statistics. We can think of σ(Y ) as being the “information
provided by Y ”. In an important type of time series, Y1, Y2, . . ., we encounter
a sequence σ(Y1) ⊆ σ(Y2) ⊆ · · · and we think of each random variable in the
series as providing additional information.

Another view of conditional expectations in statistical applications is as
approximations or predictions; see Section 1.5.3.

1.5.2 Some Properties of Conditional Expectations

Although the definition above may appear rather abstract, it is not too dif-
ficult to work with, and it yields the properties of conditional expectation
that we have come to expect based on the limited definitions of elementary
probability.

For example, we have the simple relationship with the unconditional ex-
pectation:

E(E(X|A)) = E(X). (1.237)

Also, if the individual conditional expectations exist, the conditional ex-
pectation is a linear operator:

∀a ∈ IR,E(aX + Y |A) = aE(X|A) + E(Y |A) a.s. (1.238)

This fact follows immediately from the definition. For any A ∈ A

E(aX + Y |A) =

∫

A

aX + Y dP

= a

∫

A

X dP +

∫

A

Y dP

= aE(X|A) + E(Y |A)

As with unconditional expectations, we have immediately from the defini-
tion:

X ≤ Y a.s. ⇒ E(X|A) ≤ E(Y |A) a.s.. (1.239)

We can establish conditional versions of the three theorems stated on
page 90 that relate to the interchange of an integration operation and a
limit operation (monotone convergence, Fatou’s lemma, and dominated con-
vergence). These extensions are fairly straightforward.
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• monotone convergence:
for 0 ≤ X1 ≤ X2 · · · a.s.

Xn
a.s.→ X ⇒ E(Xn|A)

a.s.→ E(X|A). (1.240)

• Fatou’s lemma:

0 ≤ Xn ∀n ⇒ E(lim
n

inf Xn|A) ≤ lim
n

inf E(Xn|A) a.s.. (1.241)

• dominated convergence:
given a fixed Y with E(Y |A) <∞,

|Xn| ≤ Y ∀n and Xn
a.s.→ X ⇒ E(Xn|A)

a.s.→ E(X|A). (1.242)

Another useful fact is that if Y isA-measurable and |XY | and |X| are inte-
grable (notice this latter is stronger than what is required to define E(X|A)),
then

E(XY |A) = Y E(X|A) a.s. (1.243)

Some Useful Conditional Expectations

There are some conditional expectations that arise often, and which we should
immediately recognize. The simplest one is

E
(
E(Y |X)

)
= E(Y ). (1.244)

Note that the expectation operator is based on a probability distribution,
and so anytime we see “E”, we need to ask “with respect to what probability
distribution?” In notation such as that above, the distributions are implicit
and all relate to the same probability space. The inner expectation on the left
is with respect to the conditional distribution of Y given X, and so is a func-
tion of X. The outer expectation is with respect to the marginal distribution
of X.

Approaching this slightly differently, we consider a random variable Z that
is a function of the random variables X and Y :

Z = f(X, Y ).

We have

E(f(X, Y )) = EY

(
EX|Y (f(X, Y )|Y )

)
= EX

(
EY |X(f(X, Y )|X)

)
. (1.245)

Another useful conditional expectation relates adjusted variances to “to-
tal” variances:

V(Y ) = V
(
E(Y |X)

)
+ E

(
V(Y |X)

)
. (1.246)

This is intuitive, although you should be able to prove it formally.The intuitive
explanation is: the total variation in Y is the sum of the variation of its mean
given X and its average variation about X (or given X). (Think of SST =
SSR + SSE in regression analysis.)

This equality implies the Rao-Blackwell inequality (drop the second term
on the right).
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Exchangeability, Conditioning, and Independence

De Finetti’s representation theorem (Theorem 1.30 on page 76) requires an
infinite sequence, and does not hold for finite sequences. For example, consider
an urn containing one red ball and one blue ball from which we draw the balls
without replacement. Let Ri = 1 if a red ball is drawn on the ith draw and
Ri = 0 otherwise. (This is the Polya’s urn of Example 1.6 on page 24 with
r = b = 1 and c = −1.) Clearly, the sequence R1, R2 is exchangeable. Because

Pr(R1 = 1, R2 = 1) = 0,

if there were a measure µ as in de Finetti’s representation theorem, then we
would have

0 =

∫ 1

0

π2dµ(π),

which means that µ must put mass 1 at the point 0. But also

Pr(R1 = 0, R2 = 0) = 0,

which would mean that

0 =

∫ 1

0

(1− π)2dµ(π).

That would not be possible if µ satisfies the previous requirement. There are,
however, finite versions of de Finetti’s theorem; see, for example, Diaconis
(1977) or Schervish (1995).

An alternate statement of de Finetti’s theorem identifies a random variable
with the distribution P , and in that way provides a more direct connection
to its use in statistical inference.

Theorem 1.61 (de Finetti’s representation theorem (alternate))
The sequence {Xi}∞i=1 of binary random variables is exchangeable iff there
is a random variable Π such that, conditional on Π = π, the {Xi}∞i=1 are
iid Bernoulli random variables with parameter π. Furthermore, if {Xi}∞i=1

is exchangeable, then the distribution of Π is unique and Xn =
∑n

i=1Xi/n
converges to Π almost surely.

Example 1.30 exchangeable Bernoulli random variables that are
conditionally iid Bernoullis (Schervish, 1995)
Suppose {Xn}∞n=1 are exchangeable Bernoulli random variables such that for
each n and for k = 0, 1, . . . , n,

Pr

(
n∑

i=1

= k

)
=

1

n+ 1
.

NowXn
a.s.→ Π , where Π is as in Theorem 1.61, and so Xn

d→ Π . To determine
the distribution of Π , we write the CDF of Xn as
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Fn(t) =
bntc+ 1

n+ 1
;

hence, limFn(t) = t, which is the CDF of Π . Therefore, Π has a U(0, 1)
distribution. The Xi are conditionally iid Bernoulli(π) for Π = π.

The distributions in this example will be used in Examples 4.2 and 4.6 in
Chapter 4 to illustrate methods in Bayesian data analysis.

Conditional expectations also are important in approximations of one ran-
dom variable by another random variable, and in “predicting” one random
variable using another, as we see in the next section.

1.5.3 Projections

Use of one distribution or one random variable as an approximation of another
distribution or random variable is a very useful technique in probability and
statistics. It is a basic technique for establishing asymptotic results, and it
underlies statistical applications involving regression analysis and prediction.

Given two scalar random variables X and Y , consider the question of
what Borel function g is such that g(X) is closest to Y in some sense. A
common way to define closeness of random variables is by use of the expected
squared distance, E((Y −g(X))2). This leads to the least squares criterion for
determining the optimal g(X).

First, we must consider whether or under what conditions, the problem
has a solution under this criterion.

Theorem 1.62
Let X and Y be scalar random variables over a common measurable space and
assume E(Y 2) < ∞. Then there exists a Borel measurable function g0 with
E((g0(X))2) <∞ such that

E((Y − g0(X))2) = inf{E((Y − g(X))2) | g(X) ∈ G0}, (1.247)

where G0 = {g(X) | g : IR 7→ IR is Borel measurable and E((g0(X))2) <∞}.
Proof. ***fix

Although Theorem 1.62 is stated in terms of scalar random variables,
a similar result holds for vector-valued random variables. The next theorem
identifies a g0 that minimizes the L2 norm for vector-valued random variables.

Theorem 1.63
Let Y be a d-variate random variable such that E(‖Y ‖2) <∞ and let G be the
set of all Borel measurable functions from IRk into IRd. Let X be a k-variate
random variable such that E(‖E(Y |X)‖2) <∞. Let g0(X) = E(Y |X). Then

g0(X) = arg min
g∈G

E(‖Y − g(X)‖2). (1.248)
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Proof. Exercise. Compare this with Theorem 1.13 on page 28, in which the
corresponding solution is g0(X) = E(Y |a) = E(Y ).

By the general definition of projection (Definition 0.0.9 on page 638), we
see that conditional expectation can be viewed as a projection in a linear space
defined by the square-integrable random variables over a given probability
space and the inner product 〈Y,X〉 = E(Y X) and its induced norm. (In fact,
some people define conditional expectation this way instead of the way we
have in Definitions 1.44 and 1.45.)

In regression applications in statistics using least squares, as we discuss on
page 438, “Ŷ ”, or the “predicted” Y givenX, that is, E(Y |X) is the projection
of Y onto X. For given fixed values of Y and X the predicted Y given X is
the vector projection, in the sense of Definition 0.0.9.

We now formally define projection for random variables in a manner anal-
ogous to Definition 0.0.9. Note that the random variable space is the range of
the functions in G in Theorem 1.63.

Definition 1.46 (projection of a random variable onto a space of random variables)

Let Y be a random variable and let X be a random variable space defined on
the same probability space. A random variable Xp ∈ X such that

E(‖Y −Xp‖2) ≤ E(‖Y −X‖2) ∀X ∈ X (1.249)

is called a projection of Y onto X .

The most interesting random variable spaces are linear spaces, and in the
following we will assume that X is a linear space, and hence the norm arises
from an inner product so that the terms in inequality (1.249) involve variances
and covariances.

*** existence, closure of space in second norm (see page 36).
*** treat vector variables differently: E(‖Y − E(Y )‖2) is not the vari-

ance**** make this distinction earlier
When X is a linear space, we have the following result for projections.

Theorem 1.64
Let X be a linear space of random variables with finite second moments. Then
Xp is a projection of Y onto X iff Xp ∈ X and

E
(
(Y −Xp)

TX
)

= 0 ∀X ∈ X . (1.250)

Proof.
For any X,Xp ∈ X we have

E((Y −X)T(Y −X)) = E((Y −Xp)T(Y −Xp))

+2E((Y −Xp)
T(Xp −X))

+E((Xp −X)T(Xp −X))
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If equation (1.250) holds then the middle term is zero and so E((Y −X)T(Y −
X)) ≥ E((Y −Xp)

T(Y −Xp)) ∀X ∈ X ; that is, Xp is a projection of Y onto
X .

Now, for any real scalar a and any X,Xp ∈ X , we have

E((Y −Xp − aX)T(Y −Xp − aX)) − E((Y −Xp)
T(Y −Xp)) =

−2aE((Y −Xp)TX) + a2E(XTX).

If Xp is a projection of Y onto X , the term on the left side of the equation is
nonnegative for every a. But the term on the right side of the equation can be
nonnegative for every a only if the orthogonality condition of equation (1.250)
holds; hence, we conclude that that is the case.

Because a linear space contains the constants, we have the following corol-
lary.

Corollary 1.64.1
Let X be a linear space of random variables with finite second moments. and
let Xp be a projection of the random variable Y onto X . Then,

E(Xp) = E(Y ), (1.251)

Cov(Y −Xp, X) = 0 ∀X ∈ X , (1.252)

and
Cov(Y,X) = Cov(Xp, X) ∀X ∈ X . (1.253)

***fix ** add uniqueness etc. E(Y ) = E(Xp) and Cov(Y − Xp, X) =
0 ∀X ∈ X .

Definition 1.47 (projection of a function of random variables)
Let Y1, . . . , Yn be a set of random variables. The projection of the statistic
Tn(Y1, . . . , Yn) onto the kn random variables X1, . . . , Xkn is

T̃n = E(Tn) +

kn∑

i=1

(E(Tn|Xi)− E(Tn)) . (1.254)

An interesting projection is one in which the Y1, . . . , Ykn in Definition 1.47
are the same as X1, . . . , Xn. In that case, if Tn is a symmetric function of the
X1, . . . , Xn (for example, the X1, . . . , Xn are iid), then the E(Tn|Xi) are iid

with mean E(Tn). The residual, Tn − T̃n, is often of interest. Writing

Tn − T̃n = Tn − E(Tn) −
n∑

i=1

(E(Tn|Xi) − E(Tn)),

we see that E(Tn − T̃n) = 0. Hence, we have

Theory of Statistics c©2000–2025 James E. Gentle



1.5 Conditional Probability 119

E(T̃n) = E(Tn), (1.255)

and if V(Tn) <∞
V(T̃n) = nV(E(Tn|Xi)) (1.256)

(exercise).
If V(E(Tn |Xi)) > 0, by the central limit theorem, we have

1√
nV(E(Tn|Xi))

(T̃n − E(Tn))
d→ N(0, 1).

We also have an interesting relationship between the variances of Tn and
T̃n, that is, V(T̃n) ≤ V(Tn), as the next theorem shows.

Theorem 1.65
If Tn is symmetric and V(Tn) < ∞ for every n, and T̃n is the projection of
Tn onto X1, . . . , Xn, then

E((Tn − T̃n)2) = V(Tn) −V(T̃n).

Proof. Because E(Tn) = E(T̃n), we have

E((Tn − T̃n)2) = V(Tn) + V(T̃n) − 2Cov(Tn, T̃n). (1.257)

But

Cov(Tn, T̃n) = E(TnT̃n) − (E(Tn))2

= E(TnE(Tn)) + E

(
Tn

n∑

i=1

E(Tn |Xi)

)
− nE(TnE(Tn)))− (E(Tn))2

= nE (TnE(Tn |Xi)) − n(E(Tn))2

= nV(E(Tn |Xi))

= V(T̃n),

and the desired result follows from equation (1.257) above.

The relevance of these facts, if we can show that T̃n → Tn in some appro-
priate way, then we can work out the asymptotic distribution of Tn. (The use
of projections of U-statistics beginning on page 413 is an example.)

Partial Correlations

***fix
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1.5.4 Conditional Probability and Probability Distributions

We now are in a position to define conditional probability. It is based on a
conditional expectation.

Definition 1.48 (conditional probability given a sub-σ-field)
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let
B ∈ F . The conditional probability of B given A, denoted by Pr(B|A), is
defined as E(IB |A).

The concept of conditional probability given a sub-σ-field immediately
yields the concepts of conditional probability given an event and conditional
probability given a random variable. For a probability space (Ω,F , P ) with
A,B ∈ F , the conditional probability of B given A, denoted by Pr(B|A), is
E(IB|σ(A)).

Furthermore, if X is a random variable defined on (Ω,F , P ), the condi-
tional probability ofB givenX, denoted by Pr(B|A), is E(IB |σ(X)). This gives
meaning to the concept of a conditional distribution of one random variable
given another random variable.

Conditional Distributions

We start with a probability space (IRm,Bm, P1) and define a probability mea-
sure on the measurable space (IRn × IRm, σ(Bn × Bm). We first need the
existence of such a probability measure (proved in Billingsley (1995), page
439).

For a random variable Y in IRm, its (marginal) distribution is determined
by P1, which we denote as PY (y). For B ∈ Bn and C ∈ Bm, the condi-
tional distribution is defined by identifying a probability measure, denoted as
PX|Y (·|y), on (IRn, σ(Bn)) for any fixed y ∈ IRm.

The joint probability measure of (X, Y ) over IRn × IRm is defined as

PXY =

∫

C

PX|Y (·|y)dPY (y),

where C ∈ Bm.
For distributions with PDFs the conditional, joint, and marginal PDFs

have the simple relationship

fX|Y (x|y) =
fXY (x, y)

fY (y)
,

so long as fY (y) > 0.
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Independence

Theorem 1.66
The random variablesX and Y are independent iff the conditional distribution
equals the marginal distribution; that is, for the d-variate random variable X,
iff

∀A ⊆ IRd, Pr(X ∈ A|Y ) = Pr(X ∈ A).

Proof. Exercise.
This theorem means that we can factor the joint PDF or CDF of indepen-

dent random variables.

Conditional Independence

The ideas of conditional distributions also lead to the concept of conditional
independence.

Definition 1.49 (conditional independence)
X and Y are conditionally independent given Z iff the joint conditional distri-
bution equals the joint marginal distribution; that is, for the d-variate random
variable X, iff

∀A ⊆ IRd, Pr(X ∈ A|Y, Z) = Pr(X ∈ A|Y ).

When two independent random variables are added to a third independent
variable, the resulting sums are conditionally independent, given the third
(common) random variable.

Theorem 1.67
Suppose the random variables X, Y , and Z are independent. Let U = X + Z
and V = Y + Z. Then U |Z and V |Z are independent; that is, U and V are
conditionally independent given Z.

Proof. Exercise.

Copulas

One of the most important uses of copulas is to combine two marginal distri-
butions to form a joint distribution with known bivariate characteristics. We
can build the joint distribution from a marginal and a conditional.

We begin with two U(0, 1) random variables U and V . For a given associ-
ation between U and V specified by the copula C(u, v), from Sklar’s theorem,
we can see that

PU |V (u|v) =
∂

∂v
C(u, v)|v. (1.258)

We denote ∂
∂v
C(u, v)|v by Cv(u).
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Conditional Entropy

We define the conditional entropy ofX given Y in two ways. The first meaning
just follows the definition of entropy in equation (1.82) on page 43 with the
conditional PDF pX|Y used in place of the marginal PDF pX . This leads to
an entropy that is a random variable or an entropy for a fixed value Y = y.
In the more common usage, we define the conditional entropy of X given Y
(which is also called the equivocation of X about Y ) as the expected value of
the term described above; that is,

H(X|Y ) = −
∑

y

pY (y)
∑

x

pX|Y (x|y) log(pX|Y (x|y)). (1.259)

As before, the basic definition is made in terms of a PDF derived by a counting
measure, but we extend it to any PDF.

From the definition we see that

H(X|Y ) = H(X, Y ) −H(Y ) (1.260)

or
H(X, Y ) = H(X|Y ) +H(Y ).

Interpret H(X, Y ) as “total entropy”, and compare the latter expression with
equation (1.246).

1.6 Stochastic Processes

Many interesting statistical problems concern stochastic processes, which we
can think of as a measurable function

X : I × Ω 7→ IRd, (1.261)

where I is some index set (I could be any ordered set).
In the expression above, X is a random variable, and for each i ∈ I, Xi is

a random variable. If the stochastic process is viewed as evolving in time, we
usually denote the index by t and we may denote the process as {Xt}. In view
of equation (1.261), it is also appropriate and common to use the notation
{X(t, ω)}.

The main interest in stochastic processes is the relationship among the
distributions of {Xt} for different values of t.

The sequences we discussed in Section 1.3 are of course stochastic pro-
cesses. The sequences considered in that section did not have any particular
structure, however. In some cases, we required that they have no structure;
that is, that the elements in the sequence were independent. There are many
special types of interesting stochastic processes with various structures, such
as Markov chains, martingales, and other types of time series. In this section,
we will just give some basic definitions, and then discuss briefly two important
classes of stochastic process.
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States, Times, Notation, and Basic Definitions

The smallest set of measure 1 is called the state space of a stochastic process;
that is, the range of X is called the state space. Any point in the state space
is called a state.

If the index set of a stochastic process is countable, we say the pro-
cess is a discrete time stochastic process. We can index a discrete time pro-
cess by 0, 1, 2, . . ., especially if there is a fixed starting point, although often
. . . ,−2,−1, 0, 1, 2, . . . is more appropriate.

In many applications, however, the index of a stochastic process ranges
over a continuous interval. In that case, we often use a slightly different no-
tation for the index set. We often consider the index set to be the interval
[0, T ], which of course could be transformed into any finite closed interval. If
the index set is a real interval we say the process is a continuous time stochas-
tic process. For continuous time stochastic processes, we sometimes use the
notation X(t), although we also use Xt. We will discuss continuous time pro-
cesses in Section 1.6.2 below and consider a simple continuous time process
in Example 1.32.

A property that seems to occur often in applications and, when it does, af-
fords considerable simplifications for analyses is the conditional independence
of the future on the past given the present. This property, called the Markov
property, can be made precise.

Definition 1.50 (Markov property)
Suppose in the sequence {Xt}, for any set t0 < t1 < · · · < tn < t and any x,
we have

Pr(Xt ≤ x | Xt0 , Xt1 , . . . , Xtn) = Pr(Xt ≤ x | Xtn). (1.262)

Then {Xt} is said to be a Markov sequence or the sequence is said to be
Markovian. The condition expressed in equation (1.262) is called the Markov
property.

Definition 1.51 (homogeneous process)
If the marginal distribution of X(t) is independent of t, the process is said to
be homogeneous.

***fix Many concepts are more easily defined for discrete time processes,
although most have analogs for continuous time processes.

Definition 1.52 (stopping time)
Given a discrete time stochastic process ***fix change to continuous time

X : {0, 1, 2, . . .} ×Ω 7→ IR,

a random variable
T : Ω 7→ {0, 1, 2, . . .} (1.263)

is called a stopping time if the event {T = t} depends only on X0, . . . , Xt for
n = 0, 1, 2, . . ..
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Stopping times have several important characteristics, such as the fact
that the Markov property holds at stopping times.

Definition 1.53 (first passage time)
A special stopping time is the first passage time defined (for discrete time
processes) as

Tj = min{t ≥ 1 : Xt = j}, (1.264)

if this set is nonempty; otherwise, Tj =∞.

There are other types of useful properties that simplify the analyses of
processes with those properties. While a first passage time depends on the
concept of a beginning point in the process, in the following we will usually
allow the discrete time index to assume the values . . . ,−2,−1, 0, 1, 2, . . ..

One of the most interesting properties of a stochastic process is the rela-
tionship of terms in the sequence to each other.

Definition 1.54 (autocovariance and autocorrelation)
For the process

{Xt : t = . . . ,−2,−1, 0, 1, 2, . . .}
E(Xt) = µt <∞, the function

γ(s, t) = E((Xs − µs)(Xt − µt))
= Cov(Xs, Xt)

(1.265)

if it is finite, is called the autocovariance function.
If the autocovariance exists, the function

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
(1.266)

is called the autocorrelation function. The autocorrelation function, which is
generally more useful than the autocovariance function, is also called the ACF.

Definition 1.55 (white noise process)
A process

{Xt : t = . . . ,−2,−1, 0, 1, 2, . . .}
with E(Xt) = 0 and V(Xt) = σ2 <∞ ∀ t and such that ρ(s, t) = 0 ∀ s 6= t
is called white noise.

A zero-correlated process with constant finite mean and variance is also
sometimes called white noise process even if the mean is nonzero. We denote
a white noise process by Xt ∼WN(0, σ2) or Xt ∼WN(µ, σ2).

Notice that the terms in a white noise process do not necessarily have
identical distributions.
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Definition 1.56 ((weakly) stationary process)
Suppose

{Xt : t = . . . ,−2,−1, 0, 1, 2, . . .}
is such that E(Xt) = µ and V(Xt) <∞ ∀ t and γ(s, t) is constant for any
fixed value of |s− t|. Then the process {Xt} is said to be weakly stationary.

A white noise is clearly stationary.
In the case of a stationary process, the autocovariance function can be

indexed by a single quantity, h = |s− t|, and we often write it as γh.
It is clear that in a stationary process, V(Xt) = V(Xs); that is, the variance

is also constant. The variance is γ0 in the notation above.
Just because the means, variances, and autocovariances are constant, the

distributions are not necessarily the same, so a stationary process is not nec-
essarily homogeneous. Likewise, marginal distributions being equal does not
insure that the autocovariances are constant, so a homogeneous process is not
necessarily stationary.

The concept of stationarity can be made stricter.

Definition 1.57 (strictly stationary process)
Suppose

{Xt : t = . . . ,−2,−1, 0, 1, 2, . . .}
is such that for any k, any set t1, . . . , tk, and any h the joint distribution of

Xt1 , . . . , Xtk

is identical to the joint distribution of

Xt1+h, . . . , Xtk+h.

Then the process {Xt} is said to be strictly stationary.

A strictly stationary process is stationary, but the converse statement does
not necessarily hold. If the distribution of each Xt is normal, however, and if
the process is stationary, then it is strictly stationary.

As noted above, a homogeneous process is not necessarily stationary. On
the other hand, a strictly stationary process is homogeneous, as we see by
choosing k = 1.

Example 1.31 a central limit theorem for a stationary process
Suppose X1, X2, . . . is a stationary process with E(Xt) = µ and V(Xt) = σ2.
We have

V(
√
n(X − µ)) = σ2 +

1

n

n∑

i 6=j=1

Cov(Xi, Xj)

= σ2 +
2

n

n∑

h=1

(n− h)γh. (1.267)
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(Exercise.) Now, if limn→∞
2
n

∑n
h=1(n− h)γh = τ2 <∞, then

√
n(X − µ)

∼→ N(0, σ2 + τ2).

1.6.1 Probability Models for Stochastic Processes

A model for a stochastic process posits a sampling sequence over a sample
space Ω. This yields a path or trajectory, (ω1, ω2, . . .). In continuous time we
generally denote a path trajectory as ω(t). The sample space for the stochastic
process becomes the set of paths. We denote this by ΩT .

We think of a stochastic process in terms of a random variable, Xt, and
an associated σ-field Ft in which Xt is measurable.

***fix motivate and prove this ... a sequence of random variables {Xn} for
any n, the joint CDF of X1, . . . , Xn is **** uniqueness

Theorem 1.68 (Kolmogorov extension theorem)
For any positive integer k and any t1, . . . , tk ∈ T , let Pt1,...,tk be probability
measures on IRnt such that for any Borel sets B1 , . . . , Bk ∈ IRn,

PΠ(t1),...,Π(tk)(B1 × · · · ×Bk) = Pt1,...,tk(BΠ−1(1) × · · · ×BΠ−1(k)), (1.268)

for all permutations Π on {1, . . . , k}, and for all positive integers m,

Pt1,...,tk(B1×· · ·×Bk) = Pt1,...,tk,tk+1,...,tk+m(BΠ−1(1)×· · ·×BΠ−1(k)×IRn · · ·×IRn).
(1.269)

Then there exists a probability space (Ω,F , P ) and a stochastic process
{Xt} on Ω, Xt : Ω 7→ IRn such that

Pt1,...,tk(B1 × · · · ×Bk) = P (Xt1 ∈ B1, . . . , Xtk ∈ Bk) (1.270)

for all positive integers k, for all ti ∈ T , and for all Borel sets Bi.

Proof.
***fix

Evolution of σ-Fields

In many applications, we assume an evolution of σ-fields, which, under the
interpretation of a σ-field as containing all events of interest, is equivalent to
an evolution of information. This leads to the concept of a filtration and a
stochastic process adapted to the filtration.

Definition 1.58 (filtration; adaptation)
Let {(Ω,Ft, P )} be a sequence of probability spaces such that if s ≤ t, then
Fs ⊆ Ft. The sequence {Ft} is called a filtration.

For each t letXt be a real function on Ω measurable wrt Ft. The stochastic
process {Xt} is said to be adapted to the filtration {Ft}.
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If {Xt} is adapted to the filtration {Ft}, we often write Xt ∈ Ft. We also
call the process {Xt} nonanticipating, for obvious reasons.

Definition 1.59 (filtered probability space)
Given a probability space (Ω,F , P ) and a filtration {Ft} of sub-σ-fields of F ,
we form the filtered probability space (Ω,F , {Ft : t ∈ [0,∞[}, P ).

1.6.2 Continuous Time Processes

For a stochastic process over a continuous index set I we must be concerned
about the continuity of the process in time. The problem arises because the
countably-additive property of a measure (equation (0.1.8)) does not carry
over to uncountable unions. For a process X(t, ω) where t is in uncountable
index set, say, for example, an interval, we will be faced with the necessity
to evaluate probabilities of sets of the form ∪t≥0At. Such unions are not
necessarily in the underlying σ-field.

** continuation motivation
We can define continuity of X(t, ω) on I in the usual way at a given point

ω0 ∈ Ω. Next, we consider continuity of a stochastic process over Ω.

Definition 1.60 (sample continuous)
Given a probability space (Ω,F , P ) and a function

X : I ×Ω 7→ IR,

we say X is sample continuous if X(ω) : I 7→ IR is continuous for almost all
ω (with respect to P ).

The phrase almost surely continuous, or just continuous, is often used instead
of sample continuous.

*** add more ... examples
The path of a stochastic process may be continuous, but many useful

stochastic processes are mixtures of continuous distributions and discrete
jumps. In such cases, in order to assign any reasonable value to the path
at the point of discontinuity, we naturally assume that time is unidirectional
and the discontinuity occurs at the time of the jump, and then the path evolves
continuously from that point; that is, after the fact, the path is continuous
from the right. The last value from the left is a limit of a continuous function.
In French, we would describe this as continu à droite, limité à gauche; that is
cadlag. Most models of stochastic processes are assumed to be cadlag.

1.6.3 Markov Chains

The simplest stochastic process is a sequence of exchangeable random vari-
ables; that is, a sequence with no structure. A simple structure can be im-
posed by substituting conditioning for independence. A sequence of random

Theory of Statistics c©2000–2025 James E. Gentle



128 1 Probability Theory

variables with the Markov property is called a Markov process. A Markov
process in which the state space is countable is called a Markov chain. (The
term “Markov chain” is also sometimes used to refer to any Markov process,
as in the phrase “Markov chain Monte Carlo”, in applications of which the
state space is often continuous.)

The theory of Markov chains is usually developed first for discrete-time
chains, that is, those with a countable index set, and then extended to
continuous-time chains.

If the state space is countable, it is equivalent to X = {1, 2, . . .}. If X is a
random variable from some sample space to X , and

πi = Pr(X = i), (1.271)

then the vector π = (π1, π2, . . .) defines a distribution ofX on X . Formally, we
define a Markov chain (of random variables) X0, X1, . . . in terms of an initial
distribution π and a conditional distribution for Xt+1 given Xt. Let X0 have
distribution π, and given Xt = j, let Xt+1 have distribution (pij ; i ∈ X ); that
is, pij is the probability of a transition from state j at time t to state i at time
t + 1, and K = (pij) is called the transition matrix of the chain. The initial
distribution π and the transition matrix K characterize the chain, which we
sometimes denote as Markov(π,K). It is clear that K is a stochastic matrix,
and hence ρ(K) = ‖K‖∞ = 1, and (1, 1) is an eigenpair of K.

If K does not depend on the time (and our notation indicates that we are
assuming this), the Markov chain is stationary.

A discrete-time Markov chain {Xt} with discrete state space {x1, x2, . . .}
can be characterized by the probabilities pij = Pr(Xt+1 = xi | Xt = xj).
Clearly,

∑
i∈I pij = 1. A vector such as p∗j whose elements sum to 1 is called

a stochastic vector or a distribution vector.
Because for each j,

∑
i∈I pij = 1, K is a right stochastic matrix.

The properties of a Markov chain are determined by the properties of the
transition matrix. Transition matrices have a number of special properties,
which we discuss in Section 0.3.6, beginning on page 818.

(Note that many people who work with Markov chains define the transition
matrix as the transpose of K above. This is not a good idea, because in ap-
plications with state vectors, the state vectors would naturally have to be row
vectors. Until about the middle of the twentieth century, many mathematicians
thought of vectors as row vectors; that is, a system of linear equations would
be written as xA = b. Nowadays, almost all mathematicians think of vectors
as column vectors in matrix algebra. Even in some of my previous writings,
e.g., Gentle (2007), I have called the transpose of K the transition matrix,
and I defined a stochastic matrix in terms of the transpose. The transpose of
a right stochastic matrix is a left stochastic matrix, which is what is commonly
meant by the unqualified phrase “stochastic matrix”. I think that it is time to
adopt a notation that is more consistent with current matrix/vector notation.
This is merely a change in notation; no concepts require any change.)
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If we assume that Xt is a random variable taking values in {x1, x2, . . .}
and with a PDF (or probability mass function) given by

Pr(Xt = xi) = π
(t)
i , (1.272)

and we write π(t) = (π
(t)
1 , π

(t)
2 , . . .), then the PDF at time t+ 1 is

π(t+1) = Kπ(t). (1.273)

Many properties of a Markov chain depend on whether the transition matrix
is reducible or not.

Because 1 is an eigenvalue and the vector 1 is the eigenvector associated
with 1, from equation (0.3.71), we have

lim
t→∞

Kt = 1πs, (1.274)

where πs is the Perron vector of KT.
This also gives us the limiting distribution for an irreducible, primitive

Markov chain,
lim

t→∞
π(t) = πs.

The Perron vector has the property πs = KTπs of course, so this distribution
is the invariant distribution of the chain.

The definition means that (1, 1) is an eigenpair of any stochastic matrix.
It is also clear that if K is a stochastic matrix, then ‖K‖∞ = 1, and because
ρ(K) ≤ ‖K‖ for any norm and 1 is an eigenvalue of K, we have ρ(K) = 1.

A stochastic matrix may not be positive, and it may be reducible or irre-
ducible. (Hence, (1, 1) may not be the Perron root and Perron eigenvector.)

If the state space is countably infinite, the vectors and matrices have in-
finite order; that is, they have “infinite dimension”. (Note that this use of
“dimension” is different from our standard definition that is based on linear
independence.)

We write the initial distribution as π(0). A distribution at time t can be
expressed in terms of π(0) and K:

π(t) = Ktπ(0). (1.275)

Kt is often called the t-step transition matrix.
The transition matrix determines various relationships among the states of

a Markov chain. State i is said to be accessible from state j if it can be reached
from state j in a finite number of steps. This is equivalent to (Kt)ij > 0 for
some t. If state i is accessible from state j and state j is accessible from
state i, states i and j are said to communicate. Communication is clearly an
equivalence relation. The set of all states that communicate with each other is
an equivalence class. States belonging to different equivalence classes do not
communicate, although a state in one class may be accessible from a state
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in a different class. If all states in a Markov chain are in a single equivalence
class, the chain is said to be irreducible.

The limiting behavior of the Markov chain is of interest. This of course can
be analyzed in terms of limt→∞Kt. Whether or not this limit exists depends
on the properties of K.

Galton-Watson Process

An interesting class of Markov chains are branching processes, which model
numbers of particles generated by existing particles. One of the simplest
branching processes is the Galton-Watson process, in which at time t each
particle is assumed to be replaced by 0, 1, 2, . . . particles with probabilities
π0, π1, π2, . . ., where πk ≥ 0, π0 + π1 < 1, and

∑
πk = 1. The replacements

of all particles at any time t are independent of each other. The condition
π0 + π1 < 1 prevents the process from being trivial.

*** add more

Continuous Time Markov Chains

In many cases it seems natural to allow the index of the Markov process to
range over a continuous interval. The simplest type of continuous time Markov
chain is a Poisson process.

Example 1.32 Poisson process
Consider a sequence of iid random variables, Y1, Y2, . . . distributed as exponential(0, θ),

and build the random variables Tk =
∑k

i=1 Yi. (The Yis are the exponential
spacings as in Example 1.18.)

*** prove Markov property
*** complete

birth process
***add

K(t) = etR

***fixR intensity rate. rii nonpositive, rij for i 6= j nonnegative,
∑

i∈I rij =
0 for all j.

1.6.4 Lévy Processes and Brownian Motion

Many applications of stochastic processes, such as models of stock prices, focus
on the increments between two points in time. One of the most widely-used
models makes three assumptions about these increments. These assumptions
define a Lévy process.

Definition 1.61 (Lévy process)
Given a filtered probability space (Ω,F , {Ft}0≤t<∞, P ). An adapted process

{X(t) : t ∈ [0,∞[} with X(0)
a.s.
= 0 is a Lévy process iff
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(i) X(t) −X(s) is independent of Fs, for 0 ≤ s < t <∞.

(ii) X(t) −X(s)
d
= X(t − s) for 0 ≤ s < t <∞.

(iii) X(t)
p→ X(s) as t→ s.

One of the most commonly used Lévy processes is Brownian motion also
called a Bachelier-Wiener process (see Section 0.2.1 on page 766).

Definition 1.62 (Brownian motion)

(i) X(t) is continuous in t almost surely.

(ii) E(Xt)
a.s.
= X(0).

(iii) X(t) −X(s) for 0 ≤ s < t has a normal distribution with variance t− s.
A Bachelier-Wiener process is also called a Brownian motion.
*** properties: covariance, etc.; existence, etc.

1.6.5 Brownian Bridges

*** definition, properties
Doob’s transformation: If {Y (t)} is a Brownian bridge and

X(t) = (1 + t)Y (t/(1 + t)) for t ≥ 0, (1.276)

then {X(t)} is a Brownian motion.

1.6.6 Martingales

Martingales are an important class of stochastic processes. The concept of
conditional expectation is important in developing a theory of martingales.
Martingales are special sequences of random variables that have applications
in various processes that evolve over time.

Definition 1.63 (martingale, submartingale, supermartingale)
Let {Ft} be a filtration and let {Xt} be adapted to the filtration {Ft}. We
say the sequence {(Xt,Ft) : t ∈ T } is a martingale iff

E(Xt|Ft−1)
a.s.
= Xt−1. (1.277)

We say the sequence {(Xt,Ft) : t ∈ T } is a submartingale iff

E(Xt|Ft−1)
a.s.
≥ Xt−1. (1.278)

We say the sequence {(Xt,Ft) : t ∈ T } is a supermartingale iff

E(Xt|Ft−1)
a.s.
≤ Xt−1. (1.279)
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We also refer to a sequence of random variables {Xt : t ∈ T } as a (sub, su-
per)martingale if {(Xt, σ({Xs : s ≤ t})) : t ∈ T } is a (sub, super)martingale;
that is, the martingale is the sequence {Xt} instead of {(Xt,Ft)}, and a cor-
responding sequence {Ft} is implicitly defined as {σ({Xs : s ≤ t})}.

This is consistent with the definition of {(Xt,Ft) : t ∈ T } as a (sub,
super)martingale because clearly

σ({Xs : s ≤ r})r ⊆ σ({Xs : s ≤ t})t if r ≤ t

(and so {σ({Xs : s ≤ t})t} is a filtration), and furthermore {Xt} is adapted
to the filtration {σ({Xs : s ≤ t})t}.

We often refer to the type of (sub, super)martingale defined above as a
forward (sub, super)martingale. We define a reverse martingale analogously

with the conditions Ft ⊃ Ft+1 ⊃ · · · and E(Xt−1|Ft)
a.s.
= Xt.

The sequence of sub-σ-fields, which is a filtration, is integral to the defini-
tion of martingales. Given a sequence of random variables {Xt}, we may be
interested in another sequence of random variables {Yt} that are related to
the Xs. We say that {Yt} is a martingale with respect to {Xt} if

E(Yt|{Xτ : τ ≤ s}) a.s.
= Ys, ∀s ≤ t. (1.280)

We also sometimes define martingales in terms of a more general sequence
of σ-fields. We may say that {Xt : t ∈ T } is a martingale relative to the
sequence of σ-fields {Dt : t ∈ T } in some probability space (Ω,F , P ), if

Xs = E(Xt|Dt) for s > t. (1.281)

Submartingales and supermartingales relative to {Dt : t ∈ T }may be defined
analogously.

Example 1.33 Polya’s urn process
Consider an urn that initially contains r red and b blue balls, and Polya’s
urn process (Example 1.6 on page 24). In this process, one ball is chosen
randomly from the urn, and its color noted. The ball is then put back into the
urn together with c balls of the same color. Let Xn be the number of red balls
in the urn after n iterations of this procedure, and let Yn = Xn/(nc+ r+ b).
Then the sequence {Yn} is a martingale (Exercise 1.82).

Interestingly, if c > 0, then {Yn} converges to the beta distribution with
parameters r/c and b/c; see Freedman (1965). Freedman also discusses a vari-
ation on Polya’s urn process called Friedman’s urn process, which is the same
as Polya’s, except that at each draw in addition to the c balls of the same
color being added to the urn, d balls of the opposite color are added to the
urn. Remarkably, the behavior is radically different, and, in fact, if c > 0 and
d > 0, then Yn

a.s.→ 1/2.
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Example 1.34 likelihood ratios
Let f and g be probability densities. Let X1, X2, . . . be an iid sequence of
random variables whose range is within the intersection of the domains of f
and g. Let

Yn =

n∏

i=1

g(Xi)/f(Xi). (1.282)

(This is called a “likelihood ratio” and has applications in statistics. Note
that f(x) and g(x) are likelihoods, as defined in equation (1.19) on page 20,
although the “parameters” are the functions themselves.) Now suppose that
f is the PDF of the Xi. Then {Yn : n = 1, 2, 3, . . .} is a martingale with
respect to {Xn : n = 1, 2, 3, . . .}.

The martingale in Example 1.34 has some remarkable properties. Robbins
(1970) showed that for any ε > 1,

Pr(Yn ≥ ε for some n ≥ 1) ≤ 1/ε. (1.283)

Robbins’s proof of (1.283) is straightforward. Let N be the first n ≥ 1 such
that

∏n
i=1 g(Xi) ≥ ε

∏n
i=1 f(Xi), with N = ∞ if no such n occurs. Also, let

gn(t) =
∏n

i=1 g(ti) and fn(t) =
∏n

i=1 f(ti).

Pr(Yn ≥ ε for some n ≥ 1) = Pr(N <∞)

=

∞∑

i=1

∫
I{n}(N)fn(t)dt

≤ 1

ε

∞∑

i=1

∫
I{n}(N)gn(t)dt

≤ 1

ε
.

Another important property of the martingale in Example 1.34 is

Yn
a.s.→ 0. (1.284)

You are asked to show this in Exercise 1.83.

Example 1.35 Bachelier-Wiener process
If {W (t) : t ∈ [0,∞[} is a Bachelier-Wiener process, then W 2(t) − t is a
martingale. (Exercise.)

Example 1.36 A martingale that is not Markovian and a Markov
process that is not a martingale
The Markov property is based on conditional independence of distributions
and the martingale property is based on equality of expectations. Thus it is
easy to construct a martingale that is not a Markov chain beginning with
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X0 has any given distribution with V(X0) > 0. The sequence {Xt : EXt =

EXt−1,VXt =
∑t−1

k=0 VXk} is not a Markov chain.

A Markov chain that is not a martingale, for example, is {Xt : Xt
d
=

2Xt−1}, where X0 has any given distribution with E(X0) 6= 0.

A common application of martingales is as a model for stock prices. As
a concrete example, we can think of a random variable X1 as an initial sum
(say, of money), and a sequence of events in which X2, X3, . . . represents a
sequence of sums with the property that each event is a “fair game”; that
is, E(X2 |X1) = X1 a.s.,E(X3|X1, X2) = X2 a.s., . . .. We can generalize this
somewhat by letting Dn = σ(X1, . . . , Xn), and requiring that the sequence be

such that E(Xn|Dn−1)
a.s.
= Xn−1.

Doob’s Martingale Inequality

A useful property of submartingales is Doob’s martingale inequality. This
inequality is a more general case of Kolmogorov’s inequality (B.11), page 849,
and the Hájek-Rènyi inequality (B.12), both of which involve partial sums
that are martingales.

Theorem 1.69 (Doob’s Martingale Inequality)
Let {Xt : t ∈ [0, T ]} be a submartingale relative to {Dt : t ∈ [0, T ]} taking
nonnegative real values; that is, 0 ≤ Xs ≤ E(Xt|Dt) for s, t. Then for any
constant ε > 0 and p ≥ 1,

Pr

(
sup

0≤t≤T
Xt ≥ ε

)
≤ 1

εp
E(|XT |p). (1.285)

Proof. ***fix
Notice that Doob’s martingale inequality implies Robbins’s likelihood ratio

martingale inequality (1.283).

Azuma’s Inequality

extension of Hoeffding’s inequality (B.10), page 848

1.6.7 Empirical Processes and Limit Theorems

For a given random sample, the relationship of the ECDF Fn to the CDF
F of the underlying distribution is of interest. At a given x, the normalized
difference

Gn(x) =
√
n(Fn(x)− F (x)) (1.286)

is called an empirical process. The convergence of this process will be studied
below.

Theory of Statistics c©2000–2025 James E. Gentle



1.6 Stochastic Processes 135

Martingale Central Limit Theorem

Most of the central limit theorems we discussed in Section 1.4.2 required
identical distributions, and all required independence. Can we relax the inde-
pendence assumption?

We focus on partial sums as in equation (1.224).

Theorem 1.70 (Martingale Central Limit Theorem)
Let

Yn =





∑kn

j=1(Xnj − E(Xnj)) if n ≤ kn

∑kn

j=1(Xknj − E(Xknj)) if n > kn.

(1.287)

Now, assume {Yn} is a martingale.
Next, starting with a fixed value for each subsequence, say Xn0 = 0, assume

the sum of the normalized conditional variances converge to 1:

1

σn

kn∑

j=2

E
(
(Xnj − E(Xnj))

2|Xn1, . . . , Xn,j−1

) p→ 1,

where, as before, σ2
n = V(

∑kn

j=1Xnj). Then we have

1

σn

kn∑

j=1

(Xnj − E(Xnj))
d→ N(0, 1). (1.288)

The addends in Yn are called a triangular array as in the buildup to Linde-
berg’s Central Limit Theorem (see page 107), and the result (1.288) is the
same as in Lindeberg’s Central Limit Theorem on page 108.
Proof. ***fix

Convergence of Empirical Processes

Although we may write the ECDF as Fn or Fn(x), it is important to remember
that it is a random variable. We may use the notation Fn(x, ω) to indicate
that the ECDF is a random variable, yet to allow it to have an argument just
as the CDF does. I will use this notation occasionally, but usually I will just
write Fn(x). The randomness comes in the definition of Fn(x), which is based
on the random sample.

The distribution of nFn(x) (at the fixed point x) is binomial, and so the
pointwise properties of the ECDF are easy to see. From the SLLN, we see
that it strongly converges pointwise to the CDF, and from the CLT, we have,
at the point x,

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))) . (1.289)

Theory of Statistics c©2000–2025 James E. Gentle



136 1 Probability Theory

Although the pointwise properties of the ECDF are useful, its global rela-
tionship to the CDF is one of the most important properties of the ECDF. Our
interest will be in the convergence of Fn, or more precisely, in the convergence
of a metric on Fn and F . When we consider the convergence of metrics on
functions, the arguments of the functions are sequences of random variables,
yet the metric integrates out the argument.

An important property of empirical processes is a stochastic bound on its
sup norm that is called the Dvoretzky/Kiefer/Wolfowitz (DKW) inequality,
after the authors of the paper in which a form of it was given (Dvoretzky et al.,
1956). This inequality provides a bound for the probability that the sup dis-
tance of the ECDF from the CDF exceeds a given value. Massart (1990)
tightened the bound and gave a more useful form of the inequality. In one-
dimension, for any positive z, the Dvoretzky/Kiefer/Wolfowitz/Massart in-
equality states

Pr(sup
x

(
√
n|Fn(x, ω)− F (x)|) > z) ≤ 2e−2z2

. (1.290)

This inequality is useful in proving various convergence results for the ECDF.
For a proof of the inequality itself, see Massart (1990).

A particularly important fact regards the strong convergence of the sup
distance of the ECDF from the CDF to zero; that is, the ECDF converges
strongly and uniformly to the CDF. This is stated in the following theorem.
The DKW inequality can be used to prove the theorem, but the proof below
does not use it directly.

Theorem 1.71 (Glivenko-Cantelli) IfX1, . . . , Xn are iid with CDF F and

ECDF Fn, then supx(|Fn(x, ω)− F (x)|) wp1→ 0.

Proof. First, note by the SLLN and the binomial distribution of Fn, ∀ (fixed) x,

Fn(x, ω)
wp1→ F (x); that is,

lim
n→∞

Fn(x, ω) = F (x)

∀x, except x ∈ Ax, where Pr(Ax) = 0.
The problem here is that Ax depends on x and so there are uncountably

many such sets. The probability of their union may possibly be positive. So
we must be careful.

We will work on the CDF and ECDF from the other side of x (the discon-
tinuous side). Again, by the SLLN, we have

lim
n→∞

Fn(x−, ω) = F (x−)

∀x, except x ∈ Bx, where Pr(Bx) = 0.
Now, let

φ(u) = inf{x ; u ≤ F (x)} for 0 < u ≤ 1.
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(Notice F (φ(u)−) ≤ u ≤ F (φ(u)). Sketch the picture.)
Now consider xm,k = φ(k/m) for positive integers m and k with 1 ≤ k ≤

m. (There are countably many xm,k, and so when we consider Fn(xm,k, ω) and
F (xm,k), there are countably many null-probability sets, Axm,k and Bxm,k ,
where the functions differ in the limit.)

We immediately have the three relations:

F (xm,k−)− F (xm,k−1) ≤ m−1

F (xm,1−) ≤m−1

and
F (xm,m) ≥ 1−m−1,

and, of course, F is nondecreasing.
Now let Dm,n(ω) be the maximum over all k = 1, . . . , m of

|Fn(xm,k, ω)− F (xm,k)|

and
|Fn(xm,k−, ω)− F (xm,k−)|.

(Compare Dn(ω).)
We now consider three ranges for x:

]−∞ , xm,1[
[xm,k−1 , xm,k[ for k = 1, . . . , m

[xm,m , ∞[

Consider x ∈ [xm,k−1, xm,k[. In this interval,

Fn(x, ω) ≤ Fn(xm,k−, ω)

≤ F (xm,k−) +Dm,n(ω)

≤ F (x) +m−1 +Dm,n(ω)

and

Fn(x, ω) ≥ Fn(xm,k−1, ω)

≥ F (xm,k−1) −Dm,n(ω)

≥ F (x)−m−1 −Dm,n(ω)

Hence, in these intervals, we have

Dm,n(ω) +m−1 ≥ sup
x
|Fn(x, ω)− F (x)|

= Dn(ω).

We can get this same inequality in each of the other two intervals.
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Now, ∀m, except on the unions over k of Axm,k and Bxm,k , limn Dm,n(ω) =
0, and so limnDn(ω) = 0, except on a set of probability measure 0 (the
countable unions of the Axm,k and Bxm,k .) Hence, we have the convergence
wp1; i.e., a.s. convergence.

The sup norm on the empirical process always exists because both func-
tions are bounded. Other norms may not be finite.

Theorem 1.72 If X1, . . . , Xn are iid with CDF F ∈ L1 and ECDF Fn, then

‖Fn(x, ω)− F (x)‖p wp1→ 0.

Proof. ******* use relationship between Lp norms
***************** add stuff Donsker’s theorem

Notes and Further Reading

Probability theory is the most directly relevant mathematical background for
mathematical statistics. Probability is a very large subfield of mathematics.
The objective of this chapter is just to provide some of the most relevant
material for statistics.

The CDF

I first want to emphasize how important the CDF is in probability and statis-
tics.

This is also a good point to review the notation used in connection with
functions relating to the CDF. The meaning of the notation in at least two
cases (inverse and convolution) is slightly different from the usual meaning of
that same notation in other contexts.

If we denote the CDF by F ,

• F (x) = 1− F (x);
• F−1(p) = inf{x, s.t. F (x) ≥ p} for p ∈]0, 1[;
• F (2)(x) = F ? F (x) =

∫
F (x− t)dF (t);

• Fn(x) is the ECDF of an iid sample of size n from distribution with CDF
F .

• f(x) = dF (x)/dx.

Foundations

I began this chapter by expressing my opinion that probability theory is an
area of pure mathematics: given a consistent axiomatic framework, “beliefs”
are irrelevant. That attitude was maintained throughout the discussions in
this chapter. Yet the literature on applications of probability theory is replete
with interpretations of the meaning of “probability” by “frequentists”, by “ob-
jectivists”, and by “subjectivists”, and discussions of the relative importance
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of independence and exchangeability; see, for example, Hamaker (1977) and
de Finetti (1979), just to cite two of the most eloquent (and opinionated) of
the interlocutors. While the airing of some of these issues may just be furious
sound, there are truly some foundational issues in application of probability
theory to decisions made in everyday life. There are various to statistical in-
ference that differ in fundamental ways (as alluded to by Hamaker (1977) and
de Finetti (1979)) in whether or not prior “beliefs” or “subjective probabili-
ties” are incorporated formally into the decision process.

While the phrase “subjective probability” is current, that concept does not
fall within the scope ot this chapter, but it will be relevant in later chapters
on statistical applications of probability theory.

There are, however, different ways of developing the concept of probability
as a set measure that all lead to the same set of results discussed in this
chapter. I will now briefly mention these alternatives.

Alternative Developments of a Probability Measure

Probability as a concept had been used by mathematicians and other sci-
entists well before it was given a mathematical treatment. The first major
attempt to provide a mathematical framework was Laplace’s Théorie Ana-

lytique des Probabilités in 1812. More solid advances were made in the lat-
ter half of the 19th Century by Chebyshev, Markov, and Lyapunov at the
University of St. Petersburg, but this work was not well known. (Lyapunov
in 1892 gave a form of a central limit theorem. He developed this in the
next few years into a central limit theorem similar to Lindeberg’s, which
appeared in 1920 in a form very similar to Theorem 1.58.) Despite these de-
velopments, von Mises (v. Mises) (1919a) said that “probability theory is not
a mathematical science” (my translation), and set out to help to make it
such. Indicating his ignorance of the work of both Lyapunov and Lindeberg,
von Mises (v. Mises) (1919a) gives a more limited central limit theorem, but
von Mises (v. Mises) (1919b) is a direct attempt to give a mathematical mean-
ing to probability. In the “Grundlagen” he begins with a primitive concept of
collective (or set), then defines probability as the limit of a frequency ratio,
and formulates two postulates that essentially require invariance of the limit
under any selections within the collective. This notion came to be called “sta-
tistical probability”. Two years later, Keynes (1921) developed a concept of
probability in terms of the relative support one statement leads to another
statement. This idea was called “inductive probability”. As Kolmogorov’s ax-
iomatic approach (see below) came to define probability theory and statistical
inference for most mathematicians and statisticians, the disconnect between
statistical probability and inductive probability continued to be of concern.
Leblanc (1962) attempted to reconcile the two concepts, and his little book is
recommended as a good, but somewhat overwrought, discussion of the issues.
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Define probability as a special type of measure
We have developed the concept of probability by first defining a measurable
space, then defining a measure, and finally defining a special measure as a
probability measure.

Define probability by a set of axioms
Alternatively, the concept of probability over a given measurable space could
be stated as axioms. In this approach, there would be four axioms: nonnega-
tivity, additivity over disjoint sets, probability of 1 for the sample space, and
equality of the limit of probabilities of a monotonic sequence of sets to the
probability of the limit of the sets. The axiomatic development of probability
theory is due to Kolmogorov in the 1920s and 1930s. In Kolmogorov (1956),
he starts with a sample space and a collection of subsets and gives six axioms
that characterize a probability space. (Four axioms are the same or similar
to those above, and the other two characterize the collection of subsets as a
σ-field.)

Define probability from a coherent ordering
Given a sample space Ω and a collection of subsets A, we can define a total
ordering on A. (In some developments following this approach, A is required
to be a σ-field; in other approaches, it is not.) The ordering consists of the
relations “≺”, “�”, “∼”, “�”, and “�”. The ordering is defined by five axioms
it must satisfy. (“Five” depends on how you count, of course; in the five
laid out below, which is the most common way the axioms are stated, some
express multiple conditions.) For any sets, A,Ai, B, Bi ∈ A whose unions and
intersections are inA (if A is a a σ-field this clause is unnecessary), the axioms
are:

1. Exactly one of the following relations holds: A � B, A ∼ B, or A ≺ B.
2. Let A1, A2, B1, B2 be such that A1 ∩A2 = ∅, B1 ∩B2 = ∅, A1 � B1, and
A2 � B2 . Then A1 ∪ A2 � B1 ∪ B2. Furthermore, if either A1 ≺ B1 or
A2 ≺ B2, then A1 ∪A2 ≺ B1 ∪B2 .

3. ∅ � A and ∅ ≺ Ω.
4. If A1 ⊇ A2 ⊇ · · · and for each i, Ai � B, then ∩iAi � B.
5. Let U ∼ U(0, 1) and associate the ordering (≺,�,∼,�,�) with Lebesgue

measure on [0, 1]. Then for any interval I ⊆ [0, 1], either A � I, A ∼ I, or
A ≺ I.

These axioms define a linear, or total, ordering on A. (Exercise 1.89).
Given these axioms for a “coherent” ordering on Ω, we can define a proba-

bility measure P on A by P (A) ≤ P (B) iff A � B, and so on. It can be shown
that such a measure exists, satisfies the Kolmogorov axioms, and is unique.

At first it was thought that the first 4 axioms were sufficient to define
a probability measure that satisfied Kolmogorov’s axioms, but Kraft et al.
(1959) exhibited an example that showed that more was required.
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A good exposition of this approach based on coherency that includes a
proof of the existence and uniqueness of the probability measure is given by
DeGroot (1970).

Define probability from expectations of random variables
Although the measurable spaces of Sections 1.1.1 and 0.1 (beginning on
page 692) do not necessarily consist of real numbers, we defined real-valued
functions (random variables) that are the basis of further development of
probability theory. From the axioms characterizing probability (or equiva-
lently from the definition of the concept of a probability measure), we devel-
oped expectation and various unifying objects such as distributions of random
variables.

An alternate approach to developing a probability theory can begin with
a sample space and random variables defined on it. (Recall our definition
of random variables did not require a definition of probability.) From this
beginning, we can base a development of probability theory on expectation,
rather than on a probability measure as we have done in this chapter. (This
would be somewhat similar to our development of conditional probability from
conditional expectation in Section 1.5.)

In this approach we could define expectation in the usual way as an in-
tegral, or we can go even further and define it in terms of characterizing
properties. We characterize an expectation operator E on a random variable
X (and X1 and X2) by four axioms:

1. If X ≥ 0, then E(X) ≥ 0.
2. If c is a constant in IR, then E(cX1 +X2) = cE(X1) + E(X2).
3. E(1) = 1.
4. If a sequence of random variables {Xn} increases monotonically to a limit
{X}, then E(X) = limn→∞ E(Xn).

(In these axioms, we have assumed a scalar-valued random variable, although
with some modifications, we could have developed the axioms in terms of
random variables in IRd.) From these axioms, after defining the probability of
a set as

Pr(A) = E(IA(ω)),

we can develop the same probability theory as we did starting from a charac-
terization of the probability measure. According to Hacking (1975), prior to
about 1750 expectation was taken as a more basic concept than probability,
and he suggests that it is more natural to develop probability theory from
expectation. An interesting text that takes this approach is Whittle (2000).

We have already seen a similar approach. This was in our development of
conditional probability. In order to develop an idea of conditional probability
and conditional distributions, we began by defining conditional expectation
with respect to a σ-field, and then defined conditional probability. While the
most common kind of conditioning is with respect to a σ-field, a conditional
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expectation with respect to a σ-lattice (see Definition 0.1.6 on page 695) can
sometimes be useful; see Brunk (1963) and Brunk (1965).

Transformations of Random Variables

One of the most common steps in application of probability theory is to work
out the distribution of some function of a random variable. The three meth-
ods mentioned in Section 1.1.10 are useful. Of those methods, the change-of-
variables method in equation (1.125), which includes the convolution form, is
probably the one that can be used most often. In that method, we use the Ja-
cobian of the inverse transformation. Why the inverse transformation? Think
of the density as a differential; that is, it has a factor dx, so in the density for
Y , we want a factor dy. Under pressure you may forget exactly how this goes,
or want a quick confirmation of the transformation. You should be able to
construct a simple example quickly. An easy one is the right-triangular distri-
bution; that is, the distribution with density pX(x) = 2x, for 0 < x < 1. Let
y = 2x, so x = 1

2
y. Sketch the density of Y , and think of what transformations

are necessary to get the expression pY (y) = 1
2
y, for 0 < y < 2.

Structure of Random Variables

Most useful probability distributions involve scalar random variables. The ex-
tension to random vectors is generally straightforward, although the moments
of vector random variables are quite different in structure from that of the ran-
dom variable itself. Nevertheless, we find such random vectors as multivariate
normal, Dirichlet, and multinomial very useful.

Copulas provide useful methods for relating the distribution of a multivari-
ate random variable to the marginal distributions of its components and for
understanding, or at least modeling, the relationships among the components
of the random variable. Balakrishnan and Lai (2009) use copulas extensively
in discussions of a large number of bivariate distributions, many of which
are extensions of familiar univariate distributions. Nelson (2006) provides an
extensive coverage of copulas.

The recent popularity of copulas in certain fields, such as finance, has
probably led to some inappropriate use in probability models. See Mikosch
(2006) and the discussion that follows his article.

Most approaches to multivariate statistical analysis are based on random
vectors. There are some cases in which random matrices are useful. The most
common family of random matrices is the Wishart, whose range is limited
to symmetric nonnegative definite matrices. An obvious way to construct a
random matrices is by an iid random sample of random variables. The random
sample approach, of course, would not increase the structural complexity of
the covariance. If instead of a random sample, however, the random matrix
would be constructed from random vectors that are not iid, its covariance
would have a complicated structure. Kollo and von Rosen (2005) use random
matrices, rather than random vectors, as the basis of multivariate analysis.
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Characteristic Functions

Characteristic functions play a major role in probability theory. Their use
provides simple proofs for important facts, such as Geary’s theorem. (The
proof given for this theorem given on page 190 is based on one by Lukacs.
The theorem, with the additional requirement that moments of all orders
exist, was first proved by Geary (1936), using methods that are much more
complicated.)

Gnedenko and Kolmogorov (1954) utilize characteristic functions through-
out their development of limiting distributions. Lukacs (1970) provides a thor-
ough exposition of characteristic functions and their various applications, in-
cluding use of methods of differential equations in characteristic function the-
ory, as in the proof of Geary’s theorem.

The Problem of Moments

Thomas Stieltjes studied the problem of determining a nondecreasing function
F , given a sequence of numbers ν0, ν1, ν2, . . . such that

νk =

∫ ∞

0

xkdF (x), k = 0, 1, 2, . . .

Stieltjes called this the “moment problem”. It is now often called the “Stieltjes
problem”, and the related problem with limits of integration 0 and 1 is called
the “Hausdorff problem” and with limits−∞ and∞ is called the “Hamburger
problem”. These problems and the existence of a solution in each case are
discussed by Shohat and Tamarkin (1943). (Although this is an older mono-
graph, it is readily available in various reprinted editions.) In applications in
probability, the existence of a solution is the question of whether there exists
a probability distribution with a given set of moments.

After existence of a solution, the next question is whether the solution is
unique, or in our formulation of the problem, whether the moments uniquely
determine the probability distribution.

Many of the results concerning the moment problem involve probability
distributions that are not widely used. Heyde (1963) was the first to show
that a particular interesting distribution, namely the lognormal distribution,
was not uniquely determined by its moments. (This is Exercise 1.28.)

Corollary 1.18.1 is due to Thomas Stieltjes who proved it without use of
Theorem 1.18. Proofs and further discussion of the theorem and corollary can
be found in Shohat and Tamarkin (1943).

Sequences and Limit Theorems

The various forms of the central limit theorem have a long history of both
both the theory and the applications. Petrov (1995) provides an extensive
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coverage. Dudley (1999) discusses many of the intricacies of the theorems and
gives extensions of the theory.

The most important seminal result on the limiting distributions of extreme
values was obtained by Fisher and Tippett (1928). von Mises (de Misès) (1939)
and Gnedenko (1943) cleaned up some of the details, and Theorem 1.59 is es-
sentially in the form stated in Gnedenko (1943). The limiting distributions of
extreme values are discussed at some length by David and Nagaraja (2003),
de Haan and Ferreira (2006), and Galambos (1978); and as mentioned in the
text, a proof of Theorem 1.59, though not the same as given by Gnedenko is
given by de Haan and Ferreira.

De Finetti’s theorem allows the extension of certain results for independent
sequences to similar results for exchangeable sequences. Taylor et al. (1985)
prove a number of limit theorems for sums of exchangeable random variables.

A quote from the Preface of Gnedenko and Kolmogorov (1954) is appro-
priate:

In the formal construction of a course in the theory of probability,
limit theorems appear as a kind of superstructure over elementary
chapters, in which all problems have finite purely arithmetical char-
acter. In reality, however, the epistemological value of the theory of
probability is revealed only by limit theorems. Moreover, without limit
theorems it is impossible to understand the real content of the primary
concept of all our sciences — the concept of probability. In fact, all
epistemologic value of the theory of probability is based on this: that
large-scale random phenomena in their collective action create strict,
nonrandom regularity. The very concept of mathematical probability
would be fruitless if it did not find its realization in the frequency of
occurrence of events under large-scale repetition of uniform conditions
....

Approximations and Expansions

The central limit theorems provide a basis for asymptotic approximations in
terms of the normal distribution. Serfling (1980) and Bhattacharya and Ranga Rao
(1976) discuss a number of approximations.

Other useful approximations are based on series representations of the
PDF, CDF, or CF of the given distributions. Most of these series involve the
normal PDF, CDF, or CF. Bhattacharya and Ranga Rao (1976) discuss a
number of these series approximations. Hall (1992), especially Chapters 2 and
3, provides an extensive coverage of series expansions. Power series expansions
are not now used as often in probability theory as they once were.

Cadlag Functions

We referred to the common assumption for models of stochastic processes that
the functions are cadlag with respect to the time argument. The term cadlag
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also applies to functions of arguments other than time that have this property.
A CDF is a cadlag (or “càlàg”) function. Analysis of continuous CDFs is
relatively straightforward, but analysis of CDFs with discrete jumps is more
challenging. Derivation and proofs of convergence properties of CDFs (such
as may be encountered it central limits of stochastic processes) are sometimes
difficult because of the discontinuities from the left. General results for a space
of cadlag functions with a special metric have been developed. The space is
called a Skorokhod space and the metric is called a Skorokhod metric. (Cadlag
is synonymous with the English-derived acronyms RCCL, “right continuous
[with] left limits”, and corlol, “continuous on [the] right limit on [the] left”,
but there seems to be a preference for the French-derived acronym.)

Markov Chains

There are many other interesting properties of Markov chains that follow
from various properties of nonnegative matrices (see Gentle (2007)). For more
information on the properties of Markov chains, we refer the interested reader
to the second edition of the classic text on Markov chains, Meyn and Tweedie
(2009).

There are many special Markov chains that are motivated by applications.
Branching process, for example, have applications in modeling such distinct
areas biological populations and elementary particles. Harris (1989) developed
many properties of such processes, and Athreya and Ney (1972) extended the
theory. Some Markov chains are martingales, but of course not all are; con-
versely, not all martingales are Markov chains (see Example 1.36).

Martingales

Many of the basic ideas in martingale theory were developed by Joseph Doob,
who gave this rather odd name to a class of stochastic processes after a type
of betting system. Doob (1953) is still the classic text on stochastic processes
generally and martingales in particular. Hall and Heyde (1980) cover many
important limit theorems about martingales. Some of the most important ap-
plications of martingale theory are in financial modeling, in which a martin-
gale model is equivalent to a no-arbitrage assumption. See Baxter and Rennie
(1996) for applications of martingale theory in options pricing.

Empirical Processes

The standard texts on empirical processes are Shorack and Wellner (2009)
and, especially for limit theorems relating to them, Dudley (1999).

Massart (1990) *** a tight constant in the Dvoretzky-Kiefer-Wolfowitz
inequality.
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Additional References for Chapter 1

Among the references on probability in the bibliography beginning on page 873,
some have not been mentioned specifically in the text. These include the gen-
eral references on probability theory: Ash and Doleans-Dade (1999), Athreya and Lahiri
(2006), Barndorff-Nielson and Cox (1994), Billingsley (1995), Breiman (1968),
Chung (2000), Dudley (2002), Feller (1957) and Feller (1971), Gnedenko
(1997), Gnedenko and Kolmogorov (1954), Gut (2005), and Pollard (2003).

The two books by Feller, which are quite different from each other but
which together provide a rather comprehensive coverage of probability theory,
the book by Breiman, and the book by Chung (the first edition of 1968) were
among the main books I used in learning about probability years ago. They
may be somewhat older than the others in the bibliography, but I’d probably
still start out with them.

Exercises

1.1. For the measurable space (IR,B), show that the collection of all open
subsets of IR is a determining class for probability measures on (IR,B).

1.2. Prove Theorem 1.1.
1.3. For any theorem you should think carefully about the relevance of the

hypotheses, and whenever appropriate consider the consequences of weak-
ening the hypotheses. For the weakened hypotheses, you should construct
a counterexample that shows the relevance of the omitted portion of the
hypotheses. In Theorem 1.1, omit the condition that ∀i ∈ I, A, B ∈ Ci ⇒
A ∩ B ∈ Ci, and give a counterexample to show that without this, the
hypothesis is not sufficient.

1.4. Prove Theorem 1.3.
1.5. Let Ω = {1, 2, . . .} and let F be the collection of all subsets of Ω. Prove

or disprove:

P (A) = lim
n→∞

inf
#(A ∩ {1, . . . , n})

n
,

where # is the counting measure, is a probability measure on (Ω,F).
1.6. Let A, B, and C be independent events. Show that if D is any event in

σ({B,C}) then A and D are independent.
1.7. Prove Theorem 1.4.
1.8. Let X and Y be random variables. Prove that σ(X) ⊆ σ(X, Y ).
1.9. Given a random variable X defined on the probability space (Ω,F , P ),

show that P ◦X−1 is a probability measure.

1.10. Show that X
a.s.
= Y =⇒ X

d
= Y .

1.11. Write out a proof of Theorem 1.6.
1.12. Let F (x) be the Cantor function (0.1.30) (page 723) extended below the

unit interval to be 0 and extended above the unit interval to be 1, as
indicated in the text.
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a) Show that F (x) is a CDF.
b) Show that the distribution associated with this CDF does not have a

PDF wrt Lebesgue measure. (What is the derivative?)
c) Does the distribution associated with this CDF have a PDF wrt count-

ing measure?
d) Is the probability measure associated with this random variable dom-

inated by Lebesgue measure? by the counting measure?
Let X be a random variable with this distribution.
e) What is Pr(X = 1/3)?
f) What is Pr(X ≤ 1/3)?
g) What is Pr(1/3 ≤ X ≤ 2/3)?

1.13. a) Show that F in equation (1.29) is a CDF.
b) Show that if each Fi in equation (1.29) is dominated by Lebesgue

measure, then F is dominated by Lebesgue measure.
c) Show that if each Fi in equation (1.29) is dominated by the counting

measure, then F is dominated by the counting measure.
1.14. Write out a proof of Theorem 1.8.
1.15. Write out a proof of Theorem 1.9.
1.16. Write out a proof of Theorem 1.10.
1.17. Write out a proof of Theorem 1.11.
1.18. Write out a proof of Theorem 1.12.
1.19. a) Show that the random variables R1, R2, R3, R4 in Example 1.6 are

exchangeable.
b) Use induction to show that the sequence R1, R2, . . . in Example 1.6 is

exchangeable.
1.20. Give an example in which the linearity of the expectation operator (equa-

tion (1.38)) breaks down.
1.21. Write out a proof of Theorem 1.13.
1.22. Show that if the scalar random variables X and Y are independent, then

Cov(X, Y ) = Cor(X, Y ) = 0.
1.23. a) LetX be a random variable such that it is not the case thatX = E(X)

a.s. Prove V(X) > 0.
b) Let X = (X1, . . . , Xd) such that V(Xi) < ∞, and assume that it is

not the case that Xi = E(Xi) a.s. for any i nor that ∃aj , bj for any
element Xi of the vector X such that

Xi =
∑

j 6=i

(aj + bjXj) a.s.

Prove that V(X) is full rank.
1.24. Show that the second raw moment E(X2) for the Cauchy distribution

(equation (1.37)) does not exist.
1.25. Expected values and quantile functions.

a) Write a formal proof of equation (1.45).
b) Extend equation (1.45) to E(X), where g is a bijective Borel function

of X.
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1.26. Expected values.
a) Write a formal proof that equation (1.47) follows from the conditions

stated.
b) Write a formal proof that equation (1.49) follows from the conditions

stated.
c) Write a formal proof that equation (1.50) follows from the conditions

stated.
1.27. Let X be a random variable. Show that the map

PX : B 7→ Pr(X ∈ B),

where B is a Borel set, is a probability measure on the Borel σ-field.
1.28. Let X be a random variable with PDF

pX(x) =
1√
2π

1

x
exp(−(log(x))2/2)IĪR+

(x), (1.291)

and let Y be a random variable with PDF

pY (y) = pX(y)(1 + α sin(2π log(y)))IĪR+
(y),

where α is a constant and 0 < |α| ≤ 1.
Notice the similarity of the PDF of Y to the PDF given in equation (1.54).
a) Show that X and Y have different distributions.
b) Show that for r = 1, 2, . . ., E(Xr) = E(Y r).
c) Notice that the PDF (1.291) is that of the lognormal distribution,

which, of course, is an absolutely continuous distribution. Now con-
sider the discrete random variable Ya whose distribution, for given
a > 0, is defined by

Pr(Ya = aek) = cae−k2/2/ak, for k = 0, 1, 2, . . . ,

where ca is an appropriate normalizing constant. Show that this dis-
crete distribution has the same moments as the lognormal.
Hint: First identify the support of this distribution. Then multiply the
reciprocal of the rth moment of the lognormal by the rth of Ya.

1.29. a) Prove equation (1.73):

V(aX + Y ) = a2V(X) + V(Y ) + 2aCov(X, Y ).

b) Prove equation (1.74):

Cor(aX+Y,X+Z) = aV(X)+aCov(X,Z)+Cov(X, Y )+Cov(Y, Z).

1.30. Prove the converse portion of Sklar’s theorem (Theorem 1.19).
1.31. Let X and Y be random variables with (marginal) CDFs PX and PY

respectively, and suppose X and Y are connected by the copula CXY .
Prove:
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Pr(max(X, Y ) ≤ t) = CXY (PX(t), PY (t))

and

Pr(min(X, Y ) ≤ t) = PX(t) + PY (t) −CXY (PX(t), PY (t)).

1.32. a) Let X be a random variable that is normally distributed with mean
µ and variance σ2. Determine the entropy of X.

b) Let Y be a random variable that is distributed as beta(α, β). Deter-
mine the entropy of Y in terms of the digamma function (page 865).
Make plots of the entropy for various values of α and β. An R function
that evaluates the entropy is

entropy<-function(a,b){

lbeta(a,b)-

(a-1)*(digamma(a)-digamma(a+b))-

(b-1)*(digamma(b)-digamma(a+b))

}

1.33. a) For the scalar random variable X prove equations (1.85) and (1.97).
b) For the random variable X prove equations (1.98) and (1.99).
c) Given the random variables X and Y with CF ϕX,Y (t1, t2) write out

Cov(X, Y ) in terms of derivatives of the CF.
1.34. a) Show that the moment-generating function does not exist for a Cauchy

distribution.
b) Determine the characteristic function for a Cauchy distribution, and

show that it is not differentiable at 0.
1.35. In Example 1.10 we showed that the moment-generating function does not

exist for a lognormal distribution. Determine the characteristic function
for a lognormal distribution. Simplify the expression.

1.36. Consider the the distribution with PDF

p(x) =
c

2x2 log(|x|) I{±2,±3,...}(x).

Show that the characteristic function has a finite first derivative at 0, yet
that the first moment does not exist (Zygmund, 1947).

1.37. Write an expression similar to equation (1.97) for the cumulants, if they
exist, in terms of the cumulant-generating function.

1.38. Show that equations (1.100), (1.101), and (1.102) are correct.
1.39. Show that equation (1.108) is correct.
1.40. a) Let X and Y be iid N(0, 1). Work out the PDF of (X − Y )2/Y 2.

b) Let X1, . . . , Xn and Y1, . . . , Yn be iid N(0, 1). Work out the PDF of∑
i(Xi − Yi)

2/
∑

i Y
2

i .
1.41. Show that the distributions of the random variables X and Y in Exam-

ple 1.7 are the same as, respectively, the ratio of two standard exponential
random variables and the ratio of two standard normal random variables.

1.42. Show that equation (1.133) is correct.
1.43. Stable distributions.
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a) Show that an infinitely divisible family of distributions is stable.
b) Show that the converse of the previous statement is not true. (Hint:

Show that the Poisson family is a family of distributions that is in-
finitely divisible, but not stable.)

c) Show that the definition of stability based on equation (1.137) is equiv-
alent to Definition 1.33.

d) Let X,X1, X2 be as in Definition 1.33. Show that Y = X1−X2 has a
stable distribution, and show that the distribution of Y is symmetric
about 0. (Y has a symmetric stable distribution).

e) Show that the normal family of distributions is stable with character-
istic exponent of 2.

f) Show that the standard Cauchy distribution is stable with character-
istic exponent of 1.

1.44. Prove Theorem 1.25.
1.45. Provide a heuristic justification for equation (1.139).
1.46. Show that the PDF of the joint distribution of all order statistic in equa-

tion (1.141) is equal to the PDF of the joint distribution of all of the
(unordered) random variables,

∏
f(xi).

1.47. Show that the Yi in Example 1.19 on page 65 are independent of both
X(1) and X(n).

1.48. a) Let X(1), . . . , X(n) be the order statistics in a sample of size n, let
µ(k:n) = E(X(k:n)), and let X be a random variable with the distribu-
tion of the sample. Show that µ(k:n) exists and is finite if E(X) exists
and is finite.

b) Let n be an odd integer, n = 2k + 1, and consider a sample of size n
from a Cauchy distribution with PDF fX = 1/(π(1+(x−θ)2)). Show
that the PDF of X(k+1), the sample median, is

fX(k+1)
=

n!

(k!)2π

(
1

4
− 1

π2
(arctan(x− θ))2

)k
1

1 + (x− θ)2 .

What is µ(k:n) in this case?
1.49. a) Prove equation (1.143).

b) Prove the following generalization of equation (1.143):

(n − k)E
(
Xp

(k:n)

)
+ kE

(
Xp

(k+1:n)

)
= nE

(
Xp

(k:n−1)

)
.

See David and Nagaraja (2003).
1.50. Given the sequence of events A1, A2, . . ., show that a tail event of {An}

occurs infinitely often.
1.51. Given the random variables X1, X2, . . . and X on a common probability

space. For m = 1, 2, . . ., and for any ε > 0, let Am,ε be the event that
‖Xm − X‖ > ε. Show that almost sure convergence of {Xn} to X is
equivalent to

lim
n→∞

Pr (∪∞m=nAm,ε) = 0,
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for every ε > 0.
Hint: For j = 1, 2, . . ., consider the events

Bj = ∪∞n=1 ∩∞m=n A
c
m,1/j.

1.52. Show that a convergence-determining class is a determining class.
1.53. a) Show that the collection of all finite open intervals in IR that do not

include 0 (as in Example 1.20) is a determining class for probability
measures on (IR,B). (Compare Exercise 1.1.)

b) Show that the collection of all finite open intervals in IR is a convergence-
determining class for probability measures on (IR,B).

1.54. a) Give an example of a sequence of random variables that converges in
probability to X, but does not converge to X a.s.

b) Give an example of a sequence of random variables that converges in
probability to X, but does not converge to X in second moment.

1.55. Prove Theorem 1.31.
1.56. a) Weaken the hypothesis in Theorem 1.31 to Xn

d→ X, and give a
counterexample.

b) Under what condition does convergence in distribution imply conver-
gence in probability?

1.57. Let X1, . . . , Xn
iid∼Bernoulli(π). Let Yn =

∑n
i=1Xi. Show that as n→ ∞

and π → 0 in such a way that nπ → θ > 0, Yn
d→ Z where Z has a Poisson

distribution with parameter θ.
1.58. Given a sequence of scalar random variables {Xn}, prove that if

E((Xn − c)2)→ 0

then Xn converges in probability to c.
1.59. A sufficient condition for a sequence Xn of random variables to converge

to 0 a.s. is that, for every ε > 0,
∑∞

n=1 Pr(|Xn| > ε) < ∞. Let U be
uniformly distributed over (0, 1) and define

Xn =

{
1 if U < 1

n
0 otherwise.

Use this sequence to show that the condition
∑∞

n=1 Pr(|Xn| > ε) < ∞ is
not a necessary condition for the sequence Xn to converge to 0 a.s.

1.60. a) Show that if Xn
d→ X for any random variable X, then Xn ∈ OP(1).

b) Show that if Xn ∈ oP(1), then also Xn ∈ OP(1).
1.61. Show the statements (1.166) through (1.175) (page 85) are correct.
1.62. Show the statements (1.176) and (1.177) are correct.
1.63. Show that the relationship in statement (1.178) is correct.
1.64. Show that equation (1.197) for the second-order delta method follows from

Theorem 1.47 with m = 2.
1.65. a) Prove equation (1.207).
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b) Show that the expression in equation (1.207) is a CDF.
1.66. Prove Theorem 1.49.
1.67. Show that Lindeberg’s condition, equation (1.222), implies Feller’s condi-

tion, equation (1.223).
1.68. The inequalities in Appendix B are stated in terms of unconditional prob-

abilities and expectations. They all hold as well for conditional probabili-
ties and expectations. In the following, assume the basic probability space
(Ω,F , P ). Assume that A is a sub-σ-field of F and Z is a random variable
in the given probability space. Prove:
a) An extension of Theorem B.3.1:

For ε > 0, k > 0, and r.v. X 3 E(|X|k) exists,

Pr(|X| ≥ ε | A) ≤ 1

εk
E
(
|X|k | A

)
.

b) An extension of Theorem B.4.1:
For f a convex function over the support of the r.v. X (and all expec-
tations shown exist),

f(E(X |Z)) ≤ E(f(X) |Z).

c) An extension of Corollary B.5.1.4:
If the second moments of X and Y are finite, then

(
Cov(X, Y |Z)

)2 ≤ V(X |Z)V(Y |Z).

1.69. a) Show that the alternative conditions given in equations (1.233), (1.234),
and (1.235) for defining conditional expectation are equivalent.

b) Show that equation (1.243) follows from equation (1.237).
1.70. Show that if E(X) exists, then so does E(X|B) for any event B such that

Pr(B) 6= 0.
1.71. Let X and Y be random variables over the same probability space. Show

that σ(X|Y ) ⊆ σ(X). (Compare equation (0.1.7).)
1.72. Prove Theorem 1.60.
1.73. Modify your proof of Theorem 1.13 (Exercise 1.21) to prove Theorem 1.63.
1.74. Let Tn be a function of the iid random variablesX1, . . . , Xn, with V(Xi) <

∞, V(Tn) < ∞, and V(E(Tn|Xi)) > 0. Now let T̃n be the projection of
Tn onto X1, . . . , Xn. Derive equations (1.255) and (1.256):

E(T̃n) = E(Tn),

and
V(T̃n) = nV(E(Tn |Xi)).

1.75. Prove: The random variables X and Y are independent iff the conditional
distribution of X given Y (or of Y given X) equals the marginal distribu-
tion of X (or of Y ) (Theorem 1.66).
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1.76. Prove Theorem 1.67.
1.77. Let X be a nonnegative integrable random variable on (Ω,F , P ) and let

A ⊆ F be a σ-field. Prove that E(X|A) =
∫∞
0

Pr(X > t|A) dt a.s.
1.78. Show that equation (1.267) is correct.
1.79. Let {Xn : n = 1, 2, . . .} be a sequence of iid random variables with mean

0 and finite variance σ2. Let Sn
a.s.
= X1 + · · ·+Xn, and let

Yn
a.s.
= S2

n − nσ2.

Prove that {Yn} is a martingale with respect to {Sn : n = 1, 2, . . .}.
1.80. Let {Zi} be an iid sequence of Bernoulli(π) random variables. Let X0 = 0,

and for n = 1, 2, . . ., let

Xn
a.s.
= Xn−1 + 2Zn − 1,

and let
Yn

a.s.
= ((1− π)/π)Xn .

Show that {Yn : n = 1, 2, 3, . . .} is a martingale with respect to {Xn :
n = 1, 2, 3, . . .}. (This is sometimes called de Moivre’s martingale.)

1.81. Show that {Xn : n = 1, 2, 3, . . .} of equation (1.185) is a martingale.
1.82. Show that {Yn : n = 1, 2, 3, . . .} of Polya’s urn process (Example 1.33,

page 132) is a martingale with respect to {Xn}.
1.83. Show that the likelihood-ratio martingale, equation (1.282), converges al-

most surely to 0.
Hint: Take logarithms and use Jensen’s inequality and equation (1.64).

1.84. Show that if {W (t) : t ∈ [0,∞[} is a Bachelier-Wiener process, then
W 2(t)− t is a martingale.

1.85. Show that Doob’s martingale inequality (1.285) implies Robbins’s likeli-
hood ratio martingale inequality (1.283).

1.86. Let {Mn} be a martingale, and let {Cn} be adapted to {σ(Mt : t ≤ n)}.
Let M̃0 = 0, and for n ≥ 1, let

M̃n =

n∑

j=1

Cj(Mj −Mj−1).

Show that M̃n is a martingale.
The sequence M̃n is called the martingale transform of {Mn} by {Cn}.

1.87. Let X1, X2, . . . be a sequence of independent random variables over a
common probability space such that for each E(X2

i ) <∞. Show that the
sequence of partial sums

Yn =

n∑

i=1

(Xi − E(Xi))

is a martingale.
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1.88. Let X be a random variable that is normally distributed with mean µ and
variance σ2. Show that the entropy of X is at least as great as the entropy
of any random variable with finite mean µ and finite variance σ2 and hav-
ing a PDF that is dominated by Lebesgue measure. (See Exercise 1.32a.)

1.89. Show that the axioms for coherency given on page 140 define a linear
ordering, that is, a total ordering, on A. (See page 621.)
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Distribution Theory and Statistical Models

Given a measurable space, (Ω,F), different choices of a probability measure
lead to different probability triples, (Ω,F , P ). A set of measures P = {P }
associated with a fixed (Ω,F) is called a family of distributions. Families can
be defined in various ways. For example, for Ω a real interval and F = BΩ, a
very broad family is Pc = {P : P � ν}, where ν is the Lebesgue measure. An
example of a very specific family for Ω = {0, 1} and F = 2Ω is the probability
measure Pπ({1}) = π and Pπ({0}) = 1− π. The probability measures in this
family, the Bernoulli distributions, are dominated by the counting measure.

Certain families of distributions have proven to be very useful as models
of observable random processes. Familiar families include the normal or Gaus-
sian family of distributions, the Poisson family of distributions, the binomial
family of distributions, and so on. A list of some of the important families of
distributions is given in Appendix A, beginning on page 835. Occasionally, as
part of a parametric approach, transformations on the observations are used
so that a standard distribution, such as the normal, models the phenomena
better.

A semi-parametric approach uses broader families whose distribution func-
tions can take on a much wider range of forms. In this approach, a differential
equation may be developed to model a limiting case of some discrete frequency
model. The Pearson system is an example of this approach (in which the basic
differential equation arises as a limiting case of a hypergeometric distribution).
Other broad families of distributional forms have been developed by Johnson,
by Burr, and by Tukey. The objective is to be able to represent a wide range of
distributional properties (mean, variance, skewness, shape, etc.) with a small
number of parameters, and then to fit a specific case by proper choice of these
parameters.

Statistical inference, which is the main topic of this book, can be thought
of as a process whose purpose is to use observational data within the context of
an assumed family of probability distributions P to infer that the observations
are associated with a subfamily PH ⊆ P, or else to decide that the assumed
family is not an adequate model for the observed data. For example, we may
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assume that the data-generating process giving rise to a particular set of data
is in the Poisson family of distributions, and based on our methods of inference
decide it is the Poisson distribution with θ = 5. (See Appendix A for how θ
parameterizes the Poisson family.)

A very basic distinction is the nature of the values the random variable
assumes. If the set of values is countable, we call the distribution “discrete”;
otherwise, we call it “continuous”.

With a family of probability distributions is associated a random variable
space whose properties depend on those of the family. For example, the ran-
dom variable space associated with a location-scale family (defined below) is
a linear space.

Discrete Distributions

The probability measures of discrete distributions are dominated by the count-
ing measure.

One of the simplest types of discrete distribution is the discrete uniform.
In this distribution, the random variable assumes one of m distinct values
with probability 1/m.

Another basic discrete distribution is the Bernoulli, in which random vari-
able takes the value 1 with probability π and the value 0 with probability
1 − π. There are two common distributions that arise from the Bernoulli:
the binomial, which is the sum of n iid Bernoullis, and the negative binomial,
which is the number of Bernoulli trials before r 1’s are obtained. A special ver-
sion of the negative binomial with r = 1 is called the geometric distribution.
A generalization of the binomial to sums of multiple independent Bernoullis
with different values of π is called the multinomial distribution.

The random variable in the Poisson distribution takes the number of events
within a finite time interval that occur independently and with constant prob-
ability in any infinitesimal period of time.

A hypergeometric distribution models the number of selections of a certain
type out of a given number of selections.

A logarithmic distribution (also called a logarithmic series distribution)
models phenomena with probabilities that fall off logarithmically, such as
first digits in decimal values representing physical measures.

Continuous Distributions

The probability measures of continuous distributions are dominated by the
Lebesgue measure.

Continuous distributions may be categorized first of all by the nature of
their support. The most common and a very general distribution with a finite
interval as support is the beta distribution. Although we usually think of
the support as [0, 1], it can easily be scaled into any finite interval [a, b]. Two
parameters determine the shape of the PDF. It can have a U shape, a J shape,
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a backwards J shape, or a unimodal shape with the mode anywhere in the
interval and with or without an inflection point on either side of the mode. A
special case of the beta has a constant PDF over the support.

Another distribution with a finite interval as support is the von Mises
distribution, which provides useful models of a random variable whose value
is to be interpreted as an angle.

One of the most commonly-used distributions of all is the normal or Gaus-
sian distribution. Its support is ]−∞,∞[. There are a number of distributions,
called stable distributions, that are similar to the normal. The normal has a
multivariate extension that is one of the simplest multivariate distributions,
in the sense that the second-order moments have intuitive interpretations. It
is the prototypic member of an important class of multivariate distributions,
the elliptically symmetric family.

From the normal distribution, several useful sampling distributions can be
derived. These include the chi-squared, the t, the F, and the Wishart, which
come from sample statistics from a normal distribution with zero mean. There
are noncentral analogues of these that come from statistics that have not been
centered on zero. Two other common distributions that are related to the
normal are the lognormal and the inverse Gaussian distribution. These are
related by applications. The lognormal is an exponentiated normal. (Recall
two interesting properties of the lognormal: the moments do not determine
the distribution (Exercise 1.28) and although the moments of all orders exist,
the moment-generating function does not exist (Example 1.10).) The inverse
Gaussian models the length of time required by Brownian motion to achieve a
certain distance, while the normal distribution models the distance achieved
in a certain time.

Two other distributions that relate to the normal are the inverted chi-
squared and the inverted Wishart. They are useful because they are conjugate
priors and they are also related to the reciprocal or inverse of statistics formed
from samples from a normal. They are also called “inverse” distributions, but
their origins are not at all related to that of the standard inverse Gaussian
distribution.

Continuous Distributions with Point Masses

We can form a mixture of a continuous distribution and a discrete distribution.
Such a distribution is said to be continuous with point masses. The probability
measure is not dominated by either a counting measure or Lebesgue measure.
A common example of such a distribution is the ε-mixture distribution, whose
CDF is given in equation (2.45) on page 194.

Entropy

It is often of interest to know the entropy of a given probability distribution. In
some applications we seek distributions with maximum or “large” entropy to
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use as probability models. It is interesting to note that of all distributions with
given first and second moments and having a PDF dominated by Lebesgue
measure, the one with maximum entropy is the normal (Exercise 1.88).

Characterizing a Family of Distributions

A probability family or family of distributions, P = {Pθ, θ ∈ Θ}, is a set
of probability distributions of a random variable that is defined over a given
sample space Ω. The index of the distributions may be just that, an arbitrary
index in some given set Θ which may be uncountable, or it may be some
specific point in a given set Θ in which the value of θ carries some descriptive
information about the distribution; for example, θ may be a 2-vector in which
one element is the mean of the distribution and the other element is the
variance of the distribution.

The distribution functions corresponding to the members of most inter-
esting families of distributions that we will discuss below do not constitute a
distribution function space as defined on page 754. This is because mixtures of
distributions in most interesting families of distributions are not members of
the same family. That is, distributions defined by convex linear combinations
of CDFs generally are not members of the same family of distributions. On
the other hand, often linear combinations of random variables do have distri-
butions in the same family of distributions as that of the individual random
variables. (The sum of two normals is normal; but a mixture of two normals
is not normal.) Table 1.1 on page 59 lists a number of families of distributions
that are closed under addition of independent random variables.

Likelihood Functions

The problem of fundamental interest in statistics is to identify a particular
distribution within some family of distributions, given observed values of the
random variable. Hence, in statistics, we may think of θ or Pθ as a variable.
A likelihood function is a function of that variable.

Definition 2.1 (likelihood function)
Given a PDF fθ, which is a function whose argument is a value of a random
variable x, we define a likelihood function as a function of θ for the fixed x:

L(θ | x) = fθ(x).

The PDF fθ(x) is a function whose argument is a value of a random variable
x for a fixed θ; the likelihood function L(θ | x) is a function of θ for a fixed x;
see Figure 1.2 on page 21.

In statistical applications we may be faced with the problem of choosing
between two distributions Pθ1 and Pθ2 . For a given value of x, we may base
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our choice on the two likelihoods, L(θ1 | x) and L(θ2 | x), perhaps using the
likelihood ratio

λ(θ1 , θ2|x) =
L(θ2 | x)
L(θ1 | x)

.

We have seen in equation (1.66) that the expectation of the likelihood
ratio, taken wrt to distribution in the denominator, is 1.

Parametric Families, Parameters, and Parameter Spaces

In Definition 1.13, we say that a family of distributions on a measurable space
(Ω,F) with probability measures Pθ for θ ∈ Θ is called a parametric family if
Θ ⊆ IRd for some fixed positive integer d and θ fully determines the measure.
In that case, we call θ the parameter and Θ the parameter space.

A family that cannot be indexed in this way is called a nonparametric
family. In nonparametric methods, our analysis usually results in some general
description of the distribution, such as that the CDF is continuous or that the
distribution has finite moments or is continuous, rather than in a specification
of the distribution.

The type of a family of distributions depends on the parameters that
characterize the distribution. A “parameter” is a real number that can take on
more than one value within a parameter space. If the parameter space contains
only one point, the corresponding quantity characterizing the distribution is
not a parameter.

In most cases of interest the parameter space Θ is an open convex subset of
IRd. In the N(µ, σ2) family, for example, Θ = IR× IR+. In the binomial(n, π)
family Θ =]0, 1[ and n is usually not considered a “parameter” because in
most applications it is assumed to be fixed and known. In many cases, for a
family with PDF pθ(x), the function ∂pθ(x)/∂θ exists and is an important
characteristic of the family (see page 168).

An example of a family of distributions whose parameter space is neither
open nor convex is the hypergeometric(N,M, n) family (see page 838). In this
family, as in the binomial, n is usually not considered a parameter because
in most applications it is assumed known. Also, in most applications, either
N or M is assumed known, but if they are both taken to be parameters,
then Θ = {(i, j) : i = 2, 3, . . . , j = 1, . . . , i}. Obviously, in the case of the
hypergeometric family, the function ∂pθ(x)/∂θ does not exist.

Many common families are multi-parameter, and specialized subfamilies
are defined by special values of one or more parameters. As we have men-
tioned and illustrated, a certain parameter may be referred to as a “location
parameter” because it identifies a point in the support that generally locates
the support within the set of reals. A location parameter may be a boundary
point of the support of it may be the mean or a median of the distribution.
Another parameter may be referred to as a “scale parameter” because it is
associated with scale transformations of the random variable. The standard
deviation of a normal random variable, for example, is the scale parameter of
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that distribution. Other parameters may also have some common interpreta-
tion, such as “shape”. For example, in the “three-parameter gamma” family
of distributions there are three parameters, γ, called the “location”; β, called
the “scale”; and α, called the “shape”. Its PDF is

(Γ(α))−1β−α(x − γ)α−1e−(x−γ)/βI[γ,∞[(x).

This family of distributions is sometimes called the three-parameter gamma,
because often γ is taken to be a fixed value, usually 0.

Specific values of the parameters determine special subfamilies of distri-
butions. For example, in the three-parameter gamma, if α is fixed at 1, the
resulting distribution is the two-parameter exponential, and if, additionally, γ
is fixed at 0, the resulting distribution is what most people call an exponential
distribution.

(Oddly, teachers of mathematical statistics many years ago chose the two-
parameter exponential, with location and scale, to be “the exponential”, and
chose the two-parameter gamma, with shape and scale, to be “the gamma”.
The convenient result was that the exponential could be used as an example of
a distribution that is not a member of the exponential class but is a member
of the location-scale class, and the gamma could be used as an example of a
distribution that is a member of the exponential class but is not a member
of the location-scale class. This terminology is not nonstandard, and it seems
somewhat odd to choose to include the location parameter in the definition of
the exponential family of distributions and not in the definition of the more
general gamma family of distributions. As noted, of course, it is just so we
can have convenient examples of specific types of families of distributions.)

Notation in Parametric Families

I use notation of the form “N(µ, σ2)” or “gamma(α, β, γ)” to represent a para-
metric family. The notation for the parameters is positional, and follows the
notations of the tables in Appendix A beginning on page 838. I generally use
a Greek letter to represent a parameter. Sometimes a distribution depends on
an additional quantity that is not a parameter in the usual sense of that term,
and I use a Latin letter to represent such a quantity, as in “binomial(n, π)”
for example. (The notation for the hypergeometric, with parameters N and
M , one of which is usually assigned a fixed value, is an exception.)

As noted above, if a parameter is assigned a fixed value, then it ceases
to be a parameter. If a parameter is fixed at some known value, I use a
subscript to indicate that fact, for example “N(µ, σ2

0)” may represent a normal
distribution with variance known to be σ2

0 . In that case, σ2
0 is not a parameter.

(A word of caution, however: I may use subscripts to distinguish between two
distributional families, for example, N(µ1, σ

2
1) and N(µ2, σ

2
2).)

Whether or not a particular characteristic of a distribution is a parameter
is important in determining the class of a particular family. For example,
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the three-parameter gamma is not a member of the exponential class (see
Section 2.4); it is a member of the parametric-support class (see Section 2.5).
The standard two-parameter gamma, however, with γ fixed at 0, is a member
of the exponential class. If γ is fixed at any value γ0, the gamma family is a
member of the exponential class. Another example is the normal distribution,
N(µ, σ2), which is a complete family (see Section 2.1); however, N(µ0, σ

2) is
not a complete family.

Types of Families

A reason for identifying a family of distributions is so that we can state inter-
esting properties that hold for all distributions within the family. The state-
ments that specify the family are the hypotheses for important theorems.
These statements may be very specific: “if X1, X2, . . . is a random sample
from a normal distribution...”, or they may be more general: “if X1, X2, . . . is
a random sample from a distribution with finite second moment...”

Some simple characterization such as “having finite second moment” is
easy to state each time its need arises, so there is little to be gained by
defining such a class of distributions. On the other hand, if the characteristics
are more complicated to state in each theorem that refers to that family of
distributions, it is worthwhile giving a name to the set of characteristics.

Because in statistical applications we are faced with the problem of choos-
ing the particular distributions Pθ0 from a family of distributions, P = {Pθ :
θ ∈ Θ}, the behavior of the CDFs or PDFs as functions of θ are of interest. It
may be important, for example, that the PDFs in this family be continuous
with respect to θ or that derivatives of a specified order with respect to θ
exist.

We identify certain collections of families of distributions for which we
can derive general results. Although I would prefer to call such a collection a
“class”, most people call it a “family”, and so I will too, at least sometimes.
Calling these collections of families “families” leads to some confusion, be-
cause we can have a situation such as “exponential family” with two different
meanings.

The most important class is the exponential class, or “exponential family”.
This family has a number of useful properties that identify optimal procedures
for statistical inference, as we will see in later chapters.

Another important type of family of distributions is a group family, of
which there are three important instances: a scale family, a location family,
and a location-scale family.

There are various other types of families characterized by their shape or by
other aspects useful in specific applications or that lead to optimal standard
statistical procedures.
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Parametric Modeling Considerations

In statistical applications we work with families of probability distribu-
tions that seem to correspond to observed frequency distributions of a data-
generating process. The first considerations have to do with the nature of the
observed measurements. The structure of the observation, just as the struc-
ture of a random variable, as discussed on page 38, is one of the most relevant
properties. As a practical matter, however, we will emphasize the basic scalar
structure, and attempt to model more complicated structures by imposition of
relationships among the individual components. Another important property
is whether or not the measurement is within the set of integers. Often the
measurement is a count, such as the number of accidents in a given period of
time or such as the number of defective products in a batch of a given size. A
PDF dominated by a counting measure would be appropriate in such cases.
On the other hand, if the measurement could in principle be arbitrarily close
to any of an uncountable set of irrational numbers, then a PDF dominated
by Lebesgue would be more appropriate.

The next consideration is the range of the measurements. This determines
the support of a probability distribution used as a model. It is convenient to
focus on three ranges, ]−∞,∞[, [a,∞[, and [a, b] where −∞ < a < b <∞. For
integer-valued measurements within these three types of ranges, the Poisson
family or the binomial family provide flexible models. Both the Poisson and
the binomial are unimodal, and so we may need to consider other distributions.
Often, however, mixtures of members of one of these families can model more
complicated situations.

For continuous measurements over these three types of ranges, the normal
family, the gamma family, and the beta family, respectively, provide flexible
models. Mixtures of members of one of these families provide even more flex-
ibility. The generality of the shapes of these distributions make them very
useful for approximation of functions, and the most common series of orthog-
onal polynomials are based on them. (See Table 0.2 on page 752.)

2.1 Complete Families

A family of distributions P is said to be complete iff for any Borel function h
that does not involve P ∈ P

E(h(X)) = 0 ∀P ∈ P =⇒ h(t) = 0 a.e. P.

A slightly weaker condition, “bounded completeness”, is defined as above,
but only for bounded Borel functions h.

Full rank exponential families are complete (exercise). The following ex-
ample shows that a nonfull rank exponential family may not be complete.
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Example 2.1 complete and incomplete family
Let

P1 = {distributions with densities of the form (
√

2πσ)−1 exp(x2/(2σ2))}.

(This is the N(0, σ2) family.) It is clear that E(h(X)) = 0 for h(x) = x, yet
clearly it is not the case that h(t) = 0 a.e. λ, where λ is Lebesgue measure.
Hence, this family, the family of normals with known mean, is not complete.
This example of course would apply to any symmetric distribution with known
mean.

With some work, we can see that the family

P2 = {distributions with densities of the form (
√

2πσ)−1 exp((x−µ)2/(2σ2))}

is complete.

Notice in the example that P1 ⊆ P2; and P2 is complete, but P1 is not.
This is a common situation.

Going in the opposite direction, we have the following theorem.

Theorem 2.1
Let P2 be the family of distributions wrt which the expectation operator is de-
fined and assume that P2 is complete. Now let P2 ⊆ P1, where all distributions
in P1 have common support. Then the family P1 is complete.

Proof. Exercise.

2.2 Shapes of the Probability Density

The general shape of a probability density may determine properties of sta-
tistical inference procedures. We can easily identify various aspects of a prob-
ability distribution that has a continuous density function. For discrete dis-
tributions, some of the concepts carry over in an intuitive fashion, and some
do not apply.

In the following, we will assume that X is a random variable (or vector)
with distribution in the family

P = {Pθ : θ ∈ Θ ⊆ IRk}

that is dominated by a σ-finite measure ν , and we let

fθ(x) = dPθ/dν.

First of all, we consider the shape only as a function of the value of the
random variable, that is, for a fixed member of the family the shape of the
PDF.

In some cases, the shape characteristic that we consider has (simple) mean-
ing only for random variables in IR.
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Empirical Distributions and Kernels of Power Laws

Many important probability distributions that we identify and give names to
arise out of observations on the behavior of some data-generating process. For
example, in the process of forming coherent sentences on some specific topics
there is an interesting data-generating process that yields the number of the
most often used word, the number of the second most often used word and so
on; that is, the observed data are x1, x2, . . ., where xi is the count of the word
that occurs as the ith most frequent. The linguist George Kingsley Zipf studied
this data-generating process and observed a remarkable empirical relationship.
In a given corpus of written documents, the second most commonly-used word
occurs approximately one-half as often as the most common-used word, the
third most commonly-used word occurs approximately one-third as often as
the second most common-used word. (This general kind of relationship had
been known before Zipf, but he studied it more extensively.) A probability-
generating function that expresses this empirical relationship has the kernel

k(x) = x−α, x = 1, 2, . . .

where α > 1.
The salient characteristic, which determines the shape of the PDF, is that

the relative frequency is a function of the value raised to some power. This kind
of situation is observed often, both in naturally occurring phenomena such
as magnitudes of earthquakes or of solar flares, and in measures of human
artifacts such as sizes of cities or of corporations. This is called a “power
law”. Use of the kernel above leads to a Zipf distribution, also called a zeta
distribution because the partition function is the (real) zeta function, ζ(s) =∑∞

i=1 z
s. (The Riemann zeta function is the analytic continuation of a series,

and obviously it is much more interesting than the real series.) The PDF, for
α > 1, is

f(x) =
1

ζ(α)
x−α, x ≥ 0.

Power law distributions with PDFs of this general form include the Pareto
distribution, the Benford distribution, and the power function distribution.

Symmetric Family

A symmetric family is one for which for any given θ there is a constant τ that
may depend on θ, such that

fθ(τ + x) = fθ(τ − x), ∀x.

In this case, we say the distribution is symmetric about τ .
In a symmetric family, the third standardized moment, η3, if it exists is

0; however, skewness coefficient. If η3 = 0, the distribution is not necessarily
symmetric.
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The characteristic function of distribution that is symmetric about 0 is
real, and any distribution whose characteristic function is real must have
symmetries about 0 within the periods of the sine function (see equation (1.92)
on page 47).

Unimodal Family

A family of distributions is said to be unimodal if for any given θ the mode
of the distribution exists and is unique. This condition is sometimes referred
to as strictly unimodal, and the term unimodal is used even with the mode of
the distribution is not unique.

A family of distributions with Lebesgue PDF p is unimodal if for any given
θ, fθ(x) is strictly concave in x (exercise). This fact can be generalized to fam-
ilies with superharmonic Lebesgue PDFs (see Definition 0.0.15 on page 659).

Theorem 2.2
A probability distribution with a Lebesgue PDF that is superharmonic is uni-
modal.

Proof. Exercise.
If the PDF is twice differentiable, by Theorem 0.0.15 unimodality can

be characterized by the Laplacian. For densities that are not twice differ-
entiable, negative curvature along the principal axes is sometimes called or-
thounimodality.

Logconcave Family

If log fθ(x) is strictly concave in x for any θ, the family is called a logconcave
family. It is also called a strongly unimodal family. A strongly unimodal fam-
ily is unimodal; that is, if logfθ(x) is concave in x, then fθ(x) is unimodal
(exercise). Strong unimodality is a special case of total positivity (see below).

The relevance of strong unimodality for location families, that is, for fam-
ilies in which fθ(x) = g(x − θ), is that the likelihood ratio is monotone in
x (see below) iff the distribution is strongly unimodal for a fixed value of θ
(exercise).

Heavy-tailed Family

A heavy-tailed family of probability distributions is one in which there is a
relatively large probability in a region that includes ]−∞, b[ or ]b,∞[ for some
finite b. This general characterization has various explicit instantiations, and
one finds in the literature various definitions of “heavy-tailed”. A standard
definition of that term is not important, but various specific cases are worth
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study. A heavy-tailed distribution is also called an outlier-generating distri-
bution, and it is because of “outliers” that such distributions find interesting
applications.

The concept of a heavy tail is equally applicable to the “left” or the “right”
tail, or even a mixture in the case of a random variable over IRd when d > 1.
We will, however, consider only the right tail; that is, a region ]b,∞[.

Most characterizations of heavy-tailed distributions can be stated in terms
of the behavior of the tail CDF. It is informative to recall the relationship of
the first moment of a positive-valued random variable in terms of the tail CDF
(equation (1.47)):

E(X) =

∫ ∞

0

F (t)dt.

If for some constant b, x > b implies

f(x) > c exp(−xTAx), (2.1)

where c is some positive constant and A is some positive definite matrix, the
distribution with PDF f is said to be heavy-tailed.

Equivalent to the condition (2.1) in terms of the tail CDF is

lim
x→∞

eaTxF (x) =∞ ∀a > 0. (2.2)

Another interesting condition in terms of the tail CDF that implies a
heavy-tailed distribution is

lim
x→∞

F (x+ t) = F (x). (2.3)

Distributions with this condition are sometimes called “long-tailed” distri-
butions because of the “flatness” of the tail in the left-hand support of the
distribution. This condition states that F (log(x)) is a slowly varing function
of x at ∞. (A function g is said to be slowly varying at ∞ if for any a > 0,
limx→∞ g(ax)/g(x) = 1.)

Condition (2.3) implies condition (2.2), but the converse is not true (Ex-
ercise 2.3).

Most heavy-tailed distributions of interest are univariate or else product
distributions. A common family of distributions that are heavy-tailed is the
Cauchy family. Another common example is the Pareto family with γ = 0.

Subexponential Family

Another condition that makes a family of distributions heavy-tailed is

lim
x→∞

1− F (2)(x)

1− F (x)
= 2. (2.4)
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A family of distributions satisfying this condition is called a subexponential
family (because the condition can be expressed as limx→∞ e−aTx/F (x) = 0).

Condition (2.4) implies condition (2.3), but the converse is not true (Ex-
ercise 2.4).

Monotone Likelihood Ratio Family

The shape of parametric probability densities as a function of both the values
of the random variable and the parameter may be important in statistical
applications. Here and in the next section, we define some families based
on the shape of the density over the cross product of the support and the
parameter space. These characteristics are most easily expressed for the case
of scalar parameters (k = 1), and they are also most useful in that case.

Let y(x) be a scalar-valued function. The family P is said to have a mono-
tone likelihood ratio iff for any θ1 6= θ2, the likelihood ratio,

λ(θ1 , θ2|x) = fθ2(x)/fθ1 (x)

is a monotone function of x for all values of x for which fθ1(x) is positive.
We also say that the family has a monotone likelihood ratio in y(x) iff the

likelihood ratio is a monotone function of y(x) for all values of x for which
fθ1(x) is positive.

Some common distributions that have monotone likelihood ratios are
shown in Table 2.1. See also Exercise 2.5.

Table 2.1. Some Common One-Parameter Families of Distributions with Monotone
Likelihood Ratios

normal(µ, σ2
0)

uniform(θ0, θ), uniform(θ, θ + θ0)
exponential(θ) or exponential(α0, θ)
double exponential(θ) or double exponential(µ0, θ)
binomial(n, π) (n is assumed known)
Poisson(θ)

A subscript on a symbol for a parameter indicates that the symbol represents a known

fixed quantity. See Appendix A for meanings of symbols.

Families with monotone likelihood ratios are of particular interest because
they are easy to work with in testing composite hypotheses (see the discussion
in Chapter 7 beginning on page 520).

The concept of a monotone likelihood ratio family can be extended to fam-
ilies of distributions with multivariate parameter spaces, but the applications
in hypothesis testing are not as useful because we are usually interested in
each element of the parameter separately.
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Totally Positive Family

A totally positive family of distributions is defined in terms of the total posi-
tivity of the PDF, treating it as a function of two variables, θ and x. In this
sense, a family is totally positive of order r iff for all x1 < · · · < xn and
θ1 < · · · < θn,

∣∣∣∣∣∣∣

fθ1(x1) · · · fθ1 (xn)
...

...
...

fθn(x1) · · · fθn(xn)

∣∣∣∣∣∣∣
≥ 0 ∀ n = 1, . . . , r. (2.5)

A totally positive family with r = 2 is a monotone likelihood ratio family.

2.3 “Regular” Families

Conditions that characterize a set of objects for which a theorem applies are
called “regularity conditions”. I do not know the origin of this term, but it
occurs in many areas of mathematics. In statistics there are a few sets of reg-
ularity conditions that define classes of interesting probability distributions.

We will often use the term “regularity conditions” to refer to continuity
and differentiability of the PDF wrt the parameter.

2.3.1 The Fisher Information Regularity Conditions

The most important set of regularity conditions in statistics are some that
allow us to put a lower bound on the variance of an unbiased estimator (see
inequality (B.25) and Sections 3.1.3 and 5.1). Consider the family of distribu-
tions P = {Pθ; θ ∈ Θ} that have densities fθ.

There are generally three conditions that together are called the Fisher
information regularity conditions:

• The parameter space Θ ⊆ IRk is convex and contains an open set.
• For any x in the support and θ ∈ Θ◦, ∂fθ(x)/∂θ and ∂2fθ(x)/∂θ

2 exist
and are finite, and ∂2fθ(x)/∂θ

2 is continuous in θ.
• The support is independent of θ; that is, all Pθ have a common support.

The latter two conditions ensure that the operations of integration and dif-
ferentiation can be interchanged twice.

Because the Fisher information regularity conditions are so important,
the phrase “regularity conditions” is often taken to mean “Fisher information
regularity conditions”. The phrase “Fisher regularity conditions” is also used
synonymously, as is “FI regularity conditions”.
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2.3.2 The Le Cam Regularity Conditions

The Le Cam regularity conditions are the first two of the usual FI regularity
conditions plus the following.

• The Fisher information matrix (see equation (1.83)) is positive definite for
any fixed θ ∈ Θ.

• There exists a positive number cθ and a positive function hθ such that
E(hθ(X)) <∞ and

sup
γ:‖γ−θ‖<cθ

∥∥∥∥
∂2 log fγ(x)

∂γ(∂γ)T

∥∥∥∥
F

≤ hθ(x) a.e. (2.6)

where fθ(x) is a PDF wrt a σ-finite measure, and “a.e.” is taken wrt the
same measure.

2.3.3 Quadratic Mean Differentiability

The Fisher information regularity conditions are often stronger than is needed
to ensure certain useful properties. The double exponential distribution with
Lebesgue PDF 1

2θ
e−|y−µ|/θ, for example, has many properties that make it a

useful model, yet it is not differentiable wrt µ at the point x = µ, and so the
FI regularity conditions do not hold. A slightly weaker regularity condition
may be more useful.

Quadratic mean differentiability is expressed in terms of the square root of
the density. As with differentiability generally, we first consider the property
at one point, and then we apply the term to the function, or in this case,
family, if the differentiability holds at all points in the domain.

Consider again a family of distributions P = {Pθ; θ ∈ Θ ⊆ IRk} that have
densities fθ. This family is said to be quadratic mean differentiable at θ0 iif
there exists a real k-vector function η(x, θ0) = (η1(x, θ0), . . . , ηk(x, θ0)) such
that

∗ ∗ ∗fix
∫

(∗ ∗ ∗ ∗ ∗∗)2 dx ∈ o(|h|2) as |h| → 0.

Compare quadratic mean differentiability with Fréchet differentiability (Def-
inition 0.1.57, on page 761).

If each member of a family of distributions (specified by θ) is quadratic
mean differentiable at θ, then the family is said to be quadratic mean differ-
entiable, or QMD.

2.4 The Exponential Class of Families

The exponential class is a set of families of distributions that have some partic-
ularly useful properties for statistical inference. The important characteristic
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of a family of distributions in the exponential class is the way in which the pa-
rameter and the value of the random variable can be separated in the density
function. Another important characteristic of the exponential family is that
the support of a distribution in this family does not depend on any “unknown”
parameter.

Definition 2.2 (exponential class of families)
A member of a family of distributions in the exponential class is one with
densities that can be written in the form

pθ(x) = exp
(
(η(θ))TT (x)− ξ(θ)

)
h(x), (2.7)

where θ ∈ Θ, and where T (x) is not constant in x.

Notice that all members of a given family of distributions in the exponen-
tial class have the same support. Any restrictions on the range may depend
on x through h(x), but they cannot depend on the parameter.

Many of the common families of distributions used as probability models
of data-generating processes are in the exponential class. In Table 2.2, I list
some families of distributions in the exponential class.

Table 2.2. Some Common Families of Distributions in the Exponential Class

Discrete Distributions

binomial(n, π) (n is assumed known)
multinomial(n, π) (n is assumed known)
negative binomial(n, π) (n is assumed known)
Poisson(θ)
power series(θ, {hy}) ({hy} is assumed known)

Continuous Distributions

normal(µ, σ2), normal(µ0, σ
2), or normal(µ, σ2

0)
log-normal(µ, σ2), log-normal(µ0, σ

2), or log-normal(µ, σ2
0)

inverse Gaussian(µ, λ)
beta(α, β)
Dirichlet(α)
exponential(θ) or exponential(α0, θ)
double exponential(θ) or double exponential(µ0, θ)
gamma(α, β) or gamma(α, β, γ0)
gamma(α0, β) (which includes the exponential)
gamma(α, β0) (which includes the chi-squared)
inverted chi-squared(ν0)
Weibull(α, β0)
Pareto(α, γ0)
logistic(µ, β)

A subscript on a symbol for a parameter indicates that the symbol represents a known

fixed quantity. See Appendix A for meanings of symbols.
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Note that the binomial, negative binomial, and Poisson families in Ta-
ble 2.2 are all special cases of the general power series distributions whose
PDF may be formed directly from equation (2.7); see page 175.

In Table 2.3, I list some common families of distributions that are not in
the exponential class. Notice that some families listed in Table 2.2, such as
Pareto(α, γ0), for which some measure of the distribution is considered to be
a fixed constant are no longer in the exponential class if we consider that
fixed constant to be a parameter, as in the case of the two-parameter Pareto
Pareto(α, γ).

Table 2.3. Some Common Families of Distributions Not in the Exponential Class

exponential(α, θ)
gamma(α, β, γ)
Weibull(α, β)
uniform(θ1, θ2)
double exponential(µ, θ)
Cauchy(γ, β), Cauchy(γ0, β), or Cauchy(β)
Pareto(α, γ)
t(ν0)

A family of distributions in the exponential class is called an exponential
family, but do not confuse an “exponential family” in this sense with the
“exponential family”, that is, the parametric family with density of the form
1
b
e−x/b I[0,∞[(x). (This is the usual form of the exponential family, and it is a

member of the exponential class. In courses in mathematical statistics, it is
common to define the exponential family to be the two-parameter family with
density 1

be−(x−a)/b I[a,∞[(x). This two-parameter form is not used very often,
but it is popular in courses in mathematical statistics because this exponential
family is not an exponential family(!) because of the range dependency.)

The form of the expression for the PDF depends on the σ-finite dominating
measure that defines it. If the expression above results from

pθ =
dPθ

dν

and we define a measure λ by λ(A) =
∫
A
hdν ∀A ∈ F , then we could write

the PDF as
dPθ

dλ
= exp

(
(η(θ))TT (x) − ξ(θ)

)
. (2.8)

Whatever the particular form of the PDF, an essential characteristic of it
is the form of the decomposition as in equation (1.17). Formed from equa-
tion (2.7), this is

pθ(x) = exp(−ξ(θ)) exp
(
(η(θ))TT (x)

)
h(x); (2.9)
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that is, the kernel has the form k(x) = exp
(
(η(θ))TT (x)

)
h(x). The im-

portant thing to note is that the elements of the parameter vector η(θ) =
(η(θ)1, . . . , η(θ)k) appear in the kernel only in an exponential and as a linear
combination of functions of x.

In the notation of equation (2.9), we see that the partition function is

exp(ξ(θ)) =

∫
exp

(
(η(θ))TT (x)

)
h(x)dx.

The form of the expression also depends on the parametrization; that is,
the particular choice of the form of the parameters. First, notice that the only
identifiable parameters must be in the elements of η(θ). The other function of
the parameters, ξ(θ), which forms the partition, cannot introduce any more
identifiable parameters; in fact, it can be written simply as

ξ(θ) = log

(∫

X
exp

(
(η(θ))TT (x)

)
h(x)dx

)
.

The expression
µ = Eθ(T (x)) (2.10)

is called the mean-value parameter, and use of µ for η(θ) is called the mean-
value parametrization. We can develop an explicit expression for Eθ(T (x))
as

E(T (X)) = ξ′(θ)/η′(θ).

(See Section 2.4.7.)
If a family of distributions has parameters α and β, we could equivalently

say the family has parameters α and γ, where γ = α+ β; that is,

(
α
γ

)
=

[
1 0
1 1

](
α
β

)
.

In this case of course we would have to replace T (x) = (T1(x), T2(x))

T̃ (x) = (T1(x)− T2(x), T2(x)).

In fact, if η(θ) ∈ IRd, and D is any nonsingular d × d matrix, then with
η̃ = Dη(θ), we can write an equivalent form of (η(θ))TT (x). To do so of

course, we must transform T (x) also. So (η(θ))TT (x) = η̃TT̃ (x), where T̃ (x) =
(DT)−1T (x).

A PDF of the form f(x; θ)I(x; θ) with respect to a σ-finite measure λ
(where I(x; θ) is an indicator function such that for some given x0, ∃θ1, θ2 ∈
Θ 3 I(x; θ1) = 0, I(x; θ2) = 1) cannot be put in the form c exp(g(x; θ))h(x)
because c exp(g(x; θ)) > 0 λ-a.e. (because the PDF must be bounded λ-a.e.).
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2.4.1 The Natural Parameter Space of Exponential Families

In the expression for the density, it might be more natural to think of the
parameter as η rather than θ; that way we would have an expression of form
ηTT (x) rather than (η(θ))TT (x). We call the form

pθ(x) = exp
(
(ηTT (x)− ζ(η)

)
h(x) (2.11)

the canonical exponential form, and we call

H = {η :

∫
eηTT (x)h(x)dx <∞} (2.12)

the natural parameter space. (Notice that H is the upper-case form of η.) The
conditions in equation (2.12) are necessary to ensure that a ζ(η) exists such
that pθ(x) is a PDF. Another characterization of H is

H = {η : η = η(θ), θ ∈ Θ}

(under the assumption that Θ is properly defined, of course).

2.4.2 The Natural Exponential Families

An interesting subclass of exponential families is the class of exponential fam-
ilies in which T (x) in the defining expression (2.7) is linear. This subclass
is variously called the “natural exponential families”, the “linear exponential
families”, or the “canonical exponential families”.

Given a random variableX whose distribution is in any exponential family,
the random variable Y = T (X) has a distribution in the natural exponential
family.

The cumulant-generating and probability-generating functions of natu-
ral exponential families have several simple properties (see Brown (1986) or
Morris and Lock (2009)).

2.4.3 One-Parameter Exponential Families

An important subfamily of exponential families are those in which η(θ) ∈ IR,
that is, those whose parameter is a scalar (or effectively a scalar). This family
is called a one-parameter exponential.

Theorem 2.3
Suppose a PDF p(x|θ) can be written as exp(g(x; θ))h(x). where

g(x; θ) = η(θ)T (x) − ξ(θ),

with η(θ) ∈ IR, and Let x1, x2, x3, x4 be any values of x for which p(x|θ) > 0.
Then a necessary and sufficient condition that the distribution with the given
PDF is in a one-parameter exponential family is that
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g(x1; θ) − g(x2; θ)

g(x3; θ) − g(x4; θ)
(2.13)

is constant with respect to θ.

Proof.
It is clear from the definition that this condition is sufficient.

To show that it is necessary, first observe

g(xi; θ) − g(xj ; θ) = η(θ)(T (xi) − T (xj))

Now, for x3 and x4 such that g(x3; θ) 6= g(x4; θ), we see that the ratio (2.13)
must be constant in θ, because η(θ) ∈ IR.

An example of an application of Theorem 2.3 is to show that the one-
parameter Cauchy family of distributions is not in the exponential class. (In
these distributions the scale parameter β = 1.)

Example 2.2 the Cauchy family is not an exponential family
The PDF of the Cauchy is

p(x|γ) =
1

π
(
1 + (x− γ)2

)

= exp
(
− log(π) − log

(
1 + (xγ)

2
))

.

Thus,

g(x; θ) = − log(π)− log
(
1 + (x− γ)2

)

and for the four distinct points x1, x2, x3, x4,

g(x1; θ) − g(x2; θ)

g(x3; θ) − g(x4; θ)
=
− log

(
1 + (x1 − γ)2

)
+ log

(
1 + (x2 − γ)2

)

− log
(
1 + (x3 − γ)2

)
+ log

(
1 + (x4 − γ)2

)

is not constant in γ; hence the one-parameter Cauchy family of distributions
is not in the exponential class.

We often express the PDF for a member of a one-parameter exponential
family as

pη(x) = β(η)eηT (x)h(x). (2.14)

In some cases if the support is IR, we can write the PDF as

pη(x) = β(η)eηT (x). (2.15)

One-parameter exponential families are monotone likelihood ratio families
(exercise), and have useful applications in statistical hypothesis testing.

Theory of Statistics c©2000–2025 James E. Gentle



2.4 The Exponential Class of Families 175

2.4.4 Discrete Power Series Exponential Families

Various common discrete distributions can be formed directly from the general
form of the PDF of one-parameter exponential families. In the notation of
equation (2.14), let θ = eη , and suppose T (x) = x. If h(x) (or hx) is such that

∞∑

x=0

hxθ
x = c(θ) <∞, for θ ∈ Θ ⊆ IR+,

we have the probability mass function

pθ(x) =
hx

c(θ)
θxI{0,1,...}(x), (2.16)

where θ ∈ Θ. A family of distributions with PDFs of the form (2.16) is called
a discrete power series family. Many of the common discrete families of dis-
tributions, such as the Poisson, the binomial, and the negative binomial, are
of the power series class (Exercise 2.13).

2.4.5 Quadratic Variance Functions

An interesting class of exponential families are those whose variance is at most
a quadratic function of its mean. For example, in the binomial distribution
with parameters n and π, the mean is µ = nπ and the variance is nπ(1− π).
The variance as a function of µ is

nπ(1− π) = −µ2/n+ µ = v(µ)

As another example, in the normal distribution N(µ, σ2), the variance is at
most a quadratic function of the mean because, in fact, it is constant with re-
spect to the mean. In the Poisson distribution, the variance is a linear function
of the mean; in the gamma with parameters α and β, we have v(µ) = µ2/α;
and in the negative binomial distribution with parameters r and π, we have
v(µ) = µ2/n+ µ.

The normal, Poisson, gamma, binomial, negative binomial distributions,
and one other family are in fact the only univariate natural exponential fam-
ilies with quadratic variance functions. (The other family is formed from hy-
perbolic secant distributions, and is not often used.) The quadratic variance
property can be used to identify several other interesting properties, including
infinite divisibility, cumulants, orthogonal polynomials, large deviations, and
limits in distribution.

2.4.6 Full Rank and Curved Exponential Families

We say the exponential family is of full rank if the natural parameter space
contains an open set.
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An exponential family that is not of full rank may also be degenerate,
meaning that there exists a vector a and a constant r such that

∫

aTx=r

pθ(x)dx = 1.

(The term “degenerate” in this sense is also applied to any distribution,
whether in an exponential family or not.) The support of a degenerate distri-
bution within IRd is effectively within IRk for k < d. An example of a nonfull
rank exponential family that is also a degenerate family is the family of multi-
nomial distributions (page 838). A continuous degenerate distribution is also
called a singular distribution.

An example of a family of distributions that is a nonfull rank exponential
family is the normal family N(µ, µ2).

A nonfull rank exponential family is also called a curved exponential family.

2.4.7 Properties of Exponential Families

Exponential families have a number of useful properties. First of all, we note
that an exponential family satisfies the Fisher information regularity condi-
tions. This means that we can interchange the operations of differentiation
and integration, a fact that we will exploit below. Other implications of the
Fisher information regularity conditions allow us to derive optimal statistical
inference procedures, a fact that we will exploit in later chapters.

In the following, we will use the usual form of the PDF,

fθ(x) = exp(η(θ)TT (x)− ξ(θ))h(x),

and we will assume that it is of full rank.
We first of all differentiate both sides of the identity, wrt θ,

∫
fθ(x) dx = 1 (2.17)

Carrying the differentiation on the left side under the integral, we have
∫ (

Jη(θ)T (x) −∇ξ(θ)
)

exp
(
η(θ)T (x) − ξ(θ)

)
h(x) dx = 0.

Hence, because by assumption Jη(θ) is of full rank, by rearranging terms under
the integral and integrating out terms not involving x, we get the useful fact

E(T (X)) = (Jη(θ))−1∇ξ(θ). (2.18)

We now consider E(T (X)). As it turns out, this is a much more difficult
situation. Differentiation yields more complicated objects. (See Gentle (2007),
page 152, for derivatives of a matrix wrt a vector.) Let us first consider the
scalar case; that is, η(θ) and T (x) are scalars, so η(θ)TT (x) is just η(θ)T (x).
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In this case, differentiating a second time with respect to θ, we get
∫
T (x)(η′(θ)T (x)−ξ′(θ)) exp(η(θ)T (x)−ξ(θ))h(x) dx = ξ′′(θ)η′(θ)/(η′(θ))2−ξ′(θ)η′′(θ)/(η′(θ))2 ,

or

η′(θ)E((T (X))2) − ξ′(θ)E(T (X)) = ξ′′(θ)/η′(θ) − ξ′(θ)η′′(θ)/(η′(θ))2

or

E((T (X))2) = (ξ′(θ))2/(η′(θ))2 − ξ′′(θ)/(η′(θ))2 − ξ′(θ)η′′(θ)/(η′(θ))3 .

Finally, collecting terms, we have

V(T (X)) = E((T (X))2)− (E((T (X)))2

=
ξ′′(θ)

(η′(θ))2
− ξ′(θ)η′′(θ)

(η′(θ))3
. (2.19)

********* proposition 3.2 in shao, page 171. look at two parameteriza-
tions; natural and mean.

V(T (X)) = Hζ (η) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 8,

where Hζ(η) is the matrix of second derivatives of ζ with respect to η.
It is often a simple matter to determine if a member of the exponential

class of distributions is a monotone likelihood ratio family. If η(θ) and T (x)
in equation (2.7) for the PDF of a distribution in the exponential class are
scalars, and if η(θ) is monotone in θ, then the family has a monotone likelihood
ratio in T (x).

2.5 Parametric-Support Families

Parametric-support families have simple range dependencies, that is, these are
distributions whose supports depend on parameters. A distribution in any of
these families has a PDF in the general form

pθ(x) = f(x, θ)I[f1(θ),f2(θ)](x). (2.20)

These families are also called “truncation families”, but most people use the
term “truncated family” to refer to a family that is artificially truncated
(for example, due to censoring; see Section 2.10.1). For example, to refer to
the three-parameter gamma as a truncated distribution would be to confuse
it with the more standard terminology in which a truncated gamma is the
distribution formed from a two-parameter distribution with PDF

c

Γ(α)βα
xα−1e−x/βI[τ1,τ2](x),
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where c is just the normalizing constant, which is a function of α, β, τ1, and τ2.
In applications, the truncation points, τ1 and τ2, are often known fixed values.
If they are treated as parameters, of course, then the truncated distribution
is a parametric-support family.

Parametric-support families, such as the family of two-parameter exponen-
tials, are not exponential families; likewise, exponential families, such as the
family of one-parameter exponentials, are not parametric-support families.

In some cases the parameters can be separated so some apply to the sup-
port and others are independent of the support. If the parameters are func-
tionally independent, various properties of the distribution may be identified
with respect to some parameters only. Also different statistical methods may
be used for different parameters. For example, in the three-parameter gamma
with PDF

1

Γ(α)βα
xα−1e−x/βI[γ,∞[(x),

some aspects of the distribution are those of a family in the exponential class,
while other aspects can be related to a simple uniform distribution, U(0, θ).

2.6 Transformation Group Families

“Group” families are distributions that have a certain invariance with respect
to a group of transformations on the random variable. If g is a transformation
within a group G of transformations (see Example 0.0.4 on page 630), and X
is a random variable whose distribution is in the family PG and if the random
variable g(X) also has a distribution in the family PG, the family PG is said
to be invariant with respect to G.

Transformations on the Sample Space and the Parameter Space

Let G be a group of transformations that map the probability space onto
itself. For g ∈ G X and g(X) are random variables that are based on the same
underlying measure, so the probability spaces are the same; the transformation
is a member of a transformation group, so the domain and the range are equal
and the transformations are one-to-one.

g : X 7→ X , 1 : 1 and onto

For given g ∈ G above, let g̃ be a 1:1 function that maps the parameter
space onto itself, g̃ : Θ 7→ Θ, in such a way that for any set A,

Prθ(g(X) ∈ A) = Prg̃(θ)(X ∈ A). (2.21)

If this is the case we say g̃ preserves Θ. Any two functions that preserve the
parameter space form a group of functions that preserve the parameter space.
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The set of all such g̃ together with the induced structure is a group, G̃. We
write

g̃(θ) = θ̃. (2.22)

g̃ : Θ 7→ Θ, 1 : 1 and onto

We may refer to G̃ as the induced group under G. The group G̃ is transitive in
the sense defined on page 756.

Example 2.3 Transformations in a binomial distribution
Suppose X is a random variable with a distribution in the binomial(n, π)
family. In applications, the random variable is often taken as the sum of binary
variables in which the 0 value is interpreted as one value of a binary state (“off-
on”, “good-bad”, etc.). If the meaning of the binary state were changed, the
binomial model for the application would remain unchanged. Instead of the
original random variable, however, we would have g(X) = n −X. A further
transformation g̃(π) = 1 − π establishes the effect on the parameter space
occasioned by the transformation on the probability space.

In the notation above G in G = (G, ◦) is given by

G = {g(x) = x, g(x) = n− x : x ∈ {0, . . . , n}},

and G̃ in G̃ is given by

G̃ = {g̃(x) = x, g̃(x) = 1− x : x ∈]0, 1[}.

It is easy to see that both G and G̃ are groups (exercise).

Formation of Transformation Group Families

A group family can be formed from any family of distributions. (Notice that
the preceding statement does not mean that any family is a group family;
that depends on what variable parameters define the family.) The usual one-
parameter exponential family of distributions, which is of the exponential
class, is a transformation group family where the transformation is a scale
(multiplicative) transformation, but is not a transformation group family
where the transformation is a location and scale transformation. This family
can be made into a location-scale group family by adding a location parame-
ter. The resulting two-parameter exponential family is, of course, not of the
exponential class.

The random variable space associated with a transformation group of prob-
ability distributions is closed with respect to that class of transformations.

2.6.1 Location-Scale Families

The most common group is the group of linear transformations, and this yields
a location-scale group family, or just location-scale family, the general form of
which is defined below.
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Given a d-variate random variable X, a d × d positive-definite matrix Σ
and a d-vector µ, it is clear that if F (x) is the CDF associated with the random
variable X, then |Σ−1/2|F (Σ−1/2(x−µ)) is the CDF associated with Y . The
class of all distributions characterized by CDFs that can be formed in this
way is of interest.

Definition 2.3 (location-scale families)
Let X be a random variable on IRk, let V ⊆ IRk, and letMk be the collection
of k × k symmetric positive definite matrices. The family of distributions of
the random variables of the form

Y = Σ1/2X + µ, for µ ∈ V, Σ ∈Mk (2.23)

is called a location-scale family. The group of linear transformations y = g(x)
in equation (2.23) is also called the location-scale group.

The random variable space associated with a location-scale family is a
linear space.

If the PDF of a distribution in a location-scale family is f(x), the PDF
of any other distribution in that family is |Σ−1/2|f(Σ−1/2(x − µ)). In the
case of a scalar x, this simplifies to f((x− µ)/σ)/σ. Thus, in a location-scale
family the kernel of the PDF is invariant under linear transformations (see
Definition 0.1.103 on page 755). The probability measure itself is invariant to
the location transformation and equivariant to the scale transformation.

We often use
f((x − µ)/σ)/σ (2.24)

generically to represent the PDF of a distribution in a location-scale family.
While we can always form a location-scale family beginning with any dis-

tribution, our interest is in which of the usual families of distributions are
location-scale families. Clearly, a location-scale family must have enough pa-
rameters and parameters of the right form in order for the location-scale
transformation to result in a distribution in the same family. For example,
a three-parameter gamma distribution is a location-scale family, but a two-
parameter gamma (without the range dependency) is not.

In Table 2.4, I list some common distribution families in which we can
identify a location parameter. While the usual form of the family has more
than one parameter, if all but one of the parameters are considered to be fixed
(that is, effectively, they are not parameters), the remaining parameter is a
location parameter.

An interesting property of a location family is that the likelihood function
is the same as the PDF. Figure 1.2 on page 21 illustrates the difference in a
likelihood function and a corresponding PDF. In that case, the distribution
family was exponential(0, θ), which of course is not a location family. A sim-
ilar pair of plots for exponential(α, θ0), which is a location family, would be
identical to each other (for appropriate choices of α on the one hand and x
on the other, of course).
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Table 2.4. Some Common One-Parameter Location Group Families of Distributions

normal(µ, σ2
0)

exponential(α, θ0)
double exponential(µ, θ0)
gamma(α0, β0, γ)
Cauchy(γ, β0)
logistic(µ,β0)
uniform(θ − θ0, θ + θ0)

A subscript on a symbol for a parameter indicates that the symbol represents a known

fixed quantity. See Appendix A for meanings of symbols.

Table 2.5. Some Common One-Parameter Scale Group Families of Distributions

normal(µ0, σ
2)

inverse Gaussian(µ, λ)
exponential(α0, θ)
double exponential(µ0, θ)
gamma(α0, β, γ0)
Cauchy(γ0, β)
logistic(µ0, β)
uniform(θ0 − θ, θ0 + θ)

A subscript on a symbol for a parameter indicates that the symbol represents a known

fixed quantity. See Appendix A for meanings of symbols.

Often, a particular parameter in a parametric family can be identified as a
“location parameter” or as a “scale parameter”, and the location-scale trans-
formation affects these two parameters in the obvious way. In some cases,
however, a location transformation or a scale transformation alone affects
more than one parameter. For example, a scale transformation σX on a ran-
dom variable with distribution inverse Gaussian(µ, λ) results in a random
variable with distribution inverse Gaussian(σµ, σλ). (There is an alternative
parametrization of the inverse Gaussian with λ̃ = λ and µ̃ =

√
λ/µ. In that

notation, the scaling affects only the λ̃.)
Many of the common parametric families are both location and scale fam-

ilies; that is, they are location-scale group families. The families in both Ta-
bles 2.4 and 2.5 can be combined into two-parameter families that are location-
scale group families. The normal(µ, σ2), for example, is a location-scale group
family.

Some standard parametric families that are not location-scale group fam-
ilies are the usual one-parameter exponential family, the binomial family, and
the Poisson family.
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Note that the only families of distributions that are in both the exponential
class and the transformation group class are the normal, the inverse Gaussian,
and the gamma.

We have used the term “scale” to refer to a positive (or positive definite)
quantity. There are other group families formed by a larger transformation
group than those of equation (2.23). The transformations

h(x) = a+Bx, (2.25)

where B is a nonsingular matrix (but not necessarily positive definite), forms
a transformation group, and the multivariate normal family Nd(µ,Σ) is a
group family with respect to this group of transformation. Notice that the
transformations in the group G = {h : h(x) = a + Bx, B nonsingular} can
be formed by a smaller group, such as the same transformations in which B is
a nonsingular lower triangular matrix (that is, one with nonnegative diagonal
elements).

2.6.2 Invariant Parametric Families

Our interest in group families is often motivated by a certain symmetry in the
sample space and the parameter space. That symmetry is expressed in the
relationships between G the group of transformations that map the probability
space onto itself and G̃ the induced group under G.

Definition 2.4 (invariant class of families)
Let P = {pθ : θ ∈ Θ} be a parametric family of distributions on (X ,B). Let
X be a random variable with CDF Pθ0 ∈ P. Let G be a group of transfor-
mations on X . If for each g ∈ G there is a 1:1 function g̃ on Θ such that the
random variable g(X) has CDF Pg̃(θ0) ∈ P, then P is said to be an invariant
parametric family under G.

Some common families of distributions that are in the invariant parametric
class under the location-scale group with their regular parametrization include
the normal, the double exponential, the exponential, the uniform (even with
parametric ranges), and the Cauchy.

As suggested above, an invariant class under some transformation group
can be generated by any distribution. This is not always possible for a specified
group of transformations, however. For example, the (usual single-parameter)
exponential family is not a member of a location invariant class.

Other Invariant Distributions

Given independent random variables X and Y , the distributions of X and
Y may be such that there is a nontrivial transformation involving X and
Y that yields a random variable that has the same distribution as X. that
is, the distribution of X and g(X, Y ) is the same. For this to be the case,
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clearly g must be a many-to-one map, so it is not an arbitrary member of a
transformation group.

An important property of the U(0, 1) distribution is the following. If a
random variable is distributed as U(0, 1) and is scaled or convolved with a
random variable that has any uniform distribution whose range includes [0, 1],
and then reduced modulo 1, the resulting random variable has a U(0, 1) dis-
tribution. To state this more clearly, let X ∼ U(0, 1) and Y be distributed
independently as U(a, b) where a < 0 and b > 1 and let c > 1. Now let

Z = (cX + Y ) mod 1.

Then Z
d
= X.

Another example of a distribution and transformation that is invariant (or
nearly so) is the distribution of first digits and a positive scaling transforma-
tion. The digital representation of a random variable X is

X = D1b
K−1 +D2b

K−2 +D3b
K−3 + · · ·

where b ≥ 3 is a fixed integer, K is an integer-valued random variable, Di

is a nonnegative integer-valued random variable less than b, and D1 > 0.
If X has a uniform distribution over (bk−1, bk), the distribution of the first
digit D1 is not uniform over {1, . . . , b− 1} as one might guess at first glance.
With a larger range of X, remarkably, the distribution of D1 is invariant
to scale transformations of X (so long as the range of the scaled random
variable includes a range of powers of b. (Note that the first digit in the
digital representation of aX is not necessarily aD1.)

A wellknown example of this type of distribution and transformation is
known as “Benford’s law”. See Exercise 2.10.

2.7 Infinitely Divisible and Stable Families

The concept of divisibility was put forth in Definitions 1.31 and 1.32 on
page 61. Distributions that are infinitely divisible are of most interest because
they yield tractable models with a wide range of applications, especially in
stochastic processes.

If {Xt : t ∈ [0,∞[} is a Lévy process, then any random variable X(t) is
infinitely divisible.

Stable Families

Stability of random variables was defined in Definition 1.33 on page 62.
Stable families are closely related to infinitely divisible families. All sta-

ble families are infinitely divisible, but an infinitely divisible family is not
necessarily stable. The Poisson family is an example (exercise).
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Most members of the stable family do not have PDFs or CDFs that can be
represented in a closed form. The family is defined by a cumulant-generating
function of the form

K(t) = iµt− |σt|α (1− iβ sign(t)ω(α, t)) , (2.26)

where ω(α, t) = (2/π) log(|t|) for α = 1 and t 6= 0, and ω(α, t) = tan(απ/2)
for α 6= 1. The parameters are analogous to parameters in other distributions
that represent the mean, standard deviation, skewness, and kurtosis, although
except in some special cases by the usual definitions of such measures of a
distribution (based on expectations) these quantities do not exist or else are
infinite in the stable family of distributions. The parameters are

• α ∈]0, 2]: stability coefficient of equation (1.138)
• β ∈ [−1, 1]: skewness parameter (not necessarily related to a third mo-

ment)
• σ ∈ IR+: scale parameter (not necessarily related to a second moment)
• µ ∈ IR: location parameter (not necessarily related to a first moment)

If β = 0 the distribution is symmetric (and note if also µ = 0, the cumulant-
generating function and hence, the characteristic function, is real).

The symmetric α-stable families, as α ranges from 1, which is the Cauchy
distribution, to 2, which is the normal, has progressively lighter tails.

2.8 Families of Distributions with Heavy Tails

Exponential power family of distributions, also called the generalized error
family of distributions.

Kernel
k(x) = e−|x/β|α

The Pareto distribution has relatively heavy tails; for some values of the
parameter, the mean exists but the variance does not. A “Pareto-type” dis-
tribution is one whose distribution function satisfies the relationship

P (x) = 1− x−γg(x),

where g(x) is a slowly varying function; that is, for fixed t > 0,

lim
x→∞

g(tx)

g(x)
= 1.

The Burr distribution with the CDF given in (2.54) is of the Pareto type,
with γ = αB.

The stable family of distributions is a flexible family of generally heavy-
tailed distributions. This family includes the normal distribution at one ex-
treme value of one of the parameters and the Cauchy distribution at the other
extreme value. There are various parameterizations of the stable distributions.
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Depending on one of the parameters, α, the index of stability, the charac-
teristic function (equation (??), page ??) for random variables of this family
of distributions has one of two forms:

φ(t | α, σ,B, µ) = exp
(
−σα|t|α

(
1− iBsign(t) tan(πα/2)

)
+ iµt

)
if α 6= 1,

or

φ(t | 1, σ,B, µ) = exp
(
−σ|t|

(
1 + 2iBsign(t) log(t)/π

)
+ iµt

)
if α = 1

for 0 < α ≤ 2, 0 ≤ σ, and −1 ≤ B ≤ 1. For α = 2, this is the normal
distribution (in which case B is irrelevant), and for α = 1 and B = 0, this is
the Cauchy distribution.

The member of the stable family with α = 1 and B = 1 is called the
Landau distribution, which has applications in modeling fluctuation of energy
loss in a system of charged particles.

2.9 The Family of Normal Distributions

The normal distribution is probably the most important probability distribu-
tion. The normal family is in the exponential class. It is a complete family, a
regular family, a group family, an infinitely divisible family, a stable family,
and an elliptical family. One reason that the family of normal distributions is
so important in statistical applications is the central limit theorem that gives
the normal as the limiting distribution of properly normalized sequences of
random variables with other distributions.

The family of normal distributions has a number of interesting and useful
properties. One involves independence and covariance. It is easy to see that
if the scalar random variables X and Y are independent, then Cov(X, Y ) =
Cor(X, Y ) = 0, no matter how X and Y are distributed. An important prop-
erty of the normal distribution is that if X and Y have a bivariate normal
distribution and Cov(X, Y ) = Cor(X, Y ) = 0, then X and Y are indepen-
dent. This is also easy to see by merely factoring the joint PDF. In addition
to the bivariate normal, there are various other bivariate distributions for
which zero correlation implies independence. Lancaster (1959) gave necessary
and sufficient conditions for this implication.

Interestingly, X and Y having normal marginal distributions and zero
correlation is not sufficient for X and Y to be independent. This, of course,
must mean that although the marginals are normal, the joint distribution
is not bivariate normal. A simple example of this is the case in which X ∼
N(0, 1), Z is a random variable such that Pr(Z = −1) = Pr(Z = 1) = 1

2 ,
and Y = ZX. Clearly, Y ∼ N(0, 1) and Cor(X, Y ) = 0, yet X and Y are not
independent. We also conclude that X and Y cannot be jointly normal.

There are a number of interesting and useful properties that only the
normal distribution has; that is, these properties characterize the normal dis-
tribution. We will consider some of these properties in the next section.
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Some properties of the normal family of distributions form the basis for
many statistical methods, such as the use of the Student’s t for testing hy-
potheses or setting confidence limits, or the use of the F distribution in the
analysis of variance. Many statistical methods depend on an assumption of a
normal distribution.

2.9.1 Multivariate and Matrix Normal Distribution

The d-variate normal distribution, which we denote as Nd(µ,Σ), has the PDF

1

(2π)d/2|Σ|1/2
e−(x−µ)TΣ−1(x−µ)/2,

where µ ∈ IRd and Σ � 0 ∈ IRd×d.
Notice that the exponent in this expression could alternatively be written

as
−tr(Σ−1(x− µ)(x − µ)T)/2.

This form is often useful.
As we noted above, each element of a random d-vector X may have a

marginal normal distribution, yet X itself may not have a d-variate normal
distribution.

Generally, a “multivariate distribution” refers to the distribution of a ran-
dom vector. If the random object has some other structure, however, a dis-
tribution that recognizes the relationships within the structure may be more
useful. One structure of interest is a matrix. Some random objects, such as a
Wishart matrix (see page 841), arise naturally from other distributions. An-
other useful random matrix is one in which all elements have a joint normal
distribution and the columns of the matrix have one correlational structure
and the rows have another correlational structure. This is called a multivari-
ate matrix distribution, which we denote as MNn×m(M,Ψ,Σ). The PDF for
the random n×m random matrix X is

1

(2π)nm/2|Ψ |n/2|Σ|m/2
e−tr(Ψ−1(X−M)TΣ−1(X−M))/2,

where M ∈ IRn×m, Ψ � 0 ∈ IRm×m, and Σ � 0 ∈ IRn×n.
The variance-covariance matrix of X is V(X) = V(vec(X)) = Ψ ⊗Σ. The

variance-covariance matrix of each row of X is Ψ , and the variance-covariance
matrix of each column of X is Σ.

The multivariate matrix normal distribution of the matrix X with PDF
as given above is related to the ordinary multivariate normal for the vector
vec(X) with PDF

1

(2π)nm/2|Ψ ⊗Σ|nm/2
e−vec(X−M)T(Ψ⊗Σ)−1vec(X−M)/2.

Theory of Statistics c©2000–2025 James E. Gentle



2.9 The Family of Normal Distributions 187

Complex Multivariate Normal Distribution

Consider the random d-vector Z, where

Z = X + iY.

The vector Z has a complex d-variate normal distribution if (X, Y ) has a real
2d-variate normal distribution. The PDF of Z has the form

1

(2π)d/2 |Σ|1/2
e−(x−µ)HΣ−1(x−µ)/2,

where µ ∈ ICd and Σ � 0 ∈ ICd×d.

2.9.2 Functions of Normal Random Variables

One reason that the normal distribution is useful is that the distributions of
certain functions of normal random variables are easy to derive and they have
nice properties. These distributions can often be worked out from the CF of
the normal distribution N(µ, σ2), which has a particularly simple form:

ϕ(t) = eiµt−σ2t2/2.

Given n iid N(µ, σ2) random variables, X1, X2, . . . , Xn, the sample mean
and sample variance

X =

n∑

i=1

Xi/n (2.27)

and

S2 =

n∑

i=1

(
Xi −

n∑

i=1

Xi/n

)2

/(n− 1) (2.28)

are important functions.
Using the CF and equations (1.100) and (1.101), it is easy to see that

X ∼ N(µ, σ2/n). (2.29)

**** problem with hyperlink reference *** too long? In Example 1.16, we saw
that the sum of squares of n iid standard normal random variables is chi-
squared with n degrees of freedom. Using properties of sums of independent
normal random variables and of chi-squared random variables we see that X
and S2 are independent and furthermore that

(n− 1)S2/σ2 d
= χ2

n−1. (2.30)
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Another way to establish the independence of X and S2 and to get the
distribution of S2 is by use of the elegant Helmert transformation. We first
define

Yk = Xk −X, k = 1, . . . , n− 1 (2.31)

and
Yn = −Y1 − · · · − Yn−1. (2.32)

The joint density of X, Y1, . . . , Yn is proportional to

exp
(
−n(x̄− µ)2)/2σ2

)
exp

(
−(y2

1 + · · ·+ y2
n)/2σ2

)
; (2.33)

hence, we see that X is independent of Y1, . . . , Yn, or any function of them,
including S2 .

The Helmert transformations are

W1 =
√

2
(
Y1 + 1

2Y2 + · · ·+ 1
2Yn−1

)

W2 =
√

3
2

(
Y2 + 1

3Y3 + · · ·+ 1
3Yn−1

)

W3 =
√

4
3

(
Y3 + 1

4Y4 + · · ·+ 1
4Yn−1

)

· · ·
Wn−1 =

√
n

n−1
Yn−1

(2.34)

We have
n−1∑

k=1

W 2
k = (n − 1)S2 . (2.35)

Because the joint density of W1, . . . ,Wn−1 is the same as n − 1 iid N(0, σ2)
random variables (exercise), we have that (n−1)S2/σ2 is distributed as χ2

n−1.
If X is distributed as Nd(µ, Id), and for i = 1, . . .k, Ai is a d×d symmetric

matrix with rank ri such that
∑

iAi = Id, then we can write

XTX = XTA1X + · · ·+XTAkX,

and theXTAiX have independent noncentral chi-squared distributions χ2
ri

(δi)
with δi = µTAiµ if and only if

∑
i ri = d. This result is known as Cochran’s

theorem. This form of the theorem and various preliminary forms leading up
to it are proved beginning on page 430.

From the family of central chi-squared distributions together with an inde-
pendent normal family, we get the family of t distributions (central or noncen-
tral, depending on the mean of the normal). From the family of chi-squared
distributions (central or noncentral) we get the family of F distributions (cen-
tral, or singly or doubly noncentral; see Example 1.15 on page 60 for the
central distributions).

The expectations of reciprocals of normal random variables have interest-
ing properties. First of all, we see that for X ∼ N(0, 1), E(1/X) does not exist.
Now, for X ∼ Nd(0, I) consider
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E

(
1

‖X‖22

)
. (2.36)

For d ≤ 2, this expectation is infinite (exercise). For d ≥ 3, however, this
expectation is finite (exercise).

2.9.3 Characterizations of the Normal Family of Distributions

A simple characterization of a normal distribution was proven by Cramér in
1936:

Theorem 2.4
Let X1 and X2 be independent random variables. Then X1 and X2 have nor-
mal distributions if and only if their sum X1 +X2 has a normal distribution.

Proof. ***fix
The independence of certain functions of random variables imply that

those random variables have a normal distribution; that is, the independence
of certain functions of random variables characterize the normal distribution.

Theorem 2.5 (Bernstein’s theorem)
Let X1 and X2 be iid random variables with nondegenerate distributions, and
let Y1 = X1 +X2 and Y2 = X1 −X2. If Y1 and Y2 are also independent then
X1 and X2 have normal distributions.

Proof. ***fix
An extension of Bernstein’s theorem is the Darmois theorem, also called

the Darmois-Skitovich theorem.

Theorem 2.6 (Darmois theorem)
Let X1, . . . , Xn be iid random variables with nondegenerate distributions, and
let

Y1 =

n∑

i=1

biXi

and

Y2 =

n∑

i=1

ciXi,

where the bi and ci are nonzero real constants. If Y1 and Y2 are also indepen-
dent then X1, . . . , Xn have normal distributions.

The proof of the Darmois theorem proceeds along similar lines as that of
Bernstein’s theorem.

The following theorem is a remarkable fact that provides a characterization
of the normal distribution in terms of the sample mean X and the sample
variance S2 .
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Theorem 2.7 (Geary’s theorem)
Let X1, X2, . . . , Xn be iid with PDF f with finite variance, σ2. A necessary
and sufficient condition that the parent distribution be a normal distribution
is that the sample mean and the sample variance be independent.

Proof. First, we note that the sufficiency can be established directly quite
easily.

Now for the necessity. Assume that

X =

n∑

i=1

Xi/n

and

S2 =

n∑

i=1

(Xi −X)2/(n− 1)

are independent.
We will work with various characteristic functions, all of which are deter-

mined by EX (see page 50). We will adopt a simple notation for these CFs.
Our main interest will be the CF of the joint distribution of X and S2, so we
denote it simply as ϕ(t1, t2); that is,

ϕ(t1, t2) = ϕX,S2(t1, t2)

=

∫
eit1x̄+it2s2 ∏

f(xi)dxi.

We denote the separate CFs as ϕ1(t1) and ϕ2(t2):

ϕ1(t1) = ϕX(t1) = ϕX,S2(t1, 0)

and
ϕ2(t2) = ϕS2 (t2) = ϕX,S2(0, t2).

Finally, we let
ϕX(t)

be the CF of each Xi.
From equation (1.132) (after dividing Y by n), we have

ϕ1(t1) = (ϕX(t/n))n.

From equation (1.105), the independence of X and S2 implies that

ϕ(t1, t2) = ϕ1(t1)ϕ2(t2),

and we have
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∂ϕ(t1, t2)

∂t2

∣∣∣∣
t2=0

= ϕ1(t1)
∂ϕ2(t2)

∂t2

∣∣∣∣
t2=0

= (ϕX(t/n))n ∂ϕ2(t2)

∂t2

∣∣∣∣
t2=0

(2.37)

Directly from the definition of ϕ(t1, t2), we have

∂ϕ(t1, t2)

∂t2

∣∣∣∣
t2=0

= i

∫
s2eit1 x̄

∏
f(xi)dxi. (2.38)

Now, substituting s2 = g(x1, . . . , xn) and x̄ = h(x1, . . . , xn) into this latter
equation, we get

∂ϕ(t1, t2)

∂t2

∣∣∣∣
t2=0

= i(ϕX(t1/n))n−1

∫
x2eit1x/nf(x)dx

−i(ϕX(t1/n))n−2

(∫
xeit1x/nf(x)dx

)2

. (2.39)

Furthermore, because E(S2) = σ2, we have

∂ϕ2(t2)

∂t2

∣∣∣∣
t2=0

= iσ2. (2.40)

Now, substituting (2.39) and (2.40) into (2.37) and writing t = t1/n, we
have

ϕX(t)

∫
x2eitxf(x)dx −

(∫
xeitxf(x)dx

)2

= (ϕX(t))2σ2. (2.41)

Note that ik times the integrals in this latter equation are of the form
dkϕX(t)/dtk, so we may re express equation (2.41) as the differential equation

− ϕX(t)ϕ′′
X(t) + (ϕ′

X(t))
2

= (ϕX(t))2σ2. (2.42)

Now, solving this differential equation with the initial conditions

ϕX(0) = 1, and ϕ′
X(0) = iµ,

where µ = E(X), we have

ϕX(t) = eiµte−iσ2t2/2. (2.43)

(The ordinary differential equation (2.42) is second order and second degree,
so the solution is difficult. We can confirm that equation (2.43) is the solution
by differentiation and substitution.)

Equation (2.43) is the characteristic function of the normal distribution
N(µ, σ2), and so the theorem is proved.

This theorem can easily be extended to the multivariate case where the Xi

are d-vectors. Because only first and second moments are involved, the details
of the proof are similar (see Exercise 2.31).
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2.10 Generalized Distributions and Mixture
Distributions

Probability distributions used in statistical applications are chosen both for
their general properties that determine the properties of the statistical meth-
ods used and for their similarities to the frequency of observed data. Statistical
methods based on a distributional family in the exponential, for example, can
yield optimal unbiased procedures. On the other hand, statistical inference
based on a family of distributions whose moments correspond to the sample
moments of observed data would have greater credence than inference based
on an assumption of a probability distribution with properties that differ from
the frequencies observed.

Various families of probability distributions have been identified that are
useful models of observed frequency distributions. The only specific family
that we consider in this chapter is the normal family studied in Section 2.9.
We list other important families in Appendix A. In this section, we consider
general modifications of distributions that may yield more realistic models
of observed data. We may find, for example, that a normal distribution fits
observed data well over some ranges but not over others. The data may be
censored (Section 2.10.1). On the other hand, it may be that the data fall
into different groups, some of which have frequencies corresponding to one
normal probability distribution, and others have frequencies corresponding to
a different normal distribution or even to a distribution in a different family
(Section 2.10.2). Another possibility is that frequencies of the observational
data are quite similar to a normal distribution, but that they are skewed one
way or another (Section 2.10.3).

Given a well-studied family of distributions such as the gamma or some
other family in Appendix A, we may seek to generalize the family by incorpo-
rating another parameter. (A simple example for the two-parameter gamma
family is just to add a “starting” parameter, as in Table A.6.)

More generally, we make seek to define a distribution with given properties,
such as skewness or kurtosis. We may define a PDF or CDF that matches given
quantiles, for example. We discuss some of these approaches in Section 2.10.4.

The need to develop a probability distribution that models the frequency
distribution of observed data has led to many useful distributions. Another
motivation to developing useful and tractable probability distributions is to
have meaningful prior distributions in Bayesian analysis (see Chapter 4).

2.10.1 Truncated and Censored Distributions

Often the support of a standard family is truncated to yield a family whose
support is a proper subset of the standard family’s. The infinite support of a
normal distribution may be truncated to a finite interval, for example, because
in a given application, no data will be, or can be, observed outside of some
finite interval. Another common example is a truncated Poisson (also called
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“positive Poisson”) in which the point 0 has been removed from the support.
This may be because a realization of 0 does not make sense in the particular
application.

The kernel of the PDF of a truncated distribution over its support is the
same as kernel of the original distribution over its support. The partition func-
tion is adjusted as appropriate. The PDF of the positive Poisson distribution,
for example, is

f(x) =
1

eθ − 1

θx

x!
I{1,2,...}(x), (2.44)

The support of a distribution may also be changed by censoring. “Cen-
soring” refers what is done to a random variable, so strictly speaking, we do
not study a “censored distribution”, but rather the distribution of a random
variable that has been censored.

There are various types of censoring. One type is similar to the truncation
of a distribution, except that if a realization of the random variable occurs
outside of the truncated support, that fact is observed, but the actual value
of the realized is not known. This type of censoring is called “type I” fixed
censoring, and in the case that the support is an interval, the censoring is
called “right” or “left” if the truncated region of the support is on the right
(that is, large values) or on the left (small values). A common situation in
which type I fixed censoring occurs is when the random variable is a survival
time, and several observational units are available to generate data. Various
probability distributions such as exponential, gamma, Weibull, or lognormal
may be used to model the survival time. If an observational unit survives
beyond some fixed time, say tc, only that fact is recorded and observation of
the unit ceases.

In another kind of fixed censoring, also illustrated by observation of failure
times of a given set of say n units, the realized failure times are recorded
until say r units have failed. This type of censoring is called “type II” fixed
censoring.

If an observational unit is removed prior to its realized value being observed
for no particular reason relating to that unobserved value, the censoring is
called “random censoring”.

Censoring in general refers to a failure to observe the realized value of
a random variable but rather to observe only some characteristic of that
value. As another example, again one that may occur in studies of survival
times, suppose we have independent random variables T1 and T2 with some
assumed distributions. Instead of observing T1 and T2, however, we observe
X = min(T1, T2) and G, an indicator of whether X = T1 or X = T2. In this
case, T1 and T2 are censored, but the joint distribution of X and G may be
relevant, and it may be determined based on the distributions of T1 and T2.
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2.10.2 Mixture Families

In applications it is often the case that a single distribution models the ob-
served data adequately. Sometimes two or more distributions from a single
family of distributions provide a good fit of the observations, but in other
cases, more than one distributional family is required to provide an adequate
fit. In some cases most of the data seem to come from one population but
a small number seem to be extreme outliers. Some distributions, such as a
Cauchy, are said to be “outlier-generating”, but often such distributions are
difficult to work with (because they have infinite moments, for example). Mix-
tures of distributions, such as the ε-mixture distribution (see page 601), are
often useful for modeling data with anomalous observations.

A mixture family can be defined in terms of a set of CDFs P0. The CDF of
a mixture is

∑
wiPi, where Pi ∈ P0, 0 ≤ wi ≤ 1, and

∑
wi = 1. The set P of

all such mixture CDFs is called a distribution function space (see page 754).
If each the probability measure associated with each Pi is dominated by the
measure ν , then the probability measure associated with

∑
wiPi is dominated

by the ν .
One family that is useful in robustness studies is the ε-mixture distribution

family, which is characterized by a given family with CDF P that we refer
to as the reference distribution, together with a point xc and a weight ε. The
CDF of a ε-mixture distribution family is

Pxc,ε(x) = (1− ε)P (x) + εI[xc,∞[(x), (2.45)

where 0 ≤ ε ≤ 1. The point xc may be thought of as a “contaminant” in the
distribution with CDF P . In a common example of this kind of mixture, the
probability measure associated with P is dominated by the Lebesgue measure
µ, and in that case the probability measure associated with Pxc,ε is dominated
by µ+ δxc , where δxc is the dirac measure concentrated at xc.

Another type of mixture family is composed of two distributions dominated
by Lebesgue measure that have CDFs P1 and P2 such that at the point xc,
P1(xc) < P2(xc) and whose CDF is given by

P (x) =

{
P1(x) −∞ < x < xc

P2(x) xc ≤ x <∞ (2.46)

The probability measure associated with P is dominated by µ+ δxc .
Finally, we consider a mixture family formed by censoring. Let Y1, . . . , Yn

be iid with CDF P, and let

Xi =

{
Yi if Yi ≥ c
c if Yi < c

i = 1, . . . , n. (2.47)

If the distribution of the Yi is dominated by Lebesgue measure, then the
distribution of the Xi is dominated by µ + δc.
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2.10.3 Skewed Distributions

Most of the common skewed distributions, such as the gamma, the log normal,
and the Weibull, have semi-infinite range. The common distributions that have
range (−∞,∞), such as the normal and the t, are symmetric.

There are several ways to form a skewed distribution from a symmetric
one. Two simple ways are

• CDF-skewing: take a random variable as the maximum (or minimum) of
two independent and identically symmetrically distributed random vari-
ables, or

• differential scaling: for some constant ξ 6= 0, scale a symmetric random
variable by ξ if it is less than its mean and by 1/ξ if it is greater than its
mean.

In each case, it may be desirable to shift and scale the skewed random variable
so that it has a mean of 0 and a variance of 1. (We can then easily shift and
scale the random variable so as to have any desired mean and variance.)

CDF-Skewing

If a random variable has PDF f(x) and CDF F (x), from equation (??), the
PDF of the maximum of two independent random variables with that distri-
bution has the PDF

2F (x)f(x). (2.48)

Intuitively, we see that the maximum of two symmetrically distributed random
variables has a skewed distribution.

We can generalize this form by scaling the argument in the CDF,

2F (αx)f(x). (2.49)

A negative scaling, that is, α < 0 yields a negative skewness. (In the case
of the normal distribution, the value α = −1 is equivalent to the minimum
of two independent normal random variables.) Values of α larger in absolute
value yield greater degrees of skewness. The scaling also changes the kurtosis,
with larger absolute values of α yielding a larger kurtosis.

Specifically, for the standard normal distribution, we form the PDF of a
skewed normal as

fSN1(x;α) = 2Φ(αx)φ(x), (2.50)

φ(x) denotes the PDF of the standard normal distribution and Φ(x) denotes
the CDF.

Obviously, CDF-skewing can be applied to other distributions, such as the
t or the generalized error distribution, and of course including normals as in
equation (2.50) with other means and variances.
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Differential Scaling

Another way of forming a skewed distribution is by scaling the random vari-
able differently on different sides of the mean or some other central point.
Specifically, for the normal distribution, we can form the PDF of a skewed
normal as

fSN2
(x; ξ) =

2

ξ + 1
ξ




φ(x/ξ) for x < 0

φ(ξx) for x ≥ 0,
(2.51)

where, as before, φ(x) denotes the PDF of the standard normal distribution.
Values of ξ less than one produce a positive skew, and values greater than one
produce a negative skew. In either case, the excess kurtosis is positive.

The dividing point for differential scaling obviously could be chosen arbi-
trarily. To form a skewed distribution from a unimodal symmetric distribution,
an obvious dividing point would be the mode of the distribution.

Distributions formed by differential scaling are sometimes called “two piece
distributions”.

2.10.4 Flexible Families of Distributions Useful in Modeling

Some of the useful families of probability distributions arise from simple pro-
cesses of “random” events. This is one way we naturally define the Bernoulli
or binomial family, the hypergeometric family. the Poisson family, or the ex-
ponential family, as examples. These discrete families can be generalized by
developing a differential equation that models a limiting case of the discrete
frequency model. The Pearson system is an example of this approach (in which
the basic differential equation arises as a limiting case of a hypergeometric dis-
tribution). Other broad families of distributional forms have been developed
by Johnson, by Burr, and by Tukey. The objective is to be able to represent a
wide range of distributional properties (mean, variance, skewness, shape, etc.)
with a small number of parameters, and then to fit a specific case by proper
choice of these parameters.

A special type of mixture distribution is a probability-skewed distribution,
in which the mixing weights are the values of a CDF. The skew-normal dis-
tribution is a good example.

The (standard) skew-normal distribution has density

g(x) =
2√
2π

e−x2/2Φ(λx) for −∞ ≤ x ≤ ∞, (2.52)

where Φ(·) is the standard normal CDF, and λ is a constant such that −∞ <
λ < ∞. For λ = 0, the skew-normal distribution is the normal distribution,
and in general, if |λ| is relatively small, the distribution is close to the normal.
For larger |λ|, the distribution is more skewed, either positively or negatively.

Other distributions symmetric about 0 can also be skewed by a CDF in
this manner. The kernel of the probability density is
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k(x) = p(x)P (λx),

where p(·) is the density of the underlying symmetric distribution, and P (·) is
a CDF. (It is not necessary that the CDF be for the same distribution.) The
idea also extends to multivariate distributions.

In most cases, if |λ| is relatively small, generation of random variables from
a probability-skewed symmetric distribution using an acceptance/rejection
method with the underlying symmetric distribution as the majorizing density
is entirely adequate. For larger values of |λ|, it is necessary to divide the
support into two or more intervals. It is still generally possible to use the
same majorizing density, but the multiplicative constant can be different in
different intervals.

Some commonly used ones are the Pearson family, the Johnson family,
the generalized lambda family, and the Burr family. The Pearson family is
probably the best known of these distributions. A specific member of the
family is determined by the first four moments, so a common way of fitting
a distribution to an observed set of data is by matching the moments of the
distribution to those of the sample.

Another widely used general family of distributions is the Johnson family.
A specific member of this family is also determined by the first four or five
moments, depending on the parametrization.

A generalized lambda family of distributions was described by Ramberg
and Schmeiser (1974). This system, which is a generalization of a system
introduced by John Tukey, has four parameters that can be chosen to fit a
variety of distributional shapes. They specify the distribution in terms of the
inverse of its distribution function,

P−1(u) = λ1 +
uλ3 − (1− u)λ4

λ2
. (2.53)

The distribution function itself cannot be written in closed form, but the
inverse allows deviates from this distribution to be generated easily by the
inverse CDF method; just generate u and apply equation (2.53).

Albert, Delampady, and Polasek (1991) defined a family of distributions
that is very similar to the lambda distributions and is particularly useful in
Bayesian analysis with location-scale models.

Another family of distributions that is very flexible and that can have a
wide range of shapes is the Burr family of distributions (Burr, 1942). One of
the common forms (Burr and Cislak, 1968) has the CDF

P (x) = 1− 1

(1 + xα)B
for 0 ≤ x ≤ ∞; α,B > 0, (2.54)

which is easily inverted. Other forms of the Burr family have more parameters,
allowing modeling of a wider range of empirical distributions.

Fleishman (1978) suggested representing the random variable of interest as
a polynomial in a standard normal random variable, in which the coefficients
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are determined so that the moments match specific values. If Z has a N(0, 1)
distribution, then the random variable of interest, X, is expressed as

X = c0 + c1Z + · · ·+ ckZ
k. (2.55)

If m moments are to be matched to prespecified values, then k can be chosen
as m − 1, and the cs can be determined from m equations in m unknowns
that involve expectations of powers of a N(0, 1) random variable. Fleishman
used this representation to match four moments; hence, he used a third-degree
polynomial in a standard normal random variable.

The motivation for some of the early work with general families of distribu-
tions was to use them as approximations to some standard distribution, such
as a gamma, for which it is more difficult to generate deviates. As methods for
the standard distributions have improved, it is more common just to generate
directly from the distribution of interest. The general families, however, often
provide more flexibility in choosing a distribution that better matches sample
data. The distribution is fit to the sample data using either percentiles or
moments.

2.11 Multivariate Distributions

While our previous discussions have generally applied to multivariate distri-
butions, the dimensionality of the range of a random variable may limit our
studies or in other ways may have major effects on the properties of the dis-
tribution that affect statistical analysis.

2.11.1 Marginal Distributions

Characterizations of families of multivariate probability distributions are often
more difficult or less intuitive. The covariance matrix is the common measure
that relates the individual components of a random variable to each other in
a pairwise manner. This is a very useful distribution measure for multivariate
normal families, but it is much less useful for other multivariate families; con-
sider, for example, a multivariate gamma family characterized by vectors α
and β (generalizing the univariate parameters) and some variance-covariance
matrix. It is not clear what that matrix would be and how it would be in-
corporated in a simple manner into the PDF. In applications, copulas are
often used in an ad hoc sense to express the relationship of the individual
components of a random variable to each other.

2.11.2 Elliptical Families

Spherical and elliptical families are important in multivariate statistics. A d-

variate random variableX is said to have a spherical distribution iffQTX
d
= X

for every d× d orthogonal matrix Q.
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Because QTQ = I, the density function must depend on X = x only
through xxT. Spherical distributions include multivariate normals with di-
agonal variance-covariance matrices and multivariate t distributions formed
from iid scalar t variates.

If the k-variate random variable Y has a spherical distribution, and for
d ≤ k, µ is a fixed d-vector and A is a fixed d× k matrix of full rank, then

X = µ +AY

is said to have an elliptical distribution.
Any elliptical family is a location-scale family.
General multivariate normal distributions, multivariate t distributions,

and multivariate Cauchy distributions are members of elliptical families.

2.11.3 Higher Dimensions

Another problem with multivariate distributions arises from the properties of
IRd as d increases. A simple instance of this can be seen in the multivariate
normal distribution as d increases from 2 to 3 (see page 273). We can state a
general result nontechnically: in a nondegenerate multivariate family, as the
dimension increases, every observation becomes an outlier. See Exercise 2.27
for a specific example of this result.

Notes and Further Reading

Distribution Theory

In many applications of probability theory in statistics, the first step is to asso-
ciate a phenomenon of interest with a random variable. The statistical analysis
then becomes a study of the distribution of the random variable. The “study”
involves collecting or assimilating data, exploration of the data, transforma-
tions of the data, comparisons of the observed data with regions and quantiles
of probability distributions or families of distributions, and finally inference
about some specific distribution or family of distributions. “Statistics” is the
science of the methods of the study.

Study of the characteristics of the probability distributions used in statis-
tical analysis is part of the subject of probability theory.

Although we do not want to draw a hard line between probability and
statistics — drawing hard lines between any disciplines impedes the advance-
ment of science — distribution theory per sé is within the domain of prob-
ability theory, rather than of statistical theory. That is why, for example,
discussion of the exponential class of distributions is included in this chapter
on probability, rather than placed in a later chapter on statistical theory.
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Regular Families

When some interesting properties apply to certain cases but not others, those
cases for which the properties hold may be referred to as “regular” cases. The
regularity conditions are essentially the hypotheses of a theorem that states
that the particular properties hold. A theorem can seem more important if its
conclusions hold for all except “irregular” cases.

In statistics, the most common usage of the phrase “regularity conditions”
or “regular families of distributions” is in connection with Fisher information.)

Quadratic mean differentiable families play important roles in much of the
asymptotic theory developed by Lucien Le Cam. Properties of these families
are considered at some length by Le Cam and Yang (2000) and in TSH3,
Chapter 12.

The Exponential Class

Extensive discussions of exponential families are provided by Barndorff-Nielson
(1978) and Brown (1986). Morris (1982) defined the natural exponential fam-
ily with quadratic variance function (NEF-QVF) class of distributions and
showed that much theory could be unified by appeal to the quadratic vari-
ance property. (See also Morris and Lock (2009).)

Heavy-Tailed Families

Various types of heavy-tailed distributions have been extensively studied, of-
ten because of their applications in financial analysis.

Some of the basic results of subexponential families were developed by
Teugels (1975), who also considered their applications in renewal theory. Mul-
tivariate subexponential families with somewhat similar properties can be
identified, but their definition is not as simple as the convergence of the ratio
in expression (2.4) (see Cline and Resnick (1992)).

Infinitely Divisible and Stable Families

Steutel and van Harn (2004) provide a general coverage of infinitely divisible
distributions in IR. Infinitely divisible distributions arise often in applications
of stochastic processes. Janicki and Weron (1994) discuss such distributions
in this context and in other areas of application such as density estimation.
Steutel (1970) considers mixtures of infinitely divisible distributions.

The discussion of stable distributions in this chapter generally follows
the development by Feller (1971), but is also heavily influenced by Breiman
(1968). Stable distributions also provide useful models for heavy-tailed pro-
cesses. Samorodnitsky and Taqqu (1994) provide an extensive discussion of
stable distributions in this context. Stable distributions are useful in studies
of the robustness of statistical procedures.
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Exercises

2.1. Prove Theorem 2.2.
2.2. State the conditions on the parameters of a beta(α, β) distribution for its

PDF to be
a) subharmonic
b) superharmonic
c) harmonic

2.3. a) Show that condition (2.3) on page 166 implies condition (2.2).
b) Find a counterexample to show that the converse is not true.

2.4. a) Show that condition (2.4) on page 166 implies condition (2.3); that is,
a subexponential family is a long-tailed family.
Hint: Note that condition (2.3) is limx→∞ F (x + t)/F (x) = 1. (See
Athreya and Ney (1972) page 148, and Pitman (1980).)

b) Find a counterexample to show that the converse is not true.
2.5. a) Show that the following families of distributions are monotone likeli-

hood ratio families.
i. The one-parameter exponential class, with PDF

exp (η(θ)T (x) − ξ(θ)) h(x),

with θ ∈]a, b[⊆ IR, where a and b are known and may be infinite,
and η(θ) is a monotone scalar function of θ.

ii. U(0, θ), with PDF
1

θ
I[0,θ](x).

iii. U(θ, θ + 1), with PDF
I[θ,θ+1](x).

b) Show that the one-parameter Cauchy family is not a monotone likeli-
hood ratio family. The Lebesgue PDF is

1

πβ(1 + x/β)2
.

2.6. Show that a totally positive family with r = 2 (see equation (2.5)) is a
monotone likelihood ratio family.

2.7. Assume that logpθ(x), where pθ(x) is a PDF, is strictly concave in x.
a) Show that pθ(x) is unimodal. Now, generalize this result (beyond the

log function) and prove the generalization.
b) Give an example of a family of distributions that is (strictly) unimodal

but not strongly unimodal.
c) Now for θ ∈ IR, show that pθ(x) is a monotone likelihood ratio family

in θ.
2.8. Write the likelihood rato for each of the one-parameter families of distri-

butions in Table 2.1, and show that it is monotone in the relevant variable.
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2.9. Show that the Cauchy(γ, β0) family (with β0 known and fixed) does not
have a monotone likelihood rato.

2.10. Benford’s law is used as a model of the probability distribution of the dig-
its, particularly the first digit, in the decimal representation of “naturally
occurring” numbers, such as the lengths of rivers of the world, the areas
of countries, and so on. By Benford’s law, the probability that the first
digit is d = 1, 2, . . . , 9 is

p(d) = log10(d+ 1)− log10(d), d = 1, 2, . . . , 9.

This law has been used to detect artificially constructed data because
data generated by a person tends to have first digits that are uniformly
distributed over {1, 2, . . . , 9}.
a) There are many instances in which this law does not apply, of course.

If all data in some specific area are between 300 and 500, say, then
obviously the law would not be applicable. What is needed to know
the distribution of the number being represented.
Derive the probability function p(d) for the case that d is the first digit
in the decimal representation of the realization of a random variable
with distribution U(0, 1).

b) Of course, if this law is to correspond to naturally occurring numbers
such as lengths of rivers, it must be invariant to the unit or measure-
ment. To show exact invariance would require an assumption about
the distribution of the number being represented (the lengths of rivers,
for example). This in itself is not a straightforward task.
Rather than making specific statements about the underlying distribu-
tions, develop a heuristic argument that the Benford’s law probability
function is approximately invariant to unit of measurement, and that
it is the unique probability function with this approximate invariance
property. (These approximate properties are often stated as facts (the-
orems), and a heuristic argument, probably similar to yours is given
as their “proofs”.)

2.11. a) Write the PDF of each family of distributions listed in Table 2.2 in
the form of equation (2.7).

b) Write the PDF of each family of distributions listed in Table 2.2 in
the form of equation (2.11), and identify the natural parameter space
H.

c) Which of the families of distributions listed in Table 2.2 are natural
(linear) exponential families?

2.12. Show that each of the distributions listed in Table 2.3 is not a member of
the exponential class.

2.13. Represent the probability mass functions of the Poisson, the binomial,
and the negative binomial distributions as members of the discrete power
series class; that is, for each of these distributions, identify θ, hx, and c(θ)
in equation (2.16).

Theory of Statistics c©2000–2025 James E. Gentle



Exercises 203

2.14. Show that the positive Poisson family, with PDF as given in equa-
tion (2.44), is of the discrete power series class, and hence of the ex-
ponential class.

2.15. Suppose that X1, . . . , Xn are iid as a discrete power series(θ) distribu-
tion, with given series {hx} and normalizing constant c(θ). Show that
T =

∑n
i=1Xi has a discrete power series distribution, and identify the

corresponding terms in its probability mass function.
2.16. Consider the family of 2-variate distributions with PDF

1

(2π)|Σ|1/2
exp

(
−(x − µ)TΣ−1(x− µ)/2

)
,

where µ is a 2-vector of constants and Σ is a 2×2 positive definite matrix
of constants.
Show that this family is of the exponential class, and express the density
in the canonical (or natural) form of the exponential class.

2.17. Show that both G and G̃ in Exmaple 2.3 on page 179 are groups.
2.18. a) Show that each of the distributions listed in Table 2.4 is a location

family.
b) Show that each of the distributions listed in Table 2.5 is a scale family.

2.19. Show that the likelihood function and the PDF for a location familiy are
the same function. Produce graphs similar to those in Figure 1.2 for the
exponential(α, θ0) family.

2.20. Show that these distributions are not location-scale families:
the usual one-parameter exponential family, the binomial family, and the
Poisson family.

2.21. Show that a full rank exponential family is complete.
2.22. Prove Theorem 2.1.
2.23. Show that the normal, the Cauchy, and the Poisson families of distribu-

tions are all infinitely divisible.
2.24. Show that the Poisson family of distributions is not stable.
2.25. Show that the normal and the Cauchy families of distributions are stable,

and show that their indexes of stability are 2 and 1 respectively.
2.26. Express the PDF of the curved normal family N(µ, µ2) in the canonical

form of an exponential family.
2.27. Higher dimensions.

a) Let the random variable X have a uniform distribution within the
ball ‖x‖2 ≤ 1 in IRd. This is a spherical distribution. Now, for given
0 < δ < 1, show that

Pr(‖X‖ > 1− δ)→ 1

as d increases without bound.
b) Let the random variable X have a d-variate standard normal distri-

bution distribution, Nd(0, Id). Determine

lim
d→∞

Pr(‖X‖ > 1).
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2.28. a) Show that the joint density of X, Y1, . . . , Yn given in equations (2.27),
(2.31), and (2.32) is proportional to

exp
(
−n(x̄− µ)2)/2σ2

)
exp

(
−(y2

1 + · · ·+ y2
n)/2σ2

)
.

b) Show that the joint density of W1, . . . ,Wn−1 given in equation (2.35)
is the same as n− 1 iid N(0, σ2) random variables.

2.29. Higher dimensions. Let X ∼ Nd(0, I) and consider

E

(
1

‖X‖22

)
.

a) Show that for d ≤ 2, this expectation is infinite.
b) Show that for d ≥ 3, this expectation is finite. What is the value of

this expectation as d→∞?
2.30. Prove Theorem 2.4.
2.31. Work through the details of the proof of Geary’s theorem (Theorem 2.7)

for the case that X1, . . . , Xn are iid d-vectors.
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Basic Statistical Theory

The field of statistics includes various areas, such as descriptive statistics in-
cluding statistical graphics, official statistics, exploratory data analysis includ-
ing data mining and statistical learning, and statistical inference, including
forecasting or predictive inference. Statistical learning generally involves pre-
dictive inference, so in that sense it is also part of the broad area of statistical
inference. Mathematical statistics is generally concerned with the theory un-
derlying statistical inference. Most of the important advances in mathematical
statistics have been driven by real applications.

In probability theory, we develop models of probability distributions and
consider the characteristics of random variables generated by such models. The
field of statistics is concerned with an inverse problem; we have realizations
of random variables from which we want to infer characteristics of the models
of probability distributions.

We develop methods of statistical inference using probability theory. Sta-
tistical inference, as I describe it, requires data. Some people describe any
probabilistic reasoning as “statistical inference”, and they actually use the
term “no-data problem” to describe such a process of computing expected
values under various scenarios.

Data are the observable output from some data-generating process. The
data-generating process can often be described in terms of a physical model.
For statistical analysis, however, the data-generating process is described by
an abstract probability distribution P , and this model may involve unob-
servable quantities such as parameters or latent variables. The objective in
statistical inference is to make decisions about unknown aspects of either the
data-generating process itself or the probability distribution P . Whether we
emphasize the data-generating process or the assumed probability distribu-
tion may affect our methods of inference. An issue that will arise from time
to time is whether or not all aspects of the data-generating process should
affect the inference about P , or whether the inference should be based solely
on the data and the assumed probability distribution P . If we have only the
data and no knowledge of the process by which it was generated (that is, we
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lack “metadata”), then we may be limited in the methods of inference that
we can use.

The Canonical Problems in Statistical Inference

The basic problem in statistical inference is to develop more precise models
of the data-generating process that gave rise to a set of observed data. The
problem we generally address, however, is that of refining the probability
distribution P by making decisions about unknown aspects of this assumed
distribution. The models themselves are probability distributions or classes
of probability distributions. Formal statistical inference (which I will just call
“statistical inference”) focuses on the probability distribution.

Statistical inference is the process of using observational data from a pop-
ulation that is in an assumed family of distributions P to identify another
family PH that “more likely” contains the population from which the data
arose. In a restricted form of this problem, we have two families PH0 and PH1 ,
and based on available data, we wish to decide which of these gave rise to the
data. (This setup follows the Neyman-Pearson paradigm of hypothesis test-
ing; there are various approaches, however.) In another restricted form of this
problem, we have a single hypothesized family PH0 , and based on available
data, we wish to determine the plausibility that this family gave rise to the
data. (This setup follows the Fisherian paradigm of significance testing; there
are various approaches, however.)

The assumed familyP must be broad enough to allow reasonable inferences
from observational data. The choice of P may be somewhat subjective. It
is based on whatever may be known or assumed about the data-generating
process being studied. Generally, PH is a subfamily, PH ⊆ P, but it may be
the case that the data indicates that the original family P is not rich enough
to contain a family of distributions that matches the observational data.

Another way of describing the problem is to assume that we have a family
of probability distributions P = {PΘ}, where Θ may be some parameter
in a real-valued parameter space Θ (“parametric inference”), or Θ may just
be some index in an index set I to distinguish one distribution, PΘ1 , from
another, PΘ2 (“nonparametric inference”). The parameter or the index is not
observable; however, we assume PΘ1 6= PΘ2 if Θ1 6= Θ2 a.s. (This assumption
guarantees “identifiability”. The almost sure condition is given so as not to
exclude the possibility that Θ is a function.)

Often the observable variable of interest has associated covariates. The
inference problems described above involve development of probability models
that include the covariates. When there are covariates, there are two related
problems of statistical inference. One is to use use a set of observed data to
develop a model to predict some aspect of future observations for a given value
of the covariates. Another is to develop a rule to “estimate” an unobservable
random variable, given observed covariates. (A common instance of this latter
problem is called “classification”.)
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How Does PH Differ from P?

What we know about Θ, or more to the point, what we assume about Θ
determine some of the details of the inference procedures. We may, for exam-
ple, assume that Θ = θ, some fixed but unknown real quantity. In that case,
whether we view Θ as a parameter space or some more general index set, we
may state our objective in statistical inference as to move from

P = {Pθ | θ ∈ Θ} (3.1)

to
PH = {Pθ | θ ∈ ΘH} (3.2)

by using observed data. On the other hand, we may assume that Θ is some
Borel-measurable function. If Θ is a random variable, our interest may be in
its distribution. In that case, the canonical problem in statistical inference,
begins with a class of populations

P = {PΘ | Θ ∼ Q0 ∈ Q}, (3.3)

where Θ is a random variable and Q0 is some “prior distribution”, and, using
observed data, arrives at the class of populations

PH = {PΘ | Θ ∼ QH ∈ Q}, (3.4)

where QH is some “posterior distribution” conditional on the observations.
As we mentioned above, the choice of P, whether in the form of (3.1)

or (3.3), is rather subjective. The form of equation (3.3) is “more subjective”,
in the sense that Q0 allows direct incorporation of prior beliefs or subjective
evidence. Statistical inference in the paradigm of equations (3.3) and (3.4)
is sometimes referred to as “subjective inference”, and is said to based on
“subjective probability”. We will consider this approach in more detail in
Chapter 4.

Confidence, Significance, and Posterior Conditional Distributions

Statistical inference is a process of making decisions in the face of uncertainty.
If there is no uncertainty, statistical inference is not a relevant activity. Given
the uncertainty, the decision that is made may be “wrong”.

Statistical inference must be accompanied by some quantification of how
“likely” the decision is to be “correct”. Exactly how this should be done is
a very deep question whose answers may involve careful consideration of the
philosophical foundations of statistical inference. In this book we will not get
involved in these foundations. Rather, we will consider some specific ways of
trying to come to grips with the question of quantifying the uncertainty in our
decisions. Two ways this is done involve the paradigm of repetitive sampling
from a stationary data-generating process, which leads to the concepts of
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“confidence” and “significance”. The formulation of the problem of statistical
inference as in equations (3.3) and (3.4) avoids a direct confrontation of the
question of how likely the decision is to be correct or incorrect. The conclusion
in that kind of setup is the simple statement that the conditional distribution
of Θ is QH , given that its marginal distribution is Q0 and the conditional
distribution of the data is PΘ.

Examples

As an example of the approach indicated in equations (3.1) and (3.2), assume
that a given sample y1, . . . , yn is taken in some prescribed manner from some
member of a family of distributions

P = {N(µ, σ2) | µ ∈ IR, σ2 ∈ IR+}.

Statistical inference in this situation may lead us to place the population
giving rise to the observed sample in the family of distributions

PH = {N(µ, σ2) | µ ∈ [µ1, µ2], σ
2 ∈ IR+}

(think confidence intervals!). The process of identifying the subfamily may be
associated with various auxiliary statements (such as level of “confidence”).

As another example, we assume that a given sample y1, . . . , yn is taken
independently from some member of a family of distributions

P = {P | P � λ},

where λ is the Lebesgue measure, and our inferential process may lead us to
decide that the sample arose from the family

PH =

{
P | P � λ and

∫ t

−∞
dP = .5⇒ t ≥ 0

}

(think hypothesis tests concerning the median!).
Notice that “P ” in the example above is used to denote both a population

and the associated probability measure; this is a notational convention that
we adopted in Chapter 1 and which we use throughout this book.

Statistical inference following the setup of equations (3.3) and (3.4) can
be illustrated by observable data that follows a Bernoulli distribution with a
parameter Π which, in turn, has a beta marginal distribution with parameters
α and β. (That is, in equation (3.3), Θ isΠ , PΠ is a Bernoulli distribution with
parameter Π , and Q0 is a beta distribution with parameters α and β.) Given
the single observation X = x, we can work out the conditional distribution of
Π to be a beta with parameters x+ α and 1− x+ β.

It is interesting to note the evolutionary nature of this latter example.
Suppose that we began with Q0 (of equation (3.3)) being a beta with pa-
rameters x1 + α and 1 − x1 + β, where x1 is the observed value as described
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above. (That is, the marginal “prior” is in the same parametric family of
distributions as the original conditional “posterior”.) Now, given the single
observation X = x2, we can work out the conditional distribution of Π to be
a beta with parameters x1 +x2 +α and 2−x1−x2 +β, which of course would
be the same conclusion we would have reached if we had begun as originally
described, but had observed a sample of size 2, {x1, x2}.

Covariates

Often a problem in statistical inference may involve other observable quanti-
ties. In that case, we may represent the family of distributions for an observ-
able random variable Y (which, of course, may be a vector) in the form

P = {Pθ,x},

where θ ⊆ IRd is an unobservable parameter or index and x is an observable
concomitant variable.

There are two common types of interesting problems when we have ob-
servable covariates. In one case, we have a model of the form

Y = g(x; θ) + E,

where g is a function of known form, and our objective is to make inferences
concerning θ.

The other common problem is to predict or “estimate” Y for a given x.
If we assume an additive model such as that above, predictive inference on
Y is based on the inferences concerning θ. In other situations, such as in the
problem of classification, the random variable Y represents some class of data,
and given x, the objective is to “estimate” Y .

Asymptotic Considerations

Statistical inference is based on an observed sample of the random variable
of interest along with observed values of any concomitant variable. Often the
precision with which we can state conclusions depends on the dimensions of
the parameter and any concomitant variables (that is on the structure of P),
as well as on the size of the sample. For any statistical procedure, it is of
interest to know how the precision improves with increasing sample size.

Although we cannot have an infinite sample size, we often carry the math-
ematical analysis to the limit. This may give us an indication of how well the
statistical methods perform with increasing sample sizes. Another reason that
we often consider limiting cases is that asymptotic properties are often more
mathematically tractable than properties for finite samples, and we use the
asymptotic properties as approximations for the actual finite case.
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Statistical Reasoning

We have indicated above that there may be a difference in inference regarding
a data-generating process of interest and inference regarding an assumed prob-
ability distribution governing the data-generating process, or at least some
aspects of that process.

Statistical inference leads us to select a subfamily of distributions. The
particular subfamily may depend on how we formulate the inference problem
and how we use a standard method of statistical inference. We must ensure
that the formulation of the problem will lead to a reasonable conclusion.

An example in which the usual conclusions of a statistical inference proce-
dure may not be justified is in common types of tests of statistical hypotheses.
We must be careful in the specification of the alternative hypotheses. The two
sample Wilcoxon statistic or the Mann-Whitney statistic is often used to test
whether one population has a larger median than another population. While
this test does have a connection with the medians, the procedure actually tests
that the distributions of two populations are the same versus the alternative
that a realization from one distribution is typically smaller (or larger) than a
realization from the other distribution. If the distributions have quite different
shapes, a typical value from the first population may tend to be smaller than
a typical value from the second population, and the relationships between the
medians may not affect the results of the test. See Example 5.22 for further
discussion of these issues.

***************
Data-generating process versus a given probability distribution
***************
waiting time paradox
Renewal process paradox
***************
An example in which clear statistical reasoning may not follow the lines

of “common sense” is the Monte Hall problem. The name of this problem is
derived from the host of a television game show that was first aired in 1963.
While the problem itself does not involve statistical inference, it illustrates
use of a probability model to make a decision.

***************

Subjective Statistical Inference

In Chapter 1, I referred to the role of “beliefs” in applications of probabil-
ity theory and the differing attitudes of “objectivists” and “subjectivists”.
The two different starting points of statistical inference expressed in equa-
tions (3.1) and (3.3) establish the different attitudes. These differences lead
to differences in the fundamental ways in which statistical inference is ap-
proached. The differences involve how prior beliefs are incorporated into the
inference process. The differences also lead to differences in how the concept
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of probability (however it is interpreted) is used in the interpretation of the
results of statistical analyses. In an objective approach, we may speak of the
probability, given a data-generating process, of observing a given set of values.
In a subjective approach, given a set of values, we may speak of the probabil-
ity that the data-generating process has certain properties. This latter setting
may lead to the use of the phrase “inverse probability”, although this phrase
is often used in different ways.

The objective and subjective approaches also differ in how the overall
data-generating process affects the inferences on the underlying probability
distribution P . (This difference is associated with the “likelihood principle”,
which I shall mention from time to time.) In this chapter I give a brief overview
of statistical inference without much emphasis on whether the approach is
“objective” or “subjective”.

Ranks of Mathematical Objects

In statistical inference we deal with various types of mathematical objects. We
would like to develop concepts and methods that are independent of the type
of the underlying objects, but that is not always possible. Occasionally we
will find it necessary to discuss scalar objects, rank one objects (vectors), and
rank two objects (matrices) separately. In general, most degree-one properties,
such as expectations of linear functions, can be considered uniformly across
the different types of mathematical objects. Degree-two properties, such as
variances, however, must usually be considered separately for scalars, vectors,
and matrices.

Matrices often require special consideration because of the richness of that
kind of structure. Sometimes we must consider the special cases of symmetric
matrices, full-rank matrices, and positive-definite matrices.

3.1 Inferential Information in Statistics

In statistics, we generally assume that we have a random sample of obser-
vations X1, . . . , Xn on a random variable X. We usually assume either that
they are independent or that they are exchangeable, although we may assume
other relations among the variables that depend on the sampling design.

We will often use X to denote a random sample on the random variable
X. (This may sound confusing, but it is always clear from the context.) The
common distribution of the variables is called the parent distribution of the
random sample, and a common objective in statistics is to use the sample to
make inferences about properties of the parent distribution.

In many statistical applications we also have covariates associated with
the observations on the random variable of interest. In this case, in order to
conform to common usage in statistics, I will use Y to represent the random
variable of interest and X or x to represent the covariates or concomitant
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variables. Both the random variable of interest and any covariates are assumed
to be observable. There may also be unobservable variables, called “latent
variables”, associated with the observed data. Such variables are artifacts of
the statistical model and may or may not correspond to phenomena of interest.

When covariates are present our interest usually is in the conditional dis-
tribution of Y , givenX. For making statistical inferences, we generally assume
that the conditional distributions of Y1|X1, . . . , Yn|Xn are either conditionally
independent or at least conditionally exchangeable.

A statistic is any function T of the observables that does not involve any
unobservable values. We often use a subscript Tn to indicate the number of
observations, but usually a statistic is defined as some formula that applies to
a general number of observations (such as the sample mean). While we most
often work with statistics based on a random sample, that is, an iid set of
variables, or at least based on an exchangeable sample, we may have a statistic
that is a function of a general set of random variables, X1, . . . , Xn. We see
that if the random variables are exchangeable, then the statistic is symmetric,
in the sense that T (Xk1 , . . . , Xkn) = T (X1, . . . , Xn) for any indices k1, . . . , kn

such that {k1, . . . , kn} = {1, . . . , n}.

Statistical Models

We assume that the sample arose from some distribution Pθ, which is a mem-
ber of some family of probability distributions P. The family of probability
distributions P is a statistical model. We fully specify the family P (it can be
a very large family), but we assume some aspects of Pθ are unknown. (If the
distribution Pθ that yielded the sample is fully known, while there may be
some interesting questions about probability, there are no interesting statisti-
cal questions.) Our objective in statistical inference is to determine a specific
Pθ ∈ P, or some subfamily Pθ ⊆ P, that could likely have generated the
sample.

The distribution may also depend on other observable variables. In general,
we assume we have observations Y1, . . . , Yn on Y , together with associated ob-
servations on any related variable X or x. We refer to the associated variables
as “covariates”. In this context, a statistic, which in our common use of the
term is a function that does not involve any unobserved values, may also
involve the observed covariates.

A general statistical model that includes covariates is

Y = f(x ; θ) +E, (3.5)

where Y and x are observable variables, f is some unknown function, θ is an
unknown parameter, and E is an unobservable random variable with unknown
distribution Pτ independent of other quantities in the model. In the usual
setup, Y is a scalar random random variable, and x is a p-vector. Given
independent observations (Y1, x1), . . . , (Yn, xn), we often use the notation Y
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to represent an n-vector, X to represent an n × p matrix whose rows are the
xT

i , and E to represent an n-vector of iid random variables. A model such
as (3.5) is often called a regression model.

A common statistical model that expresses a relationship of an observable
random variable and other observable variables is the linear model

Y = βTx+ E, (3.6)

where Y is the observable random variable, x is an observable p-vector of
covariates, β is an unknown and unobservable p-vector of parameters, and E
is an unobservable random variable with E(E) = 0 and V(E) = σ2I. The
parameter space for β is B ⊆ IRp.

A random sample may be written in the vector-matrix form

Y = Xβ + E, (3.7)

where Y and E are n-vectors, X is an n×p matrix whose rows are the xT
i , and

β is the p-vector above. (The notation “βTx” in equation (3.6) and “Xβ” in
equation (3.7) is more natural in the separate contexts. All vectors are consid-
ered to be column vectors. We could of course write “xTβ” in equation (3.6).)

Because the linear model is familiar from applications of statistics, we will
refer to it from time to time, but we will not study it systematically until
Section 5.5.1.

In statistical inference, we distinguish observable random variables and
“parameters”, but we are not always careful in referring to parameters. We
think of two kinds of parameters; “known” and “unknown”. A statistic is a
function of observable random variables that does not involve any unknown
parameters.

Algorithmic Statistical Models

There are various types of models that may have different purposes. A common
form of a model is a mathematical equation or a system of equations. If the
purpose of the model is to enhance the understanding of some phenomenon,
there would be a large premium on simplicity of the model. If the model is very
complicated, it may correspond very well to the reality being studied, but it is
unlikely to be understandable. If its primary purpose is to aid understanding,
an equation model should be relatively simple..

A model may be embedded in a computer program. In this case, the model
itself is not ordinarily scrutinized; only its input and output are studied. The
complexity of the model is not of essential consequence. Especially if the ob-
jective is prediction of a response given values of the associated variables, and
if there is a large premium on making accurate predictions or classifications in
a very short time, an algorithmic model may be appropriate. An algorithmic
model prioritizes prediction accuracy. The details of the model may be very
different from the details of the data-generating process being modeled. That
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is not relevant; the important thing is how well the output of the algorithmic
model compares to the output of the data-generating process being modeled
when they are given the same input.

The asymmetric relationship between a random variable Y and a variable
x may be represented as a black box that accepts x as input and outputs Y :

Y ← unknown process ← x. (3.8)

The relationship might also be described by a statement of the form

Y ← f(x)

or
Y ≈ f(x). (3.9)

Asymmetry of Statistical Models; Systematic and Random
Components

If f has an inverse, the model (3.9) appears symmetric. Even in that case,
however, there is an asymmetry that results from the role of random variables
in the model. We model the response as a random variable and our methods
of analysis would not apply to the model

x ≈ f−1(Y ).

We may think of f(x) as a systematic effect and write the model with an
additive adjustment, or error, as

Y = f(x) +E (3.10)

or with a multiplicative error as

Y = f(x)∆, (3.11)

where E and ∆ are assumed to be random variables. (The “E” is the Greek
uppercase epsilon.) We refer to these as “errors”, although this word does not
indicate a mistake. In additive models, E is also called the “residual”. The
model therefore is composed of a systematic component related to the values
of x and a random component that accounts for the indeterminacy between
Y and f(x).

An objective in statistical analysis often is to understand the systematic
and random components better. The relative contribution to the variability
in the observed Y due to the systematic component and due to the random
component is called the signal to noise ratio. (Notice that this is a nontechnical
term here; we could quantify it more precisely in certain classes of models.
We can view an F ratio in analysis of variance as a type of quantification of
a signal to noise ratio.)
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An additive model has the advantage of separability of first order expec-
tations of the two components no matter what assumptions are made about
joint probability distributions of elements of the one component and those of
the other. Note a questionable requirement for this separability: the variance
of the residual component must be constant no matter what the magnitude
of the expectation of the systematic component. Despite these issues, in the
following, we will concentrate on models with additive random effects.

In the case of the black-box model (3.8), both the systematic and random
components are embedded in the box. The objectives of statistical analysis
may be to identify the individual components or, more often, to determine
“average” or “most likely” output Y for given input x.

Because the functional form f of the relationship between Y and x may
contain a parameter, we may write the equation in the model as

Y = f(x; θ) +E, (3.12)

where θ is a parameter whose value determines a specific relationship within
the family specified by f . In most cases, θ is a vector. In the usual linear re-
gression model, for example, the parameter is a vector with two more elements
than the number of elements in x,

Y = β0 + xTβ +E, (3.13)

where θ = (β0, β, σ
2).

3.1.1 Statistical Inference: Point Estimation

Statistical inference is a process of identifying a family of distributions that
generated a given set of observations. The process begins with an assumed
family of distributions P. This family may be very large; for example, it may
be the family of distributions with probability measures dominated by the
counting measure. Often the assumed family is narrowly defined; for example,
it may be the family of univariate normal distributions. In any event, the
objective of statistical inference is to identify a subfamily, PH ⊆ P, that
contains the population from which the data arose.

Types of Statistical Inference

There are various types of inference related to the problem of determining
the specific Pθ ∈ P or else some specific element of θ. Some of these are
point estimation, hypothesis tests, confidence sets, and function estimation
(estimation of the PDF, for example). Hypothesis tests and confidence sets
are associated with probability statements that depend on Pθ.

Beginning on page 13 and later in Chapter 2, we have distinguished fam-
ilies of probability distributions as either parametric or nonparametric. In
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statistical inference, we also speak of methods as being either parametric or
nonparametric. The meanings in this case are somewhat nebulous, however.
We often refer to a method as “nonparametric” if it does not make use of spe-
cific properties of the assumed family of distributions. We also use the term
“nonparametric” if the assumed family of distributions is very broad, or if it
includes more than one of the standard parametric families.

In parametric settings, each of the types of inference listed above concerns a
parameter, θ, in a parameter space, Θ ⊆ IRk. In this case, function estimation
is essentially estimation of a parameter that determines the function.

In some cases whether the inference is “parametric” or “nonparametric”
is not determined by the nature of the assumed family of probability distri-
butions. Parametric statistical inference often may involve only some element
of the parameter (for example, estimation only of the mean and not the vari-
ance), and so we may, effectively, perform parametric inference in a nonpara-
metric family by an ad hoc definition of a “parameter”, say the mean or the
median of a distribution in the family.

In parametric inference about a parameter θ, we generally identify a Borel
function, say g or h, of that parameter and then consider inference specifically
on g(θ) or h(θ).

Whether the object of the statistical inference is a scalar or some other
element of a vector space, often makes a difference in the simplicity of the
inference procedures. We will often emphasize the “one-parameter” case be-
cause it is simpler. There are a large number of useful families of distributions
that are indeed characterized by a single parameter, such as the binomial or
the (one-parameter) exponential.

Two related problems in inference are prediction and causal inference. For
either of these problems, in addition to the random variable Y with the prob-
ability triple (Ω,F , P ), we have a measurable function X that maps (Ω,F)
to (Λ, G). Our interest is in the probability measure on the (Λ, G) space. This
is the conditional distribution of Y |X. In either case, the strength of the in-
ference depends on the extent of the difference in the conditional distribution
of Y |X and the marginal distribution of Y .

For prediction, given X, we wish to predict Y ; that is, we seek a Borel
function g such that E(g(X)) is “close to” E(Y ). We will discuss issues in
prediction in Section 3.1.6.

In causal inference, as in prediction, we have an associated measurable
function XY , but the values of this function may be said to “cause” the
conditional distribution of Y |X to be different from the marginal distribution
of Y . The methods of causal inference invoke an intermediary variable that
depends on X and on which Y depends. We will not consider causal inference
in this text. It is a popular topic in research in the social “sciences”; see, for
example, Morgan and Winship (2007).
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The Basic Paradigm of Point Estimation

We will focus our attention in the remainder of this section on point estima-
tion.

The setting for point estimation is a real-valued observable random vari-
able X that has a distribution that depends in some way on a real-valued sta-
tistical function (in the sense of a distribution measure, as in Section 1.1.9).
Often the statistical function can be viewed as a parameter θ that takes a
value in the set Θ. We assume we have observations X1, . . . , Xn on X.

The statistical function to be estimated is called the estimand. Although
it may be an underlying natural parameter, it is often a Borel function of that
parameter. We will use g(θ) to represent the estimand. (Some authors use the
symbol ϑ for the function of θ that is the estimand.) We want to estimate g(θ)
using observations on X. We denote the estimator as T (X). We think of T as
a rule or formula. We also use T to denote a decision in hypothesis testing. We
also denote the rule as δ(X). In many cases, there is an observable covariate,
and so the notation we have just adopted would be modified to indicate the
presence of the covariate.

Approaches to Estimation

There are several approaches to estimation of g(θ). We generally assume that

a specific value of g(θ) results in a specific distribution for X. If ĝ(θ) is an

estimate of g(θ) and we make the substitution g(θ) = ĝ(θ) we have a specific
family of distributions with CDF Pdg(θ)

, say.

In most cases we assume that the set Θ is open, and hence the range of
g(θ) is open. We generally allow a point estimator to be in the closure of those
spaces. For example, in the case of a binomial(n, π) distribution, the parameter
space for π is usually taken to be ]0, 1[; however, a “good” estimator of π may
take the value 0 or 1. A common approach to estimation, called maximum
likelihood estimation, explicitly requires that the estimator be in the closure
of the parameter space instead of the parameter space itself. (See page 242.)
Other “good” estimators may not even be in the closure of the parameter
space; see Example 5.31 on page 436.

A good estimation scheme is one that specifies a distribution of X that
corresponds in some sense to the observed values of X. We start on the prob-
lem by defining some computable, heuristic estimation procedure, and then
analytically study the properties of that procedure under various scenarios,
that is, under different assumed distributions.

Optimal Point Estimators

We seek an estimator with “good” properties. We will briefly discuss some de-
sirable properties for estimators: small bias, small mean squared error, Pitman
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closeness, and equivariance under transformations. In this section we consider
these properties only in the context of estimation, but the same properties
have meaning in other types of statistical inference, although the specific def-
inition may be different. “Good” can be defined either in terms of various
measures associated with an estimator (bias, mean squared error, Pitman
closeness), or as a property that the estimator either possesses or does not
(equivariance).

Bias

The bias of T (X) for estimating g(θ) is

E(T (X)) − g(θ). (3.14)

One of the most commonly required desirable properties of point estima-
tors is unbiasedness.

Definition 3.1 (unbiased point estimator)
The estimator T (X) is unbiased for g(θ) if

E(T (X)) = g(θ) ∀θ ∈ Θ.

Unbiasedness is a uniform property of the expected value.
We can also define other types of unbiasedness in terms of other aspects

of a probability distribution. For example, an estimator whose median is the
estimand is said to be median-unbiased.

Unbiasedness has different definitions in other settings (estimating func-
tions, for example, see page 255) and for other types of statistical inference (for
example, testing, see page 296, and determining confidence sets, see page 300),
but the meanings are similar.

If two estimators are unbiased, we would reasonably prefer one with smaller
variance.

Mean Squared Error

Another measure of the goodness of a scalar estimator is the mean squared
error or MSE,

MSE(T (x)) = E((T (X) − g(θ))2), (3.15)

which is the square of the bias plus the variance:

MSE(T (x)) = (E(T (X)) − g(θ))2 + V(T (X)). (3.16)

An example due to C. R. Rao (Rao, 1981) causes us to realize that we
often face a dilemma in finding a good estimate. A “bad” estimator may have
a smaller MSE than a “good” estimator.
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Example 3.1 an unreasonable estimator with a smaller MSE
Suppose we have n observations X1, . . . , Xn from a distribution with mean µ1

and finite standard deviation σ. We wish to estimate µ1. An obvious estimator
is the sample mean X. (We will see that this is generally a good estimator
under most criteria.) The MSE of X is σ2/n. Now, suppose we have m obser-
vations Y1, . . . , Ym from a different distribution with mean µ2 = µ1 + δσ and
the same standard deviation σ. Let

T = (nX +mY )/(n+m),

so we have

E((T − µ1)
2) =

σ2

n +m

(
1 +

m2δ2

n +m

)
.

Now if δ2 < m−1 + n−1, then

MSE(T ) < MSE(X);

that is, in this case, the MSE is improved by using spurious observations. If
δ < 1, just using a single spurious observation improves the MSE.

Pitman Closeness

While the MSE gives us some sense of how “close” the estimator is to the
estimand, another way of thinking about closeness is terms of the probability
that |T (X) − g(θ)| is less than some small value ε:

Pr
(
|T (X) − g(θ)| < ε

∣∣θ
)

ε > 0. (3.17)

This type of measure is called Pitman closeness.

Definition 3.2 (Pitman-closer; Pitman-closest)
Given two estimators T1(X) and T2(X) of g(θ), we say that T1(X) is Pitman-
closer than T2(X), if

Pr
(
|T1(X) − g(θ)| ≤ |T2(X) − g(θ)|

∣∣θ
)
≥ 1

2
(3.18)

for all θ ∈ Θ and for some θ0 ∈ Θ

Pr
(
|T1(X) − g(θ)| < |T2(X) − g(θ)|

∣∣θ0
)
>

1

2
. (3.19)

We say that T1(X) is the Pitman-closest estimator, if T1(X) is Pitman-closer
than T (X) for any other statistic T (X).

Pitman closeness is affected more by the properties of the distribution in
the region of interest, rather than by the behavior of statistics in the tail
regions. Measures such as MSE, for example, may be unduly affected by the
properties of the distribution in the tail regions.
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Example 3.2 Lack of transitivity of Pitman closeness
Although Pitman closeness is a useful measure in evaluating an estimator,
the measure lacks the desirable property of transitivity; that is, T1(X) may
be Pitman-closer than T2(X) and T2(X) Pitman-closer than T3(X), but yet
T3(X) may be Pitman-closer than T1(X). It is easy to construct an example
to illustrate that this is possible. Rather than trying to construct a realistic
distribution and statistics, let us just consider three independent random vari-
ables T1, T2, and T3 and assign probability distributions to them (following
Blyth (1972)):

Pr(T1 = 3) = 1.0
Pr(T2 = 1) = 0.4, Pr(T2 = 4) = 0.6
Pr(T3 = 2) = 0.6, Pr(T3 = 5) = 0.4

We see that

Pr(T1 < T2) = 0.6, Pr(T2 < T3) = 0.64, Pr(T1 < T3) = 0.4.

The point is that probability itself is not transitive over inequalities of random
variables.

This example illustrates the fact that there is often no Pitman-closest
estimator.

Example 3.3 Pitman closeness of shrunken estimators
Efron (1975) gives an example of an otherwise “good” estimator that is not
as close in the Pitman sense as a certain biased estimator is.

Consider the problem of estimating the mean µ in a normal distribution
N(µ, 1), given a random sample X1, . . . , Xn. The usual estimator, the sample
mean X , is unbiased and has minimum variance among all unbiased esti-
mators, so clearly it is a “good” estimator. Consider, however, the biased
estimator

T (X) = X −∆n(X), (3.20)

where

∆n(u) =
min(u

√
n, Φ(−u√n))

2
√
n

, for u ≥ 0, (3.21)

in which Φ(·) is the standard normal CDF. This “shrinkage” of X toward 0
yields an estimator that is Pitman-closer to the population mean µ than the
sample mean X. (Exercise.)

On page 273, we will encounter a more dramatic example of the effect of
shrinking the sample mean in a multivariate normal distributional model.

Equivariance

In Section 2.6, beginning on page 178, we discussed families of distributions
that are characterized as equivalence classes under groups of transformations
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of the random variables. In a parametric setting the group G of transforma-
tions of the random variable can be associated with a group G of transforma-
tions of the parameter. Likewise, we consider a group of transformations on
the estimator, G∗. For g ∈ G and g∗ ∈ G∗ an estimator T (X) is equivariant if

T (g(X)) = g∗(T (X)). (3.22)

Some people use the terms “invariant” and “invariance” for equivariant
and equivariance, but I prefer the latter terms unless, indeed there is no
change in the statistical procedure.

For equivariant or invariant statistical procedures, there are issues that
relate to other properties of the estimator that must be considered (see, for
example, the discussion of L-invariance on page 266). We will discuss the
equivariance property of statistical procedures in more detail in Section 3.4.

Uniform Properties

If the goodness of an estimator does not depend on the parameter, we say
the estimator is uniformly good (and, of course, in this statement we would
be more precise in what we mean by “good”). All discussions of statistical
inference are in the context of some family of distributions, and when we speak
of a “uniform” property, we mean a property that holds for all members of
the family.

Unbiasedness, by definition, is a uniform property. We will see, however,
that many other desirable properties cannot be uniform.

Statements of Probability Associated with Statistics

Although much of the development of inferential methods emphasizes the
expected value of statistics, often it is useful to consider the probabilities
of statistics being in certain regions. Pitman closeness is an example of the
use of probabilities associated with estimators. Two other approaches involve
the probabilities of various sets of values that the statistics may take on.
These approaches lead to statistical tests of hypotheses and determination
of confidence sets. These topics will be discussed in Section 3.5, and more
thoroughly in later chapters.

3.1.2 Sufficiency, Ancillarity, Minimality, and Completeness

There are important properties of statistics, such as sufficiency and complete
sufficiency, that determine the usefulness of those statistics in statistical infer-
ence. These general properties often can be used as guides in seeking optimal
statistical procedures.
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Sufficiency

The most fundamental concept in statistical inference is sufficiency, because
it relates functions of observations to the object of the inference.

Definition 3.3 (sufficient statistic)
Let X be a sample from a population P ∈ P. A statistic T (X) is sufficient
for P ∈ P if and only if the conditional distribution of X given T does not
depend on P .

In general terms, sufficiency involves the conditional independence from
the parameter of the distribution of any other function of the random variable,
given the sufficient statistic.

Sufficiency depends on the family of distributions, P, wrt which the con-
ditional expectation, which ultimately defines the conditional distribution, is
defined. If a statistic is sufficient for P, it may not be sufficient for a larger
family, P1, where P ⊆ P1.

Sufficiency determines the nature and extent of any reduction of data that
can be made without sacrifice of information. Thus, a function of a sufficient
statistic may not be sufficient, but if a sufficient statistic can be defined as a
measurable function of another statistic, then that other statistic is necessarily
sufficient (exercise).

We can establish sufficiency by the factorization criterion.

Theorem 3.1 (factorization criterion)
Let P be a family of distributions dominated by a σ-finite measure ν. A neces-
sary and sufficient condition for a statistic T to be sufficient for P ∈ P is that
there exist nonnegative Borel functions gP and h, where h does not depend on
P , such that

dP/dν(x) = gP (T (x))h(x) a.e. ν. (3.23)

Proof.
***************

If X1, . . . , Xn are iid whose distribution is dominated by a σ-finite mea-
sure, the joint PDF of the order statistics given in equation (1.141) is the
same as the joint distribution of all of the (unordered) random variables (see
Exercise 1.46), we have the immediate and useful corollary to Theorem 3.1.

Corollary 3.1.1 (the order statistics are sufficient) The order statistics
of a random sample from a distribution dominated by a σ-finite measure are
sufficient.

Actually, the requirement that the distribution be dominated by a σ-finite
measure is not necessary. The proof is a simple exercise in permutations.

If the family of distributions is characterized by a parameter θ, then instead
of referring to a statistic as begin sufficient for the distribution, we may say
that the statistic is sufficient for θ.
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When the density can be written in the separable form c(θ)f(x), unless
c(θ) is a constant, the support must be a function of θ, and a sufficient statistic
for θ must be an extreme order statistic. When the support depends on the
parameter, and that parameter does not in any other way characterize the
distribution, then the extreme order statistic(s) at the boundary of the support
determined by the parameter carry the full information about the parameter.

An important consequence of sufficiency in an estimation problem with
convex loss is the Rao-Blackwell theorem (see Section 3.3.2).

The Sufficiency Principle

Sufficiency is such an important concept in statistical inference that it leads
to a principle that often guides statistical decisions. The sufficiency principle
states that if T (X) is a sufficient statistic for P , and x1 and x2 are results of
two independent experiments in P with

T (x1) = T (x2) a.e. P, (3.24)

then any decision about P based on one experiment should be in agreement
with any decision about P based on the other experiment. Principles should,
of course, be consistent with objectives. In the introductory section for this
chapter, we stated that the objective in statistical inference is to make de-
cisions about either the data-generating process or about P . The sufficiency
principle cannot be consistent with an objective of understanding the data-
generating process.

Ancillarity

Often a probability model contains a parameter of no interest for inference.
Such a parameter is called a nuisance parameter. A statistic to be used for
inferences about the parameters of interest should not depend on any nui-
sance parameter. This lack of dependence on a parameter is called ancillarity.
Ancillarity is, in a way, the opposite of sufficiency.

Definition 3.4 (ancillary statistic; first-order ancillary statistic)
A statistic U(X) is called ancillary for P (or θ) if the distribution of U(X)
does not depend on P (or θ). If E(U(X)) does not depend on P (or θ), then
U(X) is said to be first-order ancillary for P (or θ).

Restating the intuitive remark before the definition, we can say a statistic
to be used for inferences about the parameters of interest should be ancillary
for a nuisance parameter.

In a probability space (Ω,F , Pθ) and random variable X, if U(X) is ancil-
lary for Pθ, then the definition implies that

σ(U(X)) ⊂ σ(X), (3.25)
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and, further, for any set B,

Pθ((U(X))−1(B)) is constant. (3.26)

These facts merely state that the ancillary statistic provides no information
about Pθ.

Minimal Sufficiency

While the whole sample is a sufficient statistic, sufficiency in this case is not
very meaningful. We might more reasonably ask what, if any, statistics of
lower dimension are also sufficient.

Definition 3.5 (minimially sufficient)
Let T be a given sufficient statistic for P ∈ P. The statistic T is minimal
sufficient if for any sufficient statistic for P ∈ P, S, there is a measurable
function h such that T = h(S) a.s. P.

Minimal sufficiency has a heuristic appeal: it relates to the greatest amount
of data reduction that is possible without losing information, in the sense of
losing sufficiency.

When the range does not depend on the parameter, we can often establish
minimality by use of one of the following two theorems.

Theorem 3.2 (minimal sufficiency I)
Let P be a family with densities p0, p1, . . . , pk, all with the same support. The
statistic

T (X) =

(
p1(X)

p0(X)
, . . . ,

pk(X)

p0(X)

)
(3.27)

is minimal sufficient.

Proof.
This follows from the following corollary of the factorization theorem.

Corollary 3.1.1 (factorization theorem (page 222))
A necessary and sufficient condition for a statistic T (X) to be sufficient for a
family P of distributions of a sample X dominated by a σ-finite measure ν is
that for any two densities p1 and p2 in P, the ratio p1(x)/p2(x) is a function
only of T (x).

Theorem 3.3 (minimal sufficiency II)
Let P be a family of distributions with the common support, and let P0 ⊆ P.
If T is minimal sufficient for P0 and is sufficient for P, then T is minimal
sufficient for P.

Proof.
Consider any statistic U that is sufficient for P. Then U must also be sufficient
for P0, and since T is minimal sufficient for P0, T is a function of U .

We can also establish minimal sufficiency by use of completeness, as we
see below.
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Completeness

A sufficient statistic T is particularly useful in a complete family or a bound-
edly complete family of distributions (see Section 2.1 beginning on page 162).
In this case, for every Borel (bounded) function h that does not involve P ,

EP (h(T )) = 0 ∀P ∈ P ⇒ h(t) = 0 a.e. P.

Complete families are defined in terms of properties of any Borel function of
a random variable that does not involve the particular distribution (that is,
of a “statistic”).

We are now interested in the completeness of a statistic, rather than the
completeness of the family. A statistic can be complete even though the un-
derlying family of distributions of the observables is not complete. (This is
because of the definition of a complete family; see Example 2.1 on page 163.)
The family of marginal distributions of the statistic itself must be complete.

We now give a definition of completeness for a statistic.

Definition 3.6 (complete statistic)
Given a family of distributions {Pθ} a statistic T (X), where T is a nonconstant
function, is said to be complete for P ∈ {Pθ} iff for any Borel function h that
does not involve P

E(h(T (X))) = 0 ∀P ∈ P ⇒ h(T (x)) = 0 a.e. P.

The weaker condition, “bounded completeness of a statistic”, is defined in
a similar manner, but only for bounded Borel functions h. A complete statistic
is boundedly complete.

Completeness and sufficiency are different properties; either one can exist
without the other. Sufficiency relates to a statistic and a sample. There is
always a sufficient statistic: the sample itself. There may or may not be a
complete statistic within a given family.

We are generally interested in statistics that are complete and sufficient.
Complete sufficiency depends on P, the family of distributions wrt which

E is defined. If a statistic is complete and sufficient with respect to P, and if it
is sufficient for P∞, where P ⊆ P1 and all distributions in P∞ have common
support, then it is complete and sufficient for P1, because in this case, the
condition a.s. P implies the condition a.s. P1.

We can establish complete sufficiency by the exponential criterion.

Theorem 3.4 (exponential criterion)
Let P be a family of distributions dominated by a σ-finite measure ν. Given
a statistic T suppose there exist Borel functions c and q and a nonnegative
Borel function h, where h does not depend on P , such that

dP/dν(x) = exp((q(P ))TT (x)− c(P )h(x) a.e. ν. (3.28)
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A sufficient condition for the statistic T to be complete and sufficient for
P ∈ P is that q(P ) contain an interior point.

Complete sufficiency is useful for establishing independence using Basu’s
theorem (see below), and in estimation problems in which we seek an unbiased
estimator that has minimum variance uniformly (UMVUE, discussed more
fully in Section 5.1).

It is often relatively straightforward to identify complete sufficient statis-
tics in certain families of distributions, such as those in the exponential class;
see Example 3.6. In a parametric-support family, there may be a complete
statistic. If so, it is usually an extreme order statistic; see Example 3.7.

Theorem 3.5 (minimal sufficiency III)
If T is a complete statistic in P and T is sufficient, then T is minimal suffi-
cient.

Proof. Exercise (follows from definitions).
Complete sufficiency implies minimal sufficiency, but minimal sufficiency

does not imply completeness, as we see in the following example.

Example 3.4 minimal sufficient but not complete sufficient
Consider a sampleX of size 1 from U(θ, θ+1). Clearly,X is minimal sufficient.
Any bounded periodic function h(x) with period 1 that is not a.e. 0 serves to
show that X is not complete. Let h(x) = sin(2πx). Then

E(h(X)) =

∫ θ+1

θ

dx = 0.

Clearly, however h(X) is not 0 a.e., so X is not complete. We can see from
this that there can be no complete statistic in this case.

We will later define completeness of a class of statistics called decision
rules, and in that context, define minimal completeness of the class.

Basu’s Theorem

Complete sufficiency, ancillarity, and independence are related.

Theorem 3.6 (Basu’s theorem)
Let T (X) and U(X) be statistics from the population Pθ in the family P If
T (X) is a boundedly complete sufficient statistic for Pθ ∈ P, and if U(X) is
ancillary for Pθ ∈ P, then T and U are independent.

Proof.
If U is ancillary for Pθ and A is any set, then Pr(U ∈ A) is independent of
Pθ. Now, consider pA(t) = Pr(U ∈ A|T = t). We have

EPθ (pA(T )) = Pr(U ∈ A);
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and so by completeness,

pA(T ) = Pr(U ∈ A) a.e.P.

Hence U and T are independent.
An interesting example shows the importance of completeness in Basu’s

theorem. This example also shows that minimality does not imply complete-
ness.

Example 3.5 minimal sufficient but ancillary is not independent
Let X1, . . . , Xn, with n ≥ 2, be iid as U(θ − 1/2, θ + 1/2). It is clear that
T = {X(1), X(n)} is sufficient; in fact, it is minimal sufficient. Now consider
U = X(n)−X(1), which we easily see is ancillary. It is clear that T and U are
not independent (U is a function of T ).

If T were complete, then Basu’s theorem would say that T and U are
independent, but writing U = h(T ), where h is a measurable function, we can
see that T is not complete (although it is minimal).

Sufficiency, Minimality, and Completeness in Various Families

We can use general properties of specific families of distributions to establish
properties of statistics quickly and easily.

Complete sufficiency is often easy to show in exponential family.

Example 3.6 complete sufficient statistics in a normal distribution
Consider the normal family of distributions with parameter θ = (µ, σ2). Sup-
pose we have observations X1, X2, . . . , Xn. Let T1 = (

∑
Xi,

∑
X2

i ). Then
T1(X) is sufficient and complete for θ. (Exercise)

Now, let T2 = (X, S2), where X and S2 are respectively the sample mean
and sample variance (equations (1.32) and (1.33)). Then T2(X) is also suffi-
cient and complete for θ. (Exercise)

We have seen in Section 2.9.3 that X and S2 are independent and we
worked out their distributions there.

Complete sufficiency is also often easy to show in distributions whose range
depends on θ in a simple way. (We can relate any such range-dependent dis-
tribution to U(θ1, θ2).)

In general, proof of sufficiency is often easy, but proof of minimality or
completeness is often difficult. We often must rely on the awkward use of the
definitions of minimality and completeness. Completeness of course implies
minimality.

Example 3.7 complete sufficient statistics in a uniform distribution
Consider the uniform family of distributions with parameter θ that is the up-
per bound of the support, U(0, θ). Suppose we have observations X1, . . . , Xn.
Then T (X) = X(n) is complete sufficient for θ. (Exercise)
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Parametric-support families (or “truncation families”) have simple range
dependencies. A distribution in any of these families has a PDF in the general
form

fθ(x) = c(θ)g(x)IS(θ)(x).

The most useful example of distributions whose support depends on the
parameter is the uniform U(0, θ), as in Example 3.7. Many other distribu-
tions can be transformed into this one. For example, consider X1, . . . , Xn iid
as a shifted version of the standard exponential family of distributions with
Lebesgue PDF

e−(x−α)I]α,∞[(x),

and Yi = e−Xi and θ = e−α, then Y1, . . . , Yn are iid U(0, θ); hence if we can
handle one problem, we can handle the other. We can also handle distribu-
tions like U(θ1 , θ2) a general shifted exponential, as well as some other related
distributions, such as a shifted gamma.

We can show completeness using the fact that

∫

A

|g| dµ = 0 ⇐⇒ g = 0 a.e. on A. (3.29)

Another result we often need in going to a multiparameter problem is Fubini’s
theorem.

The sufficient statistic in the simple univariate case where S(θ) = (θ1 , θ2)
is T (X) = (X(1), X(n)), as we can see from the the factorization theorem by
writing the joint density of a sample as

c(θ)g(x)I]x(1) ,x(n)[(x).

For example, for a distribution such as U(0, θ) we see that X(n) is sufficient
by writing the joint density of a sample as

1

θ
I]0,x(n)[.

Example 3.8 complete sufficient statistics in a two-parameter expo-
nential distribution
In Examples 1.11 and 1.18, we considered a shifted version of the exponential
family of distributions, called the two-parameter exponential with parameter
(α, θ). The Lebesgue PDF is

θ−1e−(x−α)/θI]α,∞[(x)

Suppose we have observations X1, X2, . . . , Xn.
In Examples 1.11 and 1.18, we worked out the distributions of X(1) and∑
Xi − nX(1). Now, we want to show that T = (X(1),

∑
Xi − nX(1)) is

sufficient and complete for (α, θ).
******************
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The properties of a specific family of distributions are useful in identifying
optimal methods of statistical inference. Exponential families are particularly
useful for finding UMVU estimators. We will discuss UMVU estimators more
fully in Section 5.1. A group family is useful in identifying equivariant and
invariant statistical procedures. We will discuss procedures of these types in
Section 3.4.

3.1.3 Information and the Information Inequality

The term “information” is used in various ways in statistical inference. In
general, information relates to the variability in the probability distribution
or to the variability in a random sample.

A common type of information is Shannon information, which for an event
is the negative of the log of the probability of the event; see page 42. In this
view, an observed event that is less probable than another event provides more
information than that more probable event.

In parametric families of probability distributions, we also use the term
“information” in another sense that relates to the extent of the difference
between two PDFs in the same family, but with difference values of the pa-
rameters. This kind of information, called Fisher information, is measured by
taking derivatives with respect to the parameters.

A fundamental question is how much information does a realization of the
random variable X contain about the scalar parameter θ.

If a random variable X has a PDF f(x; θ) wrt a σ-finite measure that is
differentiable in θ, the rate of change of the PDF at a given x with respect to
different values of θ intuitively is an indication of the amount of information x
provides. If the support of the random variable, however, depends on θ, that
derivative may not be so useful. Let us restrict our attention to distributions
that satisfy the first two Fisher information regularity conditions we defined
on on page 168 for a family of distributions P = {Pθ; θ ∈ Θ} that have
densities fθ:

• The parameter space Θ is real and connected and contains an open set (in
one dimension, it is an interval with positive measure).

• For any x in the support and θ ∈ Θ◦, ∂fθ(x)/∂θ exists and is finite.

For such distributions, we define the “information” (or “Fisher informa-
tion”) that X contains about θ as

I(θ) = Eθ

((
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T
)
. (3.30)

Information is larger when there is larger relative variation in the density
as the parameter changes, but the information available from an estimator is
less when the estimator exhibits large variation (i.e., has large variance), so
we want to use statistics with smaller variance.
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The third Fisher information regularity condition guarantees that integra-
tion and differentiation can be interchanged.

• The support is independent of θ; that is, all Pθ have a common support.

In Fisher information regular families, we have

E

(
∂ log(f(X, θ))

∂θ

)
=

∫
1

f(x, θ)

∂f(x, θ)

∂θ
f(x, θ)dx

=
∂

∂θ

∫
f(x, θ)dx

= 0; (3.31)

therefore, the expectation in the information definition (3.30) is also the vari-
ance of ∂ log(f(X, θ))/∂θ:

I(θ) = V

(
∂ log(f(X, θ))

∂θ

)
. (3.32)

If the second derivative with respect to θ also exists for all x and θ, and
if it can be obtained by differentiation twice under the integral sign in (3.31),
then we also have a relationship with the second derivative:

I(θ) = E

((
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T
)

= −E

(
∂2 log(f(X, θ))

∂θ2

)
. (3.33)

We see this by writing

∂2 log f(X; θ)

∂θ2
=

∂2f(X;θ)
∂θ2

f(X; θ)
−

(
∂f(X;θ)

∂θ

)(
∂f(X;θ)

∂θ

)T

(f(X; θ))2

=
∂2f(X;θ)

∂θ2

f(X; θ)
−
(
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T

and taking the expectation of both sides, noting that the first term on the right
is zero as before (after again interchanging differentiation and integration).

Example 3.9 Fisher information in a normal distribution
Consider the N(µ, σ2) distribution with θ = (µ, σ) (which is simpler than for
θ = (µ, σ2)):

log f(µ,σ)(x) = c− log(σ) − (x− µ)2/(2σ2).

We have
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∂

∂µ
log f(µ,σ)(x) =

x− µ
σ2

and
∂

∂σ
log f(µ,σ)(x) = − 1

σ
+

(x− µ)2

σ3
,

so

I(µ, σ) = Eθ

((
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T
)

= E(µ,σ)






(X−µ)2

(σ2)2
X−µ

σ2

(
− 1

σ
+ (x−µ)2

σ3

)

x−µ
σ2

(
− 1

σ
+ (X−µ)2

σ3

)
+
(
− 1

σ
+ (X−µ)2

σ3

)2






=

[
1

σ2 0
0 2

σ2

]
.

The normal is rather unusual among common multiparameter distributions
in that the information matrix is diagonal.

Notice that the Fisher information matrix is dependent on the parametriza-
tion. The parametrization of the normal distribution in either the canonical
exponential form or even θ = (µ, σ2) would result in a different Fisher infor-
mation matrix (see Example 5.11 on page 400).

Example 3.10 Fisher information in a gamma distribution
Consider the gamma(α, β) distribution. We have for x > 0

log f(α,β)(x) = − log(Γ(α))− α log(β) + (α− 1) log(x)− x/β.

This yields the Fisher information matrix

I(θ) =

[
ψ′(α) 1

β
1
β

α2

β2

]
,

where ψ(α) is the digamma function, d log(Γ(α))/dα, and ψ′(α) is the
trigamma function, dψ(α)/dα.

In the natural parameters, α−1 and 1/β, obviously the Fisher information
would be different. (Remember, derivatives are involved, so we cannot just
substitute the transformed parameters in the information matrix.)

Fisher Information in Families in the Exponential Class

Consider the general canonical exponential form for a distribution in the ex-
ponential class:

fθ(x) = exp
(
(ηTT (x)− ζ(η)

)
h(x)

(see page 173). If η is the mean-value parameter (see equation (2.10)), then
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I(θ) = V −1,

where
V = V(T (X)).

***************** prove this

Example 3.11 Fisher information in a beta distribution
Consider the beta(α, β) distribution. We have for x ∈]0, 1[

log f(α,β)(x) = log(Γ(α+β))−log(Γ(α))−log(Γ(β))+(α−1) log(x)+(β−1) log(1−x).

This yields the Fisher information matrix

I(θ) =

[
ψ′(α)− ψ′(α + β) −ψ′(α+ β)
−ψ′(α+ β) ψ′(β) − ψ′(α+ β)

]
.

***** Show that this follows from above.

Fisher Information in Location-Scale Families

The Fisher information for the two parameters θ = (µ, σ) in a location-scale
family with Lebesgue PDF

1

σ
f

(
x− µ
σ

)

has a particularly simple form:

I(θ) =
n

σ2




∫ (
f ′(x)

f(x)

)2

f(x)dx

∫
x

(
f ′(x)

f(x)

)2

f(x)dx

∫
x

(
f ′(x)

f(x)

)2

f(x)dx

∫ (
xf ′(x)

f(x)
+ 1

)2

f(x)dx



. (3.34)

The prime on f ′(x) indicates differentiation with respect to x of course. (The
information matrix is defined in terms of differentiation with respect to the
parameters followed by an expectation.)

Another expression for the information matrix for a location-scale family
is

I(θ) =
n

σ2




∫
(f ′(x))2

f(x)
dx

∫
f ′(x) (xf ′(x) + f(x))

f(x)
dx

∫
f ′(x) (xf ′(x) + f(x))

f(x)
dx

∫
(xf ′(x) + f(x))

2

f(x)
dx



.

(3.35)
(This is given in a slightly different form in Example 3.9 of MS2, which is
Exercise 3.34, which is solved in his Solutions, using the form above, which is
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a more straightforward expression from the derivation that begins by defining
the function g(µ, σ, x) = log(f((x − µ)/σ)/σ), and then proceeding with the
definition of the information matrix.)

Also we can see that in the location-scale family, if it is symmetric about
the origin (that is about µ), the covariance term is 0.

The Information Inequality

For distributions satisfying the Fisher information regularity conditions we
have the information inequality that relates the variance of a statistic to the
Fisher information about the parameters. In the following we will consider a
scalar statistic, T (X), and a scalar function of θ, g(θ).

Following TPE2, we first give two lemmas for an unbiased estimator of
g(θ).

Lemma 3.7.1
Given the Borel function g(θ) and statistics T (X) and S(X) such that
E(T (X)) = g(θ). A necessary and sufficient condition for Cov(T (X), S(X))
to depend on θ only through g(θ) is that for all θ

Covθ(U, S(X)) = 0 ∀U 3 Eθ(U) = 0,Eθ(U
2) <∞. (3.36)

Proof.
We only need to show that for any T1(X) and T2(X) with E(T1(X)) =
E(T2(X)) = g(θ), Covθ(T1(X), S(X)) = Covθ(T2(X), S(X)). We have

Covθ(T1(X), S(X)) − Covθ(T2(X), S(X)) = Covθ(T1(X) − T2(X), S(X))

= Covθ(U, S(X)).

We have therefore Covθ(T1(X), S(X)) = Covθ(T2(X), S(X)) for any T1(X)
and T2(X) if and only if Covθ(U, S(X)) = 0 for all U as in equation (3.36).

A comment about notation may be in order here. First, we have been
writing T (X) and S(X) to emphasize the common random variable in the
statistics. A simpler notation may be T and S. A more complicated notation
would be T (X, θ) and S(X, θ) to emphasize the dependence of the distribution
of T and S on θ, just as we have written f(X, θ) for the PDF above. In the
next lemma, we will consider a vector of functions S(X, θ) = (Si(X, θ)). As
usual, this is a column vector, and so is (Cov(T (X), Si(X)), for example.

Lemma 3.7.2
Let T (X) be an unbiased estimator of g(θ) and let S(X, θ) = (Si(X, θ)), where
the Si(X, θ) are any stochastically independent functions with finite second
moments. Then

V(T (X)) ≥ (Cov(T (X), Si(X)))
T

(V(S))
−1

Cov(T (X), Si(X)). (3.37)
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Proof.
Let a1, . . . , ak be any constants. From the covariance inequality for scalar
random variables Y and Z,

V(Y ) ≥ (Cov(Y, Z))2

V(Z)
,

we have

V(T (X)) ≥ (Cov(T (X),
∑

i aiSi(X)))2

V(
∑

i aiSi(X))
. (3.38)

Rewriting, we have,

Cov(T (X),
∑

i

aiSi(X)) = aTCov(T (X), Si(X))

and

V

(∑

i

aiSi(X)

)
= aTV(S)a.

Because (3.38) is true for any a, this yields

V(T (X)) ≥ max
a

(
aTCov(T (X), Si(X))

)2

aTV(S)a
.

Noting that

(
aTCov(T (X), Si(X))

)2
= aTCov(T (X), Si(X))(Cov(T (X), Si(X))Ta,

from equation (0.3.18) on page 788, we have

V(T (X)) ≥ (Cov(T (X), Si(X)))
T

(V(S))
−1

Cov(T (X), Si(X)).

Theorem 3.7 (information inequality)
Assume that the Fisher information regularity conditions hold for the distribu-
tion with PDF f(x; θ) and that I(θ) is positive definite, where θ is a k-vector.
Let T (X) be any scalar statistic with finite second moment, and assume for
i = 1, . . . , k, that (∂/∂θi)Eθ(T (X)) exists and can be obtained by differentiat-
ing under the integral sign. Then Eθ((∂/∂θi) log(f(x; θ))) = 0 and

V(T (X)) ≥
(
∂

∂θ
E(T (θ))

)T

(I(θ))
−1 ∂

∂θ
E(T (θ)). (3.39)

Proof. Take the functions Si in Lemma 3.7.2 to be (∂/∂θi) log(f(x; θ)).
An alternate direct proof of Theorem 3.7 can be constructed using equa-

tions (3.31) through (3.33) and the covariance inequality.
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The right side of inequality (3.39) is called the information or the Cramér-
Rao lower bound (CRLB). The CRLB results from the covariance inequality.
The proof of the CRLB is an “easy piece” that every student should be able
to provide quickly. (Notice that for the one-parameter case, this is Corol-
lary B.5.1.7 of Hölder’s inequality on page 852.)

This inequality plays a very important role in unbiased point estimation,
as we will see in Section 5.1.5 on page 399.

3.1.4 “Approximate” Inference

When the exact distribution of a statistic is known (based, of course, on an
assumption of a given underlying distribution of a random sample), use of
the statistic for inferences about the underlying distribution is called exact
inference.

Often the exact distribution of a statistic is not known, or is too compli-
cated for practical use. In that case, we may resort to approximate inference.
There are basically three types of approximate inference.

One type occurs when a simple distribution is very similar to another
distribution. For example, the Kumaraswamy distribution with PDF

p(x) = αβxα−1(1− xα)β−1I[0,1](x) (3.40)

may be used as an approximation to the beta distribution.
Another type of approximate inference, called computational inference, is

used when an unknown distribution can be simulated by resampling of the
given observations.

Asymptotic inference is probably the most commonly used type of approx-
imate inference. In asymptotic approximate inference we are interested in the
properties of Tn as the sample size increases. We focus our attention on the
sequence {Tn} for n = 1, 2, . . ., and, in particular, consider the properties of
{Tn} as n→∞. We discuss asymptotic inference in more detail in Section 3.8.

3.1.5 Statistical Inference in Parametric Families

A real-valued observable random variable X has a distribution that may de-
pend in some way on a real-valued parameter θ that takes a value in the set
Θ, called the parameter space. This random variable is used to model some
observable phenomenon.

As the parameter ranges over Θ it determines a family of distributions, P.
We denote a specific member of that family as Pθ for some fixed value of θ.

We often want to make inferences about the value of θ or about some
function or transformation of an underlying parameter θ. To generalize our
object of interest, we often denote it as ϑ, or g(θ) or g(θ; z), where g is some
Borel function, and z may represent auxiliary data.
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Summary of Sufficient Statistics and Their Distributions for Some
Common Parametric Families

3.1.6 Prediction

In addition to the three different types of inference discussed in the preceding
sections, which were related to the problem of determining the specific Pθ ∈ P,
we may also want to predict the value that a random variable will realize.

In the prediction problem, we have a random variable Y with the prob-
ability triple (Ω,F , P ) and a measurable function X that maps (Ω,F , P ) to
(Λ, G). Given an observed value of X we wish to predict Y ; that is, to find a
Borel function g such that E(‖g(X)‖22) <∞ and E(g(X)) is “close to” E(Y ).

A useful measure of closeness in the prediction problem is the mean squared
prediction error or MSPE:

MSPE(g) = E(‖Y − g(X)‖22). (3.41)

Conditional expectation plays a major role in prediction. If E(Y 2) < ∞,
it may be of interest to determine the best predictor in the sense of minimiz-
ing the mean squared prediction error. Letting T be the class of all functions
g(X) such that E((g(X))2) < ∞ and assuming E(Y 2) < ∞, we expand the
mean-squared prediction error in a manner similar to the operations in in-
equality (B.1) on page 845. For g(X) ∈ T , we have

E(‖Y − g(X)‖22) = E(‖Y − E(Y |X) + E(Y |X)− g(X)‖22)
= E(‖Y − E(Y |X)‖22) + E(‖E(Y |X) − g(X)‖22) +

2E((Y − E(Y |X))T)(E(Y |X)− g(X)))

= E(‖Y − E(Y |X)‖22) + E(‖E(Y |X) − g(X)‖22) +

2E
(
E((Y − E(Y |X))T)(E(Y |X) − g(X)))|X

)

= E(‖Y − E(Y |X)‖22) + E(‖E(Y |X) − g(X)‖22)
≥ E(‖Y − E(Y |X)‖22). (3.42)

(This proves Theorem 1.13 on page 28.)

3.1.7 Other Issues in Statistical Inference

In addition to properties of statistical methods that derive from tight assump-
tions about the underlying probability distribution, there are two additional
considerations. One issue concerns the role of the assumed probability dis-
tribution, that is, how critical is that assumption to the performance of the
statistical procedure. The other issue has to do with how the data are col-
lected.
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Robustness

We seek statistical methods that have optimal properties. We study these
methods in the context of a family of probability distributions P. An optimal
method over one family of probability distributions may be far from optimal
in other families. Hence, although focusing on one family we may also consider
the performance over a larger class of probability families, {P,Q,R, . . .}. This
is called “robustness”.

Data and Sampling: Probability Distributions and
Data-Generating Processes

For many statistical methods we begin by assuming that we have observations
X1, . . . , Xn on a random variable X from some distribution Pθ, which is a
member of some family of probability distributions P. We usually assume
either that the observations (or the “data”), constitute a random sample and
that they are independent or they are at least exchangeable.

The data-generating process that yields the sample depends on the proba-
bility distribution Pθ, but it may not be fully characterized by that underlying
distribution. An issue is whether or not all aspects of the data-generating pro-
cess should affect the inference about Pθ, or whether the inference should be
based solely on the data and the assumed probability distribution Pθ.

In the case of sampling within a finite population, the observations are
often taken according to some efficient scheme, such as stratification or clus-
tering, in which the observations taken as a whole do not constitute a random
sample of realizations of iid random variables. The method of analysis must
take the nature of the data into consideration.

The problem of collecting data for making inferences concerning a Bernoulli
parameter π provides a simple example of different data-generating processes.

Example 3.12 Sampling in a Bernoulli distribution
The family of Bernoulli distributions is that formed from the class of the
probability measures Pπ({1}) = π and Pπ({0}) = 1 − π on the measurable
space (Ω = {0, 1},F = 2Ω). A simple problem is statistical inference about π.

One approach is to take a random sample of size n, X1, . . . , Xn from the
Bernoulli(π), and then use some function of that sample as an estimator. An
obvious statistic to use is the number of 1’s in the sample, that is, T =

∑
Xi.

This is a sufficient statistic. The distribution of T is very simple; it is binomial
with parameters n and π, and its PDF is

pT (t ; n, π) =

(
n

t

)
πt(1− π)n−t, t = 0, 1, . . . , n. (3.43)

We could use this distribution, which depends only on π and the pre-chosen n,
to form unbiased estimators, set confidence sets, or perform tests of hypotheses
regarding π.

Theory of Statistics c©2000–2025 James E. Gentle



238 3 Basic Statistical Theory

A very different approach is to take a sequential sample, X1, X2, . . ., until
a fixed number t of 1’s have occurred. This is a different data-generating
process. In this case, the size of the sample N is random, and its distribution
is the negative binomial with parameters t and π, and its PDF is

pN(n ; t, π) =

(
n− 1

t− 1

)
πt(1− π)n−t, n = t, t+ 1, . . . . (3.44)

(The negative binomial distribution is often defined slightly differently so that
it is the distribution of the random variable N − t above; either definition of
course completely determines the other.) In this process, the sample size N is
a sufficient statistic. We could use the distribution of N , which depends only
on π and the pre-chosen t, to form unbiased estimators, set confidence sets,
or perform tests of hypotheses regarding π.

In the description of the two experiments we have n (pre-chosen), N , T ,
and t (pre-chosen). If the realized value of N is n should the conclusions in the
second experiment be the same as those in the first experiment if the realized
value of T is t?

While one or the other approach may be better from either a practical
or a theoretical standpoint, we may adopt the principle that similar results
from the two experiments should lead to similar conclusions (where “similar
results” is defined in the likelihood principle; see page 245). In Examples 4.3,
4.6 and 4.7, we see that a Bayesian analysis would lead to similar conclusions.
In Example 6.1 on page 447 and in Example 6.4, we see that the maximum
likelihood estimators of π are the same.

Further comments on Example 3.12
We also consider this example in Example 4.1 on page 333, but there consider
only the case in which the Xi are independent (or at least exchangeable). In
that case, of course, the appropriate model is the binomial, and we can ignore
the overall data-generating process. On the other hand, however, because one
experiment was based on a stopping rule that was conditional on the data,
perhaps different conclusions should be drawn. The sample is quite different;
in the latter case, the Xi are not exchangeable, only the first n−1 are. Because
the distributions are different, we may expect to reach different conclusions for
many inferences that depend on expected values of the random observables.
The simplest concern about expected values is just the bias, and indeed, the
unbiased estimators of π are different (see Example 5.1 on page 390). We may
also expect to reach different conclusions for many inferences that depend on
quantiles of the random observables, and, indeed, hypothesis tests concerning
π may be different (see Example 7.12 on page 539). You are asked to explore
these issues further in Exercise 7.5.
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3.2 Statistical Inference: Approaches and Methods

If we assume that we have a random sample of observations X1, . . . , Xn on
a random variable X from some distribution Pθ, which is a member of some
family of probability distributions P, our objective in statistical inference is
to determine a specific Pθ ∈ P, or some subfamily Pθ ⊆ P, that could likely
have generated the sample. In the previous section we have discussed various
ways of assessing the information content of the sample, but we have yet to
address the question of how to use the data in statistical inference.

How should we approach this problem?

Five Approaches to Statistical Inference

Five approaches to statistical inference are

• use of a likelihood function
for example, maximum likelihood
an estimator is an MLE

• use of the empirical cumulative distribution function (ECDF)
for example, method of moments
an estimator is an MME

• fitting expected values
for example, least squares
an estimator may be an LSE or a BLUE

• fitting a probability distribution
for example, maximum entropy

• definition and use of a loss function; a “decision-theoretic” approach
for example, uniform minimum variance unbiased estimation, and most
Bayesian methods.
an estimator may be a UMVUE, a UMRE (rarely!), or a UMREE (or
UMRIE)

These approaches are associated with various philosophical/scientific prin-
ciples, sometimes explicitly stated and sometimes not. The sufficiency princi-
ple (see page 223) guides most aspects of statistical inference, and is generally
consistent with the more specific principles associated with various approaches
to inference. Some of these principles, such as the substitution principle (see
page 247) and the likelihood principle (see page 245), inform a major class of
statistical methods, while other principles, such as the bootstrap principle (see
page 249), are more local in application. Although some statisticians feel that
an axiomatic approach to statistical inference should be based on universal
principles, a substantial proportion of statisticians feel that abstract principles
may be too general to guide inference in a specific case. Most general statis-
tical principles focus on the observed data rather than on the data-generating
process. Statisticians who emphasize general principles often characterize con-
sideration of the data-generating process as “adhockery”.
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Certain elements that may be central to a particular one of these ap-
proaches may be found in other approaches; for example the concept of like-
lihood can be found in most approaches. The principles of data reduction
and the inferential information in a sample that we discussed in the previous
section obviously must be recognized in any approach to statistical inference.
Finally, there are certain methods that are common to more than one of these
approaches. Abstracting and studying the specific method itself may illumi-
nate salient properties of the overall approach. An example of a method that
can be studied in a unified manner is the use of estimating equations, which
we discuss in Section 3.2.5.

In the following four subsections, 3.2.1 through 3.2.4, we will briefly discuss
the first four of the approaches list above. The “decision theory” approach
to statistical inference is based on a loss function, and we will discuss this
important approach in Section 3.3.

Some Methods in Statistical Inference

Within the broad framework of a particular approach to statistical inference,
there are various specific methods that may be applied. I do not attempt a
comprehensive listing of these methods, but in order to emphasize the hierar-
chy of general approaches and specific methods, I will list a few.

• transformations
• transforms (functional transformations)
• asymptotic inference

this includes a wide range of methods such as
– the delta method (first order and second order)
– various Taylor series expansions (of which the delta method is an ex-

ample)
– orthogonal series representations

• computational inference
(this includes a wide range of methods, including MCMC)

• decomposition of variance into variance components
• Rao-Blackwellization
• scoring
• EM methods
• bootstrap
• jackknife
• empirical likelihood
• tilting
• use of saddlepoint approximations
• PDF decomposition

It is worthwhile to be familiar with a catalog of common operations in
mathematical statistics. A list such as that above can be useful when working
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in statistical theory (or applications, of course). In Section 0.0.9 beginning on
page 676 we list several general methods to think of when doing mathematics.

We will illustrate these methods in various examples throughout this book.

3.2.1 Likelihood

Given a sampleX1, . . . , Xn from distributions with probability densities pi(x),
where all PDFs are defined with respect to a common σ-finite measure, the
likelihood function is

Ln(pi ; X) = c

n∏

i=1

pi(Xi), (3.45)

where c ∈ IR+ is any constant independent of the pi. A likelihood function,
therefore, may be considered to be an equivalence class of functions. It is
common to speak of Ln(pi ; X) with c = 1 as “the” likelihood function.

We can view the sample either as a set of random variables or as a set
of constants, the realized values of the random variables, in which case we
usually use lower-case letters.

The likelihood function arises from a probability density, but it is not a
probability density function. It does not in any way relate to a “probability”
associated with the parameters or the model.

Although non-statisticians will often refer to the “likelihood of an obser-
vation”, in statistics, we use the term “likelihood” to refer to a model or a
distribution given observations.

The log-likelihood function is the log of the likelihood:

lLn(pi ; x) = logLn(pi ; xi), (3.46)

It is a sum rather than a product.
The n subscript serves to remind us of the sample size, and this is often

very important in use of the likelihood or log-likelihood function particularly
because of their asymptotic properties. We often drop the n subscript, how-
ever.

In many cases of interest, the sample is from a single parametric family. If
the PDF is p(x ; θ) then the likelihood and log-likelihood functions are written
as

L(θ ; x) =

n∏

i=1

p(xi ; θ), (3.47)

and
l(θ ; x) = logL(θ ; x). (3.48)

The Parameter Is the Variable

Note that the likelihood is a function of θ for a given x, while the PDF is
a function of x for a given θ. We sometimes write the expression for the
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likelihood without the observations: L(θ). I like to think of the likelihood as a
function of some dummy variable t that ranges over the parameter space Θ,
and I write L(t ; x) or l(t ; x). While if we think of θ as a fixed, but unknown,
value, it does not make sense to think of a function of that particular value,
and if we have an expression in terms of that value, it does not make sense to
perform operations such as differentiation with respect to that quantity.

For certain properties of statistics derived from a likelihood approach, it
is necessary to consider the parameter space Θ to be closed (see, for example,
Wald (1949)). Except for cases when those properties are important, we will
not assume Θ to be closed, but may, however, consider the closure Θ.

In a multiparameter case, we may be interested in only some of the pa-
rameters. There are two ways of approaching this, use of a profile likelihood
or of a conditional likelihood.

If θ = (θ1, θ2) and if θ2 is fixed, the likelihood L(θ1 ; θ2, x) is called a profile
likelihood or concentrated likelihood of θ1 for given θ2 and x.

If the PDFs can be factored so that one factor includes θ2 and some func-
tion of the sample, S(x), and the other factor, given S(x), is free of θ2 , then
this factorization can be carried into the likelihood. Such a likelihood is called
a conditional likelihood of θ1 given S(x).

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) of θ is defined as

θ̂ = arg max
θ∈Θ

L(θ ; x), (3.49)

if it exists (that is, if supθ∈Θ L(θ ; x) ∈ IR).
Because the logarithm is a strictly increasing function, the MLE is also

the argmax of the log-likelihood. Also, of course, the maximum of L(θ) occurs
at the same value of the argument as the maximum of cL(θ).

The MLE in general is not unbiased for its estimand. A simple example is
the MLE of the variance σ2 in a normal distribution with unknown mean.

Example 3.13 MLE of the mean and the variance in a normal dis-
tribution
Consider the normal family of distributions with parameters µ and σ2. Sup-
pose we have observations x1, x2, . . . , xn. The log-likelihood is

lL(µ, σ2 ; x) = −1

2
log(2πσ2)−

∑n
i=1(xi − µ)2

2σ2
. (3.50)

We seek values that could be substituted for µ and σ2 so as to maximize this
quantity. If µ and σ2 are treated as variables, we see that the function in
equation (3.50) is differentiable with respect to them. We have
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∂

∂µ
lL(µ, σ2 ; x) =

∑n
i=1(xi − µ)

σ2
(3.51)

∂

∂σ2
lL(µ, σ2 ; x) =

∑n
i=1(xi − µ)2

2(σ2)2
− n

2σ2
(3.52)

We set the derivatives equal to zero to obtain the “likelihood equations”, and
solving that system, we obtain the stationary points

µ̂ = x̄ (3.53)

and if ∃ i, j ∈ {1, . . . , n} 3 xi 6= xj ,

σ̂2 =
n∑

i=1

(xi − x̄)2/n. (3.54)

Next, we compute the Hessian of lL(µ, σ2 ; x), and observe that it is negative
definite at the stationary point; hence µ̂ and σ̂2 maximize the log-likelihood
(exercise).

We know that S2 =
∑n

i=1(Xi − X̄)2/(n − 1) where X1, X2, . . . , Xn is a
random sample from a normal distribution with variance σ2 is unbiased for
σ2; hence, the MLE is biased.

Note that if we had only one observation or if all observations had the same
value, the log-likelihood would be unbounded when µ = x1 and σ2 approaches
zero.

The MLE for σ2 in a normal distribution with unknown mean is the same
as the plug-in estimator or MME (3.64). Note that the plug-in estimator (or
MME) is not based on an assumed underlying distribution, but the MLE is.

The MLE may have smaller MSE than an unbiased estimator. This is the
case in the example above. The estimator S2 in equation (3.65) is unbiased,
and the MLE is (n− 1)S2/n. Consider any estimator of the form c(n− 1)S2 .
Note that (n − 1)S2/σ2 has a χ2

n−1 distribution. In the case of N(µ, σ2) we
have the MSE

E((c(n − 1)S2 − σ2)2) = σ4((n2 − 1)c2 − 2(n− 1)c+ 1). (3.55)

From this we see that the MLE of σ2, that is, where c = 1/n, has uniformly
smaller MSE than the unbiased estimator S2 .

Likelihood Equation

In statistical estimation, the point at which the likelihood attains its maximum
(which is, of course, the same point at which the log-likelihood attains its
maximum) is of interest. We will consider this approach to estimation more
thoroughly in Chapter 6.

If the likelihood is differentiable with respect to the parameter, we may
be able to obtain the maximum by setting the derivative equal to zero and
solving the resulting equation:
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∂l(θ ; x)

∂θ
= 0. (3.56)

This is called the likelihood equation. The derivative of the likelihood equated
to zero, ∂L(θ ; x)/∂θ = 0, is also called the likelihood equation.

The roots of the likelihood equation are often of interest, even if these
roots do not provide the maximum of the likelihood function.

Equation (3.56) is an estimating equation; that is, its solution, if it exists,
is an estimator. Note that this estimator is not necessarily MLE; it is a root
of the likelihood equation, or RLE. We will see in Chapter 6 that RLEs have
desirable asymptotic properties.

It is often useful to define an estimator as the solution of some estimating
equation. We will see other examples of estimating equations in subsequent
sections.

Score Function

The derivative of the log-likelihood on the left side of equation (3.56) plays
an important role in statistical inference. It is called the score function, and
often denoted as sn(θ ; x):

sn(θ ; x) =
∂l(θ ; x)

∂θ
. (3.57)

(I should point out that I use the notation “∇l(θ ; x)” and the slightly more
precise “∂l(θ ; x)/∂θ” more-or-less synonymously.)

Finding an RLE is called scoring.
In statistical inference, knowing how the likelihood or log-likelihood would

vary if θ were to change is important. For a likelihood function (and hence,
a log-likelihood function) that is differentiable with respect to the parameter,
the score function represents this change.

Likelihood Ratio

When we consider two different distributions for a sample x, we have two dif-
ferent likelihoods, say L0 and L1. (Note the potential problems in interpreting
the subscripts; here the subscripts refer to the two different distributions. For
example L0 may refer to L(θ0 | x) in a notation consistent with that used
above.) In this case, it may be of interest to compare the two likelihoods in
order to make an inference about the two possible distributions. A simple
comparison, of course, is the ratio. The ratio

L(θ0 ; x)

L(θ1 ; x)
, (3.58)

or L0/L1 in the simpler notation, is called the likelihood ratio with respect to
the two possible distributions.
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Although in most contexts we consider the likelihood to be a function of
the parameter for given, fixed values of the observations, it may also be useful
to consider the likelihood ratio to be a function of x. On page 167, we defined
a family of distributions based on their having a “monotone” likelihood ratio.
Monotonicity in this case is with respect to a function of x. In a family with
a monotone likelihood ratio, for some scalar-valued function y(x) and for any
θ1 < θ0, the likelihood ratio is a nondecreasing function of y(x) for all values
of x for which fθ1(x) is positive.

The most important use of the likelihood ratio is as the basis for a statis-
tical test.

Under certain conditions that we will detail later, with L0 and L1, with
corresponding log-likelihoods l0 and l1, based on a random variable (that is,
Li = L(pi ; X), instead of being based on a fixed x), the random variable

λ = −2 log

(
L0

L1

)
(3.59)

= −2(l0 − l1)

has an approximate chi-squared distribution with degrees of freedom whose
number depends on the numbers of parameters. (We will discuss this more
fully in Chapter 7.)

This quantity in a different setting is also called the deviance. We encounter
the deviance in the analysis of generalized linear models, as well as in other
contexts.

The likelihood ratio, or the log of the likelihood ratio, plays an important
role in statistical inference. Given the data x, the log of the likelihood ratio is
called the support of the hypothesis that the data came from the population
that would yield the likelihood L0 versus the hypothesis that the data came
from the population that would yield the likelihood L1. The support clearly
is relative and ranges over IR. The support is also called the experimental
support.

Likelihood Principle

The likelihood principle in statistical inference asserts that all of the informa-
tion that the data provide concerning the relative merits of two hypotheses
(two possible distributions that give rise to the data) is contained in the likeli-
hood ratio of those hypotheses and the data. An alternative statement of the
likelihood principle is that if for x and y,

L(θ ; x)

L(θ ; y)
= c(x, y) ∀θ, (3.60)

where c(x, y) is constant for given x and y, then any inference about θ based
on x should be in agreement with any inference about θ based on y.
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3.2.2 The Empirical Cumulative Distribution Function

Given a sample X1 = x1, . . . , Xn = xn as independent observations on a ran-
dom variable X, we can form another random variable X∗ that has a discrete
uniform distribution with probability mass 1/n at each of the sample points.
(In the case that xi = xj for some i and j, X∗ would not have a uniform
distribution of course. Whether or not this is the case, however, for conve-
nience, we will continue to refer to the distribution as uniform.) This discrete
uniform distribution can be used for making inferences on the distribution of
the random variable of interest

From observations on a random variable, X1, . . . , Xn, we can form an
empirical cumulative distribution function, or ECDF, that corresponds in a
natural way with the CDF of the random variable.

For the sample, X1, . . . , Xn, the ECDF is defined as the CDF of X∗; that
is,

Pn(x) =
#{Xi ≤ x}

n
. (3.61)

The ECDF is a random simple function, and often it is appropriate to treat
the ECDF as a random variable. It is clear that the ECDF conditional on a
given sample is itself a CDF. (Conditionally it is not a “random” variable;
that is, it is a degenerate random variable.) It has the three properties that
define a CDF:

• limx→−∞ Pn(x) = 0 and limx→∞ Pn(x) = 1.
• Pn(x) is monotone increasing.
• Pn(x) is continuous from the right.

The ECDF defines a discrete population with mass points at each value in
the sample.

The ECDF is particularly useful in nonparametric inference. We will see
below how it can allow us to “bootstrap” an unknown population and also
how it can allow us to use the principles of likelihood even though we may be
unable to write out the density of the population.

Plug-In Estimators; The Substitution Principle

As discussed in Section 1.1.9, many distribution parameters and other mea-
sures can be represented as a statistical function, that is, as a functional of the
CDF. The functional of the CDF that defines a parameter defines a plug-in
estimator of that parameter when the functional is applied to the ECDF. A
functional of a population distribution function, Θ(P ), that defines a param-
eter θ can usually be expressed as

θ = Θ(P )

=

∫
g(y) dP (y). (3.62)
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The plug-in estimator T is the same functional of the ECDF:

T = Θ(Pn)

=

∫
g(y) dPn(y). (3.63)

(In both of these expressions, we are using the integral in a general sense. In
the second expression, the integral is a finite sum. It is also a countable sum
in the first expression if the random variable is discrete. Note also that we use
the same symbol to denote the functional and the random variable.)

The use of the functional that defines a statistical function on the ECDF
to make inferences on the statistical function is called the substitution prin-
ciple. It is one of the most useful and most pervasive principles in statistical
inference.

We may base inferences on properties of the distribution with CDF P
by identifying the corresponding properties of the ECDF Pn. In some cases,
it may not be clear what we mean by “corresponding”. If a property of a
distribution can be defined by a functional on the CDF, the corresponding
property is the same functional applied to the ECDF. This is the underlying
idea of the method of moments, for example.

The asymptotic properties of plug-in estimators can be developed by
Taylor-series-type expansions of the statistical functions, as discussed on
page 96 in Section 1.3.7. We consider this further on page 316.

Method of Moments Estimators

In the method of moments, sample moments, which are moments of the dis-
crete population represented by the sample, are used for making inferences
about population moments. The MME of the population mean, E(X), is the
sample mean, X. The thing to be estimated is the functional M in equa-
tion (1.110), and the estimator is M applied to the ECDF:

M(Pn) =
∑

XiPn(Xi).

We call a method-of-moments estimator an MME.
The plug-in estimator Θ(Pn) in general is not unbiased for the associated

statistical function Θ(P ). A simple example is the variance,

Σ(P ) = σ2 =

∫ (
x−

∫
x dP

)2

dP.

The plug-in estimator, which in this case is also a MME, is

Σ(Pn) =
1

n

n∑

i=1

(Xi −X)2. (3.64)
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We see that if n ≥ 2, the MME Σ(Pn) = (n− 1)S2/n, where

S2 =
1

n − 1

n∑

i=1

(Xi −X)2 (3.65)

is the usual sample variance.
On the other hand, the plug-in estimator may have smaller MSE than an

unbiased estimator, and, in fact, that is the case for the plug-in estimator of
σ2 (see equation (3.55)). Also, plug-in estimators often have good limiting and
asymptotic properties, as we might expect based on convergence properties of
the ECDF.

Convergence of the ECDF

The ECDF is one of the most useful statistics, especially in nonparametric
and robust inference. It is essentially the same as the set of order statistics,
so like them, it is a sufficient statistic. Although we may write the ECDF as
Fn or Fn(x), it is important to remember that it is a random variable.

The distribution of the ECDF at a point is binomial, and so the pointwise
properties of the ECDF are easy to see. From the SLLN, we see that it strongly
converges pointwise to the CDF. At the point x, by the CLT we have

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))) .

Although the pointwise properties of the ECDF are useful, its global re-
lationship to the CDF is one of the most important properties of the ECDF.
Dvoretzky/Kiefer/Wolfowitz/Massart inequality (1.290)

Pr(ρ∞(Fn, F ) > z) ≤ 2e−2nz2

provides a tight bound on the difference in the ECDF and the CDF.
The Glivenko-Cantelli theorem (page 136) tells us that the sup distance

of the ECDF from the CDF, ρ∞(Fn, F ), converges almost surely to zero; that
is, the ECDF converges strongly and uniformly to the CDF.

The Bootstrap

The ECDF plays a major role in a bootstrap method, in which the population
of interest is studied by sampling from the population defined by a given
sample from the population of interest. This is a method of resampling.

Resampling methods involve the use of many samples, each taken from a
single sample that was taken from the population of interest. Inference based
on resampling makes use of the conditional sampling distribution of a new
sample (the “resample”) drawn from a given sample. Statistical functions on
the given sample, a finite set, can easily be evaluated. Resampling methods

Theory of Statistics c©2000–2025 James E. Gentle



3.2 Statistical Inference: Approaches and Methods 249

therefore can be useful even when very little is known about the underlying
distribution.

A basic idea in bootstrap resampling is that, because the observed sample
contains all the available information about the underlying population, the
observed sample can be considered to be the population; hence, the distribu-
tion of any relevant test statistic can be simulated by using random samples
from the “population” consisting of the original sample.

Suppose that a sample y1, . . . , yn is to be used to estimate a population
parameter, θ. For a statistic T that estimates θ, as usual, we wish to know
the sampling distribution so as to correct for any bias in our estimator or to
set confidence intervals for our estimate of θ. The sampling distribution of T
is often intractable in applications of interest.

A basic bootstrapping method formulated by Efron (1979) uses the discrete
distribution represented by the sample to study the unknown distribution from
which the sample came. The basic tool is the empirical cumulative distribution
function. The ECDF is the CDF of the finite population that is used as a model
of the underlying population of interest.

For a parameter θ of a distribution with CDF P defined as θ = Θ(P ),
we can form a plug-in estimator T as T = Θ(Pn). Various properties of the
distribution of T can be estimated by use of “bootstrap samples”, each of
the form {y∗1 , . . . , y∗n}, where the y∗i ’s are chosen from the original yi’s with
replacement.

We define a resampling vector, p∗, corresponding to each bootstrap sample
as the vector of proportions of the elements of the original sample in the given
bootstrap sample. The resampling vector is a realization of a random vector
P ∗ for which nP ∗ has an n-variate multinomial distribution with parameters
n and (1/n, . . . , 1/n). The resampling vector has random components that
sum to 1. For example, if the bootstrap sample (y∗1 , y

∗
2 , y

∗
3 , y

∗
4) happens to be

the sample (y2, y2, y4, y3), the resampling vector p∗ is

(0, 1/2, 1/4, 1/4).

The bootstrap replication of the estimator T is a function of p∗, T (p∗).
The resampling vector can be used to estimate the variance of the bootstrap
estimator. By imposing constraints on the resampling vector, the variance of
the bootstrap estimator can be reduced.

The Bootstrap Principle

The bootstrap principle involves repeating the process that leads from a popu-
lation CDF to an ECDF. Taking the ECDF Pn to be the CDF of a population,

and resampling, we have an ECDF for the new sample, P
(1)
n . (In this notation,

we could write the ECDF of the original sample as P
(0)
n .) The difference is

that we know more about P
(1)
n than we know about Pn. Our knowledge about
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P
(1)
n comes from the simple discrete uniform distribution, whereas our knowl-

edge about Pn depends on knowledge (or assumptions) about the underlying
population.

The bootstrap resampling approach can be used to derive properties of
statistics, regardless of whether any resampling is done. Most common uses of
the bootstrap involve computer simulation of the resampling; hence, bootstrap
methods are usually instances of computational inference.

Empirical Likelihood

The ECDF can also be used to form a probability density for a method based
on a likelihood function.

3.2.3 Fitting Expected Values

Given a random sample X1, . . . , Xn from distributions with probability den-
sities pi(xi; θ), where all PDFs are defined with respect to a common σ-finite
measure, if we have that E(Xi) = gi(θ), a reasonable approach to estimation

of θ may be to choose a value θ̂ that makes the differences E(Xi)−gi(θ) close
to zero. If the Xi are iid, then all gi(θ) are the same, say g(θ).

We must define the sense in which the differences are close to zero. A
simple way to do this is to define a nonnegative scalar-valued Borel function
of scalars, ρ(u, v), that is increasing in the absolute difference of its arguments.
One simple choice is ρ(u, v) = (u− v)2 . We then define

Sn(θ, x) =

n∑

i=1

ρ(xi, g(θ)). (3.66)

For a random sample X = X1, . . . , Xn, an estimator fitted to the expected
values is g(T ) where

T = arg min
θ∈Θ

Sn(θ,X). (3.67)

Compare this with the maximum likelihood estimate of θ, defined in equa-
tion (3.49).

As with solving the maximization of the likelihood, if the function to be
optimized is differentiable, the solution to the minimization problem (3.67)
may be obtained by solving

sn(θ ; x) =
∂Sn(θ ; x)

∂θ
= 0. (3.68)

Equation (3.68) is an estimating equation; that is, its solution, if it exists, is
taken as an estimator. Note that this estimator is not necessarily a solution
to the optimization problem (3.67).

In common applications, we have covariates, Z1, . . . , Zn, and the E(Xi)
have a constant form that depends on the covariate: E(Xi) = g(Zi, θ).
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Example 3.14 least squares in a linear model
Consider the linear model (3.7)

Y = Xβ + E,

where Y is the random variable that is observable, in the least squares setup
of equations (3.66) and (3.67) we have

Sn(β ; y,X) = ‖y −Xβ‖2 . (3.69)

In the case of the linear model, we have the estimating equation

sn(β ; y,X) = XTy −XTXβ = 0. (3.70)

This system of equations is called the “normal equations”.
For the estimand g(β) = lTβ for some fixed l, the least squares estimator

is lT(XTX)−XTY , where M− denotes a generalized inverse of a matrix M .
See page 424 and the following pages for a more thorough discussion of the
linear model in this example.

Example 3.14 illustrates a very simple and common application of estima-
tion by fitting expected values; the expected values are those of the observable
random variable. The next example is a somewhat less common situation of
defining which expected values to focus on.

Example 3.15 estimation in a stable family; the empirical CF
Most members of the stable family of distributions are quite complicated.
In general, there is no closed form for the CDF of the PDF, and none of
the moments exist or else are infinite. The family of distributions is usually
specified by means of the characteristic function (see equation (2.26)),

ϕ(t) = exp (iµt− |σt|α (1− iβ sign(t)ω(α, t))) .

Because the characteristic function is an expected value, its sample analogue,
that is, the empirical characteristic function can be formed easily from a sam-
ple, x1, . . . , xn:

ϕn(t) =
1

n

n∑

i=1

eitxi . (3.71)

The empirical characteristic function can be computed at any point t.
The expected values would be fit by minimizing

Sn(x, r, µ, σ, α, β) = ‖ϕn(t) − ϕ(t)‖r (3.72)

for given r at various values of t.
While this is a well-defined problem (for some given values of t) and the

resulting estimators are strongly consistent (for the same reason that estima-
tors based on the ECDF are strongly consistent), there are many practical
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issues in the implementation of the method. Press (1972) proposed fitting
moments as an approximation to the values that would be obtained by min-
imizing sn in equation (3.72). For the case of r = 2, Koutrouvelis (1980)
proposed a regression method that seems to perform fairly well in simulation
studies. Kogan and Williams (1998) summarize these and other methods for
estimating the parameters in a stable family.

Quantile Based Estimators

The expected values of order statistics can often yield good estimators when
sample quantiles are fit to them. In most cases, the statistical properties of
these estimators are not as good as alternative estimators, but there are some
cases where they are useful. One such situation is where the distribution is
very complicated, such as the family of stable distributions in Example 3.15.
Fama and Roll (1971) describe methods for estimation of the parameters in a
symmetric stable family (that is, one in which β = 0).

Estimators based on quantiles are especially useful in heavy-tailed distri-
butions. (The stable family is heavy-tailed.) Beginning on page 608, I will
discuss a type of robust estimators, called L-estimators, that are linear com-
binations of order sample quantiles.

Regularization of Fits

The objective function for fitting expected values may not be well-behaved.
Small variations in the sample may yield large differences in the estimates. The
ill-conditioned objective function yield estimators with large variances. An
approach to this problem is to “regularize” the objective function by modifying
it to be better conditioned. In a minimization problem a simple way of making
the objective function better conditioned is to add a penalty term for variation
in the solution. This means that the solution is pulled toward some fixed value.
Often there is no obvious fixed value to bias an estimator toward. A common
procedure is merely to shrink the estimator toward 0. Given an objective
function of the form (3.66), a modified objective function that shrinks the
estimator toward 0 is

S̃n(θ, x) =

n∑

i=1

ρ1(xi, g(θ)) + ρ2(θ, θ). (3.73)

Use of this type of objective function in regression analysis leads to “ridge
regression”; see Example 5.27.

The idea of regularization is also used in other estimation methods that
involve a minimization or maximization, such as maximum likelihood estima-
tion of a PDF as on page 581, for example.
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3.2.4 Fitting Probability Distributions

Another approach to statistical inference is to use the observed data to fit
the probability distribution over the full support. The fit is chosen to min-
imize some measure of the difference between it and the values of the PDF
(or probability function). To pursue this idea, we need some measure of the
difference.

The quantity

d(P,Q) =

∫

IR

φ

(
dP

dQ

)
dQ, (3.74)

if it exists, is called the φ-divergence from Q to P . The φ-divergence is also
called the f-divergence.

The expression often has a more familiar form if both P and Q are domi-
nated by Lebesgue measure and we write p = dP and q = dQ.

Notice that if q is scaled to be a probability density, the φ-divergence is
the expected value of φ (dP/dQ) with respect to that probability density.

A specific instance of φ-divergence (with some rearrangement of the quan-
tities) is the expected weight of evidence, or the Kullback-Leibler measure,

∫

IR

log

(
p(x)

q(x)

)
p(x)dx. (3.75)

(Recall from page 850 that this quantity is nonnegative.)
The φ-divergence is in general not a metric because it is not symmetric.

One function is taken as the base from which the other function is measured. In
Section 0.1.9 beginning on page 747, we discuss metrics and also φ-divergence
in the more general context of comparing two functions.

While this idea can be used for any type of distribution, it is most useful
in the case of a discrete distribution with a finite number of mass points. In
the case of a distribution with d mass points with probabilities π1, . . . , πd, the
full information content of a sample X1, . . . , Xn is the information in a sample
Y1, . . . , Yd from a multinomial distribution with parameters n and π1, . . . , πd.

Various measures of divergence in a multinomial distribution are well-
known. The most commonly used measure is the chi-squared measure, which
is given in a general form in equation (0.1.86) on page 748. . This measure
has a simpler form in the multinomial case. It is also a member of the family
of power divergence measures, which for λ ∈ IR, is

Iλ =
1

λ(λ + 1)

d∑

i=1

Yi

((
Yi

nπi

)λ

− 1

)
. (3.76)

There are equivalent forms of this measure that are scaled by d or by some
other constant, and for given λ the constant factor plays no role in minimizing
the divergence. For λ = 1, this is the same as the chi-squared discrepancy mea-
sure, For λ = 0 in the limit, this is the same as the log-likelihood ratio statis-
tic, and for λ = −1/2, it is the Freeman-Tukey statistic. Cressie and Read
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(1984) studied this general family of power divergence measures, and sug-
gested λ = 2/3 as a value that has some of the desirable properties of both
the chi-squared and log-likelihood ratio statistics.

The parameters of the multinomial are just π1, . . . , πd and estimators of
them based on a power divergence measure are straightforward. When a multi-
nomial distribution is formed from another distribution, however, the estima-
tion problem is more interesting.

Example 3.16 minimum distance estimation in a Poisson model
Suppose we have observations x1, x2, . . . , xn from a Poisson distribution with
unknown parameter θ. The sample values are all nonnegative integers and if
θ is relatively small, there may be very few observations that exceed some
small number. Suppose we form a multinomial model, as indicated above,
with d = 3; that is, y1 is the number of 0s observed, y2 is the number of 1s
observed, and y3 is the number of observed values greater than or equal to 2.
We have π1 = e−θ , π2 = θe−θ, and π3 = 1− (1 + θ)e−θ .

The minimum power divergence estimator of θ is obtained by substituting
the appropriate values of π in expression (3.76) and then minimizing it with
respect to θ. Thus, given the observations y1, y2, y3, the Cressie-Read estimate
is

arg minθ∈IR

(
y1

((
y1/n
e−θ

)2/3

− 1

)

+y2

((
y2/n
θe−θ

)2/3

− 1

)

+y3

((
y3/n

1−(1+θ)e−θ

)2/3

− 1

))
.

In an approach to statistical inference based on information theory, the
true but unknown distribution is compared with information in the sample.
The focus is on “information” or “entropy”, in the sense discussed on page 43.
The basic quantity is of the form E(− log(dP )). The principle underlying
methods of statistical inference using these concepts and quantities is called
maximum entropy.

3.2.5 Estimating Equations

Equations (3.56) and (3.68) are estimating equations; that is, their solutions,
if they exist, are taken as estimates. Note that the solutions to the estimating
equations are not necessarily the solutions to the optimization problems that
gave rise to them. They are both merely roots of estimating equations.

Estimating Functions and Generalized Estimating Equations

Estimating equations arise often in statistical inference. There are also several
modifications of the basic equations; for example, sometimes we cannot form a
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tractable likelihood, so we form some kind of “quasi-likelihood”. We therefore
consider a generalized class of estimating equations.

We consider an independent sample X1, . . . , Xn of random vectors with
orders d1, . . . , dn, with sup di <∞. We assume the distributions of the Xi are
defined with respect to a common parameter θ ∈ Θ ⊆ IRk. We now define
Borel functions ψi(Xi, t) and let

sn(t ; X) =

n∑

i=1

ψi(Xi, t) t ∈ Θ. (3.77)

If Eθ((sn(θ ; X))2) <∞, we call

sn(t ; X) (3.78)

an estimating function. We often write the estimating function simply as sn(t).
(Also, note that I am writing “t” instead of “θ” to emphasize that it is a
variable in place of the unknown parameter.)

Two prototypic estimating functions are the score function, equation (3.57)
and the function on the left side of the normal equations (3.70).

We call
sn(t) = 0 (3.79)

a generalized estimating equation (GEE) and we call a root of the generalized
estimating equation a GEE estimator. If we take

ψi(Xi, t) = ∂ρ(Xi, t)/∂t,

we note the similarity of the GEE to equation (3.68).

Unbiased Estimating Functions

The estimating function is usually chosen so that

Eθ(sn(θ ; X)) = 0, (3.80)

or else so that the asymptotic expectation of {sn} is zero.
If sn(θ ; X) = T (X) − g(θ), the condition (3.80) is equivalent to the es-

timator T (X) being unbiased for the estimand g(θ). This leads to a more
general definition of unbiasedness for a function.

Definition 3.7 (unbiased estimating function)
The estimating function sn(θ ; X) is unbiased if

Eθ(sn(θ ; X)) = 0 ∀θ ∈ Θ. (3.81)

Theory of Statistics c©2000–2025 James E. Gentle



256 3 Basic Statistical Theory

An unbiased estimating function does not necessarily lead to an unbiased
estimator of g(θ), unless, of course, sn(θ ; X) = T (X) − g(θ).

We also note that unbiased estimating functions are essentially members
of equivalence classes formed by multiples that are independent of the random
variable. That is, if sn(θ ; X) is unbiased, and g(θ) is a function that does not
depend on X, then g(θ)sn(θ ; X) is also unbiased.

Notice that equation (3.80) holds for the normal equations (3.70); there-
fore, the estimating function in the normal equations, XTY −XTXβ is un-
biased. On page 463, we will also see that the score function is unbiased.

Efficiency of Estimating Functions

The efficiency of a statistical procedure generally refers to the mean squared
error of the procedure. For certain families of distributions, we can establish
lower bounds on the variance of a statistic.

An approach to estimation that we have mentioned a few times already and
will study more fully in later sections and chapters is to restrict attention to
unbiased statistics and to determine one of those that minimizes the variance
at all points in the parameter space. If sn(θ ; X) is unbiased, then

Vθ(sn(θ ; X)) = Eθ((sn(θ ; X))2). (3.82)

For the case of unbiased estimators in certain families of distributions, the
lower bound on the variance takes on special importance.

For an unbiased estimator T of g(θ) in a family of densities satisfying
the regularity conditions and such that T has a finite second moment, from
inequality (3.39) on page 234, we have the matrix relationship

V(T (X)) ≥
(
∂

∂θ
g(θ)

)T

(I(θ))
−1 ∂

∂θ
g(θ), (3.83)

where we assume the existence of all quantities in the expression.

Definition 3.8 (efficient estimator; Fisher efficient)
Given a family of distributions {Pθ} satisfying the FI regularity conditions,
an unbiased estimator T (X) of g(θ) is said to be efficient or Fisher efficient
if V(T (X)) attains the lower bound in inequality (3.83).

Notice the slight difference in “efficiency” and “efficient”; while one mean-
ing of “efficiency” is a relative term that is not restricted to unbiased estima-
tors (or other unbiased procedures, as we will see later), “efficient” is absolute.
“Efficient” only applies to unbiased estimators, and an estimator either is or
is not efficient. The state of being efficient, of course is called “efficiency”.
This is another meaning of the term. The phrase “Fisher efficiency” helps to
emphasis this difference.

To minimize the variance among all unbiased estimating functions leads to
the trivial solution (sn(θ ; X)) ≡ 0, because, as we noted above, any multiple
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of sn(θ ; X) that does not involveX is unbiased. We therefore seek other ways
of defining optimality among a class of unbiased estimating functions.

We consider a generalization of the Fisher information (3.30) with sn(θ ; X) =
∂ logp(X; θ)/∂θ:

Eθ

(
(sn(θ ; X)) (sn(θ ; X))

T
)
.

Now we define efficiency of unbiased estimating functions in terms of this
quantity.

Definition 3.9 (efficiency of unbiased estimating functions)
Let sn(θ ; X) be an unbiased estimating function that is differentiable in θ.
The efficiency of sn is

(Eθ(∂sn(θ ; X)/∂θ))
T
(
Eθ

(
(sn(θ ; X)) (sn(θ ; X))

T
))−1

(Eθ(∂sn(θ ; X)/∂θ)) .

The efficiency of unbiased estimating functions is sometimes called Godambe
efficiency, after V. P. Godambe. Compare this expression for the efficiency of
an unbiased estimating function with the CRLB, which is expressed in terms
of a score function.

Notice that for estimating functions, we define efficiency only for unbiased
functions. Just as in the case of point estimators, with estimating functions,
we use the word “efficient” in the sense of “most efficient”.

Definition 3.10 (efficient unbiased estimating functions)
Let s∗n(θ ; X) be an unbiased estimating function that is differentiable in θ. If
the efficiency of s∗n is at least as great as the efficiency of any other unbiased
estimating function that is differentiable in θ, then we say s∗n is efficient, or
(synonymously) Godambe efficient.

That is, while “efficiency” is a relative term, “efficient” is absolute. An efficient
estimating function is not necessarily unique, however.

Definition 3.11 (martingale estimating function)
Let {(Xt,Ft) : t ∈ T } be a forward martingale, and let {st(θ ; Xt) : t ∈ T }
be adapted to the filtration {Ft)}. Then {st(θ ; Xt) : t ∈ T } is called a
martingale estimating function iff

s0(θ ; X0)
a.s.
= 0

and
E(st(θ ; Xt)|Ft−1)

a.s.
= st−1(θ ; Xt−1).

Martingale estimating functions arise in applications of stochastic process
models, for example, in the analysis of financial data.
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Our interest in estimating functions is due to their use in forming estimat-
ing equations and subsequently in yielding estimators. We will consider some
asymptotic properties of solutions to estimating equations in Section 3.8.1
(consistency) and in Section 6.3.4 (asymptotic normality).

3.2.6 Summary and Preview

We have discussed four general approaches to statistical inference, and have
identified a fifth one that we implied would warrant more careful study later.
At this point, let us review and summarize the procedures that we have dis-
cussed and briefly introduce the other approach, which we will discuss in
Section 3.3.

• estimation based on the ECDF
– estimate g(θ) so that the quantiles of Pdg(θ)

are close to the quantiles

of the data
How many and which quantiles to match?
Use of a plug-in estimator from the empirical cumulative distribution
function follows this approach, and in that case all quantiles from the
data are used.
This approach may involve questions of how to define sample quantiles.
We will continue to use the term “sample quantile” of order π to refer
to the order statistic X(dnπe+1:n).
An example of this approach is the requirement of median-unbiasedness
(one specific quantile).

– estimate g(θ) so that the moments of Pdg(θ)
are close to the sample

moments
How many and which moments to match?
Do the population moments exist?
Method-of-moments estimators may have large variances; hence, while
this method may be simple (and widely-used), it is probably not a good
method generally.
An example of this approach is the requirement of unbiasedness (one
specific moment).

• use the likelihood
– estimate g(θ) as g(θ̂), where θ̂ maximizes the likelihood function,

L(θ, x, z).
Maximum likelihood estimation is closely related to minimum-residual-
norm estimation. For the normal distribution, for example, MLE is the
same as LS, and for the double exponential distribution, MLE is the
same as LAV.
If there is a sufficient statistic, a MLE is a function of it. (This does
not say that every MLE is a function of the sufficient statistic.)
MLEs often have very good statistical properties. The are particularly
easy to work with in exponential families.
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• estimation by fitting expected values
– estimate g(θ) so that residuals ‖xi − E dg(θ)

(Xi, zi)‖ are small.

An example of this approach is least squares (LS) estimation (the Eu-
clidean norm of the vector of residuals, or square root of an inner prod-
uct of the vector with itself). If the expectation exists, least squares
yields unbiasedness.
Another example of this approach is least absolute values (LAV) esti-
mation, in which the L1 norm of the vector of residuals is minimized.
This yields median-unbiasedness.

• fit an empirical probability distribution
This approach is somewhat similar to fitting an ECDF, but in the case
of PDFs, the criterion of closeness of the fit must be based on regions of
nonzero probability; that is, it can be based on divergence measures.

• define and use a loss function
(This is an approach based on “decision theory”, which we introduce for-
mally in Section 3.3. The specific types of estimators that result from this
approach are the subjects of several later chapters.)
The loss function increases the more the estimator differs from the esti-
mand, and then estimate g(θ) so as to minimize the expected value of the
loss function (that is, the “risk”) at points of interest in the parameter
space.
– require unbiasedness and minimize the variance at all points in the

parameter space (this is UMVU estimation, which we discuss more
fully in Section 5.1)

– require equivariance and minimize the risk at all points in the parame-
ter space (this is MRE or MRI estimation, which we discuss more fully
in Section 3.4)

– minimize the maximum risk over the full parameter space
– define an a priori averaging function for the parameter, use the observed

data to update the averaging function and minimize the risk defined
by the updated averaging function.

3.3 The Decision Theory Approach to Statistical
Inference

3.3.1 Decisions, Losses, Risks, and Optimal Actions

In the decision-theoretic approach to statistical inference, we call the inference
a decision or an action, and we identify a cost or loss that depends on the
decision and the true (but unknown) state of nature modeled by P ∈ P.
(Instead of loss, we could use its opposite, which is called utility.)

Our objective is to choose an action that minimizes the expected loss, or
conversely maximizes the expected utility.
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We call the set of allowable actions or decisions the action space or decision
space, and we denote it as A. We base the inference on the random variable
X; hence, the decision is a mapping from X , the range of X, to A.

In estimation problems, the action space may be a set of real numbers
corresponding to a parameter space. In tests of statistical hypotheses, we may
define the action space as A = {0, 1}, in which 0 represents not rejecting and
1 represents rejecting.

If we observe X, we take the action T (X) = a ∈ A. An action or a decision
may be the assignment of a specific value to an estimator, that is, an estimate,
or it may be to decide whether or not to reject a statistical hypothesis.

Decision Rules

Given a random variableX with associated measurable space (X ,FX ) and an
action space A with a σ-field FA, a decision rule is a function, T , from X to
A that is measurable FX/FA.

A decision rule is also often denoted by δ or δ(X).

Randomized Decision Rules

Sometimes the available data, that is, the realization of X, does not provide
sufficient evidence to make a decision. In such cases, of course, it would be
best to obtain more data before making a decision. If a decision must be made,
however, it may be desirable to choose an action randomly, perhaps under a
probability model that reflects the available evidence. A randomized decision
rule is a function δ over X ×FA such that for every A ∈ FA, δ(·, A) is a Borel
function, and for every x ∈ X , δ(x, ·) is a probability measure on (A,FA).

To evaluate a randomized decision rule requires the realization of an ad-
ditional random variable. As suggested above, this random variable may not
be independent of the data. Randomized decision rules are rarely appropriate
in actual applications, but an important use of randomized decision rules is
to evaluate properties of statistical procedures. In the development of sta-
tistical theory, we often use randomized decision rules to show that certain
deterministic rules do or do not have certain properties.

Loss Function

A loss function, L, is a mapping from P×A to [0,∞[. The value of the function
at a given distribution P for the action a is L(P, a). More commonly, we refer
to the loss function associated with a given nonrandomized decision rule T (X)
as composition L(P, T (X)). For a given rule T , we may also denote the loss
function as LT (P ). If the class of distributions is indexed by a parameter θ,
we may use the equivalent notation L(θ, T ) or LT (θ).

Given a loss function L(P, a), the loss function associated with a given
randomized decision rule δ(X,A) is
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L(P, δ(X,A)) = Eδ(X,·)(L(P, Y ))

where Y is a random variable corresponding to the probability measure δ(X, ·).

If P indexed by θ, we can write the value of the function at a given value
θ for the action a as L(θ, a).

The loss function is defined with respect to the objectives of the statistical
inference in such a way that a small loss is desired.

Depending on Θ,A, and our objectives, the loss function often is a function
only of a − g(θ) or of a/g(θ), where if a and g(θ) are vectors, a/g(θ) may
represent element-wise division or some other appropriate operation. We may
have, for example,

L(θ, a) = Ll(g(θ) − a) = ‖g(θ) − a‖.

In this case, which might be appropriate for estimating g(θ),

L(θ, a) ≥ 0 ∀θ, a
L(θ, a) = 0 if a = g(θ).

Notice that the loss function is just a mathematical function associated with a
function g of distribution measures. There are no assumed underlying random
variables. It does not matter what θ and a are; they are just mathematical
variables, or placeholders, taking values in Θ and A. In this case, the loss
function generally should be nondecreasing in ‖g(θ)−a‖. A loss function that
is convex has nice mathematical properties. (There is some heuristic appeal
to convexity, but we like it because of its mathematical tractability. There are
lots of other properties of statistical procedures that are deemed interesting
for this nonreason.)

While the loss function may take on various forms, in a situation where we
assume the underlying class of probability distributions is P, for any function
L that is a loss function we will assume that for any action a, there is a subclass
PL ⊆ P of positive measure (of the appropriate type, usually Lebesgue) such
that

L(P, a) > 0, for P ∈ PL. (3.84)

Without this condition, the loss function would have no meaning for evaluating
statistical procedures.

Common Forms of Loss Functions

In the following, for simplicity, we will assume that g(θ) and a are scalars.
Each of these forms of loss functions can easily be extended to the vector case
by use of an appropriate norm.

A particularly nice loss function, which is strictly convex, is the “squared-
error loss”:
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L2(θ, a) = ‖g(θ) − a‖2. (3.85)

If g(θ) and a are scalars, the squared-error loss becomes

L2(θ, a) = (g(θ) − a)2.

Another loss function that is often appropriate is the “absolute-error loss”:

L1(θ, a) = ‖g(θ) − a‖1, (3.86)

which is just the absolute value of the difference if g(θ) and a are scalars.
The absolute-error loss, which is convex but not strictly convex, is not as
mathematically tractable as the squared-error loss.

Sometimes, especially if g(θ) and a are scalars, it is appropriate that the
loss function be asymmetric; that is, the cost if g(θ) > a increases more (or
less) rapidly than if g(θ) < a. A simple generalization of the absolute-error
loss that provides this asymmetry is

L(θ, a) =

{
c(a − g(θ)) for a ≥ g(θ)
(1 − c)(g(θ) − a) for a < g(θ)

(3.87)

for 0 < c < 1.
Another common loss function that is asymmetric is the so-called “linex”

loss function,
L(θ, a) = ec(g(θ)−a) − c(g(θ) − a) − 1, (3.88)

for scalars g(θ) and a. If c is negative than the linex loss function increases
linearly if g(θ) > a and exponentially if g(θ) < a (hence, the name “linex”),
and just the opposite if c is positive.

When the action space is binary, that is, A = {0, 1}, a reasonable loss
function may be the 0-1 loss function

L0−1(θ, a) = 0 if g(θ) = a
L0−1(θ, a) = 1 otherwise.

(3.89)

Any strictly convex loss function over an unbounded interval is unbounded.
Even when the action space is dense, it is not always realistic to use an un-
bounded loss function. In such a case we may use the 0-1 loss function defined
as

L0−1(θ, a) = 0 if |g(θ) − a| ≤ α(n)
L0−1(θ, a) = 1 otherwise.

(3.90)

In a binary decision problem in which the true state is also 0 or 1, we often
formulate a loss function of the form

L(θ, a) =

{
ca for 0 true
ba for 1 true

(3.91)

where c1 > c0 and b0 > b1.
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It is common to choose c0 = b1 = 0, b0 = 1, and c1 = γ > 0. In this case,
this is called a 0-1-γ loss function.

Another approach to account for all possibilities in the binary case, and
to penalize errors differently depending on the true state and the decision is
to define a weighted 0-1 loss function:

L(θ, a) =





0 if a = 0 and 0 true
0 if a = 1 and 1 true
α0 if a = 1 and 0 true
α1 if a = 0 and 1 true.

(3.92)

This is sometimes called a α0-α1 loss or a weighted 0-1 loss.

Risk Function

To choose an action rule T so as to minimize the loss function is not a well-
defined problem. The action itself depends on the random observations, so
the action is T (X), which is a random variable.

We can make the problem somewhat more precise by considering the ex-
pected loss based on the action T (X), which we define to be the risk:

R(P, T ) = E
(
L(P, T (X))

)
. (3.93)

We also often write the risk R(P, T ) as RT (P ).
The expectation that defines the risk is taken with respect to the distri-

bution P , the “true”, but unknown distribution; thus, the risk is a function
of the distribution, both because the loss is a function of the distribution and
because the expectation is taken with respect to the distribution.

If the family of distributions are indexed by a parameter θ, then the risk
is a function of that parameter, and we may write R(θ, T ).

Optimal Decision Rules

We compare decision rules based on their risk with respect to a given loss
function and a given family of distributions. If a decision rule T ∗ has the
property

R(P, T ∗) ≤ R(P, T ) ∀P ∈ P, (3.94)

for all T , then T ∗ is called an optimal decision rule.
Often we limit the set of possible rules. If

R(P, T ∗) ≤ R(P, T ) ∀P ∈ P and ∀T ∈ T , (3.95)

then T ∗ is called a T -optimal decision rule.
For the case of a convex loss function, when a sufficient statistic exists an

optimal decision rule depends on that sufficient statistic. This fact derives from
Jensen’s inequality (B.13) on page 849, and is codified in the Rao-Blackwell
theorem:
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Theorem 3.8 (Rao-Blackwell theorem)
Suppose the loss function is convex. Let T be a sufficient statistic for P ∈ P,
and let T0 be a statistic with finite risk. Let

TRB = E(T0|T ).

Then
R(P, TRB) ≤ R(P, T0) ∀P ∈ P.

The statistic TRB is called a “Rao-Blackwellized” version of T0.

Admissibility

Before considering specific definitions of minimum-risk procedures, we define
another general desirable property for a decision rule, namely, admissibility.
We define admissibility negatively in terms of dominating rules.

Definition 3.12 (dominating rules)
Given decision rules T and T ∗ for a family of distributions P, with a risk
function R. The rule T is said to dominate the rule T ∗ iff

R(P, T ) ≤ R(P, T ∗) ∀P ∈ P, (3.96)

and
R(P, T ) < R(P, T ∗) for some P ∈ P. (3.97)

Definition 3.13 (admissible rules) A decision rule T ∗ is admissible if
there does not exist a decision rule T that dominates T ∗.

Note that admissibility depends on

• the loss function L
• P, the family of distributions wrt which E is defined

For a given problem there may be no admissible decision rule.
The fact that a decision rule T ∗ is admissible does not mean that the risk

curve of some other decision rule cannot dip below the risk curve of T ∗ at
some points.

Often we limit the set of possible rules to a set T , and we have T -
admissibility:
A decision rule T ∗ is T -admissible if there does not exist a decision rule within
the class of decision rules T that dominates T ∗.

A slightly more general form of admissibility is λ-admissibility:
A decision rule T ∗ is λ-admissible if T ∗ is admissible almost everywhere with
respect to the measure λ defined over the sample space.

Optimality of a decision rule under whatever criterion implies admissibility
of the rule under that criterion.
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Completeness of a Class of Decision Rules

We have defined completeness of distributions (on page 162) and of statistics.
We now define completeness of a class of decision rules. A class of decision
rules T is said to be complete if for any decision rule T /∈ T , there exists a
rule in T that dominates T . A class is said to be minimal complete if it does
not contain a complete proper subclass.

If two decision rules have identical risk functions, we would like to think
of them as equivalent, but we do not want necessarily to include all such
equivalent rules in a class of interest. We therefore define a class of rules T
to be essentially complete if for any rule T there is a rule T0 ∈ T such that
R(P, T0) ≤ R(P, T ) ∀P .

Let T be a class of decision rules and let T0 ⊆ T . The class T0 is said to
be T -complete if ∀T ∈ T − T0, ∃T0 ∈ T0 that dominates T .

The class T0 is said to be T -minimal complete if T0 is T -complete and no
proper subset of T0 is T -complete.

It is easy to see (using the method of proving one set is equal to another
by showing each is a subset of the other) that if a T -minimal complete class
exists, it is identical to the class of T -admissible decision rule.

One of the most fundamental approaches to statistical inference is to iden-
tify a complete class of decision rules and then to seek rules within that class
that have various desirable properties. One of the most widely-used complete
class theorem is the one that states that Bayes rules and simple generalizations
of them constitute a complete class (see page 353).

***** Wolfowitz (1951) ε-complete classes of decision functions

L-Unbiasedness

Admissibility involves the relationship between the expected values of the loss
function with different decision rules at the same distribution in the family
being considered. We can also consider the expected values taken at a given
point in the distribution space of the loss function of a given decision rule
at the given value of the parameter compared with the loss at some other
distribution. This leads to the concept of L-unbiasedness.

A decision rule T is L-unbiased for a given loss function L if for all P and
P̃ ,

EP

(
L(P, T (X))

)
≤ EP

(
L(P̃ , T (X))

)
. (3.98)

The expression on the left of equation (3.98) is the risk of T for given L,
but the expression on the right is not a risk. Notice that L-unbiasedness
relates to the same rule evaluated under the same expectation at different
points in the space of distributions. Admissibility, on the other hand, relates
to different rules evaluated at the same point in the space of distributions
as the distribution used in the expectation operation. A decision rule may
be L-unbiased but not admissible; in the N(µ, 1) distribution, for example,
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the sample median is L-unbiased under a squared-error loss, but it is not
admissible under that loss, while the sample mean is L-unbiased under an
absolute-error loss, but it is not admissible.

This is the basis for defining unbiasedness for statistical tests and confi-
dence sets.

Unbiasedness for estimators has a simple definition. For squared-error loss
for estimating g(θ), if T is L-unbiased, then, and only then, T is an unbi-
ased estimator of g(θ). Of course, in this case, the loss function need not be
considered and the requirement is just Eθ(T (X)) = g(θ).

L-Invariance

On page 221 we referred to equivariant estimators in parametric transforma-
tion group families (see Section 2.6). We mentioned that associated with the
group G of transformations of the random variable is a group, G, of transfor-
mations of the parameter and a group of transformations on the estimator,
G∗.

In a decision-theoretic approach, the relevance of equivariance depends
not only on the family of distributions, but also on the equivariance of the
loss function. In the loss function L(P, T (X)), the first argument under a
transformation can be thought of as a map PX → Pg(X) or equivalently as a
map Pθ → Pḡ(θ). The statistical decision procedure T (X) is L-invariant for
a given loss function L if for each g ∈ G, there exists a unique g∗ ∈ G∗, such
that

L(PX , T (X)) = L(Pg(X), g
∗(T (X))), (3.99)

or equivalently for each ḡ ∈ G,

L(Pθ, T (X)) = L(Pḡ(θ), g
∗(T (X))). (3.100)

The g∗ in these expressions is the same as in equation (3.22). We will of-
ten require that statistical procedures be equivariant, in the sense that the
quantities involved (the estimators, the confidence sets, and so on) change in
a manner that is consistent with changes in the parametrization. The main
point of this requirement, however, is to ensure L-invariance, that is, invari-
ance of the loss. We will discuss equivariance of statistical procedures in more
detail in Section 3.4.

Uniformly Minimizing the Risk

All discussions of statistical inference are in the context of some family of
distributions, and when we speak of a “uniform” property, we mean a property
that holds for all members of the family.

If we have the problem of estimating g(θ) under some given loss function
L, it is often the case that for some specific value of θ, say θ1, one particular
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estimator, say T1, has the smallest expected loss, while for another value of
θ, say θ2, another estimator, say T2, has a smaller expected loss. Neither T1

nor T2 is uniformly optimal.
The risk is a function of the parameter being estimated; therefore, to

minimize the risk is not a well-posed problem. A solution is to seek a decision
rule that is uniformly best within some restricted class of decision rules.

3.3.2 Approaches to Minimizing the Risk

We use the principle of minimum risk in the following restricted ways. In all
cases, the approaches depend, among other things, on a given loss function.

• If there is a sufficient statistic and if the loss function is convex, we use
the result of the Rao-Blackwell theorem; that is, we condition any given
statistic T0 on the sufficient statistic, T :

TRB = E(T0 |T ).

Finding a statistic with a smaller risk by this method is called “Rao-
Blackwellization”.
Note that If the loss function is strictly convex and T0 is not a function of
T , then T0 is inadmissible.

• We may first place a restriction on the statistical procedure and then
minimize risk subject to that restriction.
For example, in estimation problems:
– require unbiasedness

In this case, we can often eliminate θ from consideration; that is, we
can uniformly minimize the risk.
In a common situation we define loss as squared-error (because it is
unbiased, this means variance), and this yields UMVU.
Sufficiency and completeness play a major role in UMVUE.
The information inequality is important in unbiased estimation.
This approach is great for exponential families.

– require equivariance
This must be made more precise (unlike unbiasedness, “equivariance”
requires more qualification).
Equivariance implies independence of the risk from θ; we can uniformly
minimize the risk by just minimizing it anywhere.
This yields UMRE, or just MRE because uniformity is implied.
This approach is especially useful for group families.

• We may minimize some global property of the risk (“global” over the values
of θ).
For example:
– minimize maximum risk

The risk may be unbounded, so obviously in that case, it does not
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make sense to attempt to minimize the maximum risk. Even if the risk
is unbounded, the maximum risk may not exist, so we consider

sup
θ∈Θ

R(θ, T (X)). (3.101)

The estimator that yields

inf
T

sup
θ∈Θ

R(θ, T (X)) (3.102)

is the minimax estimator.
A comment about the supremum may be in order here. We mentioned
earlier that in parametric inference, we often consider the closure of the
parameter space, Θ, and in the maximum likelihood estimator in equa-
tion (3.49), for example, that allowed us to consider max{θ ∈ Θ}. We
cannot do this in considering the “maximum” risk in equation (3.101)
because we do not know how R behaves over Θ. (It could be discon-
tinuous anywhere within Θ.)

– minimize “average” risk
How to average? Let Λ(θ) be such that

∫
Θ

dΛ(θ) = 1, then average risk
is
∫
Θ
R(θ, T )dΛ(θ).

The estimator that minimizes the average risk wrt Λ(θ), TΛ, is called
the Bayes estimator, and the minimum risk,

∫
ΘR(θ, TΛ)dΛ(θ), is called

the Bayes risk.
The averaging function allows various interpretations, and it allows the
flexibility of incorporating prior knowledge or beliefs. The regions over
which Λ(θ) is large will be given more weight; therefore the estimator
will be pulled toward those regions.
In formal Bayes procedures we follow the approach indicated in equa-
tions (3.3) and (3.4). The distribution Q0 in equation (3.3) has the
PDF dΛ(θ), which we call the prior probability density for θ.
We then form the joint distribution of θ and X, and then the con-
ditional distribution of θ given X, which is the distribution QH in
equation (3.3) and is called the posterior distribution. The Bayes esti-
mator is determined by minimizing the risk, where the expectation is
taken with respect to the posterior distribution.
Because the Bayes estimator is determined by the posterior distribu-
tion, the Bayes estimator must be a function of a sufficient statistic.
We will discuss Bayesian inference more fully in Chapter 4.

– combinations of global criteria
We could consider various combinations of the global criteria. For ex-
ample, we may see an estimator that generally minimizes the average
risk, but such that its maximum risk is not so large. An intuitively
reasonable bound on the maximum risk would bs some excess of the
minimum maximum bound. This approach is called restricted Bayes,
and results in the following constrained optimization problem:
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minT

∫
R(θ, T )dΛ(θ)

s.t. supθ∈Θ R(θ, T (X)) ≤ (M + ε) infT supθ∈ΘR(θ, T (X))

• We may combine various criteria.
It is often appropriate to combine criteria or to modify them. This often
results in “better” estimators. For example, if for θ ∈ Θ, g(θ) ∈ [γ1, γ2],
and T (X) is an estimator of g(θ) such that Pr(T (X) /∈ [γ1, γ2]) 6= 0, then
T ∗(X) defined as

T ∗(X) =




T (X) if T (X) ∈ [γ1, γ2]
γ1 if T (X) < γ1

γ2 if T (X) > γ2

dominates T (X).
• We may focus on asymptotic criteria.

Sometimes we seek estimators that have good asymptotic properties, such
as consistency.

Optimal Point Estimation under Squared-Error Loss

In estimation problems, squared-error loss functions are often the most logical
(despite the examples above!). A squared-error loss function is strictly convex,
so the useful properties of convex loss functions, such as those relating to
the use of sufficient statistics (Rao-Blackwell, for example), hold for squared-
error loss functions. Squared-error is of course the loss function in UMVU
estimation, and so we use it often.

Example 3.17 UMVUE of binomial parameter
Consider the binomial family of distributions with fixed n and parameter π.
Consider the estimator T (X) = X/n for π. We see that E(T (X)) = π: hence
T is unbiased, and therefore under squared-error loss, the risk is the variance,
which is pi(1−π)/n. The binomial is a Fisher information regular family, and
from equation (3.39), we see that the CRLB is I(π)−1 = pi(1 − π)/n; hence
T is a UMVUE.

Squared-error loss functions yield nice properties for linear functions of
estimands. If T is an estimator of g(θ), then an obvious estimator of ag(θ)+ b
is aT + b. Under squared-error loss, we have the properties stated in the
following theorem.

Theorem 3.9 (linearity of optimal estimators under squared-error loss)

If T is





Bayes
UMVU
minimax

admissible





for g(θ), then aT + b is





Bayes
UMVU
minimax

admissible





for ag(θ) + b,

where all properties are taken under squared-error loss.
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The various pieces of this theorem will be considered in other places where
the particular type of estimation is discussed.

If in a Bayesian setup, the prior distribution and the posterior distribution
are in the same parametric family, that is, if Q in equations (3.3) and (3.4)
represents a single parametric family, then a squared-error loss yield Bayes
estimators for E(X) that are linear in X. (If a prior distribution on the pa-
rameters together with a conditional distribution of the observables yield a
posterior in the same parametric family as the prior, the prior is said to be
conjugate with respect to the conditional distribution of the observables. We
will consider various types of priors more fully in Chapter 4.)

Because we use squared-error loss functions so often, we must be careful
not to assume certain common properties hold. Other types of loss functions
can provide useful counterexamples.

3.3.3 Admissibility

By Definition 3.13, a decision δ∗ is admissible if there does not exist a decision
δ that dominates δ∗. Because this definition is given as a negative condition, it
is often easier to show that a rule is inadmissible, because all that is required
to do that is to exhibit another rule that dominates it. In this section we
consider some properties of admissibility and ways of identifying admissible
or inadmissible rules.

Admissibility of Estimators under Squared-Error Loss

Any property defined in terms of the risk depends on the loss function. As we
have seen above, the squared-error loss often results in estimators that have
“nice” properties. Here is another one.

Under a squared-error loss function an unbiased estimator is always at
least as good as a biased estimator unless the bias has a negative correlation
with the unbiased estimator.

Theorem 3.10
Let E(T (X)) = g(θ), and let T̃ (X) = T (X) +B, where Cov(T, B) ≥ 0. Then
under squared-error loss, the risk of T (X) is uniformly less than the risk of

T̃ (X); that is, T̃ (X) is inadmissible.

Proof.

R(g(θ), T̃ ) = R(g(θ), T ) + V(B) + Cov(T, B) ∀ θ.

Also under a squared-error loss function, an unbiased estimator dominates
a biased estimator unless the bias is a function of the parameter.
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Theorem 3.11
Let E(T (X)) = g(θ), and let T̃ (X) = T (X) + B, where B 6= 0 a.s. and B is

independent of θ. Then under squared-error loss, T̃ (X) is inadmissible.

Proof.

R(g(θ), T̃ ) = R(g(θ), T ) + B2.

Now, let us consider linear estimators of g(θ) = E(T (X))

T̃ (X) = aT (X) + b

that generalize the estimators above, except we consider a and b to be con-
stants. We have the following results under squared-error loss.

• If a = 1 and b 6= 0, then T̃ (X) is inadmissible by Theorem 3.11.

• If a > 1, then T̃ (X) is inadmissible for any b because

R(g(θ), T̃ ) = a2R(g(θ), T ) > R(g(θ), T ).

• If a < 0, then T̃ (X) is inadmissible for any b because

R(g(θ), T̃ ) > R(g(θ), 0)

(Exercise 3.9).

Admissibility of Estimators in One-Parameter Exponential
Families

In the previous section, we identified conditions that assured the inadmissibil-
ity of linear estimators, and later we will see some examples in which we easily
establish inadmissibility. It is of course a more interesting problem to identify
conditions that assure admissibility. Efforts to do this are much less success-
ful, but we do have a useful result for linear estimators in a one-parameter
exponential family with PDF as given in equation (2.15),

f(x) = β(θ)eθT (x) . (3.103)

Karlin’s theorem MS2 Theorem 4.14
use information inequality (3.39).
*** in binomial, show that X is admissible **** example

Admissible and Bayes Estimators

There are important and useful connections between admissible estimators
and Bayes estimators.
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• A unique Bayes estimator is admissible with respect to the same loss func-
tion and distribution.

• An admissible estimator is either Bayes or limiting Bayes with respect to
the same loss function and distribution.

We will consider these properties in Chapter 4. It is sometimes easy to con-
struct a Bayes estimator, and having done so, if the estimator is unique, we
immediately have an admissible estimator.

Inadmissible Estimators

Some estimators that have generally good properties or that are of a standard
type may not be admissible. Heuristic methods such as MLE or the method of
moments are not developed in the context of decision theory, so it should not
be surprising that estimators based ont these methods may not be admissible.

Example 3.18 Inadmissible Method of Moments Estimator
Consider the case of estimating θ in the finite population {1, . . . , θ}. Suppose
we sample from this population with replacement, obtaining X1, . . . , Xn. Be-
cause E(X) = (θ+1)/2, the method of moments estimator of θ is T = 2X−1.
This estimator is inadmissible (for any reasonable loss function including
squared-error loss), since T ∗ = max(X(n), T ) is always at least as close to
θ, and can be closer.

The method of moments estimator in this case is not even a function of
a sufficient statistic, so we would not expect it to have good properties. Note
also that the MME of θ may produce a value that could never be the true
value of θ. (Of course, that is also the case with T ∗.)

There are many surprising cases of inadmissibility, as we see in the follow-
ing examples. We show that a given rule is not admissible by exhibiting a rule
that dominates it. It is important to recognize, of course, that the dominating
rule may also not be admissible either.

It may be possible to construct a randomized estimator that shows that
a given estimator is not admissible. Another way is to form a scalar multiple
of a “good” estimator, and show that it dominates the “good” estimator. In
Example 3.19 the scaling is a function of the statistic, and in Example 3.20
the scaling is a constant.

Example 3.19 Inadmissible Estimator of the Mean in a Multivari-
ate Normal Distribution
The estimation of the mean of a normal distribution has interesting admissi-
bility properties. It is relatively straightforward to show that X is admissible
for estimating θ in N(θ, 1) under squared-error loss. It can also be shown that
X is admissible for estimating θ in N2(θ, I2), and of course, in the simpler
case of n = 1, X is admissible for estimating θ.

However, for r > 2, X is not admissible for estimating θ in Nr(θ, Ir)!
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For r > 2, the estimator

θ̂J =

(
1− c r − 2

‖X‖2
)
X (3.104)

though biased, dominates X. This is called the James-Stein estimator.
Why this is the case for r > 2 has to do with the existence of

E

(
1

‖X‖2
)

;

see page 189.

Further comments on Example 3.19
The James-Stein estimator is generally shrunk toward 0. This type of adjust-
ment is called Stein shrinkage. Choice of c allows for different amounts of bias
and different amounts of reduction in the risk. The regularization parameter
in ridge regression is similar to the c in this expression; see Example 5.27.

The fact that shrinkage in the case of the multivariate normal distribution
may improve the estimator is related to the outlyingness of data in higher
dimensions.

A shrunken estimator is biased, and ordinarily we would not expect a
biased estimator to dominate a “good” unbiased one. It should be noted,
however, that the bias of the shrunken estimator has a negative correlation
with the basic estimator (recall Theorem 3.10).

The fact that the James-Stein estimator dominates the UMVUE, however,
does not mean that the James-Stein estimator itself is admissible. Indeed, it
is not. The estimator

θ̂J+ = min

(
1, c

r − 2

‖X‖2
)
X (3.105)

dominates the James-Stein estimator under squared-error loss. This is some-
times called the positive-part James-Stein estimator. The positive-part James-
Stein estimator, however, is also inadmissible under squared-error loss (see
Strawderman (1971) for further discussion).

Consider another example, due to Lehmann, for a general one-parameter
exponential family.

Example 3.20 Inadmissible Estimator in a One-Parameter Expo-
nential Family
Let X have the density

pθ(x) = β(θ)eθxe−|x|,

where θ ∈]−1, 1[ and β(θ) = 1−θ2 (so it integrates to 1). Consider a sample of
size one, X, and the problem of estimating g(θ) = Eθ(X) with squared-error
loss. Now,
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Eθ(X) = −β
′(θ)

β(θ)

=
2θ

1− θ2 ,

and

Vθ(X) =
d

dθ
Eθ(X)

= 2
1 + θ2

(1− θ2)2 ;

hence, the risk is

R(g(θ), X) = 2
1 + θ2

(1− θ2)2 .

Now, consider the estimator Ta = aX. Its risk under squared-error is

R(θ, Ta) = Eθ(L(θ, Ta))

= Eθ((g(θ) − Ta)2)

= 2a2 1 + θ2

(1− θ2)2 + 4(1− a2)
θ2

(1− θ2)2 .

If a = 0, that is, the estimator is the constant 0, the risk is 4θ2/(1 − θ2)2,
which is smaller than the risk for X for all θ ∈]− 1, 1[.

The natural sufficient statistic in this one-parameter exponential family is
inadmissible for its expectation!

Other Forms of Admissibility

We have defined admissibility in terms of a specific optimality criterion,
namely minimum risk. Of course, the risk depends on the loss function, so
admissibility depends on the particular loss function.

Although this meaning of admissibility, which requires a decision-theory
framework, is by far the most common meaning, we can define admissibility
in a similar fashion with respect to any optimality criterion; for example,
the estimator T (X) is Pitman-admissible for g(θ) if there does not exist an
estimator that is Pitman-closer to g(θ). In Example 3.3 on page 220 we saw
that the sample mean even in a univariate normal distribution is not Pitman
admissible. The type of estimator used in that example to show that the
univariate mean is not Pitman admissible is a shrinkage estimator, just as a
shrinkage estimator was used in Example 3.19.

3.3.4 Minimaxity

Instead of uniform optimality properties for decisions restricted to be unbiased
or equivariant or optimal average properties, we may just seek to find one with
the smallest maximum risk. This is minimax estimation.
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For a given decision problem, the maximum risk may not exist, so we
consider

sup
θ∈Ω

R(θ, δ(X)).

The decision that yields
inf
δ

sup
θ∈Ω

R(θ, δ(X)) (3.106)

is the minimax decision.
Minimaxity, as with most optimality properties, depends on the loss func-

tion.

Minimaxity and Admissibility

There are various connections between minimaxity and admissibility.

Theorem 3.12
An admissible estimator with a constant risk is minimax with respect to the
same loss function and distribution.

Proof.
We see that this must be the case because if such an estimator were not
minimax, then an estimator with smaller maximum risk would dominate it
and hence it would not be admissible.

Minimax and Bayes Estimators

Just as with admissible estimators, there are interesting connections between
minimax and Bayes estimators. One of the most important is the fact that a
Bayes estimator with a constant risk is minimax with respect to the same loss
function and distribution. (This is Theorem 4.4.) Hence, one way of finding
a minimax estimator is to find a Bayes estimator with constant risk. For a
given loss function, and given distribution of the observable random variable,
the minimax estimator is the Bayes estimator for “worst” prior distribution.
We will consider this and other properties in Chapter 4.

Minimax Estimators under Squared-Error Loss in Exponential
Families

For one-parameter exponential families, under squared-error loss, Theorem
4.14 in MS2 provides a condition for identifying admissible estimators, and
hence minimax estimators. The minimax estimator is not always the obvious
one.

Often a randomized estimator can be constructed so that it is minimax.
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Example 3.21 Risk functions for estimators of the parameter in a
binomial distribution
Suppose we have an observation X from a binomial distribution with param-
eters n and π. The PDF (wrt the counting measure) is

pX(x) =

(
n

x

)
πx(1− π)n−xI{0,1,...,n}(x).

We wish to estimate π.
The MLE of π is

T (X) = X/n. (3.107)

We also see that this is an unbiased estimator. Under squared-error loss, the
risk is

RT (π) = E
(
(X/n− π)2

)
= π(1− π)/n,

which, of course, is just variance.
Let us consider a randomized estimator, for some 0 ≤ α 6= 1,

δα(X) =

{
T with probability 1− α
1/2 with probability α

(3.108)

This is a type of shrunken estimator. The motivation to move T toward 1/2 is
that the maximum of the risk of T occurs at 1/2. By increasing the probability
of selecting that value the risk at that point will be reduced, and so perhaps
this will reduces the risk in some overall way.

Under squared-error loss, the risk of δα(X) is

Rδα(π) = (1− α)E
(
(X/n− π)2

)
+ αE

(
(1/2− π)2

)

= (1− α)π(1− π)/n+ α(1/2− π)2.

The mass point has a spreading effect and the risk dips smoothly The risk
of δα(X) also has a maximum at π = 1/2, but it is (1 − α)/4n, compared to
RT (1/2) = 1/4n.

We see that for α = 1/(n + 1) the risk is constant with respect to π;
therefore δ1/(n+1)(X) is a minimax estimator wrt squared-error loss.

Risk functions are shown in Figure 3.1 for T (X) and for δ.05(X) and
δ1/(n+1)(X). Notice that neither δα(X) nor T (X) dominates the other.

3.3.5 Summary and Review

We have discussed five general approaches to statistical inference, and we have
identified certain desirable properties that a method of inference may have.

A first objective in mathematical statistics is to characterize optimal prop-
erties of statistical methods. The setting for statistical inference includes the
distribution families that are assumed a priori, the objectives of the statistical
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Figure 3.1. Risk Functions for Squared-Error Loss in Binomial with n = 10 (Ex-
ample 3.21).

inference, and the criteria by which the statistical methods to achieve those
objectives are to be evaluated.

A second objective in mathematical statistics is to develop techniques for
finding optimal methods in a particular setting. We have considered some of
these procedures above, and they will be major recurring topics throughout
the rest of this book.

Nonexistence of Optimal Methods

There are many criteria by which to evaluate a statistical method. In a given
setting there may not be a statistical procedure that is optimal with
respect to a given criterion.

The criteria by which to evaluate a statistical method include basic things
about the nature of the statistics used in the method, such as sufficiency, min-
imality, and completeness. These properties are independent of the objectives
of the procedure and of the particular statistical method used. They depend
on the assumed distribution family and the nature of the available sample.

• sufficiency. There is always a sufficient statistic.
• minimal sufficiency. There is always a minimal sufficient statistic.
• completeness. There may not be a complete statistic. This depends on

the assumed family of distributions. (See Example 3.4.)
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For a given objective in a given family of distributions maximizing the
likelihood is a desirable property for a statistical procedure; that is, other
things being equal, we would choose a statistical procedure that maximizes
the likelihood.

• maximum likelihood. There may not be a procedure that maximizes
the likelihood. (See Example 6.13.)

For a given objective there are a number of criteria for evaluating a statis-
tical method that is to achieve that objective. Specifically, if the objective is
estimation, we can identify three general criteria for evaluating an estimator

• Pitman closeness. There may not be an estimator that is Pitman-closest.
• equivariance. Equivariance depends first of all on the assumed family

of distributions and the group of transformations. There may not be an
equivariant estimator in a given setting.

• expected difference. There are various functions of the difference Tn(X)−
g(θ), whose expected values may be relevant. Whether or not an expected
value of the difference can be minimized depends on the family of distri-
butions, the nature of Tn (and on n itself), and on the nature of g(θ). For
example in a Cauchy distribution, for many functions Tn, E(Tn(X)) does
not exist. In this particular case, E(Tn(X)) may exist for n greater than
some value k, but not exist for n < k.
– bias; E(T (X) − g(θ)). An unbiased estimator would seem to be desir-

able. For a given family of distributions and a given g(θ), there may
not be an unbiased estimator. (See Examples 5.2 and 5.3.)

– mean absolute error; E(|T (X) − g(θ)|). For a given family of dis-
tributions and a given g(θ), E(|T (X) − g(θ)|) may not exist, but if it
does there may be no estimator Tn that minimizes it for all θ.

– mean squared error; E((T (X) − g(θ))2). For a given family of dis-
tributions and a given g(θ), E((T (X)− g(θ))2) may not exist, but if it
does there may be no estimator Tn that minimizes it for all θ.

– conditional expectation; for example, E((T (X)−g(θ))2 |E(T (X)−
g(θ)) = 0). For a given family of distributions and a given g(θ), the
conditional distribution may not exist, but if it does there may be no
estimator Tn that minimizes the conditional expectation for all θ.

In a decision theory approach, the criteria for evaluating a statistical
method revolve around the loss function, which depends on the objectives
of the procedure. These criteria generally involve some kind of expectation of
the loss function, such as the risk or the expectation of the loss taken with
respect to the posterior distribution.

• minimum risk. For any nontrivial inference problem, it is generally not
possible to minimize the risk uniformly for almost any reasonable loss
function. (See page 266.)
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• minimum risk with restrictions. We often impose the restriction that
the procedure be unbiased or be equivariant. Under either of these restric-
tions there may not be an optimal statistical procedure. As we have already
noted, there may not even be a procedure that satisfies the restriction of
being unbiased.

• minimum maximum risk. The risk may be unbounded, so no minimax
procedure can exist.

• minimum average risk. Whether or not there can be a procedure that
minimizes the average risk clearly depends on the averaging process.

In the frequentist approach to decision theory, admissibility is an impor-
tant unifying concept. Having defined the concept, we can limit our search for
optimal procedures to admissible procedures if they can be identified. From
a negative perspective, if we have a procedure that is optimal with respect
to other criteria, we generally ask whether or not it is admissible. We may
show that the procedure being considered is not admissible by demonstrating
a procedure that dominates the procedure in question. Often, when we do this
however, the dominating procedure is not admissible either.

In the next section we consider the restriction of equivariance that we
have referred to already. This property is relevant only in inference problems
that can be formulated in a way that connects the underlying sample space,
parameter space, and loss function in a special way.

3.4 Invariant and Equivariant Statistical Procedures

Statistical decisions or actions based on data should not be affected by simple
transformations on the data or by reordering of the data, so long as these
changes on the data are reflected in the statement of the decision; that is,
the actions should be invariant. If the action is a yes-no decision, such as
in hypothesis testing, it should be completely invariant. If a decision is a
point estimate, its value is not unaffected, but it should be equivariant, in the
sense that it reflects the transformations in a meaningful way so that the loss
function should be invariant to the transformations.

Given a decision problem with loss function L, we seek a decision rule that
is L-invariant (see page 266).

In the following, we will formalize this equivariance principle by defining
appropriate classes of transformations, and then specifying rules that sta-
tistical decision functions must satisfy. We identify “reasonable” classes of
transformations on the sample space and the corresponding transformations
on other components of the statistical decision problem. We will limit consid-
eration to transformations that are one-to-one and onto.

Development of equivariant statistical procedures is based on an algebraic
group of transformations (a group in which the operation is composition of
functions; see Definition 0.0.2 on page 630 and Section 0.1.11 beginning on
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page 755) and a suitable family of probability distributions, such as a “group
family” of distributions. (See Section 2.6, beginning on page 178, for further
discussion of such families of distributions.)

3.4.1 Formulation of the Basic Problem

We are interested in what happens under a one-to-one transformation of the
random variable g(X); in particular, we are interested in a transformation of
the parameter g̃(θ) such that Pg(X)|g̃(θ) is a member of the same distributional
family. (In this section we will consider only parametric inference; that is, we
will consider distributions PX|θ for θ ∈ Θ, but in a more general sense, we
can just consider θ to be some index in the distributional family.) We want
to identify optimal methods of inference for PX|θ that will remain optimal for
Pg(X)|g̃(θ).

Whether or not such methods exist depends on the type of transforma-
tions, the distributions and parameters of interest, and the form of the loss
function. In the following, we will identify the special cases that admit mini-
mum risk equivariant procedures.

The invariance or equivariance of interest is with respect to a given class of
transformations. A family of distributions whose probability measures accom-
modate a group of transformations in a natural way is called a group family.
The most common class of transformations of interest is the group of linear
transformations of the form x̃ = Ax + c, and the group families of interest
have a certain invariance with respect to a group of linear transformations
on the random variable. We call such a group family a location-scale family
(Definition 2.3). More generally, given a distribution with parameter θ, that
distribution together with a group of transformations on θ forms a group
family.

Transformations on the Sample Space, the Parameter Space, and
the Decision Space

Following Definition 2.4 for an invariant parametric family of distributions,
we have two transformation groups, G, with elements

g : X 7→ X , 1 : 1 and onto,

and the induced group G̃, with elements

g̃ : Θ 7→ Θ, 1 : 1 and onto,

in such a way that for given g ∈ G, there is a g̃ ∈ G̃ such that for any set A,

Prθ(g(X) ∈ A) = Prg̃(θ)(X ∈ A); (3.109)

that is, g̃ preserves Θ. The group G̃ is transitive in the sense defined on
page 756.
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**** we consider h *** give restrictions on h ***** Given a Borel function
h on Θ and the general problem of making inferences about h(θ) under a

given loss function L, if transformations g ∈ G and g̃ ∈ G̃ that preserve the
probability model are made, we seek a statistical procedure T such that

L(h(θ), T (X)) = L(h(g̃(θ)), T (g(X))). (3.110)

For a general statistical decision function T , we seek a transformation
g∗ that yields the same (or appropriately transformed) decision within the
transformed distribution using the transformed data. The decision function
takes the sample space into the decision space A; that is, T : X 7→ A ⊆ IR.

*** give formal definition
*** give examples of orbits

Invariance of the Loss Function

For a given loss function L(θ, T (X)) with transformations g and g̃ applied to
the observable random variable and to the parameter, we seek a transforma-
tion g∗ such that

L(θ, T (X)) = L(g̃(θ), g∗(T (X))). (3.111)

Such transformations yield invariance of the risk:

Eθ(L(θ, T (X))) = Eg̃(θ)(L(g̃(θ), g∗(T (X)))). (3.112)

The question is whether or not such a transformation exists. Its existence
clearly depends on the loss function. If equation (3.111) holds, then the trans-
formation g∗ is said to be L-invariant with respect to the loss function L.

In most statistical decision problems, we assume a symmetry or invariance
or equivariance of the problem before application of any of these transforma-
tions, and the problem that results from applying a transformation. For given
classes of transformations, we consider loss functions that admit L-invariant
transformations; that is, we require that the transformation have the prop-
erty of L-invariance with respect to the loss function as expressed in equa-
tion (3.111). This means that a good statistical procedure, T , for the original
problem is good for the transformed problem. Note that this is an assump-
tion about the class of meaningful loss functions for this kind of statistical
problem.

Example 3.22 Transformations in a Bernoulli distribution
Suppose we have a random sample of size n, X1, . . . , Xn from the Bernoulli(π)
distribution and we wish to estimate π. In Example 3.17, we found that
T (X) =

∑
Xi/n is a UMVUE for π; that is, it is optimal under squared-

error loss among the class of unbiased estimators.
Now, consider the binomial transformation of Example 2.3. In this trans-

formation, the values assumed by the binary random variables are reversed;
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that is, the random variable is transformed as g(X) = 1−X. We see that the
transformation g̃(π) = 1 − π preserves the parameter space, in the sense of
equation (3.109).

Under this new setup, following the same approach that led to the esti-
mator T (X), we see that T (g(X)) = T (1 − X) is an optimal estimator of
g̃(π) = 1−π under squared-error loss among the class of unbiased estimators.
Hence, in this case, the squared-error loss function allowed us to develop an
equivariant procedure.

We note that the estimator T (g(X)) = g∗(T (X)) = 1 − T (X), and we
have, as in equation (3.111),

L(π, T (X)) = L(g̃(π), g∗(T (g(X)))).

In the Bernoulli example above, loss functions of various forms would
have allowed us to develop an equivariant procedure for estimation of the
transformed π. This is not always the case. For some types of transformations
g and g̃ on the sample and parameter spaces, we can develop equivariant
procedures only if the loss function is of some particular form. For example,
in a location family, with transformations of the form g(X) = X + c and
g̃(µ) = µ + c, in order to develop an equivariant procedure that satisfies
equation (3.111) we need a loss function that is a function only of a − g(θ).
************

Following the same approach as above, we see that in a univariate scale
family, with transformations of the form g(X) = cX, in order to develop
an equivariant procedure, we need a loss function that is a function only of
a/g(θ). In order to develop equivariant procedures for a general location-scale
family P(µ,Σ) we need a loss function of the form

L((µ,Σ), a) = Lls(Σ
1/2(a − µ)). (3.113)

In order to achieve invariance of the loss function for a given group of
transformations G, for each g ∈ G, we need a 1:1 function g∗ that maps the
decision space onto itself, g∗ : A 7→ A. The set of all such g∗ together with
the induced structure is a group, G∗ with elements

g∗ : A 7→ A, 1 : 1 and onto.

The relationship between G and G∗ is an isomorphism; that is, for g ∈ G
and g∗ ∈ G∗, there is a function h such that if g∗ = h(g), then h(g1 ◦ g2) =
h(g1) ◦ h(g2).

Invariance of Statistical Procedures

To study invariance of statistical procedures we will now identify three groups
of transformations G, G̃, and G∗, and the relationships among the groups. This
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notation is widely used in mathematical statistics, maybe with some slight
modifications.

Let G be a group of transformations that map the probability space onto
itself. We write

g(X) = X̃. (3.114)

Note that X and X̃ are random variables, so the domain and the range of
the mapping are subsets of probability spaces; the random variables are based
on the same underlying measure, so the probability spaces are the same; the
transformation is a member of a transformation group, so the domain and the
range are equal and the transformations are one-to-one.

For a given statistical procedure T that yields the action a for an obser-
vation X, we have under the various transformations

g∗(T (g−1(X̃))) = g∗(T (X)) (3.115)

= g∗(a) (3.116)

= ã. (3.117)

We are interested in a probability space, (Ω,F ,PΘ), that is invariant to
a class of transformations G; that is, one in which PΘ is a group family with
respect to G. The induced groups G and G∗ determine the transformations to
be applied to the parameter space and the action space.

The basic idea underlying invariance of statistical procedures naturally is
invariance of the risk under the given transformations.

We seek a statistical procedure T (x) that is an invariant function under
the transformations.

Because if there is a maximal invariant functionm (see Definition 0.1.53 on
page 756) all invariant functions are dependent on m, our search for optimal
invariant procedures can use m. The concept of maximal invariance is simi-
lar to the concept of sufficiency. A sufficient statistic may reduce the sample
space; a maximal invariant statistic may reduce the parameter space. (Max-
imal invariant statistics have some technical issues regarding measurability,
however; X being measurable does not guarantee m(X) is measurable under
the same measure.)

A probability model may be defined in different ways. There may be an
equivalence between two different models that is essentially a result of a
reparametrization: θ̃ = g̃(θ). A random variable in the one model may be

a function of the random variable in the other model: X̃ = g(X). There are
two ways of thinking of estimation under a reparametrization, both in the
context of an estimator T (X) of h(θ), and with the transformations defined
above:

• functional, g∗(T (X)) estimates g∗(h(θ));
• formal, T (g(X)) estimates g∗(h(θ)).
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Functional equivariance is trivial. This is the equivariance we expect under
a simple change of units, for example. If X is a random variable that mod-
els physical temperatures in some application, it should not make any real
difference whether the temperatures are always measured in degrees Celsius
or degrees Fahrenheit. The random variable itself does not include units, of
course (it is a real number). If the measurements are made in degrees Celsius
at a time when X is the random variable used to model the distribution of
the data and the estimator T (X) and the estimand h(θ) relates to X in a
linear fashion (if h(θ) is the mean of X, for example), and later in a simi-
lar application the measurements are made in degrees Fahrenheit, applying
g∗(t) = 9t/5 + 32 to both T (X) and h(θ) preserves the interpretation of the
model.

Formal equivariance, however, is not meaningful unless the problem itself
has fundamentally symmetric properties; the family of probability distribu-
tions is closed under some group of transformations on the sample space one
on the parameter space. In this case, we need a corresponding transformation
on the decision space. The statistical procedure is equivariant if the functional
equivariance is the same as the formal equivariance; that is,

T (g(X)) = g∗(T (X)). (3.118)

3.4.2 Optimal Equivariant Statistical Procedures

In the decision-theoretic approach to statistical inference, we generally seek
procedures that have minimum risk with respect to a given loss function. As
we have seen, there are situations where we cannot obtain this uniformly.
By restricting attention to procedures with properties such as L-unbiasedness
or L-invariance, however, we may be able to achieve uniformly best proce-
dures within that restricted class. Within the class of unbiased procedures,
we seek UMVU estimators and UMPU tests. Likewise, within a collection of
equivariant procedures, we seek ones with minimum risk.

The simplest and most interesting transformations are translations and
scalings, and the combinations of these two, that is linear transformations.
Consequently, the two most common types of invariant inference problems
are those that are location invariant (or equivariant) and those that are scale
invariant (or equivariant). Because in a linear transformation we scale first,
a scale invariant procedure is invariant to location transformations, but a
location invariant procedure is not invariant to scale transformations.

In the remainder of this section, we concentrate on problems of point
estimation. In Section 7.2.5 beginning on page 525 we discuss equivariant
(invariant) test procedures, and in Section 7.9.3 beginning on page 549 we
discuss equivariant confidence sets. We discuss equivariance in the context of
Bayesian analysis in Section 4.3.2 beginning on page 354.
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Equivariant Point Estimation

If the estimand under the untransformed problem is θ, the estimand after
the transformations is g̃(θ). If T (X) is an estimator of θ, equivariance of the
estimator requires that g∗(T (X)) = T (g(X)) be an estimator of g̃(θ) with the
same risk.

The properties of the estimator in the untransformed problem are pre-
served under the transformations. An estimator that is equivariant except
possibly on a set of zero probability is said to be almost equivariant.

Within a collection of equivariant estimators, we would choose the one
with minimum risk. This is MRE estimation, and the estimator is an MREE.
(Some authors call it MRI and MRIE.)

By the definition of “equivariance” in this context, the MRE estimator is
UMRE, so the concept of uniformity does not arise as a separate issue here.

Finding an Optimal Equivariant Point Estimator

To find an MREE for a given group of transformations, we

1. identify the necessary form(s) of the loss function for the transformations
2. identify necessary and/or sufficient properties of equivariant estimators
3. identify an equivariant estimator
4. characterize all equivariant estimators in terms of a given one
5. identify the one that minimizes the risk for a given loss function

We must accept certain limitations alluded to above: the statistical in-
ference problem must have be of a special type with respect to the types of
transformations, the probability distribution and parameter of interest, and
the given loss function.

In the next two sections, we illustrate these steps for estimators with lo-
cation equivariance and scale equivariance.

Location Equivariant Estimation

In location equivariant estimation, we assume a family of distributions that
are location invariant. We write a PDF of a member of this family as p(x+c).
The basic transformation is a translation on both the random variable and
the location parameter: X̃ = X + c and µ̃ = µ + c. The estimand of interest
is µ.

A reasonable loss function L̃must have the property (3.113), that is, L̃(µ+

c, a+c) = L̃(µ, a) for any c, µ and a; hence, L̃(µ, a) is a function only of (a−µ):

L̃(µ, a) = L(a− µ). (3.119)

(To repeat the argument that led to equation (3.113) and to see it in this

particular case, let µ = −c, and so we have L̃(0, a) = L̃(0, a − µ), and this
equality must continue to hold as µ and c move in tandem.)
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Now, we consider properties of location equivariant estimators.
The estimator must have the property (3.118), that is,

T (x+ a) = T (x) + a. (3.120)

It is easy to see that if T0 is a location equivariant estimator and

T (x) = T0(x) + u(x), (3.121)

where u is any Borel function that is invariant to translations (that is,
u(x+ a) = u(x)), then T (x) is a location equivariant estimator. (Notice the
difference in “invariant” and “equivariant”.)

We now show that any location equivariant estimator must be of the
form (3.121) and furthermore, we characterize the function u.

Theorem 3.13
Given x = (x1, . . . , xn) ∈ IRn and let T0 be a location equivariant estimator.
(i)If n = 1, then any location equivariant estimator T must satisfy

T (x) = T0(x) + u, (3.122)

where u is constant.
(ii)If n > 1, then any location equivariant estimator T must satisfy

T (x) = T0(x) + u(d), (3.123)

where
d = (xi − xn) for i = 1, . . . , n− 1.

Proof.
Part (i) follows from equation (3.120).
Part (ii), n > 1: Let T0 be a location equivariant estimator. Suppose T is a
location equivariant estimator, and ∀x ∈ IRn let ũ(x) = T (x)−T0(x). Because
T and T0 are location equivariant, we have for any c ∈ IR,

T (x1, . . . , xn)− T0(x1, . . . , xn) = T (x1 + c, . . . , xn + c) − T0(x1 + c, . . . , xn + c)

= ũ(x1 + c, . . . , xn + c).

Now, let c = −xn. So

ũ(x1 − xn, . . . , xn−1− xn, 0) = T (x1, . . . , xn)− T0(x1, . . . , xn)

or, with u(x1 − xn, . . . , xn−1 − xn) = ũ(x1 − xn, . . . , xn−1 − xn, 0) and d =
(xi − xn),

T (x) = T0(x) + u(d).

With this knowledge about the form of any location equivariant estimator,
we now seek one with minimum risk. For an estimator based on only one
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observation, the problem is trivial and it is just to determine an optimal
constant u.

We will assume a random sample of size n > 1, we will use d as defined
above, and we will assume a distribution with PDF p(x − c). If we have a
location equivariant estimator T0 with finite risk, we determine the MREE (if
it exists) as

T∗(x) = T0(x)− u∗(d), (3.124)

where u∗(d) minimizes the conditional risk at c

Ec

(
L(T0(X) − u(D)) |D = d

)
. (3.125)

For simplicity, we take c = 0, and write E0 for the expectation.
Whether or not such u∗(d) exists, and if so is unique, depends on the

form of the loss function (which, in any event, must be of the form of equa-
tion (3.119).) In particular, for squared-error loss, which is of this form, we
have

u∗(d) = E0

(
T0(X) | d

)
. (3.126)

Note that for squared-error loss, if a UMVUE exists and is equivariant, it is
MRE.

For squared-error loss, a location-equivariant point estimator of the loca-
tion has a special form, as given in the following theorem.

Theorem 3.14
Given a sample X1, . . . , Xn from a location family with joint Lebesgue PDF
p(x1−µ, . . . , xn−µ), if there is a location-equivariant estimator of µ with finite
risk under squared-error loss, then the unique MREE of µ under squared-error
loss is

T∗(x) =

∫
t p(X1 − t, . . . , Xn − t)dt∫
p(X1 − t, . . . , Xn − t)dt

; (3.127)

that is, T∗(x) in equation (3.124), with u∗(x) from equation (3.126)), can be
written as (3.127).

Proof.
Let T0(X) be a location-equivariant estimator of µ with finite risk. MS2 the-
orem 4.5

The estimator T∗(x) in equation (3.127) is called a Pitman estimator.
Note that a location equivariant estimator is not necessarily invariant to

scale transformations.

Scale Equivariant Estimation

In scale equivariant estimation, the basic transformation is a multiplication
on both the random variable and the a power nonzero power of the scale
parameter: X̃ = rX, for r > 0, and σ̃ = rhσh. This development parallels
that for location equivariant estimation in the previous section.
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The estimand of interest is σh, for some nonzero h. A reasonable loss
function L̃ must have the property (3.113), L̃(rσ, rha) = L̃(σ, a), hence,

L̃(σ, a) = L(a/σh), (3.128)

and the estimator must have the property

T (rx) = rhT (x). (3.129)

If T0 is a scale equivariant estimator, then any scale equivariant estimator
must be of the form

T (x) =
T0(x)

u(z)
, (3.130)

where
zi =

x1

xn
, for i = 1, . . . , n− 1, and zn =

xn

|xn|
.

If we have a scale equivariant estimator T0 with finite risk, we determine
the MREE (if it exists) as

T∗(x) = T0(x)/u∗(z), (3.131)

where u∗(z) minimizes the conditional risk at r = 1:

E1

(
γ(T0(X)/u(z)) | z

)
. (3.132)

Note that the loss function has a special form. In the scale equivariant esti-
mation problem, there are a couple of special loss functions. One is a squared
error of the form

L(a/σh) =
(a− σh)2

σ2h
, (3.133)

in which case

u∗(z) =
E1

(
(T0(x))

2 | y
)

E1

(
T0(x) | y

) , (3.134)

and the estimator is a Pitman estimator.
Another special loss functions is of the form

L(a/σh) = a/σh − log(a/σh)− 1, (3.135)

called “Stein’s loss”, in which case

u∗(z) = E1(T0(X) | y). (3.136)

Stein’s loss has the interesting property that it is the only scale-invariant loss
function for which the UMVUE is also the MREE (difficult proof).

A scale equivariant estimator is invariant to location transformations; that
is, if T is scale invariant, then T (x+ a) = T (x).
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Location-Scale Equivariant Estimation

Location-scale equivariance involves the combination of the two separate de-
velopments. The basic transformations are location and scale: X̃ = bX + c
and θ̃ = bθ + c.

The loss function (3.128) for estimation of the scale parameter is invariant
to both location and scale transformations, and the estimator of the scale
must have the form of (3.130).

In order for the loss function for estimation of the location parameter to
be invariant under a location and scale transformation, the loss function must
be of the form

L̃(µ, a) = L((a− µ)/σ), (3.137)

and the location estimator must have the property

T (bx+ c) = brT (x) + c. (3.138)

Analysis of these estimators does not involve anything fundamentally dif-
ferent from combinations of the ideas discussed separately for the location
and scale cases.

Equivariant Estimation in a Normal Family

MRE estimation has particular relevance to the family of normal distributions,
which is a location-scale group family.

Example 3.23 Equivariant Estimation in a Normal Family
Suppose X1, X2, . . . , Xn are iid as N(µ, σ2) distribution, and consider the
problem of estimation of µ and σ2.

************************

Tσ2 (X) =
1

n+ 1

n∑

i=1

(Xi −X)2 (3.139)

**** compare MLE, minimum MSE

Tµ(X) = X (3.140)

The MRE estimator of the location under a convex and even loss func-
tion of the form (3.138) and MRE estimator of the scale under a loss of the
form (3.130) are independent of each other. Another interesting fact is that
in location families that have densities with respect to Lebesgue measure and
with finite variance, the risk of a MRE location estimator with scaled squared-
error loss is larger in the normal family than in any other location-scale group
family.
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3.5 Probability Statements in Statistical Inference

In a statistical paradigm in which a parameter characterizing the probability
distribution of the observable random variable is itself a random variable,
the objective of statistical inference is to use observable data to adjust the
assumed probability distribution of the parameter. In this case, the results of
the statistical analysis can be summarized by probability statements.

If the parameter is not considered to be a random variable, statements of
probability that the parameter has given values do not make sense, except as
ways of quantifying “beliefs” about the values.

Within a “objective” paradigm for statistical inference, there are two in-
stances in which statements about probability are associated with the de-
cisions of the inferential methods. In hypothesis testing, under assumptions
about the distributions, we base our inferential methods on probabilities of
two types of errors. In confidence sets the decisions are associated with prob-
ability statements about coverage of the parameters.

In both of these types of inference, the basic set up is the standard one in
statistical inference. We have a random sample of independent observations
X1, . . . , Xn on a random variable X that has a distribution Pθ, some aspects
of which are unknown. We assume some family of probability distributions P
such that Pθ ∈ P. We begin with some preassigned probability that, following
the prescribed method of inference, we will arrive at set of distributions Pθ

that contain the distribution Pθ. Our objective is to determine such meth-
ods, and among a class of such methods, determine ones that have optimal
properties with respect to reasonable criteria.

After having completed such a process, it may or may not be appropriate
to characterize the relationship of the “true” unknown distribution Pθ to the
set of Pθ with any statement about “probability”. If the particular distribution
or some parameter in the distribution is considered to be a (nondegenerate)
random variable, we may speak of a probability conditional on the observa-
tions used in the inference process. (This is a “posterior” probability.) On the
other hand, if the underlying probability model of the observable data is fixed,
then either Pθ ∈ Pθ with probability 1, or else Pθ /∈ Pθ with probability 1.

In these types of statistical inference, as we will describe below, we use
the terms “significance level”, “size”, “confidence level”, and “confidence co-
efficient” to describe our findings.

3.5.1 Tests of Hypotheses

Given a set of data, X, and a family of possible distributions that gave rise
to the data, P, a common objective of statistical inference is to specify a
particular member or subclass of P that “likely” generated X. For example, if
P = {N(µ, σ2) : µ ∈ IR, σ2 ∈ IR+}, given X = x, we may choose N(x̄, s2) as
a good candidate for the population from which the data arose. This choice
is based on statistical estimators that we know to be “good” ones.
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In another kind of statistical inference, given a set of data X and a family
of distributions P, we are to decide whether the data “likely” came from
some hypothesized subfamily P0 of P. Our possible decisions are “yes” or
“no”. Rather than a general “no”, a specific alternative may be hypothesized.

This kind of statistical inference is called “testing statistical hypotheses”.
We will discuss this topic more fully in Chapter 7. In Section 4.5 we discuss
testing from a Bayesian perspective. Here, we just introduce some terms and
consider some simple cases.

Statistical Hypotheses

The hypotheses concern a specific member P ∈ P. This is the distribution
that generated the observed data.

We have a null hypothesis

H0 : P ∈ P0 (3.141)

and an alternative hypothesis

H1 : P ∈ P1, (3.142)

where P0 ⊆ P, P1 ⊆ P, and P0 ∩ P1 = ∅. If P0 ∪ P1 = P, the alternative
hypothesis is effectively “everything else”.

In the paradigm of equations (3.1) and (3.2), in which we characterize
statistical inference as beginning with a family of probability distributions
P = {Pθ | θ ∈ Θ} and, using observed data, deciding that the family is PH ,
where PH ⊆ P, the problem of statistical hypothesis testing can be described
as beginning with P = P0 ∪ P1, and deciding either that P = P0 or P = P1.

In a Bayesian setup of the canonical problem in statistical inference as
described in equations (3.3) and (3.4), the problem of statistical hypothesis
testing can be described as beginning with P = {PΘ | Θ ∼ Q0 ∈ Q} where
Q0 is some prior distribution, and then deciding that the family of probability
distributions giving rise to the observed data is PH = {PΘ | Θ ∼ QH ∈ Q}.

An hypothesis that specifies exactly one distribution is called a simple
hypothesis; otherwise it is called a composite hypothesis. H0 above is a simple
hypothesis if there is only one distribution in P0.

If the family of distributions is associated with a parameter space Θ, we
may equivalently describe the tests as

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

An hypothesis H : θ ∈ ΘH in which #ΘH = 1 is a simple hypothesis;
if #ΘH > 1 it is a composite hypothesis. Of course we are often interested
in the case where Θ = Θ0 ∪ Θ1. An hypothesis of the form H0 : θ = θ0 is a
simple hypothesis, while Hi : θ ≥ θ0 is a composite hypothesis.
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Test Statistics and Critical Regions

A straightforward way of performing the test involves use of a test statistic,
T (X), computed from a random sample of data, with which we associated a
rejection region C, and if T (X) ∈ C, we reject H0 in favor of H1. Now, if H0

is true and we reject it, we have made an error. So a reasonable procedure
is to choose C such that if the null hypothesis is true, for some preassigned
(small) value, α,

Pr (T (X) ∈ C|H0) ≤ α. (3.143)

We call this bound a significance level of the test.
Although the term “significance level” is widely used, the fact that we have

defined it as a bound means that it is not very useful (although the definition
in equation (3.143) is the standard one). The LUB is clearly the measure of
interest. We call

sup
P∈H0

Pr (T (X) ∈ C|P ) (3.144)

the size of the test.
We seek a statistic T (X) such that Pr (T (X) ∈ C) is large if the null

hypothesis is not true. Thus, C is a region of more “extreme” values of the
test statistic if the null hypothesis is true. A statistical test in this kind of
scenario is called a “significance test”.

If T (X) ∈ C, the null hypothesis is rejected. The rejection region is also
called the critical region. The complement of the rejection region is called the
acceptance region.

It is desirable that the test have a high probability of rejecting the null
hypothesis if indeed the null hypothesis is not true.

p-Values

A procedure for testing that is mechanically equivalent to this is to compute
the realization of the test statistic T (X), say t, and then to determine the
probability that T (X) is more extreme than t. In this approach, the realized
value of the test statistic determines a region Ct of more extreme values.
The probability that the test statistic is in Ct if the null hypothesis is true,
Pr (T ∈ Ct), is called the “p-value” or “observed significance level” of the
realized test statistic.

In this framework we are testing one hypothesis versus another hypothe-
sis. The two hypotheses are not treated symmetrically, however. We are still
directly testing the null hypothesis. This asymmetry allows us to focus on two
kinds of losses that we might incur. The losses relate to the two kinds of errors
that we might make.
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Test Rules

Instead of thinking of a test statistic T and a rejection region C, as above, we
can formulate the testing procedure in a slightly different way. We can think of
the test as a decision rule, δ(X), which is a statistic that relates more directly
to the decision about the hypothesis. We sometimes refer to the statistic δ(X)
as “the test”, because its value is directly related to the outcome of the test;
that is, there is no separately defined rejection region.

A nonrandomized test procedure is a rule δ(X) that assigns two decisions to
two disjoint subsets, C0 and C1, of the range of T (X). In general, we require
C0 ∪C1 be the support of T (X). We equate those two decisions with the real
numbers d0 and d1, so δ(X) is a real-valued function,

δ(x) =

{
d0 for T (x) ∈ C0

d1 for T (x) ∈ C1.
(3.145)

For simplicity, we choose d0 = 0 and d1 = 1. Note for i = 0, 1,

Pr(δ(X) = i) = Pr(T (X) ∈ Ci). (3.146)

As above, we call C1 the critical region, and generally denote it by just C.
If δ(X) takes the value 0, the decision is not to reject; if δ(X) takes the

value 1, the decision is to reject. If the range of δ(X) is {0, 1}, the test is a
nonrandomized test. Sometimes, however, it is useful to expand the range of
δ(X) to be [0, 1], where we can interpret a value of δ(X) as the probability
that the null hypothesis is rejected. If it is not the case that δ(X) equals 0 or
1 a.s., we call the test a randomized test.

Testing as an Estimation Problem

In the general setup above, we can define an indicator function IΘ0(θ). The
testing problem is equivalent to the problem of estimating IΘ0 (θ). Let us use
a statistic S(X) as an estimator of IΘ0(θ). The estimand is in {0, 1}, and so
S(X) should be in {0, 1}, or at least in [0, 1].

Notice the relationship of S(X) to δ(X). For the estimation approach using
S(X) to be equivalent to use of the test rule δ(X), it must be the case that

S(X) = 1⇐⇒ δ(X) = 0 (i.e., do not reject) (3.147)

and
S(X) = 0⇐⇒ δ(X) = 1 (i.e., reject) (3.148)

Following a decision-theoretic approach to the estimation problem, we de-
fine a loss function. In the a simple framework for testing, the loss function is
0-1. Under this loss, using S(X) = s as the rule for the test, we have

L(θ, s) =

{
0 if s = IΘ0 (θ)
1 otherwise.

(3.149)
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Power of the Test

We now can focus on the test under either hypothesis (that is, under either
subset of the family of distributions) in a unified fashion. We define the power
function of the test, for any given P ∈ P as

β(δ, P ) = EP (δ(X)). (3.150)

We also often use the notation βδ(P ) instead of β(δ, P ). In general, the prob-
ability of rejection of the null hypothesis is called the power of the test.

An obvious way of defining optimality for tests is in terms of the power for
distributions in the class of the alternative hypothesis; that is, we seek “most
powerful” tests.

Errors

If P ∈ P0 and δ(X) = 1, we make an error; that is, we reject a true hypothesis.
We call that a “type I error”. For a randomized test, we have the possibility
of making a type I error if δ(X) > 0. In general, if P ∈ P0, βδ(P ) is the
probability of a type I error. Conversely, if P ∈ P1, then 1 − βδ(P ) is the
probability of a “type II error”, that is failing to reject a false hypothesis.

Testing as a Decision Problem

For a statistical hypothesis as described above with δ(x) as in equation (3.145),
and d0 = 0 and d1 = 1, write

φ(x) = Pr(δ(X) = 1 | X = x). (3.151)

Notice that this is the same as the power, except φ here is a function of the
observations, while we think of the power as a function of the true distribution.
Assuming only the two outcomes, we have

1− φ(x) = Pr(δ(X) = 0 | X = x). (3.152)

For this decision problem, an obvious choice of a loss function is the 0-1
loss function:

L(P, i) = 0 ifHi

L(P, i) = 1 otherwise.
(3.153)

It may be useful to consider a procedure with more than just two outcomes;
in particular, a third outcome, γ, may make sense. In an application in anal-
ysis of data, this decision may suggest collecting more data; that is, it may
correspond to “no decision”, or, usually only for theoretical analyses, it may
suggest that a decision be made randomly. We will, at least in the beginning,
however, restrict our attention to procedures with just two outcomes.

For the two decisions and two state of nature case, there are four possibil-
ities:
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• the test yields 0 and H0 is true (correct decision);
• the test yields 1 and H1 is true (correct decision);
• the test yields 1 and H0 is true (type I error); and
• the test yields 0 and H1 is true (type II error).

We obviously want a test procedure that minimizes the probability of either
type of error. It is clear that we can easily decrease the probability of one
(if its probability is positive) at the cost of increasing the probability of the
other.

We do not treat H0 and H1 symmetrically; H0 is the hypothesis to be
tested and H1 is the alternative. This distinction is important in developing
a practical methodology of testing.

We adopt the following approach for choosing δ (under the given assump-
tions on X, and the notation above):

1. Choose α ∈]0, 1[ and require that δ(X) be such that

Pr(δ(X) = 1 | H0) ≤ α.

α is called the level of significance.
2. Subject to this, find δ(X) so as to minimize

Pr(δ(X) = 0 | H1).

The definition of significance level is not as ambiguous as it may appear at
first glance.

One chooses α; that is the level of significance.
For some α̃ > α, although Pr(δ(X) = 1 | θ ∈ Θ0) ≤ α̃, we would not say

that α̃ is the level (or a level) of significance.
Notice that the restriction on the type I error in the first step applies

∀P ∈ H0. If the size is less than the level of significance, the test is said to be
conservative, and in that case, we often refer to α as the “nominal size”.

Approximate Tests

If the distribution of the test statistic T or δ under the null hypothesis is
known, the critical region or the p-value can be determined. If the distribu-
tion is not known, some other approach must be used. A common method is to
use some approximation to the distribution. The objective is to approximate
a quantile of T under the null hypothesis. In asymptotic inference, the ap-
proximation is often based on an asymptotic distribution of the test statistic.

In computational inference, a Monte Carlo test may be used. In Monte
Carlo tests the quantile of T is estimated by simulation of the distribution.
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Unbiased Tests

A test δ of H0 : P ∈ P0 versus H1 : P ∈ P1 is said to be unbiased at level α
if the power function satisfies

βδ(P ) ≤ α for P ∈ P0

βδ(P ) ≥ α for P ∈ P1

Uniformly Best Tests

The risk or the expected error in a test depends on the specific distribution
within the family of distributions assumed. We may seek a test that has
minimum expected errors of both types, or, in a practical approach to this
objective, we may cap the probability of a type I error and seek the most
powerful test for distributions within the class of the alternative hypothesis.

As we have seen in the estimation problem, optimality generally depends
on the specific distribution, and it may not be possible to achieve it uniformly;
that is, for all distributions within a given family.

We may then take the approach mentioned on page 267 for estimation
and restrict the allowable tests in some way. We may require that the tests
be unbiased, for example. That approach leads us to seek a UMPU test, that
is, a uniformly most powerful unbiased test. Alternatively, as we mentioned
before, we may seek a test that is optimal over the full set of distributions P
by some global measure of optimality.

3.5.2 Confidence Sets

In a problem of statistical inference for a family of distributions P, given a
random sample X, a level 1 − α confidence set, or confidence set (the terms
are synonymous), is a is a random subset of P, PS , such that

PrP (PS 3 P ) ≥ 1− α ∀P ∈ P. (3.154)

More precisely, we call PS a random family of level 1 − α confidence sets.
This definition obviously leaves many issues to be examined because of the
≥ relationship. A family of 1 − α1 confidence sets is also a family of 1 − α2

confidence set for α2 ≥ α1; and if PS is a level 1− α confidence set, then PeS
is also a level 1− α confidence set if PeS ⊃ PS .

The “S” in this notation refers to a random sample of X, and the notation
PS is intended to imply that a random set is being indicated, in contrast to
the notation PH used above to refer to an hypothesized set. The set PS is
determined by the random sample, while the set PH is determined a priori.
The source of randomness also accounts for my preferred notation, PS 3 P ,
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which can be thought of a referring to the random event in which the set PS

includes the element P .
As with the term “significance” in the hypothesis testing problem, the

standard usage of the term “confidence” is subject to a certain amount of
ambiguity. In hypothesis testing, we use “level of significance” and “size” of
the tests. (Recall that, adding to the confusion” we also use “significance
level” of a test statistic to refer to a minimal size test that would reject the
null hypothesis; that is, to refer to a p-value.) In setting confidence regions,
we refer to “confidence level” and “confidence coefficient”. We call

inf
P∈P

PrP (PS 3 P ) (3.155)

the confidence coefficient of PS .
The confidence coefficient is also called the coverage probability.
In a parametric setting, we can equivalently define a random family ΘS of

1− α confidence regions (sets) for the parameter space Θ by

Prθ (ΘS 3 θ) ≥ 1− α ∀θ ∈ Θ.

A realization of a confidence set, say Θs, is also called a confidence set.
Although it may seem natural to state that the “probability that θ is in
A(x) is 1 − α”, this statement can be misleading unless a certain underlying
probability structure is assumed.

We will introduce and discuss other terms in Chapter 7. In Chapter 4 we
discuss confidence sets from a Bayesian perspective. Here, we just define the
term and consider some simple cases.

Pivot Functions

For forming confidence sets, we often can use a function of the sample that
also involves the parameter of interest, g(T, θ). The confidence set is then
formed by separating the parameter from the sample values.

A class of functions that are particularly useful for forming confidence sets
are called pivotal values, or pivotal functions. A function g(T, θ) is said to be
a pivotal function if its distribution does not depend on any unknown param-
eters. This allows exact confidence intervals to be formed for the parameter
θ.

Confidence Intervals

Our usual notion of a confidence leads to the definition of a 1− α confidence
interval for the (scalar) parameter θ as the random interval [TL, TU ], that has
the property

Pr (TL ≤ θ ≤ TU ) ≥ 1− α. (3.156)
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This is also called a (1− α)100% confidence interval. The interval [TL, TU ] is
not uniquely determined.

The concept extends easily to vector-valued parameters. Rather than tak-
ing vectors TL and TU , however, we generally define an ellipsoidal region,
whose shape is determined by the covariances of the estimators.

A realization of the random interval, say [tL, tU ], is also called a confidence
interval.

In practice, the interval is usually specified with respect to an estimator
of θ, T . If we know the sampling distribution of T − θ, we may determine c1
and c2 such that

Pr (c1 ≤ T − θ ≤ c2) = 1− α;

and hence
Pr (T − c2 ≤ θ ≤ T − c1) = 1− α.

If either TL or TU is infinite or corresponds to a bound on acceptable
values of θ, the confidence interval is one-sided. Suppose Θ = (a, b), where
a or b may be infinite. In equation (3.156), if TL = a, then TU is called an
upper confidence bound, and if TU = b, then TL is called a lower confidence
bound. (It is better not to use the terms “upper confidence interval” or “lower
confidence interval”, because of the possible ambiguity in these terms.)

For two-sided confidence intervals, we may seek to make the probability
on either side of T to be equal, to make c1 = −c2, and/or to minimize |c1| or
|c2|. This is similar in spirit to seeking an estimator with small variance.

We can use a pivot function g(T, θ) to form confidence intervals for the
parameter θ. We first form

Pr
(
g(α/2) ≤ g(T, θ) ≤ g(1−α/2)

)
= 1− α,

where g(α/2) and g(1−α/2) are quantiles of the distribution of g(T, θ); that is,

Pr(g(T, θ) ≤ g(π)) = π.

If, as in the case considered above, g(T, θ) = T − θ, the resulting confidence
interval has the form

Pr
(
T − g(1−α/2) ≤ θ ≤ T − g(α/2)

)
= 1− α.

Example 3.24 Confidence Interval for Mean of a Normal Distribu-
tion
Suppose Y1, Y2, . . . , Yn are iid as N(µ, σ2) distribution, and Y is the sample
mean. The quantity

g(Y , µ) =

√
n(n− 1) (Y − µ)√∑ (

Yi − Y
)2
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has a Student’s t distribution with n− 1 degrees of freedom, no matter what
is the value of σ2. This is one of the most commonly-used pivotal values.

The pivotal value can be used to form a confidence value for θ by first
writing

Pr
(
t(α/2) ≤ g(Y , µ) ≤ t(1−α/2)

)
= 1− α,

where t(π) is a percentile from the Student’s t distribution. Then, after making

substitutions for g(Y , µ), we form the familiar confidence interval for µ:

(
Y − t(1−α/2) S/

√
n, Y − t(α/2) S/

√
n
)
,

where S2 is the usual sample variance,
∑

(Yi − Y )2/(n− 1).
(Note the notation: t(π), or for clarity, tν,(π) is the π quantile of a Student’s

t distribution. That means that

Pr(Y ≤ tν,(π)) = π.

Other authors sometimes use a similar notation to mean the 1 − π quantile
and other times to mean the π quantiles; that is, the same authors use it both
ways. I always use the notation in the way I indicate above. The reasons for
the different symbols go back to the fact that tν,(π) = −tν,(1−π), as for any
distribution that is symmetric about 0.)

Other similar pivotal functions have F distributions. For example, consider
the usual linear regression model in which the n-vector random variable Y has
a Nn(Xβ, σ2I) distribution, that is,

Y ∼ Nn(Xβ, σ2I), (3.157)

where X is an n×m known matrix, and the m-vector β and the scalar σ2 are
unknown. A pivotal value useful in making inferences about β is

g(β̂, β) =

(
X(β̂ − β)

)T
X(β̂ − β)/m

(Y −Xβ̂)T(Y −Xβ̂)/(n −m)
,

where
β̂ = (XTX)+XTY.

The random variable g(β̂, β) for any finite value of σ2 has an F distribution
with m and n−m degrees of freedom.

For a given parameter and family of distributions there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use. Alternatively, it may not be possible to identify a pivotal quantity for
a particular parameter. In that case, we may seek an approximate pivot. A
function is asymptotically pivotal if a sequence of linear transformations of
the function is pivotal in the limit as n→∞.
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If the distribution of T is known, c1 and c2 can be determined. If the
distribution of T is not known, some other approach must be used. A common
method is to use some numerical approximation to the distribution. Another
method is to use bootstrap resampling.

Optimal Confidence Sets

We seek confidence sets that are “small” or “tight” in some way. We want
the region of the parameter space that is excluded by the confidence set to
be large; that is, we want the probability that the confidence set exclude
parameters that are not supported by the observational evidence to be large.
This is called “accuracy”. We see most accurate confidence sets.

As with point estimation and tests of hypotheses, the risk in determining
a confidence set depends on the specific distribution within the family of
distributions assumed. We, therefore, seek uniformly most accurate confidence
sets.

As in other cases where we seek uniform optimality, such procedures may
not exist. We, therefore, may then take a similar approach for determining
confidence sets, and restrict the allowable regions in some way. We may require
that the confidence sets be unbiased, for example.

Unbiased Confidence Sets

A family of confidence sets ΘS for θ is said to be unbiased (without regard to
the level) if

Prθ0 (ΘS 3 θ1) ≤ Prθ0 (ΘS 3 θ0) ∀θ0, θ1 ∈ Θ. (3.158)

Prediction Sets and Tolerance Sets

We often want to identify a set in which a future observation on a random
variable has a high probability of occurring. This kind of set is called a pre-
diction set. For example, we may assume a given sample X1, . . . , Xn is from
a N(µ, σ2) and we wish to determine a measurable set S(X) such that for a
future observation Xn+1

inf
P∈P

PrP (Xn+1 ∈ S(X)) ≥ 1− α. (3.159)

More generally, instead of Xn+1, we could define a prediction interval for
any random variable V .

The difference in this and a confidence set for µ is that there is an addi-
tional source of variation. The prediction set will be larger, so as to account
for this extra variation.

We may want to separate the statements about V and S(X). A tolerance
set attempts to do this.
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Given a sample X, a measurable set S(X), and numbers δ and α in ]0, 1[,
if

inf
P∈P

PrP (PrP (V ∈ S(X)|X) ≥ δ) ≥ 1− α, (3.160)

then S(X) is called a δ-tolerance set for V with confidence level 1− α.

Approximate Confidence Sets

In some cases, we have a tractable probability model, so that we can determine
confidence sets with exact levels of significance. In other cases the problem is
not tractable analytically, so we must resort to approximations, which may be
base on asymptotic distributions, or to estimates, which may be made using
simulations.

Asymptotic inference uses asymptotic approximations. Computational in-
ference uses probabilities estimated by simulation of an assumed or hypothe-
sized data generating process or by resampling of an observed sample.

3.6 Variance Estimation

Statistical inferences that involve or are derived from statements of prob-
ability, such as hypothesis testing and determining confidence sets, require
knowledge of the distribution of the statistic that is used. Often we know or
can work out that distribution exactly, given the assumptions in the under-
lying probability model. In other cases we use approximate distributions. In
either case, we are often faced with the problem of estimating the variance of
a statistic.

In this section we first restrict our attention to the case in which the
statistic of interest is a scalar; that is, the case in which the variance itself is
a scalar. We describe two general methods, the jackknife and the bootstrap,
based on resampling. We then consider the more general problem of estimat-
ing the variance-covariance matrix for a vector statistic. In either case, the
first issue to address is the meaning of consistency of a variance-covariance
estimator, which we will consider in a general way in Section 3.8.1, and define
specifically in Definition 3.18. The jackknife and bootstrap can be used to
estimate a variance-covariance matrix, and we also consider a “substitution”
estimator.

3.6.1 Jackknife Methods

Jackknife methods make use of systematic partitions of a dataset to estimate
properties of an estimator computed from the full sample.

Suppose that we have a random sample, Y1, . . . , Yn, from which we com-
pute a statistic T as an estimator of a parameter θ in the population from
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which the sample was drawn. In the jackknife method, we compute the statis-
tic T using only a subset of size n− d of the given dataset; that is, we delete
a set of size d.

There are of course

Cn
d =

(
n

d

)

such sets.
Let T(−j) denote the estimator computed from the sample with the jth

set of observations removed; that is, T(−j) is based on a sample of size n− d.
The estimator T(−j) has properties similar to those of T . For example, if T is
unbiased, so is T(−j). If T is not unbiased, neither is T(−j); its bias, however,
is likely to be different.

The mean of the T(−j),

T (•) =
1

Cn
d

Cn
d∑

j=1

T(−j), (3.161)

can be used as an estimator of θ. The T(−j) may also provide some information
about the estimator T from the full sample.

For the case in which T is a linear functional of the ECDF, then T (•) =
T , so the systematic partitioning of a random sample will not provide any
additional information.

Consider the weighted differences in the estimate for the full sample and
the reduced samples:

T ∗
j = nT − (n− d)T(−j). (3.162)

The T ∗
j are called “pseudovalues”. (If T is a linear functional of the ECDF

and d = 1, then T ∗
j = T (xj); that is, it is the estimator computed from the

single observation, xj.)
We call the mean of the pseudovalues the “jackknifed” T and denote it as

J(T ):

J(T ) =
1

Cn
d

Cn
d∑

j=1

T ∗
j

= T ∗. (3.163)

In most applications of the jackknife, it is common to take d = 1, in which
case Cn

d = n. The term “jackknife” is often reserved to refer to the case of
d = 1, and if d > 1, the term “delete d jackknife” is used. In the case of d = 1,
we can also write J(T ) as

J(T ) = T + (n− 1)
(
T − T (•)

)

or
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J(T ) = nT − (n − 1)T (•). (3.164)

It has been shown that d = 1 has some desirable properties under cer-
tain assumptions about the population (see Rao and Webster (1966)). On the
other hand, in many cases consistency requires that d → ∞, although at a
rate substantially less than n, that is, such that n − d→∞.

Notice that the number of arithmetic operations required to compute a
jackknife statistic can be large. When d = 1, a naive approach requires a
number of computations of O(n2), although in most cases computations can
be reduced to O(n). In general, the order of the number of computations may
be in O(nd+1). Even if the exponent of n can be reduced by clever updating
computations, a delete-d jackknife can require very intensive computations.
Instead of evaluating the statistic over all Cn

d subsets, in practice, we often
use an average of the statistic computed only over a random sampling of the
subsets.

Jackknife Variance Estimator

Although the pseudovalues are not independent (except when T is a linear
functional), we treat them as if they were independent, and use V(J(T )) as
an estimator of the variance of T , V(T ). The intuition behind this is simple:
a small variation in the pseudovalues indicates a small variation in the esti-
mator. The sample variance of the mean of the pseudovalues can be used as
an estimator of V(T ):

V̂(T )J =

∑Cn
d

j=1

(
T ∗

j − T ∗)2

r(r − 1)
. (3.165)

Notice that when T is the mean and d = 1, this is the standard variance
estimator.

From expression (3.165), it may seem more natural to take V̂(T )J as an
estimator of the variance of J(T ), and indeed it often is.

A variant of this expression for the variance estimator uses the original
estimator T : ∑Cn

d

j=1(T
∗
j − T )2

r(r − 1)
. (3.166)

How good a variance estimator is depends on the estimator T and on

the underlying distribution. Monte Carlo studies indicate that V̂(T )J is often
conservative; that is, it often overestimates the variance.

The alternate expression (3.166) is greater than or equal to V̂(T )J, as is
easily seen (exercise); hence, it may be an even more conservative estimator.
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3.6.2 Bootstrap Methods

From a given sample y1, . . . , yn, suppose that we have an estimator T (y). The
estimator T ∗ computed as the same function T , using a bootstrap sample
(that is, T ∗ = T (y∗)), is a bootstrap observation of T .

The bootstrap estimate of some function of the estimator T is a plug-in
estimate that uses the empirical distribution Pn in place of P . This is the
bootstrap principle, and this bootstrap estimate is called the ideal bootstrap.

For the variance of T , for example, the ideal bootstrap estimator is the
variance V(T ∗). This variance, in turn, can be estimated from bootstrap sam-
ples. The bootstrap estimate of the variance, then, is the sample variance of
T ∗ based on the m samples of size n taken from Pn:

V̂(T ) = V̂(T ∗) (3.167)

=
1

m− 1

∑
(T ∗j − T ∗)2, (3.168)

where T ∗j is the jth bootstrap observation of T . This, of course, can be com-
puted by Monte Carlo methods by generating m bootstrap samples and com-
puting T ∗j for each.

If the estimator of interest is the sample mean, for example, the bootstrap
estimate of the variance is V̂(Y )/n, where V̂(Y ) is an estimate of the variance
of the underlying population. (This is true no matter what the underlying
distribution is, as long as the variance exists.) The bootstrap procedure does
not help in this situation.

3.6.3 Substitution Methods

The jackknife and bootstrap can be used to estimate a variance-covariance
estimator. Another useful type of estimator is called a substitution estimator
or sandwich estimator.

The idea in the “substitution method” for estimating Vn is to arrive at
an expression for Vn that involves a simpler variance along with quantities
that are known functions of the sample. Often that simpler variance can be
estimated by an estimator with known desirable properties. An estimator of
Vn in which the simpler estimator and the known sample functions are used
is called a substitution estimator. A simple example is the estimator of the
variance of β̂ in a linear regression following the model (3.157) on page 299.
The variance-covariance matrix is (XTX)−1σ2. A substitution estimator is
one in which the regression MSE is substituted for σ2.

The so-called “sandwich estimators” are often substitution estimators.

(ZTZ)−1V (ZTZ)−1

V is some variance-covariance estimator that probably includes a scalar
multiple of σ̂2.
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3.7 Applications

3.7.1 Inference in Linear Models

3.7.2 Inference in Finite Populations

One of the most important areas of application of statistics is in sampling and
making inferences about a finite set of objects, such as all inhabitants of a given
country. Finite population sampling or, as it is often called, “survey sampling”
is the process of designing and collecting a sample of some characteristic of the
members of the finite set. There are various issues and considerations in finite
population sampling that rarely arise in other areas of statistical inference.

A finite population is some finite set P = {(1, y1), . . . , (N, yN)}, where
the yi are real numbers associated with the set of objects of interest. (Note
that here we use “population” in a different way from the use of the term
as a probability measure.) Finite population sampling is the collection of a
sample S = {(L1, X1), . . . , (Ln, Xn)} where Xi = yj , for some j. (In general,
the set X = {X1, . . . , Xn} may be a multiset.) In discussions of sampling it
is common to use n to denote the size of the sample and N to denote the
size of the population. Another common notation used in sampling is Y to
denote the population total, Y =

∑N
i=1 yi. The objective of course is to make

inferences about the population, such as to estimate the total Y .
From a parametric point of view, the parameter that characterizes the

population is θ = (y1, . . . , yN ), and the parameter space, Θ, is the subspace
of IRN containing all possible values of the yi.

There are various ways of collecting the sample. A simple random sample
with replacement is a sample in which the Xi are iid. A related concept
is a simple random sample without replacement, in which the Xi = yj are
constrained so that a given value of j can occur once at most.

A common method of collecting a sample is to select elements from the fi-
nite population with different probabilities. If πi > 0 for all i is the probability
that yi is included in the sample, and if

LS = {i : yi is included in the sample}

then clearly

Ŷ =
∑

i∈LS

yi

πi

is an unbiased estimator of the population total.
The variance of this estimator depends on the πi as well as πi, where πij

is the probability that both yi and yj are included in the sample.
Much of the theory for finite population inference depends on how a prob-

ability distribution is used. As we have implied above the probability distri-
bution used in inference arises from the random selection of the sample itself.
This is called a “design based” approach. Other approaches to statistical in-
ference in finite populations begin by modeling the population as a realization
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(y1, . . . , yN ) of a random vector (Y1, . . . , YN ). This is called a superpopulation
model. In the context of a superpopulation, probability distributions can be
assumed for each Yi, possibly with associated covariates. This may lead to a
“model based” approach to statistical inference in finite populations.

Just as with statistical procedures in other settings, a superpopulation
model also allows us to investigate asymptotic properties of statistics.

We will discuss some topics of inference in finite populations further in
Section 5.5.2.

3.8 Asymptotic Inference

In the standard problem in statistical inference, we are given some family of
probability distributions, we take random observations on a random variable,
and we use some function of the random sample to estimate some aspect of
the underlying probability distribution or to test some statement about the
probability distribution.

The approach to statistical inference that we would like to follow is to
identify a reasonable statistic to use as an estimator or a test statistic, then
work out its distribution under the given assumptions and under any null hy-
pothesis, and, knowing that distribution, assess its goodness for the particular
application and determine levels of confidence to associate with our inference.
In many of interesting problems in statistical inference we cannot do this,
usually because the distributions are not tractable.

It is often easy, however, to determine the limiting distribution of a statis-
tic. In that case, we can base an approximate inference on the asymptotic
properties of the statistic. This is asymptotic inference.

The Basic Setup and Notation

As usual in statistical inference, we have a family of probability distributions
P = {Pθ}, where θ may be some parameter in a real-valued parameter space
Θ (“parametric inference”), or θ may just be some index in an index set
I to distinguish one distribution, Pθ1 , from another, Pθ2 (“nonparametric
inference”). The parameter or the index is not observable; however, we assume
Pθ1 6= Pθ2 if θ1 6= θ2 (“identifiability”).

We have an observable random variable X. We have a random sample,
X1, . . . , Xn, which we may also denote by X; that is, we may use X not just
as the random variable (that is, a Borel function on the sample space) but
also as the sample: X = X1, . . . , Xn.

Both θ and X may be vectors. (Recall that I use “real-valued” to mean
either a scalar (that is, an element in IR) or a real-valued vector (that is, an
element in IRk, where k is a positive integer possibly larger than 1).)
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The canonical problem in parametric inference is to estimate g(θ) or to
test an hypothesis concerning g(θ), where g is some real-valued measurable
function.

We denote the statistic (possibly an estimator or a test statistic) as Tn(X),
or just Tn. We also use the same symbol to denote the sequence of statistics,
although to emphasize the sequence, as opposed to the nth term in the se-
quence, we may write {Tn}.

We will often be interested in weak convergence, and in that case the order
of convergence O(f(n)) as in Example 1.23 on page 86 will be of interest.

3.8.1 Consistency

Consistency is a general term used for various types of asymptotic convergence
and has different meanings for different statistical procedures. Unless it is clear
from the context, we must qualify the word “consistency” with the type of
convergence and with the type of inference. We speak of consistent point
estimators and consistent tests of hypotheses.

In this section we will discuss consistency of point estimators. This relates
to the convergence of the sequence of estimators Tn(X) to the estimand g(θ),
and these types correspond directly to those discussed in Section 1.3.3. We will
consider consistency of hypothesis tests and the related concepts of asymptotic
correctness and accuracy in Chapter 7.

Convergence is defined with respect to a distribution. In a problem of
statistical inference we do not know the distribution, only the distributional
family, P. To speak of consistency, therefore, we require that the convergence
be with respect to every distribution in P.

The three most common kinds of consistency for point estimators are weak
consistency, strong consistency, and Lr-consistency.

Definition 3.14 (weak consistency)
Tn(X) is said to be weakly consistent for g(θ) iff

Tn(X)
p→ g(θ) wrt any P ∈ P.

This kind of consistency involves a weak convergence. It is often what is meant
when we refer to “consistency” without a qualifier. Whenever the asymptotic
expectation of a sequence of estimators is known, consistency is usually proved
by use of a Chebyshev-type inequality.

Definition 3.15 (strong (or a.s.) consistency)
Tn(X) is said to be strongly consistent for g(θ) iff

Tn(X)
a.s.→ g(θ) wrt any P ∈ P.
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Definition 3.16 (Lr-consistency)
Tn(X) is said to be Lr-consistent for g(θ) iff

Tn(X)
Lr→ g(θ) wrt any P ∈ P.

Lr-convergence applies to convergence in expectation:

lim
n→∞

E(‖Tn(X) − g(θ)‖rr) = 0.

For r = 1, Lr-consistency is called consistency in mean. For r = 2, Lr-
consistency is called consistency in mean squared error.

The term “consistency” or “consistent” is often used without a qualifier.
While this may be considered bad practice, it is fairly common. In certain
contexts, we often refer to weak consistency as just “consistency”, without
the qualifier. “Consistency” or “consistent” without a qualifier, however, often
means consistency or consistent in mean squared error.

There are relationships among these types of consistency that are similar
to those among the types of convergence. As in Figure 1.3 on page 82, we have
Recall Example 1.21 to see that a.s. consistency does not imply consistency

Lr strong
Q

Q
Q

Qs

�
�

�
�+

weak

in mean squared error.
For any convergent sequence, the rate of convergence is of interest. We

quantify this rate of convergence in terms of another sequence, which is often
some nice function of n.

Definition 3.17 (an-consistency)
Given a sequence of positive constants {an} with limn→∞ an = ∞, Tn(X) is
said to be an-consistent for g(θ) iff an(Tn(X)−g(θ)) ∈ OP(1) wrt any P ∈ P,
that is,

∀ε > 0 ∃ constant Cε > 0 3 sup
n

Pr(an‖Tn(X) − g(θ)‖ ≥ Cε) < ε.

Notice that this is a kind of weak consistency. Although it is common to
include the an sequence as a scale factor, if Tn(X) is an-consistent for g(θ)
then we could write (Tn(X)− g(θ)) ∈ OP(a−1

n ). an-consistency plays a major
role in asymptotic inference.
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The most common kind of an-consistency that we consider is
√
n-consistency;

that is, an =
√
n, as in Example 1.23 on page 86, where we saw that

Xn − µ ∈ OP(n−1/2).
We are interested the limiting behavior of such properties of statistics as

the variance, the bias, and the mean squared error. We often express sequences
of these properties in terms of big O (not in probability) of a convergent
sequence. The variance and mean squared error are often in O(n−1), as for
the variance of Xn, for example. A sequence of estimators whose variance or
mean squared error is in O(n−r) is a better sequence of estimators than one
whose mean squared error is in O(n−s) if r > s.

Quantities such as the variance, the bias, and the mean squared error are
defined in terms of expectations, so firstly, we need to be precise in our mean-
ing of asymptotic expectation. In the following we will distinguish asymptotic
expectation from limiting expectation. A related term is “approximate” ex-
pectation, but this term is sometimes used in different ways. Some authors
use the term “approximately unbiased” in reference to a limiting expectation.
Other authors and I prefer the term “unbiased in the limit” to refer to this
property. This property is different from asymptotically unbiased, as we will
see.

Consistency of a Sequence to a Sequence

In some cases, rather than a fixed estimand g(θ), we are interested in a se-
quence of estimands gn(θ). In such cases, it may not be adequate just to con-
sider |Tn − gn(θ)|. This would not be meaningful if, for example, gn(θ) → 0.
This kind of situation occurs, for example, when gn(θ) is the variance of the
mean of a sample of size n from a population with finite variance. In such
cases we could define any of the types of consistency described above using
the appropriate type of convergence in this expression,

|Tn/gn(θ) − 1| → 0. (3.169)

A common situation is one in which gn(θ) is a sequence of variance-
covariance matrices, say Σn. Because, for nondegenerate distributions, these
are positive definite matrices, we may restrict our attention to a sequence of
positive definite estimators, say Vn. For this case, we give a special definition
for consistent estimators of the sequence of variance-covariance matrices.

Definition 3.18 (consistent estimators of variance-covariance matrices)

Let {Σn} be a sequence of k×k positive definite matrices and Vn be a positive
definite matrix estimator of Σn for each n. Then Vn is said to be consistent
for Σn if ∥∥∥Σ−1/2

n VnΣ
−1/2
n − Ik

∥∥∥ p→ 0. (3.170)

Also Vn is said to be strongly consistent for Σn if
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∥∥∥Σ−1/2
n VnΣ

−1/2
n − Ik

∥∥∥ a.s.→ 0. (3.171)

Note the similarity of these expressions to expression (3.169). In many cases of
interest ‖Σn‖ → 0, so these expressions are not the same as ‖Vn −Σn‖ → 0.

Theorem 3.15
Assume the conditions of Definition 3.18. Equation (3.170) holds iff for every
sequence {ln} ∈ IRk,

lTnVnln
p→ 1. (3.172)

Proof. Exercise.

3.8.2 Asymptotic Expectation

Asymptotic inference is based on the asymptotic distribution of a statistic, Tn.
Recall that the asymptotic distribution is defined in terms of the convergence
of the CDFs at each point of continuity t of the CDF ofX, F : limn→∞ Fn(t) =
F (t), and an expectation can be defined in terms of a CDF. The properties of
the asymptotic distribution, such as its mean or variance, are the asymptotic
values of the corresponding properties of Tn.

Because {Tn} may converge to a degenerate random variable, it may be
more useful to consider more meaningful sequences of the form {an(Xn − c)}
as in Sections 1.3.7 and 1.3.8. Even if Tn is a normalized statistic, such as
X, with variance of the form σ2/n, the limiting values of various properties
of Tn may not be very useful. We need an “asymptotic variance” different
from limn→∞ σ2/n. Hence, we defined “an asymptotic expectation” in Defi-
nition 1.43 in terms of the expectation in the asymptotic distribution.

We refer to limn→∞ E(Tn) as the limiting expectation. It is important to
recognize the difference in limiting expectation and asymptotic expectation.
(These two terms are not always used in this precise way, so the student must
be careful to understand the meaning of the terms in their context.)

Notice that this definition of asymptotic expectation may allow us to ad-
dress more general situations. For example, we may consider the asymptotic
variance of a sequence of estimators

√
nTn(X). The asymptotic variance may

be of the form V(T/n) (which we should not be tempted to say is just 0,
because n→∞).

Notation and Terminology

The definition of asymptotic expectation in Definition 1.43 is a standard one.
Terminology related to this definition, however, is not always standard. To

illustrate, we consider a result in a common situation:
√
n(X−µ)

d→ N(0, σ2).
By the definition, we would say that the asymptotic variance of X is σ2/n;
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whereas, often in the literature (see, for example, TPE2, page 436, following
equation (1.25)), σ2 would be called the asymptotic variance. This confusion
in the notation is not really very important, but the reader should be aware
of it. To me, it just seems much more logical to follow Definition 1.43 and
call σ2/n the asymptotic variance. (See Jiang (2010), page 19, for additional
comments on the terminology.)

3.8.3 Asymptotic Properties and Limiting Properties

After defining asymptotic expectation, we noted an alternative approach
based on a limit of the expectations, which we distinguished by calling it
the limiting expectation. These two types of concepts persist in properties of
interest that are defined in terms of expectations, such as bias and variance
and their combination, the mean squared error.

One is based on the asymptotic distribution and the other is based on
limiting moments. Although in some cases they may be the same, in general
they are different, as we will see.

Asymptotic Bias and Limiting Bias

Now consider a sequence of estimators {Tn(X)} for g(θ), with E(|Tn|) < ∞,
in the family of distributions P = {Pθ}. We define the limiting bias of {Tn}
within the family P to be limn→∞ E(Tn)− g(θ).

Suppose Tn(X)
d→ T and E(|T |) < ∞. The limiting bias of {Tn} within

the family P is E(T ) − g(θ).
Notice that the bias may be a function of θ; that is, it may depend on the

specific distribution within P.
If the limiting bias is 0 for any distribution within P, we say {Tn(X)} is

unbiased for g(θ) in the limit.
It is clear that if Tn(X) is unbiased for g(θ) for all n, then {Tn(X)} is

unbiased for g(θ) in the limit.
We can easily construct an estimator that is biased in any finite sample,

but is unbiased in the limit. Suppose we want an estimator of the mean µ
(which we assume is finite). Let

Tn = Xn +
c

n
,

for some c 6= 0. Now, the bias for any n is c/n. The limiting bias of Tn for µ,
however, is 0, and since this does not depend on µ, we say it is unbiased in
the limit.

To carry this further, suppose X1, . . . , Xn
iid∼ N(µ, σ2), and with

Tn = Xn +
c

n
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as above, form
√
n(Tn − µ) =

√
n(Xn− µ) + c/

√
n. We know

√
n(Xn− µ)

d→
N(0, σ2) and c/

√
n→ 0, so by Slutsky’s theorem,

√
n(Tn − µ)

d→ N(0, σ2).

Hence, the limiting bias of Tn for µ is also 0, and since this does not depend
on µ, we say it is unbiased in the limit.

We define the asymptotic bias in terms of the asymptotic expectation of
{Tn} given a sequence of positive constants {an} with limn→∞ an = ∞ or

with limn→∞ an = a > 0, and such that anTn(X)
d→ T . An asymptotic bias

of {Tn} is E(T − g(θ))/an .
If E(T −g(θ))/an = 0, we say {Tn(X)} is asymptotically unbiased for g(θ).
It is clear that if Tn(X) is unbiased for g(θ) for any n, then {Tn(X)} is

asymptotically unbiased for g(θ).

Example 3.25 unbiased in limit but asymptotically biased
To illustrate the difference in asymptotic bias and limiting bias, consider

X1, . . . , Xn
iid∼ U(0, θ), and the estimator X(n) (which we know to be sufficient

for g(θ) = θ). We can work out the asymptotic distribution of n(θ−X(n)) to be
exponential with parameter θ. (The distributions of the order statistics from
the uniform distribution are betas. These distributions are interesting and you
should become familiar with them.) Hence, X(n) is asymptotically biased. We

see, however, that the limiting bias is limn→∞ E(X(n) − θ) = n−1
n θ − θ = 0;

that is, X(n) is unbiased in the limit.

Notice the role that the sequence {an} plays. This would allow us to con-
struct a sequence that is biased in the limit, but is asymptotically unbiased.

Consistency

There are also, of course, relationships between consistency and limiting bias.
Unbiasedness in the limit implies consistency in mean.

Example 3.26 consistency and limiting and asymptotic bias

Consider X1, . . . , Xn
iid∼ N(µ, σ2), and an estimator of the mean

Sn = Xn +
c√
n
,

for some c 6= 0. (Notice this estimator is slightly different from Tn above.) As
above, we see that this is unbiased in the limit (consistent in the mean), and
furthermore, we have the mean squared error

MSE(Sn, µ) = E((Sn − µ)2)

=
σ2

n
+

(
c√
n

)2

Theory of Statistics c©2000–2025 James E. Gentle



3.8 Asymptotic Inference 313

tending to 0, hence we see that this is consistent in mean squared error.
However,

√
n(Sn − µ) =

√
n(Xn − µ) + c has limiting distribution N(c, σ2);

hence Sn is asymptotically biased.

We also note that an estimator can be asymptotically unbiased but not
consistent in mean squared error. In Example 3.26, we immediately see that
X1 is asymptotically unbiased for µ, but it is not consistent in mean squared
error for µ.

Another interesting example arises from a distribution with slightly heavier
tails than the normal.

Example 3.27 consistency and limiting bias
Consider the double exponential distribution with θ = 1, and the estimator
of the mean

Rn(X) =
X(n) +X(1)

2
.

(This is the mid-range.) We can see that Rn is unbiased for any finite sample
size (and hence, is unbiased in the limit); however, we can show that

V(Rn) =
π2

12
,

and, hence, Rn is not consistent in mean squared error.

Asymptotic Variance, Limiting Variance, and Efficiency

We define the asymptotic variance and the limiting variance in similar ways
as in defining the asymptotic bias and limiting bias, and we also note that
they are different from each other. We also define asymptotic mean squared
error and the limiting mean squared error in a similar fashion. The limiting
mean squared error is of course related to consistency in mean squared error.

Our interest in asymptotic (not “limiting”) variance or mean squared error
is as they relate to optimal properties of estimators. The “efficiency” of an
estimator is related to its mean squared error.

Usually, rather than consider efficiency in a absolute sense, we use it to
compare two estimators, and so speak of the relative efficiency. When we
restrict our attention to unbiased estimators, the mean-squared error is just
the variance, and in that case we use the phrase efficient or Fisher efficient
(Definition 3.8) to refer to an estimator that attains its Cramér-Rao lower
bound (the right-hand side of inequality (B.25) on page 854.)

As before, assume a family of distributions P, a sequence of estimators
{Tn} of g(θ, and a sequence of positive constants {an} with limn→∞ an =∞
or with limn→∞ an = a > 0, and such that anTn(X)

d→ T and 0 < E(T ) <∞.
We define the asymptotic mean squared error of {Tn} for estimating g(θ) wrt
P as an asymptotic expectation of (Tn − g(θ))2 ; that is, E((T − g(θ))2)/an,
which we denote as AMSE(Tn, g(θ),P).
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For comparing two estimators, we may use the asymptotic relative effi-
ciency. The asymptotic relative efficiency of the estimators Sn and Tn for
g(θ) wrt P is defined as

ARE(Sn, Tn) = AMSE(Sn, g(θ),P)/AMSE(Tn, g(θ),P). (3.173)

The ARE is essentially a scalar concept; for vectors, we usually do one at
a time, ignoring covariances.

Asymptotic Significance

For use of asymptotic approximations for confidence sets and hypothesis test-
ing, we need a concept of asymptotic significance. As in the case of exact
significance, the concepts in confidence sets and hypothesis tests are essen-
tially the same.

We assume a family of distributions P, a sequence of statistics {Tn}, and
a sequence of tests {δ(Xn)} based on the iid random variables X1, . . . , Xn.
The test statistic δ(·) is defined in terms the decisions; it takes the value 1
for the case of deciding to reject H0 and conclude H1, and the value 0 for the
case of deciding not to reject H0.

Asymptotic Properties of Tests

In hypothesis testing, the standard setup is that we have an observable random
variable with a distribution in the family P. Our hypotheses concern a specific
member P ∈ P. We have a null hypothesis

H0 : P ∈ P0

and an alternative hypothesis

H1 : P ∈ P1,

where P0 ⊆ P, P1 ⊆ P, and P0 ∩ P1 = ∅.

Definition 3.19 (limiting size)
Letting β(δ(Xn), P ) be the power function,

β(δ(Xn), P ) = PrP (δ(Xn) = 1).

We define
lim

n→∞
sup

P∈P0

β(δ(Xn), P ), (3.174)

if it exists, as the limiting size of the test.
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Definition 3.20 (asymptotic significance)
Given the power function β(δ(Xn), P ). If

lim sup
n

β(δ(Xn), P ) ≤ α∀P ∈ P0, (3.175)

then α is called an asymptotic significance level of the test.

Definition 3.21 (consistency)
The sequence of tests {δ(Xn)} is consistent for the test P ∈ P0 versus P ∈ P1

iff
lim

n→∞
(1− β(δ(Xn), P )) = 0 ∀P ∈ P1. (3.176)

Definition 3.22 (uniform consistency)
The sequence of tests {δn} is uniformly consistent iff

lim
n→∞

sup
P∈P1

(1− β(δn, P )) = 0.

Asymptotic Properties of Confidence Sets

Let C(X) be a confidence set for g(θ).

Definition 3.23 (asymptotic significance level)
If

lim inf
n

Pr(C(X) 3 g(θ)) ≥ 1− α ∀P ∈ P, (3.177)

then 1− α is an asymptotic significance level of C(X).

Definition 3.24 (limiting confidence coefficient)
If

lim
n→∞

inf
P∈P

Pr(C(X) 3 g(θ)) (3.178)

exists, then it is the limiting confidence coefficient of C(X).

“The” Asymptotic Distribution

In determining asymptotic confidence sets or asymptotic relative efficiencies,
we need expressions that do not depend on unknown parameters. This fact
determines which asymptotic expectations are useful.

The asymptotic expectation of some sequence of statistics, or of pivotal
quantities, is determined by the sequence {an} (used above in the definitions).

In the univariate delta method, for example, we find a quantity an(g(Xn)−
g(c)) that converges in distribution to N(0, v), where v does not depend on
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an unknown parameter. In that case, we can set a confidence interval based
on the approximate distribution of g(Xn) as N(g(c), v/a2

n).
To speak of the asymptotic distribution of an(g(Xn) − g(c)) is clear; but

to refer to “the” asymptotic distribution of g(Xn) is somewhat less so.
Because it is the useful approximate distribution resulting from asymp-

totic expectations, we often say that “the asymptotic distribution” of g(Xn)
is N(g(c), v/a2

n). You should recognize that “the” in this statement is some-
what arbitrary. It might be better to call it “the asymptotically approximate
distribution that I’m going to use in this application”.

Again, we should distinguish “asymptotic” from “limiting”.
In the example of the delta method above, it is likely that

g(Xn)
d→ g(c);

that is, g(Xn) converges in distribution to the constant g(c); or the limiting
distribution of g(Xn) is degenerate at g(c). “The” asymptotic variance is 0.

**** discuss expansion of statistical functionals *** refer to Serfling
This would not be very useful in asymptotic inference. We therefore seek

“an” asymptotic variance that is more useful. In asymptotic estimation using
g(Xn), we begin with an expression of the form an(g(Xn) − g(c)) that has
a limiting distribution of the desired form (usually that means such that the
variance does not involve any unknown parameters and it does not involve n).
If this distribution is in a location-scale family, then we make the appropriate
linear transformation (which probably results in a variance that does involve
n).

We then often refer to this as the asymptotic distribution of g(Xn). Some-
times, as mentioned above, however, the limiting distribution of g(Xn) is
degenerate.

This is not to imply that asymptotic expectations are entirely arbitrary.
Proposition 2.3 in MS2 shows that there is a certain uniqueness in the asymp-
totic expectation. This proposition involves three cases regarding whether the
expectation of g(Xn) (without the an sequence) is 0. In the example above,
we have a degenerate distribution, and hence the asymptotic expectation that
defines the asymptotic variance is 0.

3.8.4 Properties of Estimators of a Variance Matrix

If the statistic is a vector, we need an estimator of the variance-covariance ma-
trix. Because a variance-covariance matrix is positive definite, it is reasonable
to consider only estimators that are positive definite a.s.

We have defined what it means for such an estimator to be consistent
(Definition 3.18 on page 309).

Theorem 3.16
conditions for the consistency of substitution estimators.
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Proof.
***************

Theorem 3.17
Given a sequence of estimators {Tn} of {gn(θ)} with variance-covariance ma-
trices {Σn}, if

Σ−1/2
n (Tn − gn(θ))

d→ N(0, Ik),

and if Vn is consistent for Σn, then

V −1/2
n (Tn − gn(θ))

d→ N(0, Ik). (3.179)

Proof.
***************

Notes and Further Reading

The general problem of statistical inference, that is, the use of observed data
for which we have a family of probability distributions to provide information
about those probability distributions, is an “inverse problem”. Nineteenth and
twentieth century scientists who made inferences about probability models
referred to the problem as one of “inverse probability”. Statisticians in the
early twentieth century also used this term. Although the maximum likelihood
approach could be thought of as a method of inverse probability, R. A. Fisher,
who developed likelihood methods, made a distinction between the methods
and “inverse probability” as a general term fell into disuse.

Foundations

Although statistical science has been very successful in addressing real-world
problems, there are some issues at the foundations of statistics that remain
somewhat controversial. One of these issues is the incorporation of subjectivity
in statistical analysis, and another is the relevance of certain principles, such
as “conditionality” and sufficiency in statistical inference.

In Chapter 1 I took the view that probability theory is an area of pure
mathematics; hence, given a consistent axiomatic framework, “beliefs” are
irrelevant. Distinctions between “objectivists” and “subjectivists” have no
place in probability theory.

In statistics, however, this is a different matter. Instead of a vague notion of
“subjective probability”, we may explicitly incorporate the subjectivity in our
decisions, that is, in our statistical inference. Press and Tanur (2001) argue
that scientists have never behaved fully objectively, but rather, some of the
greatest scientific minds have relied on intuition, hunches, and personal beliefs
to understand empirical data. These subjective influences have often aided
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in the greatest scientific achievements. Press and Tanur (2001) also express
the view that science will advance more rapidly if the methods of Bayesian
statistical analysis, which may incorporate subjective beliefs, are used more
widely. In this chapter, we have laid a framework for Bayesian approaches,
and in Chapter 4, we will discuss it more fully.

Samaniego (2010) provides an interesting comparison of the general Bayesian
and frequentist approaches to estimation.

Evidence and Decision Making

The “conditionality” principle was formulated by Birnbaum (1962) as a con-
nection between the sufficiency principle and the likelihood principle. The
context of the conditionality principle is a set of possible experiments (de-
signs, or data-generating processes) for obtaining data for statistical inference.
The conditionality principle basically states that if a particular experiment is
selected randomly (that is, independent of any observations), then only the
experiment actually performed is relevant. Berger and Wolpert (1988) discuss
these principles and their relationships to each other.

The likelihood principle, alluded to in Example 3.12 on page 237 and stated
on page 245, is perhaps the principle that brings into sharpest contrast some
different fundamental approaches to statistical inference. To many statisti-
cians, general statistical principles that focus on the observed data rather
than on the data-generating process often miss salient points about the pro-
cess. Lucien Le Cam (in Berger and Wolpert (1988), page 185.1) expressed a
common opinion among statisticians, “One should keep an open mind and be
a bit ‘unprincipled’.”

Royall (1997) evidence versus hypothesis testing ********

Information

Fisher information is the most familiar kind of information to most statisti-
cians, but information that is related to entropy (see Section 1.1.5) is often
used as a basis for statistical inference. Soofi (1994) discusses some subtleties
in the different definitions of information that are ultimately based on Shan-
non information.

General Approaches

While I have classified the general approaches to statistical inference into
five groups, there are obviously other classifications, and, in any event, there
are overlaps among the classes; for example, approaches based on empirical
likelihood follow ideas from both likelihood and ECDF methods. In subsequent
chapters, we will have more to say about each of these approaches, especially
a decision-theoretic approach and use of a likelihood function.

Theory of Statistics c©2000–2025 James E. Gentle



Notes and Further Reading 319

Least-squares estimation was first studied systematically by C. F. Gauss in
the early 1800’s in the context of curve fitting. The name of the Gauss-Markov
theorem reminds us of his work in this area.

Karl Pearson around the beginning of the twentieth century promoted esti-
mation based on fitting moments. These methods are the earliest and simplest
of the general plug-in methods. This class of methods is also called “analog”
estimation (see Manski (1988) for a general discussion in a specific area of
application). The good statistical properties of the ECDF lend appeal to plug-
in methods. The strong uniform convergence given in the Glivenko-Cantelli
theorem is another illustration of Littlewood’s third principle regarding the
“nearly” uniform convergence of pointwise convergent sequences.

R. A. Fisher developed and studied maximum likelihood methods in the
1920’s. These are probably the most widely-used statistical methods across a
broad range of applications.

Ideas and approaches developed by engineers and physical scientists lead
to statistical methods characterized by maximum entropy. Much of this work
dates back to Claude Shannon in the 1930’s. E. T. Jaynes in the 1950’s formal-
ized the approach and incorporated it in a Bayesian framework. His posthu-
mous book edited by G. Larry Bretthorst (Jaynes, 2003) is a very interesting
discussion of a view toward probability that leads to a Bayesian maximum en-
tropy principle for statistical inference. We will discuss the maximum entropy
principle in more detail in the context of Bayesian priors in Section 4.2.5,
beginning on page 346. Wu (1997) expands on the use of the maximum en-
tropy principle in various areas of application. Pardo (2005) gives an extensive
overview of the use of functionals from information theory in statistical infer-
ence. In some disciplines, such as electrical engineering, this approach seems
to arrive very naturally.

Pitman’s measure of closeness was introduced in 1937. The idea did not
receive much attention until the article by Rao (1981), in which was given
the definition we have used, which is slightly different from Pitman’s. Pit-
man’s original article was reproduced in a special issue of Communications in

Statistics (Pitman, 1991) devoted to the topic of Pitman closeness. The lack
of transitivity of Pitman’s closeness follows from Arrow’s “impossibility the-
orem”, and is a natural occurrence in paired comparisons (see David (1988)).
The example on page 220 is called a “cyclical triad”.

David and Salem had considered estimators similar to (3.20) for a normal
mean in 1973, and in David and Salem (1991) they generalized these shrunken
estimators to estimators of the means that are Pitman-closer than the sample
mean in a broad class of location families.

The basic ideas of the “decision theory” approach, such as risk and admis-
sibility, were organized and put forth by Wald (1950). Wald showed that many
of the classical statistical methods, such as hypothesis testing and even de-
sign of experiments, could be developed within the context of decision theory.
Wald also related many of the basic ideas of decision theory to game the-
ory for two-person games, and Blackwell and Girshick (1954) and Ferguson
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(1967) expanded on these relations. In a two-person game, one player, “na-
ture”, chooses action “θ” and the other player, “the statistician”, chooses
action “a” and the elements of the payoff matrix are the values of the loss
function evaluated at θ and a.

Complete Class Theorems

Wald, starting in Wald (1939) and especially in Wald (1947a), gave the first
characterizations of a class of decision rules that are complete or are es-
sentially complete. These theorems are collected in Wald (1950). See also
Kiefer (1953), who proved some additional properties of complete classes, and
Le Cam (1955), who relaxed some of the assumptions in the theorems.

Estimating Functions and Generalized Estimating Equations

The idea of an estimating function is quite old; a simple instance is in
the method of moments. A systematic study of estimating functions and
their efficiency was begun independently by Godambe (1960) and Durbin
(1960). Small and Wang (2003) provide a summary of estimating functions
and their applications. Estimating functions also play a prominent role in
quasi-likelihood methods, see Heyde (1997). We will discuss this further in
Chapter 6.

Unbiasedness

The concept of unbiasedness in point estimation goes back to Gauss in the
early nineteenth century, who wrote of fitted points with no “systematic er-
ror”. Although nowadays unbiasedness is most often encountered in the con-
text of point estimation, the term “unbiased” was actually first used by statis-
ticians to refer to tests (Neyman and Pearson, 1936, cited in Lehmann (1951)),
then used to refer to confidence sets (Neyman, 1937, cited in Lehmann (1951)),
and later introduced to refer to point estimators (David and Neyman, 1938,
cited in Lehmann (1951)). See Halmos (1946) and Lehmann (1951) for gen-
eral discussions, and see page 296 for unbiased tests and page 300 for unbiased
confidence sets. The idea of unbiasedness of an estimating function was intro-
duced by Kendall (1951).

In a decision-theoretic framework, L-unbiasedness provides an underlying
unifying concept.

Equivariant and Invariant Statistical Procedures

Equivariant and invariant statistical models have a heuristic appeal in ap-
plications. The basic ideas of invariance and the implications for statistical
inference are covered in some detail in the lectures of Eaton (1989).
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Approximations and Asymptotic Inference

In many cases of interest we cannot work out the distribution of a particular
statistic. There are two ways that we can proceed. One is to use computer
simulation to estimate properties of our statistic. This approach is called com-
putational inference (see Gentle (2009)). The other approach is to make some
approximations, either of the underlying assumptions or for the unknown dis-
tribution.

Some approximations are just based on known similarities between two
distributions. The most common kind of approximation, however, is based on
the asymptotic or “large-sample” properties of the statistic. This approach of
asymptotic inference, as discussed in Section 3.8, is generally quite straight-
forward and so it has widespread usage.

It is often difficult to know how the asymptotic properties relate to the
properties for any given finite sample. The books by Barndorff-Nielson and Cox
(1994), DasGupta (2008), Jiang (2010), Lehmann (1999), Serfling (1980), and
van der Vaart (1998) provide extensive coverage of asymptotic inference.

Variance Estimation

A sandwich-type estimator was introduced introduced by Eiker (1963) for
estimation of the variance-covariance matrix of the least-squares estimator
of the coefficient vector in linear regression in the case where the errors are
uncorrelated, but possibly have different distributions. Huber (1967) used a
similar kind of estimator as a robust estimator. White (1980) introduced a
similar estimator for heteroscedastic situations in economics. The term “sand-
wich estimator” was introduced in the context of estimation of the variance-
covariance matrix for the solution of a generalized estimation equation, and
it is widely used in that type of problem.

Subsampling and Resampling

The idea of the jackknife goes back to Quenouille in 1949. The ordinary stan-
dard (delete-1) jackknife was popularized by John Tukey for both bias correc-
tion and variance estimation. (Tukey, of course, gave it the poetic name.) It is
currently widely-used, especially in sample surveys. The delete-d (d > 1) jack-
knife was introduced and studied by Wu (1986). Shao and Tu (1995) provide
an extensive discussion of the jackknife.

The theory and methods of the bootstrap were largely developed by Efron,
and Efron and Tibshirani (1993) introduce the principles and discuss many
extensions and applications.

Predictive Inference and Algorithmic Statistical Models

Geisser (1993) argues that predictive inference is a more natural problem
that the ordinary objective in statistical inference of identifying a subfamily
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of distributions that characterizes the data-generating process that gave rise
to the observed data as well as future observations from that process.

Breiman (2001) emphasizes the role of algorithmic models when the ob-
jective is prediction instead of a simple descriptive model with a primary aim
of aiding understanding.

Exercises

3.1. Show that the estimator (3.20) is Pitman-closer to µ than is X.
3.2. a) Suppose T1(X) and T2(X) have continuous symmetric PDFs p1(t−θ)

and p2(t − θ) (that is, their distributions are both location families).
Suppose further that p1(0) > p2(0). Show that for some ε > 0

Pr(|T1 − θ| < ε) > Pr(|T2 − θ| < ε).

b) Is T1 in question 3.2a Pitman-closer to θ than T2? Tell why or why
not.

c) Now suppose X1 and X2 are iid with a continuous symmetric PDF p.
Let T1(X) = X1 and T2(X) = (X1 +X2)/2. Show that if

2

∫
(p(x))2dx < p(0),

then for some ε

Pr(|T1 − θ| < ε) > Pr(|T2 − θ| < ε).

3.3. a) Prove that if T (X) is a sufficient statistic for θ and if Y (X) is dis-
tributed independently of T (X), then the distribution of Y does not
depend on θ.

b) Does a converse hold? State and prove, or show why not.
3.4. Let T be a sufficient statistic for P . Prove the statements made on page 222

about functions and sufficient statistics; specifically,
a) show by example that W = f(T ) for some function f is not necessarily

a sufficient statistic for P ; however
b) if T = g(S), where g is a measurable function and S is a statistic,

then S is sufficient for P .
3.5. Show that T1(X) and T2(X) in Example 3.6 on page 227 are both sufficient

and complete for θ.
3.6. Show that T (X) in Example 3.7 on page 227 is sufficient and complete

for θ.
3.7. Work out the information matrix for θ = (µ, σ) in the N(µ, σ2) family

using
a) the expectation of the product of first derivatives with respect to the

parameters
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b) the expectation of the second derivatives with respect to the parame-
ters

c) the integrals of the derivatives with respect to the variable (which is
an expectation).

3.8. Determine the Hessian of the log-likelihood in Example 3.13, and show
that at the stationary point it is negative definite. (The off-diagonals are
0.)

3.9. Suppose T (X) has finite first and second moments, and let g(θ) =

E(T (X)). Show that for the estimator T̃ (X) = aT (X) + b when a < 0,

R(g(θ), T̃ ) > R(g(θ), 0);

that is, T̃ (X) is inadmissible for any b because it is dominated by the
estimator T (X) ≡ 0.

3.10. What can you say about a point estimator that is admissible under an
absolute-error loss? (Compare Theorem 3.10.)

3.11. Show that the expression (3.166) is greater than or equal to V̂(T )J.
3.12. Assume a random sample of size n > 2 from a distribution with PDF of

the form

p(x; θ) =
f(x)

h(θ)
I(0, θ)(x).

a) Show that X(n) is not unbiased for θ.
b) Show that T = 2X(n) −X(n−1) is unbiased to order O(n−1).
c) Show that the asymptotic risk with squared error loss for T and X(n)

are the same to O(n−2).
3.13. Prove Theorem 3.15.
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4

Bayesian Inference

We have used an urn process to illustrate several aspects of probability and
sampling. An urn that contains balls of different colors can be used to illustrate
a primitive notion of probability – “What is the probability of drawing a red
ball?” – that can be integrated into our axiomatic development of probability
(as a set measure). Almost 250 years ago Pierre-Simon Laplace, the French
mathematician and astronomer, considered the urn problem and asked a very
different question: “Given that there are n balls in the urn, some of which are
red, if the first ball drawn is red, what is the probability that the proportion
of red balls, P , is p0 (some constant)?” While this form of question may be
quite natural to a layman, it is not consistent with our notion of probability.
There is a fixed number of red balls in the urn; the proportion P is either p0

or it is not.
Even if we adhere to our definitions of “probability”, we should be able

to rephrase this question into one for which statistical decision theory should
provide an answer. We might feel more comfortable, however, using differ-
ent words, and maybe even asking about “subjective probability” or “belief”
about the proportion of red balls in the urn. Laplace went on to answer the
question in a manner that we will identify later as a systematic approach to
such problems:

Pr(P = p0|first ball red) =
p0/(n− 2)

∑(n−1)/n
p=2/n p/(n− 2)

=
p0

n(n− 1)/2− 1
.

Another question that Laplace addressed concerned the probability π that
a human birth would be male. From the point of view that this is a random
process, the word “probability” in this context is consistent with our under-
standing of the word. Laplace, however, went on to pose the question, “What
is the probability that the probability π is less than or equal to one half?”
Whether he felt it was relevant or not, he did not remark on the differences
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in the meanings of “probability” in the question. Laplace’s answer to this
question, based on the observed numbers of male and female births in Paris
during a period in the second half of the eighteenth century, is the same as
we would get using Bayes theorem with a uniform prior on π. We will later
consider other examples of this genre, so we will not elaborate on this one
here.

These two examples have two main points: how the word “probability” is
used, and the statistical framework in the analysis. The setup and the analysis
used in these problems are of the type called Bayesian inference.

In this chapter, we will consider the general framework of Bayesian infer-
ence. In most of the discussion in this chapter we will assume a parametric
model; that is, we assume that the observable random variable of interest has
a distribution in the family P = {PΘ : Θ ∈ Θ ⊆ IRk}.

4.1 The Bayesian Paradigm

The field of Bayesian statistics has become a mainstream part of statistical
inference. Bayesian methods allow us easily to incorporate prior information
into the inference. One of the major ways in which Bayesian methods differ
from other statistical methods, however, is in the basic definition of the prob-
lem. In the standard paradigm of parametric statistical inference, as expressed
in equations (3.1) and (3.2) of Chapter 3, the objective of the inference is to
make a decision about the values of the parameter. In Bayesian statistics, the
parameter, that is, the index of the underlying distribution, is viewed as a
random variable, so the canonical problem in Bayesian statistics is somewhat
different.

Although we now have two random variables, Θ and X, we must not con-
fuse them. Realizations of the random variable X are observable; realizations
of Θ are not directly observable. Realizations of Θ determine aspects of the
distribution of X.

We still address the fundamental problem in statistics: beginning with a
given distributional family P = {PΘ : Θ ∈ Θ}, we use observable realizations
ofX to make inferences about how Θ ranges over Θ. Instead of the formulation
of the problem in terms of equations (3.1) and (3.2), a formulation in terms
of equations (3.3) and (3.4) on page 207 may be more appropriate. We begin
with

P = {PΘ | Θ ∼ Q0 ∈ Q}, (4.1)

where Θ is a random variable and Q0 is a “prior distribution”. Using observed
data from a distribution PΘ that depends on Θ and relations among joint,
marginal, and conditional distributions, we arrive at the class of populations

PH = {PΘ | Θ ∼ QH ∈ Q}, (4.2)

where QH is some “posterior distribution” conditional on the observations.
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For many families of distributions of the observable random variable, there
are corresponding families of prior distributions that yield a parametric family
of posterior distributions that is the same as the family of priors. This means
that Q in equations (4.1) and (4.2) represents a single parametric family. We
call a member of such a family of priors a conjugate prior with respect to the
conditional distributional family of the observables. Clearly, we can always
define a family of conjugate priors. A trivial example is when Q is the family
of all distributions on Θ. The concept of conjugate priors, however, becomes
relevant when the family Q is fairly restrictive, especially as a parametric
family.

In the sense that Q0 allows direct incorporation of prior beliefs or sub-
jective evidence, statistical inference following this paradigm is sometimes
referred to as subjective inference.

In Bayesian inference, as usual, we assume that PΘ, Q0, and QH are dom-
inated by some σ-finite measure or by a mixture of σ-finite measures.

Notation

As we proceed, even in the simplest cases, there are five CDFs and PDFs that
are involved in this approach. Rather than introduce specialized notation, we
will use the same simple and consistent notation for these that we have used
previously. The notation makes use of upper and lower case fonts of the same
letter together with subscripts as symbols for the CDFs and PDFs of par-
ticular random variables. Thus, for example, “fX|θ” represents the PDF of
the observable random variable whose distribution is conditional on the ran-
dom variable Θ, and “fΘ|x” represents the PDF of the unobservable random
parameter whose distribution is conditional on the observations, that is, the
“posterior PDF”. The corresponding CDFs would be represented as “FX|θ”
and “FΘ|x”. The visual clutter of the subscripts is an overhead that is more
than compensated for by the consistency of the notation.

Occasionally, especially in the context of computations as in Section 4.7,
we will use a specialized and simple notation: [X, Y ], [X|Y ], and [X] represent
the joint, conditional, and marginal densities, respectively.

Bayesian Inference

The inference in going from the family in equations (4.1) to the family in
equations (4.2) is just based on our probability models. Once the models
are in place, this inference does not depend on any loss function. Bayesian
inference for making decisions, as for the specific questions raised in the two
examples from Laplace above, however, is generally set in a decision theory
framework.

In the decision-theoretic approach to statistical inference, we first quantify
the loss relative to the true state of nature in any decision that we make. There
is an obvious gap between the theory and the practice. It is easy to write some
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loss function as we discussed on page 260 and the following pages, but whether
these correspond to reality is another question.

Once we are willing to accept a particular loss function as a quantification
of our reality, we still have a problem because the loss function involves the
true state of nature, which we do not know. As we discussed in Section 3.3, we
use an expectation of the loss function, under some less restrictive assumptions
about the true state of nature.

Our objective is to develop methods of statistical inference that minimize
our losses or expected losses. Some of the issues in defining this goal more
precisely were discussed in Section 3.3.2. A more fundamental question arises
as to how to define the expected loss.

Functionals of the Loss Function

In Section 3.3, given an assumed family of distributions of the observable
{Pθ}, we defined the risk,

R(Pθ, T ) = EPθ

(
L(Pθ, T )

)
, (4.3)

and took this as the basis of the decision-theoretic approach.
The risk is a function of two elements, T and Pθ or just θ in a parametric

setting. For a given T we often write the risk as RT (θ). We generally wish to
choose T so as minimize the risk in (4.3). The risk is the basis for defining
admissibility, which from some perspectives is one of the most important
properties of a statistical procedure.

Various considerations, as discussed on page 266 and the following pages,
led us to use a distribution with PDF dFΘ(θ) to average the risk, yielding

r(FΘ, T ) =

∫

Θ

R(Pθ, T )dFΘ(θ) (4.4)

=

∫

Θ

∫

X
L(θ, T (x))dFX|θ(x)dFΘ(θ), (4.5)

which is called the Bayes risk. (The term “Bayes risk” is sometimes used
to refer to the minimum of r(FΘ, T (X)) with respect to T .) We denote the
Bayes risk in various ways, r(FΘ, T (X)), rT (FΘ), and so on. While the risk is
a function of θ or of the distribution family Pθ, the Bayes risk is a function of
the distribution FΘ.

The expectation in (4.3) is taken with respect to the distribution [X|Θ],
and thus is a “conditional risk”. Because it is an expected value with respect
to the observable random variable, it is a “frequentist risk”.

Because admissibility is defined in terms of this risk, “Inadmissibility is a
frequentist concept, and hence its relevance to a Bayesian can be debated”
(Berger (1985), page 257). We, however, will continue to consider the admissi-
bility of statistical procedures, and even consider it to be a relevant fact that
most Bayes procedures are admissible (Theorem 4.3).
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A quantity that is of more interest in the Bayesian paradigm is a different
functional of the loss function. It is an expectation taken with respect to
the distribution of the parameter, [Θ] or [Θ|X]. This is called the Bayesian
expected loss. The Bayesian expected loss is defined “at the time of decision
making”. If no statistical analysis is involved, but rather the Bayesian expected
loss is merely a probabilistic construct, it is

ρ(FΘ, T ) =

∫

Θ

L(θ, T )dFΘ(θ).

In Bayesian statistical analysis, the expected loss is defined in terms of the
conditional distribution:

ρ(FΘ, T ) =

∫

Θ

L(θ, T )dFΘ|x(θ). (4.6)

In summary, given a loss function L(θ, T ), where T is a function of a ran-
dom variable X, a conditional distribution [X|Θ] and a marginal distribution
[Θ], we have the three quantities that are functionals of L.

• Risk:
RT (θ) = EX|θ(L(θ, T )). (4.7)

• Bayes risk:

rT (Θ) = EΘ

(
EX|θ(L(θ, T ))

)
(4.8)

= EX

(
EΘ|X(L(θ, T ))

)
. (4.9)

• Bayes expected loss:

ρT (Θ) = EΘ|X(L(θ, T )). (4.10)

Any expectation taken wrt [X|Θ] or [X] is a “frequentist” concept.

Bayes Actions

If FΘ(θ) in equation (4.5) is a CDF, the rule or action that minimizes the
conditional expectation with respect to the distribution with that CDF is
called the Bayes action or the Bayes rule. We often denote the Bayes rule wrt
FΘ as δFΘ (X).

The risk that is achieved by the Bayes rule, that is, the minimum average
risk, is ∫

Θ

R(θ, δFΘ (X))dFΘ(θ).

(As noted above, sometimes this minimum value is called the Bayes risk.)
The averaging function allows various interpretations, and it allows the

flexibility of incorporating prior knowledge or beliefs. The regions over which
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dFΘ(θ) is large will be given more weight; therefore an estimator will be pulled
toward those regions.

In formal Bayes procedures, dFΘ(θ) is normalized so that
∫
Θ

dFΘ(θ) = 1,
we call dFΘ(θ) the prior probability density for θ. The prior distribution of Θ
may also depend on parameters, which are called “hyperparameters”.

In an exercise in simple probabilistic reasoning without any data, we may
set up a quantity similar to r(FΘ, T ) in expression (4.5). In that case instead
of an expected value R(Pθ, T ), we have the loss function L(Pθ, a) for a specific
action a. Using this setup is not statistical inference, of course, but it may be
useful in analyzing expected losses under an assumed probability model FΘ.
This situation is referred to as a “no-data problem”.

To continue with the statistical inference, we next form the joint distribu-
tion of Θ and X, and then the conditional distribution of Θ given X, called
the posterior distribution. The Bayes rule is determined by minimizing the
risk, where the expectation is taken with respect to the posterior distribution.
Because the Bayes rule is determined by the posterior distribution, the Bayes
rule must be a function of a sufficient statistic.

In some cases, we wish to determine a rule similar to a Bayes rule that
minimizes the average risk in equation (4.5) even though FΘ(θ) is not a CDF
and dFΘ(θ) cannot be normalized to integrate to 1. If the integral in equa-
tion (4.5) exists, we can proceed to determine an action that minimizes it
without actually determining a posterior distribution. In that case, we say
that the prior distribution is an improper prior; and of course dFΘ(θ) is not a
PDF, but it serves the same purpose as a PDF in the sense that it is a prior
weighting function. We will consider this situation on page 345 and give an
example on page 359.

Probability Statements in Statistical Inference

Some methods of statistical inference are based on probabilities of a statis-
tic taking on certain values given a specific member of a family of proba-
bility distributions; that is, perhaps, given a value of a parameter. The two
main statistical methods that rely on statements of probability are hypoth-
esis testing and determining confidence sets. In these methods we assume a
model PΘ for the state of nature and then consider probabilities of the form
Pr(T (X) = 1|Θ = θ) or Pr(T (X) 3 Θ|Θ = θ). The proper interpretation of a
confidence set, for example, is “[... given the assumptions, etc. ...] the proba-
bility that a random region formed in this manner includes true the value of
the parameter is ...”

This kind of probability statement is somewhat awkward for use in inter-
preting the results of a statistical analysis.

Instead of a statement about Pr(δ(X)|θ), many people would prefer a
statement about Pr(Θ ∈ T (X)|X = x), that is,

Pr(Θ ∈ T (x))
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even if they don’t think of Θ as a random variable. In the Bayesian approach
to testing and determining confidence sets, we do think of the parameter as a
random variable and so we can make statements about the probability of the
parameter taking on certain values.

If the parameter is a random variable, especially if it is a continuous ran-
dom variable, point estimation of the parameter or a test of an hypothesis that
a parameter takes a specific value when the parameter is modeled as a continu-
ous random variable does not make much sense. The idea of a point estimator
that formally minimizes the Bayes risk, however, remains viable. Going be-
yond point estimation, the Bayesian paradigm provides a solid theoretical
infrastructure for other aspects of statistical inference, such as confidence in-
tervals and tests of hypotheses. The parameter random variable is different in
a fundamental way from the other random variable in the estimation problem:
the parameter random variable is not observable; the other random variable
is — that is, we can observe and record realizations of this random variable
of interest, and those observations constitute the sample, which is the basis
for the statistical inference.

4.2 Bayesian Analysis

The starting point in ordinary Bayesian inference is the conditional distribu-
tion of the observable random variable. (In a frequentist approach, this is just
the distribution — not the “conditional” distribution.)

The prior density represents a probability distribution of the parameter
assumed a priori, that is, without the information provided by a random
sample. Bayesian inference depends on the conditional distribution of the
parameter, given data from the random variable of interest.

4.2.1 Theoretical Underpinnings

The relationships among the conditional, marginal, and joint distributions
can be stated formally in the “Bayes formula”. The simple relationship of
probabilities of events as in equations (1.231) and (1.232) allows us to express
a conditional probability in terms of the two marginal probabilities and the
conditional probability with the conditioning reversed;

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
. (4.11)

This relationship expresses the basic approach in Bayesian statistical anal-
ysis. Instead of probabilities of discrete events, however, we wish to utilize
relationships among probability densities.

We consider the random variable X with range X ⊆ IRd and Θ with range
Θ ⊆ IRk. We consider the product space X × Θ together with the product
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σ-field σ(B(X ) × B(Θ)) where B(X ) and B(Θ) are the Borel σ-fields over
the respective ranges. We will consider the family of distributions P with
probability measures dominated by a σ-finite measure ν , and characterized
by the PDFs fX|θ(x) with θ ∈ Θ.

Theorem 4.1 (Bayes theorem)
Assume the density, fX|θ(x) = dFX|θ(x)/dν is Borel on the product measure
space, (X × Θ, σ(B(X ) × B(Θ)). Let FΘ be a (prior) CDF on Θ. We have
that the posterior distribution FΘ|x is dominated by the probability measure
associated with FΘ, and if fX(x) =

∫
Θ
fX|θ(x)dFΘ > 0 a.e. ν,

dFΘ|x
dFΘ

=
fX|θ(x)

fX(x)
. (4.12)

Proof. We first show that fX(x) < ∞ a.e., by directly integrating it using
Fubini’s theorem: ∫

X
fX(x)dν =

∫

X

∫

Θ

fX|θ(x)dFΘdν

=

∫

Θ

∫

X
fX|θ(x)dνdFΘ

=

∫

Θ

dFΘ

= 1.

Thus, fX(x) is a proper PDF and is finite a.e. ν .
Now for x ∈ X and B ∈ B(Θ), let

P (B, x) =
1

fX(x)

∫

B

fX|θ(x)dFΘ.

Because P (B, x) ≥ 0 for all B and P (Θ, x) = 1, P (B, x) > 0 is a probability
measure on B(Θ).

Furthermore, by Fubini’s theorem
∫

Θ

∫

X
P (B, x)dνdFΘ =

∫

X

∫

Θ

P (B, x)dFΘdν

and so P (B, x) is measurable ν .
Now, for any A ∈ σ(X) and B ∈ B(Θ), again using Fubini’s theorem, we

have ∫

A×Θ

IB(θ)dFX,Θ =

∫

A

∫

B

fX|θ(x)dFΘdν

=

∫

A

(∫

B

fX|θ(x)

fX(x)
dFΘ

)(∫

Θ

fX(x)dFΘ

)
dν

=

∫

Θ

∫

A

(∫

B

fX|θ(x)

fX(x)
dFΘ

)
fX|θ(x)dνdFΘ

=

∫

A×Θ

P (B, x)dFX,Θ.
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Hence P (B, x) = Pr(Θ ∈ B|X = x); that is, it is dominated by the probability
measure associated with FΘ and it is the resulting conditional probability
measure of Θ given X = x. Its associated CDF is FΘ|x.

Furthermore, if λ is a σ-finite measure that dominates the probability
measure associated with FΘ (in a slight abuse of the notation, we write FΘ �
λ), and fΘ(θ) = dFΘ

dλ
, then the chain rule applied to expression (4.12) yields

dFΘ|x
dλ

=
fX|θ(x)fΘ(θ)

fX(x)
. (4.13)

The Consequences of Exchangeability

In Example 3.12 on page 237, we encountered a data-generating process with
an underlying Bernoulli distribution that presented us with a quandary. The
analysis required us to use knowledge of the data-generating process (specif-
ically, the stopping rule). An alternative approach using only the assump-
tion that the Bernoulli observations are exchangeable allows us to ignore the
stopping rule. This approach is based on de Finetti’s representation theorem
(Theorem 1.30 on page 76).

We now reconsider the problem discussed in Example 3.12.

Example 4.1 Sampling in a Bernoulli distribution
We assume an exchangeable sample of size n,X1, . . . , Xn, from the Bernoulli(π).
Suppose that k of the observations in the sample have a value of 1, and the
other n− k have a value of 0. Given only this information, we ask what is the
probability that a new observation Xn+1 has a value of 1.

Let {Xi}∞i=1 be an infinite sequence of binary random variables such that
for any n, {Xi}ni=1 is exchangeable. Then there is a unique probability measure
P on [0, 1] such that for each fixed sequence of zeros and ones {ei}ni=1,

Pr(X1 = e1, . . . , Xn = en) =

∫ 1

0

πk(1− π)n−kdµ(π),

where k =
∑n

i=1 ei.
In Example 3.12, we considered a variation of this problem in which the

sample size n was random. If we have an exchangeable sequence X1, X2, . . .
and we choose a finite value of n to form a set X1, . . . , Xn, we may ask whether
the set is exchangeable. The sample is exchangeable so long as the chosen value
of n has nothing to do with the Xis. Suppose, however, the value of n is chosen
conditionally such that Xn = 1. The sample is no longer exchangeable, and
the argument above no longer holds. The Bayesian analysis remains the same,
however, as we see in Example 4.3.

We will consider other aspects of this problem again in Example 6.1 on
page 447 and in Example 7.12 on page 539.

In most cases, a random sample is a set of iid random variables; in the
Bayesian framework, we only assume that the X1, . . . , Xn are exchangeable
and that they are conditionally independent given θ.
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4.2.2 Regularity Conditions for Bayesian Analyses

Many interesting properties of statistical procedures depend on common sets
of assumptions, for example, the Fisher information regularity conditions. For
some properties of a Bayesian procedure, or of the posterior distribution itself,
there is a standard set of regularity conditions, often called the Walker regular-
ity conditions, after Walker (1969), who assumed them in the proofs of various
asymptotic properties of the posterior distribution. The regularity conditions
apply to the parameter space Θ, the prior PDF fΘ(θ), the conditional PDF
of the observables fX|θ(x), and to the support X = {x : fX|θ(x) > 0}. All
elements are real, and µ is Lebesgue measure.

The Walker regularity conditions are grouped into three sets:

A1. Θ is closed.
When a general family of distributions is assumed for the observables,
this condition may allow for a distribution that is not in that family (for
example, in a Bernoulli(π), the parameter is not allowed to take the values
0 and 1), but the convenience of this condition in certain situations more
than pays for this anomaly, which occurs with 0 probability anyway.

A2. X does not depend on θ.
This is also one of the FI regularity conditions.

A3. For θ1 6= θ2 ∈ Θ, µ({x : fX|θ(x) 6= fX|θ(x)}) > 0.
This is identifiability; see equation (1.25). Without it parametric inference
does not make much sense.

A4. Given x ∈ X and θ1 ∈ Θ and δ a sufficiently small real positive number,
then ∀θ 3 ‖θ − θ1‖ < δ,

| log(fX|θ(x)) − log(fX|θ1
(x))| < Hδ(x, θ1)

where Hδ(x, θ1) is a measurable function of x and θ1 such that

lim
δ→0+

Hδ(x, θ1) = 0

and, ∀θ̃ ∈ Θ,

lim
δ→0+

(∫

X
Hδ(x, θ1)fX|θ̃(x)dx

)
= 0.

This is a continuity condition.
A5. If Θ is not bounded, then for any θ̃ ∈ Θ and a sufficiently large real

number ∆,

‖θ‖ > ∆ =⇒ log(fX|θ(x))− log(fX|θ̃(x)) < K∆(x, θ̃),

where K∆(x, θ̃) is a measurable function of x and θ̃ such that

lim
δ→0+

(∫

X
K∆(x, θ̃)fX|θ̃(x)dx

)
< 0.
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B1. ∀θ0 ∈ Θ◦, log(fX|θ(x)) is twice differentiable wrt θ in some neighborhood
of θ0.

B2. ∀θ0 ∈ Θ◦,

0 ≺
∫

X

(
∂ log(fX|θ(x))

∂θ

∣∣∣∣
θ=θ0

)(
∂ log(fX|θ(x))

∂θ

∣∣∣∣
θ=θ0

)T

fX|θ0
(x)dx <∞.

B3. ∀θ0 ∈ Θ◦, ∫

X

∂fX|θ(x)

∂θ

∣∣∣∣
θ=θ0

dx = 0

and ∫

X

∂2fX|θ(x))

∂θ(∂θ)T

∣∣∣∣
θ=θ0

dx = 0.

(Note that in the first condition, the integrand may be a vector, and in
the second, it may be a matrix.)

B4. Given θ0 ∈ Θ◦ and δ a sufficiently small real positive number, ∀θ ∈ Θ 3
‖θ − θ0‖ < δ and for each i and j,

∣∣∣∣∣
∂2 log(fX|θ(x))

∂θi∂θj
− ∂2 log(fX|θ(x))

∂θi∂θj

∣∣∣∣
θ=θ0

∣∣∣∣∣ < Mδ(x, θ0)

where Mδ(x, θ0) is a measurable function of x and θ0 such that

lim
δ→0+

(∫

X
Mδ(x, θ0)fX|θ0

(x)dx

)
< 0.

This is also a continuity condition.
C1. ∀θ0 ∈ Θ◦, fΘ(θ) is continuous at θ0 and fΘ(θ0) > 0.

4.2.3 Steps in a Bayesian Analysis

We can summarize the approach in a Bayesian statistical analysis as beginning
with these steps:

1. Identify the conditional distribution of the observable random variable;
assuming the density exists, call it

fX|θ(x). (4.14)

This is the PDF of the distribution Q0 in equation (4.1).
2. Identify the prior (marginal) distribution of the parameter; assuming the

density exists, call it
fΘ(θ). (4.15)

This density may have parameters also, of course. Those parameters are
called “hyperparameters”, as we have mentioned.
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3. Identify the joint distribution; if densities exist, it is

fX,Θ(x, θ) = fX|θ(x)fΘ(θ). (4.16)

4. Determine the marginal distribution of the observable; if densities exist,
it is

fX(x) =

∫

Θ

fX,Θ(x, θ)dθ. (4.17)

This marginal distribution is also called the prior predictive distribution.
In slightly different notation, we can also write it as

fX(x) =

∫

Θ

fX|θ(x)fΘ(θ)dθ.

5. Determine the posterior conditional distribution of the parameter given
the observable random variable. If densities exist, it is

fΘ|x(θ) = fX,Θ(x, θ)/fX(x). (4.18)

This is the PDF of the distribution QH in equation (4.2), which is often
just called the “posterior”. The posterior conditional distribution is then
the basis for whatever decisions are to be made.

6. Assess the posterior conditional distribution in the light of prior beliefs.
This is called a sensitivity analysis. Repeat the steps above as appropriate.

These first steps in a Bayesian analysis involve identifying the components
in the equation

fX|θ(x)fΘ(θ) = fX,Θ(x, θ) = fΘ|x(θ)fX (x). (4.19)

Although we have written the PDFs above in terms of single random vari-
ables (any of which of course could be vectors), in applications we assume we
have multiple observations on X. In place of fX|θ(x|θ) in (4.14), for example,
we would have the joint density of the iid random variables X1, . . . , Xn, or∏
fX|θ(xi|θ). The other PDFs would be similarly modified.
Given a posterior based on the random sample X1, . . . , Xn, we can form

a posterior predictive distribution for Xn+1, . . . , Xn+k:

fXn+1,...,Xn+k |x1,...,xn
(xn+1, . . . , xn+k) =

∫
Θ
fX,Θ(xn+i, θ)dFΘ|x1,...,xn

(θ).
(4.20)

Rather than determining the densities in equations (4.14) through (4.18)
it is generally sufficient to determine kernel functions. That is, we write the
densities as

fD(z) ∝ g(z). (4.21)
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This means that we can avoid computation of the normalizing constant, or
partition functions. This is especially important for the densities fΘ|x and fX ,
where in some cases these involve integrals that are difficult to evaluate.

There are other shortcuts we can take in forming all of the relevant ex-
pressions for a Bayesian analysis. In the next few examples we will go through
all of the gory details. Before considering specific examples, however, let’s
consider some relationships among the various densities.

Conjugate Priors

If the conditional posterior distribution for a given conditional distribution
of the observable is in the same family of distributions as the marginal prior
distribution, we say that the prior distribution is a conjugate prior with respect
to the family of distributions of the observable. In equation (4.19), for example,
fΘ(θ) is a conjugate prior for fX|θ(x) if fΘ|x(θ) is in the same family of
distributions as fΘ(θ).

Conjugate priors often have attractive properties for a Bayesian analysis,
as we will see in the examples.

For a PDF in the exponential class, written in the form of equation (2.7),

fX|θ(x) = exp
(
(η(θ))TT (x) − ξ(θ)

)
h(x), (4.22)

the general form of a conjugate prior is

fΘ(θ) = c(µ,Σ) exp
(
|Σ|(η(θ))Tµ− |Σ|ξ(θ)

)
, (4.23)

where c(µ,Σ) is a constant with respect to the hyperparameters µ and Σ,
which can be thought of as a mean and variance-covariance (Exercise 4.2).

In Table 4.1, I show some conjugate prior distributions for various single-
parameter distributions of observables. See Appendix A for meanings of the
parameters. In the table, a parameter with a subscript of 0, for example, θ0
is assumed to be known (that is, not a parameter).

I assume a sample x1, . . . , xn, and I use t to represent T (x) =
∑
xi.

Examples

Example 4.2 Binomial with Beta Prior
The Bayesian approach can be represented nicely by a problem in which we
model the conditional distribution of an observable random variable X as
a binomial(n, π) distribution, conditional on π, of course. (Recall from Ex-
ample 4.1 that if we wish to view the binomial as a sum of Bernoullis, the
Bernoullis must at least be exchangeable.)

Suppose we assume that π comes from a beta(α, β) prior distribution; that
is, we consider a random variable Π that has beta distribution.

We work out the density functions in the following order:
The conditional distribution of X given π has density (probability function)
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Table 4.1. Univariate Conjugate Prior Distributions

observable prior posterior

Bernoulli(π) beta(α, β) beta(α + t, β + n − t)
geometric(π) beta(α, β) beta(α + n, β − n + t)
Poisson(θ) gamma(α, β) gamma(α + t, β/(nβ + 1))

normal(µ, σ2
0) normal(ν, τ2) normal

“

νσ2
0+τ2t

σ2
0+nτ2 ,

τ2σ2
0

σ2
0+nτ2

”

normal(µ0, 1/θ) inverted gamma(α, β) inverted gamma
“

α + n/2,
`

1/β + 1
2

P

(xi − µ0)
2
´−1
”

uniform(θ0, θ) Pareto(α, γ) Pareto(α + n, max(γ, x1, . . . , xn))
exponential(θ) inverted gamma(α, β) inverted gamma

`

α + n, (1/β + t)−1
´

fX|π(x) =

(
n
x

)
πx(1− π)n−xI{0,1,...,n}(x). (4.24)

The marginal (prior) distribution of Π has density

fΠ(π) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1 − π)β−1I]0,1[(π). (4.25)

Suppose the hyperparameters in the beta prior are taken to be α = 3 and
β = 5. The prior, that is, the marginal distribution of Π , is as shown in the
upper left of Figure 4.1.

How one might decide that α = 3 and β = 5 are appropriate may depend
on some prior beliefs or knowledge about the general range of π in the bi-
nomial distribution in this particular setting. We will consider this issue in
Section 4.2.5.

The joint distribution of X and Π has density

fX,Π (x, π) =

(
n
x

)
Γ(α+ β)

Γ(α)Γ(β)
πx+α−1(1− π)n−x+β−1I{0,1,...,n}×]0,1[(x, π).

(4.26)
Integrating out π, we get the marginal distribution of X to be beta-binomial,
with density

fX(x) =

(
n
x

)
Γ(α+ β)Γ(x+ α)Γ(n− x+ β)

Γ(α)Γ(β)Γ(n + α+ β)
I{0,1,...,n}(x). (4.27)

Finally, the conditional distribution of Π given x (the posterior) has density,

fΠ|x(π) =
Γ(n+ α+ β)

Γ(x+ α)Γ(n− x+ β)
πx+α−1(1− π)n−x+β−1I]0,1[(π). (4.28)

We note that this is a beta distribution; hence, the beta is a conjugate prior
for the binomial. If the parameters of the beta prior are α and β, given one
observation x, the posterior is a beta with parameters x+ α and n− x+ β.
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Figure 4.1. Priors with Different Values of α and β

Finally, we need to assess the posterior conditional distribution in the light
of prior beliefs. Consider the possible effects of one observation when n is 10.
Suppose first that we observe x = 2. With the beta(3,5) prior, we get the
posterior conditional distribution of Π , as a beta with parameters x+ α = 5
and n − x + β = 13. Secondly, suppose that we observe x = 6. With the
beta(3,5) prior, we get the posterior conditional distribution of Π , as a beta
with parameters x + α = 9 and n − x + β = 9. The posterior densities are
shown in top panel of Figure 4.2. Compare them with the prior density for
beta(3,5) in Figure 4.1.

Now, consider the beta(3,0.5) prior, and first suppose first that we observe
x = 2. The posterior conditional distribution of Π , is a beta with parameters
x+α = 5 and n− x+ β = 8.5. Secondly, suppose that we observe x = 6, and
so with the beta(3,0.5) prior, we get the posterior conditional distribution of
Π , as a beta with parameters x+ α = 9 and n− x + β = 4.5. The posterior
densities are shown in lower panel of Figure 4.2. Compare them with the
prior density for beta(3,0.5) in Figure 4.1. We can assess the possible posterior
conditional distributions in the light of prior beliefs, and how we might expect
to modify those prior beliefs after observing specific values of x. This is called
a sensitivity analysis.
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Figure 4.2. Posteriors Resulting from Two Different Priors (Upper and Lower
Panels) after Observing x = 2 or x = 6 (Left and Right Panels)

The posterior distribution of Π represents everything that we know about
this parameter that controls the distribution of X, and so, in a sense, our
statistical inference is complete. We may, however, wish to make more tradi-
tional inferences about the parameter. For example, we may wish to estimate
the parameter, test hypotheses concerning it, or determine confidence sets for
it. We will return to this problem in Examples 4.6, 4.15, and 4.18.

Example 4.3 (Continuation of Examples 3.12 and 4.1) Sampling in
a Bernoulli distribution; Negative binomial with a beta prior
Again consider the problem of statistical inference about π in the family of
Bernoulli distributions. We have discussed two data-generating processes: one,
take a random sample of size n, X1, . . . , Xn from the Bernoulli(π) and count
the number of 1’s; and two, take a sequential sample, X1, X2, . . ., until a fixed
number t of 1’s have occurred. The first process leads to a binomial distribu-
tion and the second leads to a negative binomial distribution. In Example 4.2,
we considered a Bayesian approach to inference on π using a binomial dis-
tribution with a beta prior. Now consider inference on π using a negative
binomial distribution again with a beta prior.
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We go through the same steps as in equations (4.24) through (4.28). In
place of the conditional distribution of the observable binomial variable X,
whose density was given in equation (4.24), we have the conditional distribu-
tion of the observable negative binomial variable N , whose density is

pN(n ; t, π) =

(
n− 1

t− 1

)
πt(1− π)n−t, n = t, t+ 1, . . . . (4.29)

(Recall that this is one form of the negative binomial distribution probability
function.)

Again starting with a beta(α, β) prior distribution on the random variable
Π , and going through the standard steps of forming the joint distribution and
the marginal of the observable N , we arrive at the conditional distribution of
Π , given N = n. The PDF is

fΠ|x(π) =
Γ(n+ α+ β)

Γ(x+ α)Γ(n− x+ β)
πx+α−1(1− π)n−x+β−1I]0,1[(π). (4.30)

This is the same posterior distribution as in Example 4.2, and since this
represents everything that we know about this parameter that controls the
distribution of N , if the data from the two different experiments are the same,
as in Example 3.12, then any inference about Π would be the same. Thus,
the Bayesian approach conforms to the likelihood principle.

In the next two examples we consider inference in the context of a normal
distribution. The first example is very simple because we assume only one
unknown parameter.

Example 4.4 Normal with Known Variance and a Normal Prior on
the Mean
Suppose we assume the observable random variable X has a N(µ, σ2) distri-
bution in which σ2 is known.

The parameter of interest, µ, is assumed to be a realization of an unob-
servable random variable M ∈ IR.

Let us use a prior distribution for M that is N(µ0, σ
2
0), where the hyper-

parameters are chosen to reflect prior information or beliefs about the mean
of X.

Let us assume that we have one observation on X = x. We easily go
through the standard steps. First, we get the joint PDF,

fX,M (x, µ) =
1

2πσσ0
e−

1
2 (x−µ)2/σ2− 1

2 (µ−µ0)2/σ2
0 .

To get the marginal PDF, we expand the quadratics in the exponent and
collect terms in µ, which we want to integrate out. This is a standard operation
(see page 685), but nevertheless it is tedious and we’ll write it out this once:
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(x− µ)2

σ2
+

(µ − µ0)
2

σ2
0

=
x2

σ2
+
µ2

0

σ2
0

+
σ2 + σ2

0

σ2σ2
0

µ2 − 2
σ2µ0 + σ2

0x

σ2σ2
0

µ (4.31)

=
x2

σ2
+
µ2

0

σ2
0

+

(
µ2 − 2

σ2µ0 + σ2
0x

σ2 + σ2
0

µ

)
/

(
σ2σ2

0

σ2 + σ2
0

)

=
x2

σ2
+
µ2

0

σ2
0

− (σ2µ0 + σ2
0x)

2

σ2σ2
0(σ

2 + σ2
0)

+

(
µ − σ2µ0 + σ2

0x

σ2 + σ2
0

)2

/

(
σ2σ2

0

σ2 + σ2
0

)

The last quadratic in the expression above corresponds to the exponential in
a normal distribution with a variance of σ2σ2

0/(σ
2 +σ2

0), so we adjust the joint
PDF so we can integrate out the µ, leaving

fX(x) =
1√

2πσσ0

√
σ2 + σ2

0

σ2σ2
0

exp

(
−1

2

(
x2

σ2
+
µ2

0

σ2
0

− (σ2µ0 + σ2
0x)

2

σ2σ2
0(σ

2 + σ2
0)

))
.

Combining the exponential in this expression with (4.31), we get the exponen-
tial in the conditional posterior PDF, again ignoring the −1/2 while factoring
out σ2σ2

0/(σ
2 + σ2

0), as

(
µ2 − 2

σ2µ0 + σ2
0x

σ2 + σ2
0

µ+
(σ2µ0 + σ2

0x)
2

(σ2 + σ2
0)

2

)
/
σ2σ2

0

σ2 + σ2
0

Finally, we get the conditional posterior PDF,

fM |x(µ) =
1√
2π

√
σ2σ2

0

σ2 + σ2
0

exp

(
−1

2

(
µ− σ2µ0 + σ2

0x

σ2 + σ2
0

)2

/
σ2σ2

0

σ2 + σ2
0

)
,

and so we see that the posterior is a normal distribution with a mean that is a
weighted average of the prior mean and the observation x, and a variance that
is likewise a weighted average of the prior variance and the known variance of
the observable X.

This example, although quite simple, indicates that there can be many tedious
manipulations. It also illustrates why it is easier to work with PDFs without
normalizing constants.

We will now consider a more interesting example, in which neither µ nor
σ2 is known. We will also assume that we have multiple observations.

Example 4.5 Normal with Inverted Chi-Squared and Conditional
Normal Priors
Suppose we assume the observable random variable X has a N(µ, σ2), and we
wish to make inferences on µ and σ2. Let us assume that µ is a realization
of an unobservable random variable M ∈ IR and σ2 is a realization of an
unobservable random variable Σ2 ∈ IR+.
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We construct a prior family by first defining a marginal prior on Σ2 and
then a conditional prior on M |σ2. From consideration of the case of known
variance, we choose an inverted chi-squared distribution for the prior on Σ2:

fΣ2(σ2) ∝ 1

σ
σ−(ν0/2+1)e(ν0σ2

0)/(2σ2)

where we identify the parameters ν0 and σ2
0 as the degrees of freedom and the

scale for Σ2 .
Given σ2, let us choose a normal distribution for the conditional prior of

M |σ2. It is convenient to express the variance of M |σ2 as a scaling of σ2. Let
this variance be σ2/κ0. Now combining the prior of Σ2 with this conditional
prior of M |σ2, we have the joint prior PDF

fM,Σ2(µ, σ2) ∝ 1

σ
(σ2)−(ν0/2+1) exp

(
− 1

2σ2

(
ν0σ

2
0 + κ0(µ− µ0)

2
))

.

We assume a sample X1, . . . , Xn, with the standard statistics X and S2 .
We next form the joint density of (X,M,Σ2), then the marginal of X, and
finally the joint posterior of (M,Σ2 |x). This latter is

fM,Σ2|x(µ, σ2; x) ∝ 1

σ
(σ2)−(ν0/2+1) exp

(
− 1

2σ2

(
ν0σ

2
0 + κ0(µ− µ0)

2
))

×(σ2)−n/2 exp

(
− 1

2σ2

(
(n− 1)s2 + n(x̄− µ)2

))
.(4.32)

We would also like to get the conditional marginal posterior of Σ2 given x.
Then, corresponding to our conditional prior of M given σ2, we would like to
get the conditional posterior of M given σ2 and x. This involves much tedious
algebra, completing squares and rearranging terms, but once the expressions
are simplified, we find that

M |σ2, x ∼ N

(
κ0µ0 + nx̄

κ0 + n
,

σ2

κ0 + n

)
(4.33)

and

(ν0σ
2
0 + (n− 1)s2 + nκ0(x̄ − µ0)

2/(κ0 + n))/2

Σ2
|x ∼ χ2(ν0 + n). (4.34)

Sufficient Statistics and the Posterior Distribution

Suppose that in the conditional distribution of the observable X for given θ,
there is a sufficient statistic T for θ. In that case, the PDF in equation (4.14)
can be written as
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fX|θ(x) = g(t|θ)h(x), (4.35)

where t = T (x).
Then, following the steps on page 335 leading up to the posterior PDF in

equation (4.18), we have the posterior

fΘ|x(θ) ∝ p(t, θ), (4.36)

that is, the posterior distribution depends on X only through T . Notice that
the analysis in Example 4.5 was performed using the sufficient statistics X
and S2 .

All Bayesian inference, therefore, can be based on sufficient statistics.

Use of the Posterior Distribution

The conditional posterior distribution of the parameter contains all of the
relevant information about the parameter, based on any prior information
(or beliefs) incorporated in the prior distribution, as well as the information
contained in the observations under the assumption that their distribution is
known conditional on the value of the parameter following the model used in
the analysis. Hence, in Example 4.2, the posterior beta distribution of Π tells
us everything we might want to know about that parameter, given our prior
assumptions and the data observed.

There are different ways we might interpret the analysis. Under the view
that the parameter is a random variable, a narrow interpretation of the analy-
sis outlined above is that it addresses the specific value of the random variable
that was operative at the time that the data were observed. This interpreta-
tion emphasizes the changing nature of the phenomenon being studied. In any
specific situation, a given realization of the random parameter governs a data-
generating process in that specific instance. A less ephemeral interpretation
of the analysis is that the analysis provides a more general inference about
the distribution of the random parameter.

4.2.4 Bayesian Inference

Although as we pointed out above, once we have the conditional posterior
distribution for the parameter, we have all of the information about the pa-
rameter. We may, however, wish to make more traditional inferences about
the random parameter; that is, we may want to estimate it, test hypotheses
concerning it, or set confidence sets for it. Since the parameter is a random
variable, the meaning of such inferences requires some interpretation. One
simple interpretation is that the inference is about the specific value of the
parameter when the data were observed.

We can base the inference on simple heuristics relating to the posterior
distribution. For example, in a manner similar to the heuristic that leads to
a maximum likelihood estimator, we may consider the mode of the posterior
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as the most likely value. The mode is sometimes called the maximum a pos-
terior probability (MAP) point estimator. Similar heuristics lead to a type of
confidence set based on the probabilities of various regions in the support of
the posterior distribution (see Sections 4.6.1 and 4.6.2).

Bayes Actions

While we can arrive at the conditional posterior distribution for the parameter
without any reference to a loss function, in order to make specific inferences
about the parameter in a formal Bayesian decision-theoretic approach, we
need to define a loss function, then formulate the conditional risk for a given
inference procedure δ(X),

R(FX|θ, δ(X)) =

∫

X
L(θ, T (x))dFX|θ(x), (4.37)

and finally determine the posterior average risk,

r(FΘ, δ(X)) =

∫

Θ

R(FX|θ, δ(X))dFΘ(θ). (4.38)

The procedure that minimizes the average risk is called the Bayes action. If
the action is estimation, the procedure is called the Bayes estimator. Although
we view the MAP estimator from a heuristic standpoint, it can be shown to
be a limit of Bayes estimators under the 0-1 loss function.

We will discuss Bayesian estimation in Section 4.3, Bayesian hypothesis
testing in Section 4.5, and Bayesian confidence intervals in Section 4.6. We will
continue considering the problem of inferences on π in the binomial distribu-
tion that we first addressed in Example 4.2. In that example, there was no loss
function and we stopped with the posterior PDF. In Examples 4.6 (page 355),
4.15 (page 365), and 4.18 (page 374), we will consider Bayes actions relating
to π.

Generalized Bayes Actions

We often seek a Bayes action even though we do not want to go through any
formal steps of identifying a posterior distribution. In some cases, the prior
may not actually be a PDF (or proportional to a PDF); that is, the integral
of the prior may not be finite. The prior is said to be improper. If the prior is
improper, the posterior may or may not be improper. If the posterior is not a
PDF or proportional to a PDF, then we must be careful in any interpretation
we may make of the posterior. We may, however, be able to identify a rule or
action in the usual way that we determine a Bayes action when the posterior
is proper.

A Bayes action is one that minimizes the risk in equation (4.5) if the
weighting function dFΘ(θ) is a PDF. If dFΘ(θ) is not a PDF, that is, if the
prior is improper, so long as the integral
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r(FΘ, T ) =

∫

Θ

∫

X
L(θ, T (x))dFX|θ(x)dFΘ(θ). (4.39)

exists, we call a rule that minimizes it a generalized Bayes action.
In Example 4.9 on page 359, we determine the Bayes estimator of the mean

in a normal distribution when the prior is uniform over the real line, which
obviously is an improper prior.

Limits of Bayes Actions

Another variation on Bayes actions is the limit of the Bayes action as some
hyperparameters approach fixed limits. In this case, we have a sequence of

prior PDFs, {F (k)
Θ : k = 1, 2, . . .}, and consider the sequence of Bayes actions,

δ(k)(X) that result from these priors. The limit limk→∞ δ(k)(X) is called a

limiting Bayes action. The limiting prior, limk→∞ F
(k)
Θ , may not be a PDF.

In Example 4.6 on page 356, we determine a limiting Bayes action, given
in equation (4.47).

4.2.5 Choosing Prior Distributions

It is important to choose a reasonable prior distribution that reflects prior
information or beliefs about the phenomenon of interest.

Families of Prior Distributions

Various families of prior distributions can provide both flexibility in repre-
senting prior beliefs and computational simplicity. Conjugate priors, as in
Examples 4.2 through 4.5, are often very easy to work with and to inter-
pret. In many cases, a family of conjugate priors would seem to range over
most reasonable possibilities, as shown in Figure 4.1 for priors of the binomial
parameter.

Generalized distributions or mixtures of common distributions, as dis-
cussed in Section 2.10, may correspond to prior beliefs. The ideas of choosing a
distribution that matches general assumed properties such as the shape of the
distribution or that corresponds to fixed quantiles discussed in Section 2.10.4
may also lead to reasonable prior distributions.

Within a given family of prior distributions, it may be useful to consider
ones that are optimal in some way. For example, in testing composite hypothe-
ses we may seek a “worst case” for rejecting or accepting the hypotheses. This
leads to consideration of a “least favorable prior distribution”. We may also
wish to use a prior that reflects an almost complete lack of prior informa-
tion.. This leads to consideration of “noninformative priors”, or priors with
maximum entropy within a given class.
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If the priors are restricted to a particular class of distributions, say Γ,
we may seek an action whose worst risk with respect to any prior in Γ is
minimized, that is, we may see an action δ that yields

inf
δ

sup
P∈Γ

r(P, δ).fΘ(θ) ∝ |I(θ)|1/2. (4.40)

Such an action is said to be Γ-minimax, usually written as gamma-minimax.
Clearly, any minimax Bayes action is gamma-minimax Bayes with respect to
the same loss function.

Assessing the Problem Formulation

In any statistical analysis, the formulation of a model is important. In Ex-
ample 4.2 above, we must consider whether or not it is reasonable to assume
that the observable data follows some kind of binomial distribution. From
first principles, this means that we are willing to assume that there is a set
of n independent outcomes that may be 0 or 1, in each case with a constant
probability π.

In a Bayesian analysis, not only must we think about whether or not the
assumed distribution of the observable is reasonable, we must also consider
the assumed prior distribution. Various possibilities for a beta prior for the
binomial distribution in Example 4.2 are shown in Figure 4.1. If we know
something about the data-generating process, we may conclude that some
general shape of the prior is more appropriate than another. Often a scientist
who may not know much about statistics, but is familiar with the the data-
generating process, will have some general beliefs about what values π is more
likely to have. The scientist, for example, may be able to state that there is a
“50% chance that π is between 0.2 and 0.6”. In that case, the hyperparameters
of a beta could be determined that would yield that probability. The process
of developing a prior by discussions with a subject matter expert is called
“elicitation”. As mentioned above, a generalized distribution that corresponds
to reasonable quantiles of prior beliefs may be useful.

In the Bayesian approach taken in Example 4.2, we assume that while the
n observations were being collected, some random variableΠ had a fixed value
of π. We are interested both in that value and in the conditional distribution
of the random variableΠ , given what we have observed. For particular choices
of hyperparameters characterizing the prior distribution on Π , we obtain the
posterior distributions shown in Figure 4.2. Do these seem reasonable?

In deciding whether the prior is appropriate, sometimes it is worthwhile
to consider the effects of various possible outcomes of the experiment. The
issue is whether the posterior conditional distribution conforms to how the
observed data should change our prior beliefs.

This sensitivity analysis can be done without actually taking any observa-
tions because we can determine the posterior density that would result from
the given prior density. In Figure 4.3, we plot the posterior distribution of
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Π based on a beta(3, 5) prior given various values of that we might have
observed.
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Figure 4.3. Posteriors Resulting from a Beta(3,5) Prior after Various Possible
Observations

Assessing the effect on the posterior of various possible observations may
give us some feeling of confidence in our choice of a prior distribution.

*** Bayesian robustness

Choice of Hyperparameters

Usually in a Bayesian analysis, it is instructive to consider various priors and
particularly various hyperparameters in some detail.

Of course, in most cases, we must also take into account the loss function.
Recall the effects in this problem of different hyperparameter values on the
point estimation problem (that is, the choice of the Bayes action to minimize
the posterior risk) when the loss is squared error.
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We might also consider what might be the effect of different hyperpa-
rameters. There are several possibilities we could consider. Let’s just look at
one possibility, which happens to be bimodal, as shown in the upper right of
Figure 4.1. In this case, we have chosen α = 0.3 and β = 0.5. This would
correspond to a general prior belief that π is probably either close to 0 or
close to 1.

Now, again we might consider the effect of various observations on our
belief about Π . We get the posteriors shown in Figure 4.4 for various possible
values of the observations.
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Figure 4.4. Posteriors from the Bimodal Beta(0.3,0.5) Prior

Compare the posteriors in Figure 4.4 with the prior in Figure 4.1. In each
case in this example we see that our posterior belief is unimodal instead of
bimodal, as our prior belief had been. Although in general a posterior may
be multimodal, in the case of a binomial(n, π) distribution with a beta(α, β)
prior, the posterior is unimodal, because as we have seen, the posterior is beta
with parameters x+ α and n− x+ β, both of which cannot be less than 1.
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Objective Priors

The extent to which the observed data updates the prior distribution into
a posterior distribution depends to some extent on the nature of the prior
distribution. Whenever there is little knowledge or only weak belief about the
distribution of the parameter of interest, we may wish to define a prior that
will allow the “data to speak for themselves”. We call such priors “objective”,
“vague”, “flat”, “diffuse”, or “noninformative”. (Although one or the other of
these terms may be more appropriate in a given setting, there is no technical
difference.) Such priors are often improper.

An example of a noninformative prior is one in which dFΘ(θ) = dν where
ν is Lebesgue measure and Θ is the reals, or some unbounded interval subset
of the reals. This is a noninformative prior, in the sense that it gives equal
weights to equal-length intervals for Θ. Such a prior is obviously improper.

Another type of noninformative prior is Jeffreys’s noninformative prior.
This prior is proportional to

√
det(I(θ)), where det(I(θ)) or |I(θ)| is the

determinant of the Fisher information matrix; that is,

fΘ(θ) ∝ |I(θ)|1/2. (4.41)

The idea is that such a prior is invariant to the parametrization. We can see
this by considering the reparametrization θ̃ = ḡ(θ), where ḡ is a 1:1 differen-
tiable function that maps the parameter space onto itself in such a way that
the underlying conditional probability distribution of X is unchanged when
X is transformed appropriately to X̃ (see page 178 in Chapter 1). We see this
by writing

I(θ̃) = −E

(
∂2 log f eX|θ̃(X̃)

∂2θ̃

)

= −E

(
∂2 log fX|θ̃(X)

∂2θ

∣∣∣∣
∂2θ

∂θ̃

∣∣∣∣
2
)

= I(θ)

∣∣∣∣
∂2θ

∂θ̃

∣∣∣∣
2

,

and so
f eΘ(θ̃) ∝ |I(θ)|1/2, (4.42)

where the additional constant of proportionality is the Jacobian of the inverse
transformation.

If Θ is the reals, or some unbounded interval subset of the reals, Jeffreys’s
noninformative prior is improper. If the support of Θ is finite, Jeffreys’s non-
informative prior is generally proper; see equation (4.49) on page 357.

In a variation of Jeffreys’s noninformative prior when θ = (θ1, θ2), where
θ2 is a nuisance parameter, we first define fΘ2|Θ1

(θ2) as the Jeffreys’s prior
associated with fX|θ where θ1 is fixed and then using fΘ2|Θ1

(θ2) derive the
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marginal conditional distribution fX|θ1
if it exists. Finally, we compute the

prior on Θ1 as the Jeffreys’s prior using fX|θ1
. Such a prior, if it exists, that

is, if fX|θ1
exists, is called a reference noninformative prior.

Maximum Entropy

Entropy can be thought of as the inverse of “information” (see Section 1.1.5),
hence large entropy provides less information in this heuristic sense. This pro-
vides another general type of “noninformative”, or at least, “less informative”
prior distribution.

For some family of distributions with finite variance whose support is IR,
the larger the variance, the larger the entropy We may, however, seek a prior
distribution that has maximum entropy for given mean and variance. Of all
such distributions dominated by Lebesgue measure, the normal family attains
this maximum. (Showing this is Exercise 1.88.)

The appropriate support of the prior, of course, depends on the nature
of the distribution of the observables. For a binomial or negative binomial
distribution conditional on the parameter π, the prior should have support
]0, 1[. A very nice class of priors for this problem, as we have seen, is the
family of beta(α, β) distributions. The entropy of a beta(α, β) distribution is

log

(
Γ(α+ β)

Γ(α)Γ(β)

)
− (α− 1)(ψ(α) − ψ(α+ β)) − (β − 1)(ψ(β) − ψ(α)),

and its maximum occurs at α = β = 1 (see Exercise 1.32b).

Empirical Priors

The hyperparameters in a prior distribution are often based on estimates from
prior(!) samples of similar data. This seems reasonable, of course, if the prior
distribution is to reflect rational beliefs.

The use of data to provide values of hyperparameters can even occur with
the same data that is to be used in the Bayesian inference about the condi-
tional distribution, as we will discuss in Section 4.2.6 below.

Hierarchical Priors

In the basic Bayes setup of (4.1),

P = {PΘ | Θ ∼ QΞ ∈ Q},

we can consider a Bayesian model for the priors,

Q = {QΞ | Ξ ∼ R0 ∈ R}. (4.43)

We follow the same analytic process as in Section 4.2.3, except that the dis-
tributions have another layer of conditioning. We begin with a distribution
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of the observable random that is conditional on both the basic parameters
and the hyperparameters, that is, we have the density fX|θξ(x) instead of just
fX|θ(x); and the prior distribution is now considered a conditional distribu-
tion. The prior PDF is now fΘ|ξ(θ) instead of fΘ(θ). Now, after introducing a
prior for Ξ with PDF fΞ(ξ), we proceed to manipulate the densities to arrive
at a posterior conditional distribution for the parameter of interest, Θ.

The computations associated with producing the posterior distribution in
a hierarchical model are likely to be more difficult than those in a simpler
Bayesian model.

4.2.6 Empirical Bayes Procedures

In the basic Bayes setup of (4.1),

P = {PΘ | Θ ∼ Qξ ∈ Q},

we might consider a “frequentist” model of the priors:

Q = {Qξ | ξ ∈ Ξ}. (4.44)

Now, we determine the marginal of X conditional on ξ (there’s no θ);
that is, instead of the PDF fX(x) in Section 4.2.3, we have the PDF fX|ξ(x).
Given the data on X, we can estimate ξ using traditional statistical methods.
Because we have the PDF, a commonly-used method of estimation of ξ is
maximum likelihood.

One way of interpreting this setup is that the observable random vari-
able X is a actually a set of random variables, and the kth observation has
PDF fXk |θk

(x), where the θk is a realization of a random variable Θ with
distribution that depends on ξ.

Most people who subscribe to the Bayesian paradigm for statistical anal-
ysis eschew empirical Bayes procedures.

4.3 Bayes Rules

To determine a Bayes action, we begin with the standard steps in Section 4.2.3.
A loss function was not used in deriving the posterior distribution, but to get
a Bayes action, we must use a loss function. Given the loss function, we focus
on the posterior risk.

The Risk Function

**** modify this to be more similar to the introductory discussion of Bayes
risk and expected loss

After getting the posterior conditional distribution of the parameter given
the observable random variable, for a given loss function L, we determine the
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estimator δ that minimizes the posterior risk, which is the expected value of
the loss wrt the posterior distribution on the parameter:

arg min
δ

∫

Θ

L(θ, δ(x))fΘ|x(θ)dθ.

The action that minimizes the posterior risk the Bayes rule.
The Bayes rule is determined by

• the conditional distribution of the observable
• the prior distribution of the parameter
• the nature of the decision; for example, if the decision is an estimator, then

the function of the parameter to be estimated, that is, the estimand
• the loss function

The expected loss with respect to the posterior distribution of the parameter
is the objective to be minimized.

The Complete Class Theorem

One of the most important characteristics of Bayesian estimation is that all
“good” estimators are either Bayes or limiting Bayes; that is, the class of
Bayes and limiting Bayes estimators is a complete class of decision rules (see
page 265).

Theorem 4.2 (admissible estimators are Bayes)
An admissible estimator is either Bayes or limiting Bayes.

Proof.

4.3.1 Properties of Bayes Rules

For any loss function we have the following relations with admissibility and
minimaxity. First, despite the fact that admissibility is not really relevant in
the Bayesian paradigm (see page 328), if a Bayes rule is unique it is admissible.

Theorem 4.3 (admissibility of unique Bayes rule)
Suppose that δ(X) is a unique Bayes rule in a decision problem. Then δ(X)
is admissible in that decision problem.

Proof. Suppose that δ̃(X) is a Bayes rule.****
Theorem 3.12 states that an admissible estimator with a constant risk is

minimax with respect to the same loss function and distribution. The same
statement is true for a Bayes estimator with a constant risk:

Theorem 4.4 (Bayes rule or limiting Bayes rule is minimax if it has constant risk )

A Bayes rule or limiting Bayes rule with a constant risk is minimax with
respect to the same loss function and distribution.

Proof.
***** prove these
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4.3.2 Equivariant Bayes Rules

We discussed the general problem of invariance and equivariance of statistical
procedures in Section 3.4. We now consider these concepts in the context of
Bayesian inference.

We say that a prior distribution Q for Θ is invariant with respect to G̃ if
for ∀g̃ ∈ G̃, the distribution of g̃(Θ) is also Q.

That is, for all measurable B,

EQ(IB(g̃(Θ))) = EQ(IB(Θ))

We define a σ-field L over the set of functions in a group G, and then for a
measurable set of transformations B, we consider right compositions Bh (for
h ∈ G, this is {gh : g ∈ B}), and left compositions gB.

Definition 0.1.18
If λ(Bh) = λ(B) for all B ∈ L and h ∈ G, λ is said to be right Haar

invariant, and if λ(gB) = λ(B) for all B ∈ L and h ∈ G, λ is said to be left
Haar invariant.

**** Relevance: relation to Jeffrey’s noninformative prior.

4.3.3 Bayes Estimators with Squared-Error Loss Functions

The Bayes estimator depends on the loss function as well as the prior dis-
tribution. As in many cases, if the loss function is squared-error, the optimal
procedure has some useful properties. For Bayes estimators with squared-error
loss functions, we have the following properties.

Theorem 4.5
Under squared-error loss, the Bayes estimator is the posterior mean; that is,
the expected value of the estimand, where the expected value is taken wrt the
posterior conditional distribution.

Proof. Exercise.

Theorem 4.6
Squared-error loss and a conjugate prior yield Bayes estimators for E(X) that
are linear in X.

Proof. Exercise.

Theorem 4.7
Under squared-error loss, if T is the Bayes estimator for g(θ), then aT + b is
the Bayes estimator for ag(θ) + b for constants a and b.

Proof. Exercise.

Lemma 4.8.1
If T is a Bayes estimator under squared-error loss, and if T is unbiased, then
the Bayes risk rT (PΘ) = 0.
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Proof. For the Bayes estimator T (X) with E(T (X)|θ) = g(θ), we have

E(g(θ)T (X)) = E(g(θ)E(T (X)|θ)) = E((g(θ))2).

Alternatively,

E(g(θ)T (X)) = E(T (X)E(g(θ)|X)) = E((T (X))2).

Then we have

rT (PΘ) = E((T (X) − g(θ)|X))2)

= E((T (X))2) + E((g(θ))2) − 2E(g(θ)T (X))

= 0.

Hence, by the condition of equation (3.84) we have the following theorem.

Theorem 4.8
Suppose T is an unbiased estimator. Then T is not a Bayes estimator under
squared-error loss.

Examples

There are two standard examples of Bayesian analyses that serve as models
for Bayes estimation under squared-error loss. These examples, Example 4.6
and 4.8, should be in the student’s bag of easy pieces. In both of these exam-
ples, the prior is in a parametric conjugate family.

In this section, we also consider estimation using an improper prior (Ex-
ample 4.9).

Example 4.6 (Continuation of Example 4.2) Estimation of the Bi-
nomial Parameter with Beta Prior and a Squared-Error Loss
We return to the problem in which we model the conditional distribution of an
observable random variableX as a binomial(n, π) distribution, conditional on
π, of course. Suppose we assume π comes from a beta(α, β) prior distribution;
that is, we consider a random variable Π that has beta distribution. We wish
to estimate Π .

Let us choose the loss to be squared-error. In this case we know the risk is
minimized by choosing the estimate as δ(x) = E(Π |x), where the expectation
is taken wrt the distribution with density fΠ|x.

We recognize the posterior conditional distribution as a beta(x + α, n −
x+ β), so we have the Bayes estimator for squared-error loss and beta prior

α+X

α+ β + n
. (4.45)

We should study this estimator from various perspectives.
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linear combination of expectations
First, we note that it is a weighted average of the mean of the prior
and the standard UMVUE. (We discuss the UMVUE for this problem in
Examples 5.1 and 5.5.)

(
α+ β

α+ β + n

)
α

α+ β
+

(
n

α+ β + n

)
X

n
. (4.46)

This is a useful insight, but we should not suppose that all Bayes estima-
tors work that way.

unbiasedness
We see that the Bayes estimator cannot be unbiased if α 6= 0 or β 6= 0
in the prior beta distribution (see Theorem 4.8). If α = 0 and β = 0, the
prior is improper because the integral of the prior density above does not
converge. We can, however, set up the risk in the form of equation (4.39),
and minimize it without ever determining a posterior distribution. The
solution, X/n, which happens to be the UMVUE, is a generalized Bayes
estimator. Because

lim
α→0+,β→0+

α+X

α+ β + n
=
X

n
, (4.47)

and for α > 0 and β > 0, the prior is proper, we see that the UMVUE is
a limit of Bayes estimators.

admissibility
By Theorem 3.10 we know that the biased Bayes estimator (4.45) is not
admissible under a squared-error loss. The limiting Bayes estimator (4.47)
is admissible under squared-error loss, and thus we see an application of
Theorem 4.2.

minimaxity
Could the Bayes estimator with this prior and squared-error loss function
be minimax? Work out the risk (Exercise 4.10), and determine values of
α and β such that it is constant. This will be minimax. The solution (to
make it independent of π) is

α = β =
√
n/2. (4.48)

Notice what this does: it tends to push the estimator toward 1/2, which
has a maximum loss of 1/2, that is, the minimum maximum loss possible.
Recall the randomized minimax estimator δ1/(n+1)(X), equation (3.108)
in Example 3.21.

Jeffreys’s noninformative prior
The Jeffreys’s noninformative prior in this case is proportional to

√
I(π);

see equation (4.41). Because the binomial is a member of the exponential
family, we know I(π) = 1/V(T ), where E(T ) = π. So I(π) = n/π(1− π).
Jeffreys’s prior is therefore beta(1/2, 1/2). The Bayes estimator corre-
sponding to this noninformative prior is
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X + 1
2

n+ 1
. (4.49)

This is often used as an estimator of π in situations where X > 0 is rare.
An estimator of π as 0 may not be very reasonable.

equivariance
For the group invariant problem in which g(X) = n−X and ḡ(π) = 1−π,
we see that the loss function is invariant if g∗(T ) = 1−T . In this case, the
Bayes estimator is equivariant if the prior is symmetric, that is, if α = β.

empirical Bayes
We can make an empirical Bayes model from this example, as discussed
in Section 4.2.6. We consider the observable random variable to be one of
a set, Xk, each with conditional distribution binomial(n, πk), where the
πk are all distributed independently as beta(α, β). An empirical Bayes
procedure involves estimating α and β, and then proceeding as before.
Although any (reasonable) estimates of α and β would work, we generally
use the MLEs. We get those by forming the conditional likelihood of x
given α and β, and then maximizing to get α̂ and β̂. (We do this numer-
ically because it cannot be done in closed form. We get the conditional
likelihood of x given α and β by first forming the joint of x and the πk’s,
and integrating out the πk’s.) The empirical Bayes estimator for πk is

α̂+Xk

α̂+ β̂ + n
. (4.50)

hierarchical Bayes
If we put prior distributions on α and β, say gamma distributions with
different parameters, we could form a hierarchical Bayes model and use
iterative conditional simulated sampling to compute the estimates. (This
type of approach is called Markov chain Monte Carlo, or specifically in this
case, Gibbs sampling. We discuss this approach in general in Section 4.7,
and Gibbs sampling specifically beginning on page 670.) We would do this
by working out the full conditionals.

The squared-error loss function is a very simple and common loss function.
(In fact, the student must be very careful to remember that many simple
properties of statistical methods depend on this special loss function.) We
will consider the estimation problem of Example 4.6 with other loss functions
in Example 4.11 and in Exercise 4.9.

The prior distribution in Example 4.6 is a conjugate prior (when it exists;
that is, when α > 0 and β > 0), because the posterior is in the same parametric
family. A conjugate prior and a squared-error loss function always yield Bayes
estimators for E(X) that are linear in X, as we see in this specific case. Other
priors may not be as easy to work with.

Example 4.7 Estimation of the Negative Binomial Parameter with
Beta Prior and a Squared-Error Loss
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In Example 3.12 on page 237 we discussed two different data-generating pro-
cess, one of which led to the (conditional) binomial distribution of Exam-
ple 4.6. The other, related data-generating process led to a (conditional) neg-
ative binomial distribution for a random variable N , that corresponds to the
parameter n in Example 4.6 This negative binomial distribution has the same
parameter π and another parameter that corresponds to the observed x in
Example 4.6.

Given a fixed value x, we have a random variable N whose conditional
distribution given π, has the probability function

pN|π(n) =

(
n− 1

x− 1

)
πx(1− π)n−xIx,x+1,...(n).

Again assuming a beta(α, β) prior, with known α and β, and going through
the usual steps, we obtain the conditional of the parameter given the data as

pΠ|n(π) =
Γ(x+ α)Γ(n− x+ β)

Γ(n+ α+ β)
πx+α−1(1 − π)n−x+β−1I(0,1)(π),

which is a beta distribution. As for the binomial, the beta is a conjugate prior
for the negative binomial. Now, we want to estimate π under a squared error
loss. We know that the Bayesian estimate under a squared error loss is the
posterior mean. In this case, because the distribution is a beta, and we easily
work out the mean. Hence, we have have the Bayes estimator,

π̂ = EΠ|n(π) =
α+ x

α+ β +N
. (4.51)

Notice that this is the same estimator as expression (4.45) for the binomial
parameter; thus, the estimators would conform to the likelihood principle.

As in Example 4.6 with the estimator of the binomial parameter, we could
consider whether we can choose specific values of the hyperparameters so as
to yield Bayes estimators with various properties (see Exercise 4.12). We see,
for example, that with the given loss and any beta prior, it is not possible to
obtain even a generalized estimator that is unbiased.

Example 4.8 (Continuation of Example 4.5) Estimation of the Nor-
mal Mean and Variance with Inverted Chi-Squared and Conditional
Normal Priors and a Squared-Error Loss
For estimating both µ and σ2 in N(µ, σ2), as in Example 4.5, a conjugate
prior family can be constructed by first defining a marginal prior on σ2 and
then a conditional prior on µ|σ2.

For the estimators, we minimize the expected loss with respect to the joint
posterior distribution given in equation (4.32). For a squared-error loss, this
yields the posterior means as the estimators.

Another way this problem may be approached is by reparametrizing the
normal, and in place of σ2, using 1/(2τ ).
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We now consider use of an improper prior when estimating the mean of a
normal distribution with known variance.

Example 4.9 (Continuation of Example 4.4) Use of an Improper
Prior and a Squared-Error Loss for Estimation of the Normal Mean
When the Variance Is Known
Suppose we assume the observable random variable X has a N(µ, σ2) distri-
bution in which σ2 is known, and the parameter of interest, µ, is assumed to
be a realization of an unobservable random variable M ∈ IR.

Let us use a prior distribution for M that is uniform over IR. This is
obviously an improper prior, and the measure dFM (µ) is just the Lebesgue
measure. Let us assume that we have n observations x1, . . . , xn. Instead of
going through the standard steps to get a posterior PDF, we go directly to
the problem of determining the Bayes estimator by minimizing the risk in
equation (4.39), if that minimum exists. We have

r(FM , T ) =

∫

M

∫

X
L(µ, T (x))dFX|µ(x)dFM (µ)

=

∫ ∞

−∞

∫ ∞

−∞
(µ − T (x))2

1(√
2πσ2

)n e−
P

(xi−µ)2/2σ2

dx dµ.

The questions are whether we can reverse the integrations and whether the
integral with respect to dµ is finite. The two questions are the same, and we
see that the answer is affirmative because for fixed x,

∫ ∞

−∞
(µ− a)2 1(√

2πσ2
)n e−

P
(xi−µ)2/2σ2

dµ <∞.

We determine the estimator that minimizes the Bayes risk by differentiating
the expression above wrt a, setting the result to 0, and solving for a. Using the
“Pythagorean Theorem” of statistics, equation (0.0.99), in the exponential, we
get the minimizer as T (x) = x̄.

This generalized Bayes estimator is the optimal estimator under various
other criteria: it is the MLE (Example 3.13), it is the MREE under a con-
vex and even location-scale invariant loss function (Example 3.23), and it is
UMVU (Example 5.6).

4.3.4 Bayes Estimation with Other Loss Functions

For certain loss functions, even in relatively simple settings, a Bayes estimator
may not exist; see Example 4.10. In some cases, however, we may choose a
particular loss function so as to obtain an unbiased estimator (recall Theo-
rem 4.8 concerning the squared-error loss). In other cases, we may seek a loss
function that yields a constant risk. This gives us an admissible estimator.
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Example 4.10 Nonexistence of a Bayes Estimator
Suppose that X ∼ N(θ, 1) given Θ = θ and let the prior for Θ be N(0, 1).
Consider the loss function

L(T, θ) =

{
0 if T ≥ θ
1 if T < θ.

(That is, we want to be sure not to underestimate θ.) Now, consider the
constant estimator Tn = n (where n is the sample size). The risk function
is R(Tn, θ) = I]−∞,θ[(n). Hence, the average risk is Pr(Θ > n) where Θ ∼
N(0, 1). Now, consider any Bayes estimator δ, and let Φ be the CDF for
N(0, 1). We have

0 ≤ inf
δ

∫
R(δ, θ)dΦ(θ)

≤ inf
n

∫
R(Tn, θ)dΦ(θ)

= inf
n

Pr(Θ > n)

= 0.

So, in order for any estimator δ to be a Bayes estimator, it must have an
average risk of 0, which is not possible.

See Exercise 4.21 for further issues concerning this example.

Example 4.11 (Continuation of Example 4.6) Estimation of the Bi-
nomial Parameter with Beta Prior and Other Loss Functions
We return to the problem in which we model the conditional distribution of
an observable random variableX as a binomial(n, π) distribution, conditional
on π, of course. Suppose we assume π comes from a beta(α, β) prior distribu-
tion; that is, we consider a random variable Π that has beta distribution. As
in Example 4.6, we wish to estimate Π .

• Could we define a loss function so that the Bayes estimator is unbiased for
a proper prior? Yes. Take

L(π, d) =
(d− π)2

π(1− π)
, (4.52)

and take a beta(1,1) (that is, uniform) prior. This yields the Bayes esti-
mator

X

n
. (4.53)

• For any loss function other than the squared-error, will the Bayes estimator
be minimax? Yes, the loss function (4.52) yields this property. The Bayes
estimator X/n has constant risk (Exercise 4.22); therefore, it is minimax
wrt that loss.
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4.3.5 Some Additional (Counter)Examples

Example 4.12 An Admissible Estimator that Is Not Bayes

Example 4.13 A Bayes Estimator that Is Minimax but Not Admis-
sible
If a Bayes estimator is unique under any loss function, then it is admissi-
ble under that loss (Theorem 4.3). Ferguson (1967) gave an example of a
(nonunique) Bayes estimator that is not admissible, but has constant risk and
so is minimax. ***********

Example 4.14 A Limit of Unique Bayes Admissible Estimators that
Is Not Admissible

4.4 Probability Statements in Statistical Inference

The process of parametric point estimation, as discussed in Section 4.3, or
of testing a simple hypothesis, as discussed in Section 4.5.4, is not consis-
tent with the fundamental Bayesian description of the random nature of the
parameter. Because of the widespread role of point estimation and simple
hypothesis testing in science and in regulatory activities, however, Bayesian
statistical procedures must be developed and made available. Tests of com-
posite hypotheses and identification of Bayesian confidence sets are more con-
sistent with the general Bayesian paradigm. (The standard terminology for a
Bayesian analogue of a confidence set is credible set.)

In the classical (frequentist) approach to developing methods for hypoth-
esis testing and for determining confidence sets, we assume a model Pθ for
the state of nature and develop procedures by consideration of probabilities
of the form Pr(T (X) ◦C(θ)|θ), where T (X) is a statistic, C(θ) is some region
determined by the true (unknown) value of θ, and ◦ is some relationship. The
forms of T (X) and C(θ) vary depending on the statistical procedure. The
procedure may be a test, in which case we may have T (X) = 1 or 0, accord-
ing to whether the hypothesis is rejected or not, or it may by a procedure
to define a confidence set, in which case T (X) is a set. For example, if θ is
given to be in ΘH , and the procedure T (X) is an α-level test of H , then
Pr(T (X) = 1|θ ∈ ΘH) ≤ α. In a procedure to define a confidence set, we may
be able to say Pr(T (X) 3 θ) = 1− α.

These kinds of probability statements in the frequentist approach are some-
what awkward, and a person without training in statistics may find them par-
ticularly difficult to interpret. Instead of a statement of the form Pr(T (X)|θ),
many people would prefer a statement of the form Pr(Θ ∈ ΘH |X = x).

In order to make such a statement, however, we first must think of the
parameter as a random variable and then we must formulate a conditional
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distribution for Θ, given X = x. In the usual Bayesian paradigm, we use a
model that has several components: a marginal (prior) probability distribution
for the unobservable random variable Θ; a conditional probability distribution
for the observable random variable X, given Θ = θ; and other assumptions
about the distributions. We denote the prior density of Θ as pΘ, and the
conditional density ofX as pX|θ. The procedure is to determine the conditional
(posterior) distribution of Θ, given X = x. Since we model our information
about Θ as a probability distribution, it is natural and appropriate to speak of
probabilities about Θ. This is the kind of approach Laplace took in analyzing
the urn problem, as we described at the beginning of this chapter.

We can think of these differences in another way. If M is the model or
hypothesis and D is the data, the difference is between

Pr(D|M)

(a “frequentist” interpretation), and

Pr(M |D)

(a “Bayesian” interpretation). People who support the latter interpretation
will sometimes refer to the “prosecutor’s fallacy” in which Pr(E|H) is confused
with Pr(H |E), where E is some evidence and H is some hypothesis.

While in parametric point estimation, as discussed in Section 4.3, state-
ments about probability may not be so meaningful, in tests of composite hy-
potheses and identification of credible sets, they are natural and appropriate.
We discuss testing and determining credible sets in the next two sections.

4.5 Bayesian Testing

In statistical hypothesis testing, the basic problem is to decide whether or
not to reject a statement about the distribution of a random variable. The
statement must be expressible in terms of membership in a well-defined class.
We usually formulate the testing problem as one of deciding between two
statements:

H0 : θ ∈ Θ0

and
H1 : θ ∈ Θ1,

where Θ0 ∩Θ1 = ∅.
We do not treat H0 and H1 symmetrically; H0 is the hypothesis to be

tested and H1 is the alternative. This distinction is important in developing a
methodology of testing. We sometimes also refer toH0 as the “null hypothesis”
and to H1 as the “alternative hypothesis”.

In a Bayesian approach to this problem, we treat θ as a random variable,
Θ and formulate the testing problem as beginning with prior probabilities
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p0 = Pr(Θ ∈ Θ0) and p1 = Pr(Θ ∈ Θ1),

and then, given data x, determining posterior conditional probabilities

p̂0 = Pr(Θ ∈ Θ0) and p̂1 = Pr(Θ ∈ Θ1).

These latter probabilities can be identified with the posterior likelihoods, say
L0 and L1.

In the Bayesian framework, we are interested in the probability that H0 is
true. The prior distribution provides an a priori probability, and the posterior
distribution based on the data provides a posterior probability that H0 is true.
Clearly, we would choose to reject H0 when the probability that it is true is
small.

4.5.1 A First, Simple Example

Suppose we wish to test

H0 : P = P0 versus H1 : P = P1,

and suppose that known probabilities p0 and p1 = 1− p0 can be assigned to
H0 and H1 prior to the experiment. We see

• The overall probability of an error resulting from the use of the test δ is

p0E0(δ(X)) + p1E1(1− δ(X)).

• The Bayes test that minimizes this probability is given by

δ(x) =





1 when p̂1(x) > kp̂0(x)

0 when p̂1(x) < kp̂0(x),

for k = p0/p1.
• The conditional probability of Hi given X = x, that is, the posterior

probability of Hi, is
pip̂i(x)

p0p̂0(x) + p1p̂1(x)

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability.

Testing as an Estimation Problem

As an estimation problem, the testing problem is equivalent to estimating the
indicator function IΘ0 (θ). We use a statistic S(X) as an estimator of IΘ0 (θ).
The estimand is in {0, 1}, and so S(X) should be in {0, 1}, or at least in [0, 1].
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For a 0-1 loss function, the Bayes estimator of IΘ0 (θ) is the function that
minimizes the posterior risk, EΘ|x(L(Θ, s)). The risk is just the posterior
probability, so the Bayesian solution using this loss is

S(x) =

{
1 if Pr(θ ∈ Θ0|x) > Pr(θ /∈ Θ0|x)
0 otherwise,

where Pr(·) is evaluated with respect to the posterior distribution PΘ|x.

4.5.2 Loss Functions

Due to the discrete nature of the decision regarding a test of an hypothesis,
discrete loss functions are often more appropriate.

The 0-1-γ Loss Function

In a Bayesian approach to hypothesis testing using the test δ(X) ∈ {0, 1}, we
often formulate a loss function of the form

L(θ, d) =

{
cd for θ ∈ Θ0

bd for θ ∈ Θ1

where c1 > c0 and b0 > b1, with c0 = b1 = 0, b0 = 1, and c1 = γ > 0. (This is
a 0-1-γ loss function; see page 261.)

A Bayesian action for hypothesis testing with a 0-1-γ loss function is fairly
easy to determine. The posterior risk for choosing δ(X) = 1, that is, for
rejecting the hypothesis, is

cPr(Θ ∈ ΘH0 |X = x),

and the posterior risk for choosing δ(X) = 0 is

Pr(Θ ∈ ΘH1 |X = x),

hence the optimal decision is to choose δ(X) = 1 if

cPr(Θ ∈ ΘH0 |X = x) < Pr(Θ ∈ ΘH1 |X = x),

which is the same as

Pr(Θ ∈ ΘH0 |X = x) <
1

1 + c
.

In other words, the Bayesian approach says to reject the hypothesis if its
posterior probability is small. The Bayesian approach has a simpler interpre-
tation than the frequentist approach. It also makes more sense for other loss
functions.
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The Weighted 0-1 or α0-α1 Loss Function

Another approach to account for all possibilities and to penalize errors differ-
ently when the null hypothesis is true or false is use a weighted 0-1 loss function
such as a α0-α1 loss (see page 261). Using the estimator S(X) = s ∈ {0, 1},
as above, we define

L(θ, s) =





0 if s = IΘ0 (θ)
α0 if s = 0 and θ ∈ Θ0

α1 if s = 1 and θ /∈ Θ0.

The 0-1-γ loss and the α0-α1 loss could be defined either in terms of the
test rule δ or the estimator S; I chose to do one one way and the other another
way just for illustration.

The Bayes estimator of IΘ0(θ) using this loss is

S(x) =

{
1 if Pr(θ ∈ Θ0|x) > α1

α0+α1

0 otherwise,

where again Pr(·) is evaluated with respect to the posterior distribution. To
see that this is the case, we write the posterior loss

∫

Θ

L(θ, s)dPΘ|x = a0Pr(θ ∈ Θ0|x)I{0}(s) + a1Pr(θ /∈ Θ0|x)I{1}(s),

and then minimize it.
Under a α0-α1 loss, the null hypothesis H0 is rejected whenever the pos-

terior probability of H0 is too small. The acceptance level, α1/(α0 + α1), is
determined by the specific values chosen in the loss function. The Bayes test,
which is the Bayes estimator of IΘ0 (θ), depends only on α0/α1. The larger
α0/α1 is the smaller the posterior probability of H0 that allows for it to be
accepted. This is consistent with the interpretation that the larger α0/α1 is
the more important a wrong decision under H0 is relative to H1.

Examples

Let us consider two familiar easy pieces using a α0-α1 loss.

Example 4.15 Binomial with Uniform Prior
First, let X|π ∼ binomial(π, n) and assume a prior on Π of U(0, 1) (a special
case of the conjugate beta prior from Example 4.2). Suppose Θ0 = [0, 1/2].

The posterior probability that H0 is true is

(n+ 1)!

x!(n− x)!

∫ 1/2

0

πx(1 − π)n−xdπ.

This is computed and then compared to the acceptance level. (Note that the
integral is a sum of fractions.)
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Example 4.16 Normal with Known Variance and a Normal Prior
on Mean
For another familiar example, consider X|µ ∼ N(µ, σ2), with σ2 known, and µ
a realization of a random variable from N(µ0, σ

2
0). We considered this problem

in Example 4.4 on page 341. We recall that M |x ∼ N(µ0(x), ω
2), where

µ0(x) =
σ2µ0 + σ2

0x

σ2 + σ2
0

and ω2 =
σ2σ2

0

σ2 + σ2
0

.

To test H0, we compute the posterior probability of H0. Suppose the null
hypothesis is

H0 : µ ≤ 0.

Then

Pr(H0|x) = Pr

(
µ− µ0(x)

ω
≤ −µ0(x)

ω

)

= Φ(−µ0(x)/ω).

The decision depends on the α1/(α0 + α1) quantile of N(0, 1). Let zα0,α1 be
this quantile; that is, Φ(zα0,α1) = α1/(α0 + α1). The H0 is accepted if

−µ0(x) ≥ zα0,α1ω.

Rewriting this, we see that the null hypothesis is rejected if

x > −σ
2

σ2
0

µ0 −
(

1 +
σ2

σ2
0

)
ωzα0,α1 .

Notice a very interesting aspect of these tests. There is no predetermined
acceptance level. The decision is based simply on the posterior probability
that the null hypothesis is true.

A difficulty of the α0-α1 loss function, of course, is the choice of α0 and
α1. Ideally, we would like to choose these based on some kind of utility con-
siderations, but sometimes this takes considerable thought.

4.5.3 The Bayes Factor

Given a prior distribution PΘ, let p0 be the prior probability that H0 is true,
and p1 be the prior probability that H1 is true. The prior odds then is p0/p1.
Similarly, let p̂0 be the posterior probability that H0 is true given x, and p̂1

be the posterior probability that H1 is true, yielding the posterior odds p̂0/p̂1.
The posterior odds is the ratio of the posterior likelihoods, L0/L1.

The posterior probability of the event can be related to the relative odds.
The posterior odds is

Theory of Statistics c©2000–2025 James E. Gentle



4.5 Bayesian Testing 367

p̂0

p̂1
=
p0

p1

fX|θ0
(x)∫

fX|θ(x)dFΘ
.

The term

BF(x) =
fX|θ0

(x)∫
fX|θ(x)dFΘ

(4.54)

is called the Bayes factor. The Bayes factor obviously also depends on the
prior fΘ(θ).

Rather than computing the posterior odds directly, we emphasize the
Bayes factor, which for any stated prior odds yields the posterior odds. The
Bayes factor is the posterior odds in favor of the hypothesis if p0 = 0.5.

Note that, for the simple hypothesis versus a simple alternative, the Bayes
factor simplifies to the likelihood ratio:

fX|θ0
(x)

fX|θ1
(x)

.

One way of looking at this likelihood ratio is to use MLEs under the two
hypotheses:

supΘ0
fX|θ(x)

supΘ1
fX|θ(x)

.

This approach, however, assigns Dirac masses at the MLEs, θ̂0 and θ̂1.
The Bayes factor is more properly viewed as a Bayesian likelihood ratio,

BF(x) =
p0

∫
Θ0
fX|θ(x)dθ

p1

∫
Θ1
fX|θ(x)dθ

,

and, from a decision-theoretic point of view, it is entirely equivalent to the
posterior probability of the null hypothesis. Under the α0-α1 loss function,
H0 is accepted when

BF(x) >
a1

a0
/
p0

p1

From this, we see that the Bayesian approach effectively gives an equal
prior weight to the two hypotheses, p0 = p1 = 1/2 and then modifies the error
penalties as ãi = aipi, for i = 0, 1, or alternatively, incorporates the weighted
error penalties directly into the prior probabilities:

p̃0 =
a0p0

a0p0 + a1p1
p̃1 =

a1p1

a0p0 + a1p1
.

The ratios such as likelihood ratios and relative odds that are used in
testing carry the same information content if they are expressed as their re-
ciprocals. These ratios can be thought of as evidence in favor of one hypothesis
or model versus another hypothesis or model. The ratio provides a compar-
ison of two alternatives, but there can be more than two alternatives under
consideration. Instead of just H0 and H1 we may contemplate Hi and Hj, and
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follow the same steps using pi/pj. The Bayes factor then depends on i and j,
and of course whether we use the odds ratio pi/pj or pj/pi. We therefore some-
times write the Bayes factor as BFij(x) where the subscript ij indicates use
of the ratio pi/pj . In this notation, the Bayes factor (4.54) would be written
as BF01(x).

Jeffreys (1961) suggested a subjective “scale” to judge the evidence of the
data in favor of or against H0. Kass and Raftery (1995) discussed Jeffreys’s
scale and other issues relating to the Bayes factor. They modified his original
scale (by combining two categories), and suggested

• if 0 < log10(BF10) < 0.5, the evidence against H0 is “poor”,
• if 0.5 ≤ log10(BF10) < 1, the evidence against H0 is “substantial”,
• if 1 ≤ log10(BF10) < 2, the evidence against H0 is “strong”, and
• if 2 ≤ log10(BF10), the evidence against H0 is “decisive”.

Note that the Bayes factor is the reciprocal of the one we first defined in equa-
tion (4.54). While this scale makes some sense, the separations are of course
arbitrary, and the approach is not based on a decision theory foundation.
Given such a foundation, however, we still have the subjectivity inherent in
the choice of a0 and a1, or in the choice of a significance level.

Kass and Raftery (1995) also gave an interesting example illustrating the
Bayesian approach to testing of the “hot hand” hypothesis in basketball. They
formulate the null hypothesis (that players do not have a “hot hand”) as the
distribution of good shots by a given player, Yi, out of ni shots taken in game
i as binomial(ni, π), for games i = 1, . . . , g; that is, the probability for a given
player, the probability of making a shot is constant in all games (within some
reasonable period). A general alternative is H1 : Yi ∼ binomial(ni, πi). We
choose a flat U(0, 1) conjugate prior for the H0 model. For the H1 model, we
choose a conjugate prior beta(α, β) with α = ξ/ω and β = (1 − ξ)/ω. Under
this prior, the prior expectation E(πi|ξ, ω) has an expected value of ξ, which
is distributed as U(0, 1) for fixed ω. The Bayes factor is is very complicated,
involving integrals that cannot be solved in closed form. Kass and Raftery use
this to motivate and to compare various methods of evaluating the integrals
that occur in Bayesian analysis. One simple method is Monte Carlo.

Often, however, the Bayes factor can be evaluated relatively easily for a
given prior, and then it can be used to investigate the sensitivity of the results
to the choice of the prior, by computing it for another prior.

From Jeffreys’s Bayesian viewpoint, the purpose of hypothesis testing is
to evaluate the evidence in favor of a particular scientific theory. Kass and
Raftery make the following points in the use of the Bayes factor in the hy-
pothesis testing problem:

• Bayes factors offer a straightforward way of evaluating evidence in favor
of a null hypothesis.

• Bayes factors provide a way of incorporating external information into the
evaluation of evidence about a hypothesis.
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• Bayes factors are very general and do not require alternative models to be
nested.

• Several techniques are available for computing Bayes factors, including
asymptotic approximations that are easy to compute using the output
from standard packages that maximize likelihoods.

• In “nonstandard” statistical models that do not satisfy common regularity
conditions, it can be technically simpler to calculate Bayes factors than to
derive non-Bayesian significance tests.

• The Schwarz criterion (or BIC) gives a rough approximation to the log-
arithm of the Bayes factor, which is easy to use and does not require
evaluation of prior distributions. The BIC is

BIC = −2 log(L(θm |x)) + k logn,

where θm is the value of the parameters that specify a given model, k is
the number of unknown or free elements in θm, and n is the sample size.
The relationship is

−BIC/2− log(BF)

log(BF)
→ 0,

as n→∞.
• When we are interested in estimation or prediction, Bayes factors may be

converted to weights to be attached to various models so that a composite
estimate or prediction may be obtained that takes account of structural
or model uncertainty.

• Algorithms have been proposed that allow model uncertainty to be taken
into account when the class of models initially considered is very large.

• Bayes factors are useful for guiding an evolutionary model-building pro-
cess.

• It is important, and feasible, to assess the sensitivity of conclusions to the
prior distributions used.

***** stuff to add:
pseudo-Bayes factors
training sample
arithmetic intrinsic Bayes factor
geometric intrinsic Bayes factor
median intrinsic Bayes factor

The Bayes Risk Set

A risk set can be useful in analyzing Bayesian procedures when the parameter
space is finite. If

Θ = {θ1, . . . , θk}, (4.55)

the risk set for a procedure T is a set in IRk:

{(z1, ..., zk) : zi = R(θi, T )}. (4.56)
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In the case of 0-1 loss, the risk set is a subset of the unit hypercube;
specifically, for Θ = {0, 1}, it is a subset of the unit square: [0, 1]× [0, 1].

4.5.4 Bayesian Tests of a Simple Hypothesis

Although the test of a simple hypothesis versus a simple alternative, as in the
example Section 4.5.1, is easy to understand and helps to direct our thinking
about the testing problem, it is somewhat limited in application. In a more
common application, we may have a dense parameter space Θ, and hypotheses
that specify different subsets of Θ. A common situation is the “one-sided”
test for H0 : θ ≤ θ0 versus H1 : θ > θ0. We can usually develop meaningful
approaches to this problem, perhaps based on some boundary point of H0. A
“two-sided” test, in which, for example, the alternative specifies

Θl = {θ : θ < θ0} ∪Θu = {θ : θ > θ0}, (4.57)

presents more problems for the development of reasonable procedures.
In a Bayesian approach, when the parameter space Θ is dense, but either

hypothesis is simple, there is a particularly troubling situation. This is because
of the Bayesian interpretation of the problem as one in which a probability
is to be associated with a statement about a specific value of a continuous
random variable.

Consider the problem in a Bayesian approach to deal with an hypothesis of
the form H0 : Θ = θ0, that is Θ0 = {θ0}; versus the alternative H1 : Θ 6= θ0.

A reasonable prior for Θ with a continuous support would assign a prob-
ability of 0 to Θ = θ0 .

One way of getting around this problem may be to modify the hypothesis
slightly so that the null is a small interval around θ0. This may make sense,
but it is not clear how to proceed.

Another approach is, as above, to assign a positive probability, say p0,
to the event Θ = θ0. Although it may not appear how to choose p0, just as
it would not be clear how to choose an interval around θ0, we can at least
proceed to simplify the problem following this approach. We can write the
joint density of X and Θ as

fX,Θ(x, θ) =

{
p0fX|θ0

(x) if θ = θ0,
(1− p0)fX|θ(x) if θ 6= θ0.

(4.58)

There are a couple of ways of simplifying. Let us proceed by denoting the
prior density of Θ over Θ − θ0 as λ. We can write the marginal of the data
(the observable X) as

fX(x) = p0fX|θ0
(x) + (1− p0)

∫
fX|θ(x)dλ(θ). (4.59)

We can then write the posterior density of Θ as
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fΘ|x(θ|x) =

{
p1 if θ = θ0,

(1− p1)
fX|θ(x)

fX (x) if θ 6= θ0,
(4.60)

where

p1 =
p0fX|θ0

(x)

fX(x)
. (4.61)

This is the posterior probability of the event Θ = θ0.

The Lindley-Jeffrey “Paradox”

In testing a simple null hypothesis against a composite alternative, an anomaly
can occur in which a classical frequentist test can strongly reject the null, but
a Bayesian test constructed with a mixed prior consisting of a point mass at
the null and a diffuse continuous prior over the remainder of the parameter
space.

Given a simple null hypothesis H0, the result of an experiment x, and a
prior distribution that favors H0 weakly, a “paradox” occurs when the result
x is significant by a frequentist test, indicating sufficient evidence to reject H0

at a given level, but the posterior probability of H0 given x is high, indicating
strong evidence that H0 is in fact true. This is called Lindley’s paradox or the
Lindley-Jeffrey paradox.

This can happen at the same time when the prior distribution is the sum
of a sharp peak at H0 with probability p and a broad distribution with the
rest of the probability 1− p. It is a result of the prior having a sharp feature
at H0 and no sharp features anywhere else.

Consider the testing problem in Example 4.16, except this time for a simple
null hypothesis.

Example 4.17 Normal with Known Variance and a Normal Prior
on Mean; Simple Null Hypothesis (Lindley, 1957)
Consider again X|µ ∼ N(µ, σ2), with σ2 known. As before, to test H0, we
compute the posterior probability of H0. Now, suppose the null hypothesis is

H0 : µ = 0.

In the case of the prior that supposed that µ a realization of a random variable
from N(µ0, σ

2
0), which for a realization X = x yielded M |x ∼ N(µ0(x), ω

2).
For this, we get the posterior probability of H0 to be 0.

Let us modify the prior so as to give a non-zero probability p0 to the null
hypothesis. As suggested above, we take a prior of the form

f̃M (θ|x) =

{
p0 if µ = 0,
(1 − p0)fM (µ) if µ 6= 0,

(4.62)

where fM is the PDF of a N(µ0, σ
2
0). Suppose, further, our prior beliefs about

µ are not strong, so we choose σ2
0 much greater than σ2 = 1. Actually, it is
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not important that the prior fM be proportional to the normal. The overall
likelihood of the alternative hypothesis is

L1 =

∫ ∞

−∞

1√
2π

exp(−(x − µ)2/2)(1− p0)fM (µ)dµ,

and the likelihood of the null hypothesis is

L0 =
1√
2π

exp(−x2/2).

The important fact to note is that L1 can be quite small. This is because the
prior gives a very small probability to a neighborhood of x, even a relatively
large neighborhood in terms of σ = 1.

The posterior odds are

Pr(µ = 0|X = x)

Pr(µ 6= 0|X = x)
=

p0

1− p0

L0

L1

which can be very large even if p0 is very small.

This rather unreasonable conclusion of a standard Bayesian analysis has
been discussed in many articles and books; see, for example, Shafer (1982) or
Johnson and Rossell (2010).

4.5.5 Least Favorable Prior Distributions

In testing composite hypotheses, we often ask what is the “worst case” within
the hypothesis. In a sense, this is the attempt to reduce the composite hypoth-
esis to a simple hypothesis. This is the idea behind a p-value. In a Bayesian
testing problem, this corresponds to a bound on the posterior probability.

Again, consider the problem of testing H0 : Θ = θ0 versus the alternative
H1 : Θ 6= θ0. ***

4.6 Bayesian Confidence Sets

4.6.1 Credible Sets

In a Bayesian setup, we define a random variable Θ that corresponds to the
parameter of interest, and the usual steps in a Bayesian analysis allows us
to compute Pr(Θ ∈ ΘH0 |X = x). The problem in determining a confidence
set is an inverse problem; that is, for a given α, we determine Cα such that
Pr(Θ ∈ Cα|X = x) = 1 − α. Of course there may be many sets with this
property. We need some additional condition(s).

In the frequentist approach, we add the property that the region be the
smallest possible. “Smallest” means with respect to some simple measure such
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as the usual Lebesgue measure; in the one-dimensional continuous case, we
seek the shortest interval. In the Bayesian approach, we so something similar,
except we use the posterior density as a measure.

The mechanics of determining credible sets begin with the standard
Bayesian steps that yield the conditional distribution of the parameter given
the observable random variable. If the density exists, we denote it as fΘ|x.
At this point, we seek regions of θ in which fΘ|x(θ|x) is large. In general, the
problem may be somewhat complicated, but in many situations of interest
it is relatively straightforward. Just as in the frequentist approach, the iden-
tification of the region often depends on pivotal values, or pivotal functions.
(Recall that a function g(T, θ) is said to be a pivotal function if its distribution
does not depend on any unknown parameters.)

It is often straightforward to determine one with posterior probability
content of 1− α.

4.6.2 Highest Posterior Density Credible sets

If the posterior density is fΘ|x(θ|x), we determine a number c such that the
set

Cα(x) = {θ : fΘ|x(θ) ≥ cα} (4.63)

is such that Pr(Θ ∈ Cα|X = x) = 1− α. Such a region is called a level 1− α
highest posterior density or HPD credible set.

We may impose other conditions. For example, in a one-dimensional con-
tinuous parameter problem, we may require that one endpoint of the interval
be infinite (that is, we may seek a one-sided confidence interval).

An HPD region can be disjoint if the posterior is multimodal.
If the posterior is symmetric, all HPD regions will be symmetric about x.
For a simple example, consider a N(0, 1) prior distribution on Θ and a

N(θ, 1) distribution on the observable. The posterior given X = x is N(x, 1).
All HPD regions will be symmetric about x. In the case of a symmetric den-
sity, the HPD is the same as the centered equal-tail credible set; that is, the
one with equal probabilities outside of the credible set. In that case, it is
straightforward to determine one with posterior probability content of 1− α.

4.6.3 Decision-Theoretic Approach

We can also use a specified loss function to approach the problem of deter-
mining a confidence set.

We choose a region so as to minimize the expected posterior loss.
For example, to form a two-sided interval in a one-dimensional continuous

parameter problem, a reasonable loss function may be

L(θ, [c1, c2]) =




k1(c1 − θ) if θ < c1,
0 if c1 ≤ θ ≤ c2,
k2(θ − c2) if θ > c2.
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This loss function also leads to the interval between two quantiles of the
posterior distribution.

It may not be HPD, and it may not be symmetric about some pivot quan-
tity even if the posterior is symmetric.

4.6.4 Other Optimality Considerations

We may impose other conditions. For example, in a one-dimensional continu-
ous parameter problem, we may require that one endpoint of the interval be
infinite (that is, we may seek a one-sided confidence interval).

Example 4.18 Credible sets for the Binomial Parameter with a Beta
Prior
Consider the problem of estimating π in a binomial(n, π) distribution with a
beta(α, β) prior distribution, as in Example 4.6 on page 355.

Suppose we choose the hyperparameters in the beta prior as α = 3 and
β = 5. The prior, that is, the marginal distribution of Π , is as shown in
Figure 4.1 and if n is 10 and we take one observation, x = 2 we have the
conditional distribution of Π , as a beta with parameters x + α = 5 and
n− x+ β = 13, as shown in Figure 4.2.

Now, given x = 2, and the original beta(3,5) prior, let’s find an equal-tail
95% credible set. Here’s some R code:

a<-3

b<-5

n<-10

x<-2

alpha<-0.05

lower<-qbeta(alpha/2,x+a,n-x+b)

upper<-qbeta(1-alpha/2,x+a,n-x+b)

pi<-seq(0,1,0.01)

plot(pi,dbeta(pi,x+a,n-x+b),type=’l’,

main="95\% Credible set with x=2",

ylab="Posterior",xlab=expression(pi))

lines(c(lower,lower),c(0,dbeta(lower,x+a,n-x+b)))

lines(c(upper,upper),c(0,dbeta(upper,x+a,n-x+b)))

lines(c(0,1),c(0,0))

We get the credible set shown in Figure 4.5. The probability in each tail
is 0.025.

Because the posterior density is not symmetric, it is not an easy matter
to get the HPD credible set.

The first question is whether the credible set is an interval. This depends
on whether the posterior is unimodal. As we have already seen in Section 4.2,
the posterior in this case is unimodal if n > 0, and so the credible set is indeed
an interval.
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Figure 4.5. 95% Credible set after Observing x = 2

We can determine the region iteratively by starting with the equal-tail
credible set. At each step in the iteration we have a candidate lower bound
and upper bound. We determine which one has the higher value of the density,
and then shift the interval in that direction. We continue this process, keeping
the total probability constant at each step. Doing this we get the credible set
shown in Figure 4.6. The probability in the lower tail is 0.014 and that in
the upper tail is 0.036. The density is 0.642 at each endpoint; that is, in
equation (4.63), cα = 0.642.

Here’s the R code that yielded the HPD:

a<-3

b<-5

n<-10

x<-2

alpha<-0.05

# start by determining the equal-tail CR, using the posterior

lower<-qbeta(alpha/2,x+a,n-x+b)

upper<-qbeta(1-alpha/2,x+a,n-x+b)

# set a tolerance for convergence

tol <- 0.005 # to get the density values to agree to 3 decimal places

a10 <- 0

a20 <- 0

a1 <- alpha/2
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Figure 4.6. HPD 95% Credible set after Observing x = 2

a2 <- 1-alpha/2

adj <- a1

d <- 1

while (abs(d)>tol){

# determine difference in the density at the two candidate points

d <- dbeta(lower,x+a,n-x+b)-dbeta(upper,x+a,n-x+b)

# halve the adjustment in each iteration

adj <- adj/2

# if density at lower boundary is higher, shift interval to the left

s <- 1

if(d>0) s <- -1

a1 <- a1 + s*adj

a2 <- a2 + s*adj

lower<-qbeta(a1,x+a,n-x+b)

upper<-qbeta(a2,x+a,n-x+b)

}

4.7 Computational Methods in Bayesian Inference;
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Markov Chain Monte Carlo

Monte Carlo techniques often allow us to make statistical inferences when the
statistical method involves intractable expressions. In applications in Bayesian
inference, we can study the posterior distribution, which may be intractable or
which may be known only proportionally, by studying random samples from
that distribution.

In parametric Bayesian inference, the objective is to obtain the conditional
posterior distribution of the parameter, given the observed data. This is QH

in equation (4.2), and it is defined by the density in step 5 in the procedure
outlined in Section 4.2.3. This density contains all of the information about
the parameter of interest, although we may wish to use it for specific types of
inference about the parameter, such as a point estimator or a credible set.

Understanding the Posterior Distribution

As with any probability distribution, a good way to understand the posterior
distribution is to take a random sample from it. In the case of the posterior
distribution, we cannot take a physical random sample. We can, however,
simulate a random sample, using methods discussed in Section 0.0.7, beginning
on page 664.

In single-parameter cases, random samples from the posterior distribu-
tion can often be generated using a direct acceptance/rejection method if the
constant of proportionality is known. If the posterior density is known only
proportionally, a Metropolis-Hastings method often can be used.

Often the posterior density is a fairly complicated function, especially in
multi-parameter cases or in hierarchical models. In such cases, we may be able
to express the conditional density of each parameter given all of the other
parameters. In this case, it is fairly straightforward to use a Gibbs sampling
method to generate samples from the multivariate distribution. Consider the
relatively simple case in Example 4.5. The joint posterior PDF is given in
equation (4.32). We can get a better picture of this distribution by simulating
random observations from it. To do this we generate a realization σ2 from
the marginal posterior with PDF given in equation (4.33), and then with that
value of σ2, we generate a realization µ from the conditional posterior with
PDF given in equation (4.34).

Example 4.19 illustrates this technique for a hierarchical model.
The simulated random samples from the posterior distribution gives us a

picture of the density. It is often useful to make pair-wise scatter plots of the
samples or estimated contour plots of the density based on the samples.

Simulated random samples can be used to approximate expectations of
functions of the random parameters with respect to the posterior density
(this is Monte Carlo quadrature), and they can also be used to identify other
properties of the posterior distribution, such as its mode.
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Computing the MAP

Computation of the MAP is essentially an optimization problem. In many
cases, simulated annealing (see Section 0.4.3 on page 829) is a very effective
method of determining the optimum point. The approach for optimizing the
posterior probability density function is essentially the same as a Metropolis
method for simulating random observations from the posterior distribution.

A Hierarchical Bayesian Model

Following custom, we use brackets to denote densities; [X, Y ], [X|Y ], and [X]
represent the joint, conditional, and marginal densities, respectively.

In a hierarchical Bayesian model, the joint distribution of the data and
parameters is

[X|θ1]× [θ1|θ2]× [θ2|θ3]× · · · × [θk−1|θk]× [θk]

The thing of interest is posterior density [θ1|X].
The hierarchical structure implies

[θ1|X, θi,(i 6=1)] = [θ1|X, θ2]
= [θi|θi−1, θi+1]

= [θk|θk−1]

Gibbs sampling can be used to estimate the marginal posterior densities.

Example 4.19 Gibbs Sampling Example from Gelfand and Smith,
JASA

The paper by Gelfand and Smith (1990) was very important in popularizing
the Gibbs method.

Consider an exchangeable Poisson model in which independent counts are
observed over differing periods of time.

The data are {(si, ti)}. Each yields a rate ri.
Assume [si|λi] = P(λiti).
Assume a gamma prior distribution on the λi’s with density

1

βαΓ(α)
λα−1

i e−λi/β

Further, assume β has an inverted gamma distribution with density

1

βγ+1Γ(γ)
δγe−δ/β

Beginning with X = (s1, s2, . . . , sk), the conditional distribution of λi

given X, β, and λj(j 6=i) is merely the gamma with parameters α + sj and
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β/(tj + 1), and the conditional distribution of β given X and the λi’s is an
inverted gamma with parameters γ + kα and

∑
λi + δ.

The various parameters (α, δ, γ) have interpretions that can be used to
select reasonable values.

The Gibbs sampling method would estimate the marginal density of λi by

generating λ
(1)
i from the appropriate gamma distribution, i.e., with parame-

ters α+ si and β(0)/(ti + 1) for i = 1, . . . , k, and then generating β(1) for the
first iteration.

Continue this for k iterations.
Do it m times to have a density.

Miscellaneous Results and Comments

Markov chain Monte Carlo has special applications when dealing with distri-
butions that have densities known up to a constant of proportionality, that is
densities specified as follows. Let h be a nonnegative integrable function that
is not zero almost everywhere. Then h specifies a probability distribution, all
we need to do to get the density f is normalize it.

f(x) = h(x)/c

where

c =

∫
h(x)dµ(x)

The Hastings algorithm only uses h to simulate realizations from f , knowl-
edge of the integral c is not required.

In Bayesian inference, h is the likelihood times the prior. This is always
known, but the integral c is generally hard. MCMC permits easy simulations
of realizations from the posterior (no knowledge of c necessary).

In most cases where there is complex dependence in the data, there is no
simple probability model with c known, but it is easy to specify a model up
to a constant of proportionality using an h. These are just very complicated
exponential families.

Let t be a vector-valued statistic on the sample space and

h(x) = exp(t(x)Tθ)

Then these specify a family of densities

fθ(x) = exp(t(x)Tθ)/c(θ).

In the expression
exp(t(x)Tθ)/c(θ),
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c(θ) =

∫
exp(t(x)Tθ)dµ(x),

but in MCMC it does not need to be known.
This is just an exponential family with canonical statistic t(x) and canon-

ical parameter θ.
Using Markov chain Monte Carlo we can simulate realizations from any

distribution in the model, and using the simulations from any one distribution,
we can calculate maximum likelihood estimates, bootstrap estimates of their
sampling distribution and so forth.

There are also ways to get (randomized) significance tests with exact p-
values using Markov chain Monte Carlo.

The output of the sampler is a Markov chainX1, X2, . . . whose equilibrium
distribution is the distribution of interest, the one you want to sample from.

Averages with respect to that distribution are approximated by averages
over the chain.

Notes and Further Reading

In this chapter we have presented Bayesian methods as an approach to the
decision-theoretic principle of minimizing average risk. In this presentation we
have glossed over the philosophic excitement that attended the evolution of
the Bayesian approach to statistical inference.

In the early nineteenth century, Laplace developed a theory of “inverse
probability”, in which the frequency of observations are used to infer the prob-
ability that they arose from a particular data-generating process. Although
inverse probability as a formal theory is not in current vogue, some of the
underlying motivating ideas persist in inference based on likelihood and on
“subjective probability”. For more discussion of Laplace’s work and the two
examples at the beginning of this chapter, see Stigler (1986).

The idea that statistical inference can (and should) take into account not
only strictly objective observations but also subjective and even personal ev-
idence was first expounded in a clear mathematical theory by Savage in 1954
in the first edition of Savage (1972). Savage stated seven “postulates of a per-
sonalistic theory of decision” that lead to the existence of a subjective proba-
bility and a utility function. The essays in the volume edited by Kadane et al.
(1999) address and expound on Savage’s book. Kadane, Schervish, and Sei-
denfeld also consider the general cooperative Bayesian decision making. A
satisfactory theory of group coherence in decisions may require the relaxation
of one of Savage’s postulates on the simple preferential ordering of decisions.

Good (1983) *** discuss
In a more applied context, Schlaifer (1959) incorporated a personalistic

approach into statistical decision making. Many of the ideas in the Bayesian
approach derive from those books and from the book by Jeffreys (1961).
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An alternative approach to probabilistic reasoning is the Dempster-Shafer
theory of belief functions (see Shafer (1976) and Yager and Liu (2008)).

In some cases, especially in hypothesis, the Bayesian approach is funda-
mentally different from the frequentist approach. The differences arise from
the definition of the problem that is addressed. The articles by Casella and Berger
(1987) (Roger) and (Jim) Berger and Sellke (1987) with accompanying discus-
sion by several authors identify some of the differences in perspectives.

Berger (1985) and Robert (2001) provide extensive coverage of statistical
inference from a Bayesian perspective. Both of these books compare the “fre-
quentist” and Bayesian approaches and argue that the Bayesian paradigm is
more solidly grounded.

Ghosh and Sen (1991) have considered Pitman closeness in the context of
a posterior distribution, and defined posterior Pitman closeness in terms of
probabilities evaluated with respect to the posterior distribution. Interestingly,
the posterior Pitman closeness is transitive, while as we have seen on page 219,
Pitman closeness does not have the transitive property.

Notation and Lingo

There are several instances in which the notation and terminology used in
Bayesian statistics differ from the classical statistics that had evolved with a
strong mathematical flavor.

I generally like to use uppercase letters to distinguish random variables
from realizations of those random variables, which I generally represent by
corresponding lowercase letters, but it is common in writing about a Bayesian
analysis not to distinguish a random variable from its realization.

People who work with simple Bayes procedures began calling the distri-
bution of the reciprocal of a chi-squared random variable an “inverse” chi-
squared distribution. Because “inverse” is used in the names of distributions
in a different way (“inverse Gaussian”, for example), I prefer the term inverted
chi-squared, or inverted gamma.

What is often called a “simple hypothesis” by most statisticians is often
called a “sharp hypothesis in Bayesian analyses.

The Bayesian Religious Wars of the Mid-Twentieth Century

The analysis by Lindley and Phillips (1976) ********************.
in Example 3.12
Hartley (1963)
A rather humorous historical survey of the antithetical Bayesian and fre-

quentist approaches is given in McGrayne (2011).

Prior Distributions

Ghosh (2011) objective priors
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Early versions of the maximum entropy principle were stated by Jaynes
(1957a,b). Kass and Wasserman (1996) critique maximum entropy priors and
other priors that are selected on the basis of being less informative.

Applications

Bayesian procedures have been somewhat slow to permeate the traditional
areas of statistical applications, such as analysis of linear models, time series
analysis and forecasting, and finite population sampling. This is not because
the underlying theory has not been developed. Broemeling (1984) discusses
Bayesian analysis of general linear models, and the articles in the book edited
by Dey et al. (2000) provide an extensive coverage of Bayesian methods in
generalized linear models. See Prado and West (2010) and West and Harrison
(1997), for discussions of Bayesian methods in time series analysis. Bayesian
methods for sampling from finite populations are discussed in Ghosh and Meeden
(1998), and assessed further in Rao (2011).

Nonparametric Models

We have limited our discussion in this chapter to parametric models; that is,
to situations in which the probability distributions of the observable random
variables can be indexed by a real number of finite dimension. Nonparamet-
ric models can often be defined in terms of an index (or “parameter”) of
infinite dimension. A standard example in Bayesian analysis uses a Dirichlet
process as a prior for an infinite discrete distribution (see Ferguson (1973),
and Sethuraman (1994)).

Exercises

4.1. Formulate Laplace’s urn problem at the beginning of this chapter in the
modern Bayesian context; that is, identify the prior, the conditional of
the observable data, the joint, the marginal, and the conditional posterior
distributions.

4.2. Show that the family of distributions with PDF given in equation (4.23)
is a conjugate family for an exponential family with PDF expressed in the
form of equation (4.22).

4.3. Consider the exponential distribution with PDF

fX|θ(x|θ) = θ−1ex/θ IĪR+
(x).

a) Show that the inverted gamma distribution is a conjugate prior for
this conditional distribution.

b) Given a random sample of size n from the exponential distribution and
an inverted gamma with parameters α and β, determine the posterior
conditional mean and variance.

Theory of Statistics c©2000–2025 James E. Gentle



Exercises 383

4.4. Given the conditional PDF

fX|γ(x) ∝ (1 + (x − γ)2)−1.

a) Under the prior
fΓ (γ) ∝ e−|γ−µ|,

given a single observation, determine the MAP estimator of γ. Is this
a meaningful estimator? Comment on why we might have expected
such a useless estimator.

b) For the same distribution of the observables, consider the prior

fΓ (γ) ∝ e−α|γ−µ|.

For what values of α > 0 will this prior yield a different estimator
from that in the previous question?

c) Consider now an opposite kind of setup. Let the conditional density
of the observable be

fX|γ(x) ∝ e−|x−γ|,

and let the prior be

fΓ (γ) ∝ (1 + (γ − µ)2)−1.

Determine the MAP estimator of γ. Comment on the difference in this
estimator and that in the first part. Why might expect this situation?

4.5. Prove Theorem 4.5.
4.6. Prove Theorem 4.6.
4.7. Prove Theorem 4.7.
4.8. Consider the binomial(n, π) family of distributions in Example 4.6. Given

a random sample X1, . . . , Xn on the random variable X with conditional
distribution in the binomial family, formulate the relevant PDF for ob-
taining α̂ and β̂ in the empirical Bayes estimator of equation (4.50).

4.9. Consider again the binomial(n, π) family of distributions in Example 4.6.
Given a random sampleX1, . . . , Xn on the random variableX with condi-
tional distribution in the binomial family, determine the Bayes estimator
of π under linex loss (equation (3.88) on page 262) with a beta(α, β) prior.

4.10. Consider again the binomial(n, π) family of distributions in Example 4.6.
We wish to estimate π under squared-error loss with a beta(α, β) prior.
a) Determine the risk of the Bayes estimator (4.45), under squared-error

loss.
b) Now consider the estimator

T ∗ =
X

n

n1/2

1 + n1/2
+

1

2(1 + n1/2)
,

in the form of equation (4.46). Determine a prior under which T ∗ is
Bayes (one such prior is a beta distribution – which?), and show that
T ∗ under squared-error loss has constant risk with respect to π.
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4.11. Assume that in a batch of N items, M are defective. We are interested
in the number of defective items in a random sample of n items from the
batch of N items.
a) Formulate this as a hypergeometric distribution.
b) Now assume that M ∼ binomial(π,N). What is the Bayes estimator

of the number of defective items in the random sample of size n using
a squared-error loss?

4.12. For Example 4.7, consider each of the first five issues discussed in Ex-
ample 4.6. Give the corresponding solutions for the negative binomial
distribution, if the solutions are possible.

4.13. Consider the problem of estimating θ in the Poisson, assuming a ran-
dom sample of size n. (The probability function, or density, is fX|θ(x) =

θxe−θ/x! for nonnegative integers, and the parameter space is IR+.)
a) Determine the Bayes estimator of θ under squared-error loss and the

prior fΘ(θ) = θp exp(−θpθ).
b) Determine the Bayes estimator under linex loss and the prior fΘ(θ) =

θp exp(−θpθ).
c) Determine the Bayes estimator under zero-one loss and the prior

fΘ(θ) = θp exp(−θpθ).
d) In the previous questions, you should have noticed something about

the prior. What is a more general prior that is a conjugate prior?
Under that prior and the squared-error loss, what is the Bayes esti-
mator? What property is shared by this estimator and the estimator
in Exercise 4.13a)?

e) Determine the Bayes estimator under squared-error loss and a uniform
(improper) prior.

f) Determine the Bayes estimator under zero-one loss and a uniform
(improper) prior.

g) Determine a minimax estimator under zero-one loss. Would you use
this estimator? Why?

h) Now restrict estimators of θ to δc(X) = cX. Consider the loss function

L(θ, δ) =

(
δ

θ
− 1

)2

.

i. Compute the risk R(δc, θ). Determine whether δc is admissible if
c > 1.

ii. Compute the Bayes risk r(fΘ , δc) and determine the optimal value
of c under fΘ . (The prior fΘ is the one used in Exercise 4.13a).)

iii. Determine the optimal c for the minimax criterion applied to this
class of estimators.

i) As in Exercise 4.13a) with squared-error loss, consider the problem of
estimating θ given the sample X1, . . . , Xn and using the prior, fΘ(θ),
where θp is empirically estimated from the data using a method-of-
moments estimator.
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4.14. Consider again the binomial(n, π) family of distributions in Example 4.6.
Let Pα,β be the beta(α, β) distribution.
a) Determine the gamma-minimax estimator of π under squared-error

loss within the class of priors Γ = {Pα,β : 0 < α, β}.
b) Determine the gamma-minimax estimator of π under squared-error

loss within the class of priors Γ = {Pα,β : 0 < α, β ≤ 1}.
4.15. Consider a generalization of the absolute-error loss function, |θ− d|:

L(θ, d) =

{
c(d− θ) for d ≥ θ
(1 − c)(θ − d) for d < θ

for 0 < c < 1 (equation (3.87)). Given a random sample X1, . . . , Xn on
the random variable X, determine the Bayes estimator of θ = E(X|θ).
(Assume whatever distributions are relevant.)

4.16. Let X ∼ U(0, θ) and the prior density of Θ be θ−2I[1,∞)(θ). The posterior
is therefore

fΘ|x(θ|x) =
2c2

θ3
I[c,∞)(θ),

where c = max(1, x).
a) For squared-error loss, show that the Bayes estimator is the posterior

mean. What is the posterior mean?
b) Consider a reparametrization: θ̃ = θ2 , and let δ̃ be the Bayes estimator

of θ̃. The prior density now is

1

2θ̃3/2
I[1,∞)(θ̃).

In order to preserve the connection, take the loss function to be

L(θ̃, δ̃) = (
√
δ̃ −

√
θ̃)2. What is the posterior mean? What is the

Bayes estimator of θ̃?
c) Compare the two estimators. Comment on the relevance of the loss

functions and of the prior for the relationship between the two esti-
mators.

4.17. Let X1 depend on θ1 and X2 be independent of X1 and depend on θ2. Let
θ1 and θ2 have independent prior distributions. Assume a squared-error
loss. Let δ1 and δ2 be the Bayes estimators of θ1 and θ2 repectively.
a) Show that δ1−δ2 is the Bayes estimator of θ1−θ2 given X = (X1, X2)

and the setup described.
b) Now assume that θ2 > 0 (with probability 1), and let δ̃2 be the Bayes

estimator of 1/θ2 under the setup above. Show that δ1δ̃2 is the Bayes
estimator of θ1/θ2 given X = (X1, X2).

4.18. In the problem of estimating π given X from a binomial(10, π) with
beta(α, β) prior and squared-error loss, as in Example 4.6, sketch the
risk functions, as in Figure 3.1 on page 277, for the unbiased estimator,
the minimax estimator, and the estimator resulting from Jeffreys’s non-
informative prior.
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4.19. Given an estimation problem with an integrable Lebesgue conditional
PDF fX|θ for the observables, an integrable Lebesgue prior PDF fΘ, and
with loss function L(θ, a) = w(θ)(θ− a)2, where w(θ) is a fixed weighting
function. Determine the Bayes rule and comment on the role of w(θ) in
this problem.

4.20. Let X1, . . . , Xn
iid∼ N(µ, σ2

0), with σ2
0 known and µ unknown. Determine

the generalized Bayes action for estimating µ under squared error loss and
the noninformative prior of the Lebesgue measure on ]−∞,∞[.

4.21. Refer to the problem described in Example 4.10.
a) Show that every decision rule is inadmissible.
b) We have implicitly assumed the action space to be ] −∞,∞[. Show

that if the action space is [−∞,∞], then there is a Bayes rule, and
that it is the only admissible rule.

4.22. Show that the unbiased Bayes estimator in Example 4.11 has constant
risk wrt the loss function of equation (4.52).

4.23. As in Example 4.7, consider the problem of estimation of the negative
binomial parameter with a beta prior, but instead of a squared-error loss,
use the loss function of Example 4.11, given in equation (4.52). Determine
the Bayes estimator. Do the estimators of the binomial parameter and the
negative binomial parameter conform to the likelihood principle?

4.24. Consider the sample (Y1, x1), . . . , (Yn, xn) where the Yi are iid as N(xT
i β, σ

2)
for the fixed vectors xi and for the unknown p-vector β. In the matrix rep-
resentation Y = Xβ+E, assume that the n×p matrix X is of rank p. Let
l be a given p-vector, and consider the problem of estimating lTβ under
a squared-error loss.
a) Assume σ2 = σ2

0 , a known positive number. Using the prior distribu-
tion of β Np(β0, Σ), where β0 is a known p-vector and Σ is a known
positive definite matrix, determine the Bayes estimator of lTβ.

b) Now assume σ2 is unknown. We will simplify the prior on β to be,
conditional on σ2, Np(β0 , σ

2V ), where again β0 is a known p-vector
and V is a known positive definite matrix. Let the prior on σ2 be the
inverted gamma distribution with parameters α and β (see page 842).
Determine the Bayes estimator of lTβ.

4.25. Let X1, . . . , Xn
iid∼Bernoulli(π).

a) Under the prior beta(α, β) and some given π0, determine the Bayes
factor and the Bayes test for

H0 : π ≤ π0 versus H1 : π > π0.

b) Now, consider testing

H0 : π = π0 versus H1 : π 6= π0.

i. Make an appropriate modification to the beta prior.
ii. Determine the Bayes factor and the Bayes test under your modi-

fied prior.
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4.26. As in Exercise 4.13, consider the problem of making inferences about
θ in the Poisson, assuming a random sample of size n under the prior
fΘ(θ) = θp exp(−θpθ).
a) Let θ0 be some given positive number. Determine the Bayes factor

and the Bayes test for

H0 : θ ≤ θ0 versus H1 : θ > θ0.

b) Now, consider testing

H0 : θ = θ0 versus H1 : θ 6= θ0.

i. Make an appropriate modification to the prior.
ii. Determine the Bayes factor and the Bayes test under your modi-

fied prior.

4.27. Let X1, . . . , Xn1

iid∼ N(µ1, σ
2) and let Y1, . . . , Yn2

iid∼ N(µ2, σ
2).

a) Assume σ2 = σ2
0 , a known positive number. As the prior distribution

for M = M2 − M1 take N(µp, σ
2
p), where mup and σ2

p are known
constants. Determine the Bayes factor and the Bayes test for

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2.

b) Now assume σ2 is unknown. As the conditional prior distribution for
M = M2 −M1 given σ2, take N(µp, σ

2/κp), where σ2 is a realization
of a random variable from a chi-squared distribution with parameters
νp as degrees of freedom and σp as scale of σ. Determine the Bayes
factor and the Bayes test for the test in the previous part.

4.28. Consider the problem of determining a credible set for a scalar parameter
θ. Suppose that the conditional posterior has a Lebesgue PDF fΘ|x(θ)
that is unimodal and not monotone. (It has a shape similar to that in
Figure 4.6.)
a) Show that a (1−α)100% HPD credible set is an interval and that the

interval is unique.
b) Show that the (1 − α)100% HPD credible set has the shortest lenght

of any interval [a, b] satisfying

∫ b

a

fΘ|x(θ) dθ = 1− α.
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5

Unbiased Point Estimation

*** reword
In a decision-theoretic approach to statistical inference, we seek a method

that minimizes the risk no matter what is the true state of nature. In a problem
of point estimation, for example, we seek an estimator T (X) which for a given
loss function L(g(θ), T (X)) yields a minimum of the risk, Eθ(L(g(θ), T (X))).

For some specific value of θ, say θ1, one particular estimator, say T1, may
have the smallest expected loss, while for another value of θ, say θ2, another
estimator, say T2, may a smaller expected loss.

What we would like is an estimator with least expected loss no matter
what is the value of θ; that is, we would like an estimator with uniformly
minimum risk. Because the risk depends on the value of θ, however, we see that
we cannot devise such an estimator. The optimal estimator would somehow
involve θ. We would prefer a procedure that does not depend on the unknown
quantity we are trying to estimate, that is, we would like a procedure with
uniformly good properties.

Since, in general, there is no procedure with uniformly minimum risk, we
might consider restricting our procedures to some class of procedures that
have some other desirable properties, for example, to procedures that are
unbiased. As we will see in Section 5.1, this is often possible in the case of
point estimation.

Unbiased Point Estimators

Our objective is to develop “good” estimators of statistical functions. The
statistical function, or the estimand, may be defined as a functional of the
CDF, Υ (F ), or, in a parametric setting, as a measurable function of some
underlying parameter, g(θ). In the following, I will generally represent the
estimand as g(θ), but the concepts apply to more general estimands that may
only be represented as some functional, Υ (F ).

Although some “good” estimators are not unbiased, unbiasedness relates
easily to fundamental concepts such as what does it mean to “estimate” a
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statistical function. Can any statistical function be estimated meaningfully?
How many observations are required to yield a meaningful estimate?

An estimator T (X) of a given estimand, g(θ), is unbiased with respect to
θ if

Eθ(T (X)) = g(θ) ∀ θ ∈ Θ. (5.1)

Thus we see that unbiasedness is a property of a statistic that relates to a
parameter, but does not depend on the value of the parameter; hence, by
definition, unbiasedness of a point estimator is a uniform property.

Unbiasedness depends on the distribution of the observable, which in turn
depends on the data-generating process.

Example 5.1 Sampling in a Bernoulli distribution
In Example 3.12, we considered the problem of making inferences about π
using data-generating processes governed by a family of Bernoulli distribu-
tions with parameter π. In one case, the approach was to take a random
sample of size n, X1, . . . , Xn which are iid as Bernoulli(π). This yielded
a data-generating process in which T =

∑
Xi has a binomial distribution

with parameters n and π. In another approach we took a sequential sample,
X1, X2, . . ., from the Bernoulli(π) until a fixed number t of 1’s have occurred.
In this data-generating process, the sample size N is random, and it is mod-
eled by a negative binomial with parameters t and π. (Note that in a common
formulation of a negative binomial distribution, the random variable is N − t
in the formulation we are using here. In the present formulation, N ≥ t.)

In Examples 4.6 and 4.7 we see that the estimator of π under a squared
error loss and a beta prior is the same for the two distributions that result
from the two data-generating processes, and neither of them is unbiased.

In the first data-generating process, we see that an unbiased estimator of
π is

W =
T

n
. (5.2)

In the second data-generating process, we see that an unbiased estimator of
π is

U =

{
t−1
N−1

if N > 1

1 otherwise
(5.3)

(Exercise 5.1). The latter estimator is essentially the same as the former one,
because by the definition of the data-generating process, the last observation
does not count because its value is determined a priori.

Estimation of a Function of the Basic Estimand

Estimability

A statistical function for which there is an unbiased estimator is said to be
U-estimable. We often refer to such estimands simply as “estimable”. There
are estimands for which there is no unbiased estimator.
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Example 5.2 an estimand that is not U-estimable
Consider the problem of estimating 1/π in binomial(n, π) for π ∈]0, 1[. Sup-
pose T (X) is an unbiased estimator of 1/π. Then

n∑

x=0

T (x)

(
n

x

)
πx(1− π)n−x = 1/π.

If 1/π were U-estimable, the equation above would say that some polynomial
in π is equal to 1/π for all π ∈]0, 1[. That clearly cannot be; hence, 1/π is not
U-estimable. Notice also as π→ 0, the left side tends to T (0), which is finite,
but the right side tends to ∞.

Another related example, but one that corresponds to a more common
parameter, is an estimator of the odds, π/(1− π).

Example 5.3 another estimand that is not U-estimable
Consider the problem of estimating π/(1 − π) in binomial(n, π) for π ∈]0, 1[.
The possible realizations of the n Bernoulli trials are (X1, . . . , Xn), where
Xi = 0 or 1; hence, there are 2n possibilities and any estimator T must take
each realization into a number tj, where j ranges from 1 to 2n.

Now,

E(T ) =

2n∑

j=1

tjπ
nj (1− π)n−nj ,

where nj is the number of ones in the jth string of zeros and ones. If T is
unbiased, then it must be the case that

2n∑

j=1

tjπ
nj(1− π)n−nj =

π

1− π ∀π ∈ (0, 1).

But it is not possible that the polynomial in π on the left can equal π/(1 −
π)∀π ∈ (0, 1).

Unbiasedness, while a uniform property, is not invariant to transforma-
tions. It is easy to see by simple examples that if E(T ) = θ, in general,
E(g(T )) 6= g(θ).

Unbiasedness may lead to estimators that we would generally consider to
be poor estimators, as the following example from Romano and Siegel (1986)
shows.

Example 5.4 an unbiased estimator with poor properties
Consider the problem of using a sample of size 1 for estimating g(θ) = e−3θ

where θ is the parameter in a Poisson distribution. An unbiased is

T (X) = (−2)X ,

as you are asked to show in Exercise 5.2.
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The estimator is ridiculous. It can be negative, even though g(θ) > 0.
It is increasing in the positive integers, even though g(θ) decreases over the
positive integers.

Degree of a Statistical Function

If a statistical function is estimable, we may ask how many observations are
required to estimate it; that is, to estimate it unbiasedly. We refer to this
number as the degree of the statistical function. Obviously, this depends on
the distribution as well as the functional. A mean functional may not even
be exist, for example, in a Cauchy distribution, but if the mean functional
exists, it is estimable and its degree is 1. The variance functional in a normal
distribution is estimable and its degree is 2 (see page 405).

5.1 Uniformly Minimum Variance Unbiased Point
Estimation

An unbiased estimator may not be unique. If there are more than one unbiased
estimator, we will seek one that has certain optimal properties.

5.1.1 Unbiased Estimators of Zero

Unbiased estimators of 0 play a useful role in UMVUE problems.
If T (X) is unbiased for g(θ) then T (X) − U(X) is also unbiased for g(θ)

for any U such that E(U(X)) = 0; in fact, all unbiased estimators of g(θ)
belong to an equivalence class defined as

{T (X) − U(X)}, (5.4)

where Eθ(U(X)) = 0.
In Theorem 5.2 and its corollary we will see ways that unbiased estimators

of zero can be used to identify optimal unbiased estimators.
In some cases, there may be no such nontrivial U(X) that yields a different

unbiased estimator in (5.4). Consider for example, a single Bernoulli trial
with probability of success π, yielding the random variable X, and consider
T (X) = X as an estimator of π. We immediately see that T (X) is unbiased
for π. Now, let S be an estimator of π, and let S(0) = s0 and S(1) = s1. For
S to be unbiased, we must have

s1π + s0(1 − π) = π,

but this means (s1 − s0)π + s0 = π. This means s0 = 0 and s1 = 1; that is,
S(X) = T (X) for X = 0 or 1. In this case the unbiased point estimator is
unique.
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5.1.2 Optimal Unbiased Point Estimators

Restricting our attention to unbiased estimators, we return to the problem
of selecting an estimator with uniform minimum risk (UMRU). We find that
in general, no UMRUE exists for bounded loss functions. Such loss functions
cannot be (strictly) convex. If, however, we consider only loss functions that
are strictly convex, which means that they are unbounded, we may be able to
find a UMRUE.

5.1.3 Unbiasedness and Squared-Error Loss; UMVUE

A squared-error loss function is particularly nice for an unbiased estimator
that has a finite second moment, because in that case the expected loss is just
the variance; that is, an unbiased estimator with minimum risk is an unbiased
estimator with minimum variance.

Unbiasedness alone, of course, does not ensure that an estimator is good;
the variance of the estimator may be quite large. Also, a biased estimator
may in fact dominate a very good unbiased estimator; see Example 3.19 on
page 272. In Theorem 3.10 on page 270, however, we saw that any bias in an
admissible estimator under squared-error loss must have a negative correlation
with the estimator.

The requirement of unbiasedness also protects us from “bad” estimators
that have superior squared-error risk in some regions of the parameter space,
such as in Example 3.1 on page 219. (The estimator in that example, of
course, does not dominate the “good” estimator, as the shrunken estimator
in Example 3.19 does.)

If the unbiased estimator has minimum variance among all unbiased esti-
mators at each point in the parameter space, we say that such an estimator is
a uniformly (for all values of θ) minimum variance unbiased estimator, that
is, a UMVUE.

An unbiased estimator that has minimum variance among all unbiased es-
timators within a subspace of the parameter space is called a locally minimum
variance unbiased estimator, or LMVUE.

UMVU is a special case of uniform minimum risk (UMRU), which generally
only applies to convex loss functions.

Uniformity (the first “U”) means the MVU property is independent of the
estimand. “Unbiasedness” is itself a uniform property, because it is defined in
terms of an expectation for any distribution in the given family.

UMVU is closely related to complete sufficiency, which means that it prob-
ably has nice properties (like being able to be identified easily) in exponential
families. One of the most useful facts is the Lehmann-Scheffé theorem.

Theorem 5.1 (Lehmann-Scheffé Theorem)
Let T be a complete sufficient statistic for θ, and suppose T has finite second
moment. If g(θ) is U-estimable, then there is a unique UMVUE of g(θ) of the
form h(T ), where h is a Borel function.

Theory of Statistics c©2000–2025 James E. Gentle



394 5 Unbiased Point Estimation

The first part of this is just a corollary to the Rao-Blackwell theorem,
Theorem 3.8. The uniqueness comes from the completeness, and of course,
means unique a.e.

The Lehmann-Scheffé theorem may immediately identify a UMVUE.

Example 5.5 UMVUE of Bernoulli parameter
Consider the Bernoulli family of distributions with parameter π. Suppose
we take a random sample X1, . . . , Xn. Now the Bernoulli (or in this case,
the binomial(n, π)) is a complete one-parameter exponential family, and T =∑n

i=1Xi is a complete sufficient statistic for π with expectation nπ. By the
Lehmann-Scheffé theorem, therefore, the unique UMVUE of π is

W =

n∑

i=1

Xi/n. (5.5)

In Example 3.17, page 269, we showed that the variance of W achieves the
CRLB; hence it must be UMVUE.

The random sample from a Bernoulli distribution is the same as a single
binomial observation, and W is an unbiased estimator of π, as in Exam-
ple 5.1. We also saw in that example that a constrained random sample from
a Bernoulli distribution is the same as a single negative binomial observation
N , and an unbiased estimator of π in that case is (t− 1)/(N − 1), where t is
the required number of 1’s in the constrained random sample. This estimator
is also UMVU for π (Exercise 5.1).

In the usual definition of this family, π ∈ Π =]0, 1[. Notice that if∑n
i=1Xi = 0 or if

∑n
i=1Xi = n, W /∈ Π. Hence, the UMVUE may not be valid

in the sense of being a legitimate parameter for the probability distribution.

Useful ways for checking that an estimator is UMVU are based on the
following theorem and corollary.

Theorem 5.2
Let P = {Pθ}. Let T be unbiased for g(θ) and have finite second moment.
Then T is a UMVUE for g(θ) iff E(TU) = 0 ∀θ ∈ Θ and ∀U 3 E(U) =
0,E(U2) <∞ ∀θ ∈ Θ.

Proof.
First consider “only if”.
Let T be UMVUE for g(θ) and let U be such that E(U) = 0 and E(U2) <∞.
Let c be any fixed constant, and let Tc = T + cU ; then E(T ) = g(θ). Since T
is UMVUE,

V(Tc) ≥ V(T ), ∀θ ∈ Θ,

or
c2V(U) + 2cCov(T, U) ≥ 0, ∀θ ∈ Θ.

This implies E(TU) = 0 ∀θ ∈ Θ.
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Now consider “if”.
Assume E(T ) = g(θ) and E(T 2) <∞ and U is such that E(TU) = 0,E(U) =
0,E(U2) < ∞ ∀θ ∈ Θ. Now let T0 be an unbiased estimator of g(θ), that is,
E(T0) = g(θ). Therefore, because E(TU) = 0, E(T (T − T0)) = 0 ∀θ ∈ Θ, and
so V(T ) = Cov(T, T0). Therefore, because (Cov(T, T0))

2 ≤ V(T )V(T0), we
have

V(T ) ≤ V(T0) ∀θ ∈ Θ

implying that T is UMVUE.

Corollary 5.2.1
Let T̃ be a sufficient statistic for θ, and let T = h(T̃ ) where h is a Borel

function. Let r be any Borel function such that for Ũ = r(T̃ ), E(Ũ) = 0 and

E(Ũ2) <∞ ∀θ ∈ Θ. Then T is a UMVUE for g(θ) iff E(TŨ) = 0 ∀θ ∈ Θ.

Proof.
This follows from the theorem because if E(TŨ ) = 0 ∀θ ∈ Θ, then ∀θ ∈
Θ, E(TU) = 0, E

(
E(U |T̃ )

)
= 0, and E

(
E(U |T̃ )2

)
< ∞. This is the case

because

E(TU) = E
(
E
(
TU |T̃

))
= E

(
E
(
h
(
T̃
)
U |T̃

))
= E

(
h
(
T̃
)

E
(
U |T̃

))
.

How to find a UMVUE

We have seen how that is some cases, the Lehmann-Scheffé theorem may
immediately identify a UMVUE.

In more complicated cases, we generally find an UMVUE by beginning
with a “good” estimator and manipulating it to make it UMVUE. It might be
unbiased to begin with, and we reduce its variance while keeping it unbiased.
It might not be unbiased to begin with but it might have some other desirable
property, and we manipulate it to be unbiased.

If we have a complete sufficient statistic T for θ, the Lehmann-Scheffé
theorem leads to two methods. Another method uses unbiased estimators of
zero and is based on the equivalence class of unbiased estimators (5.4).

1. Given the complete sufficient statistic T for θ, find a function of T that
makes it unbiased; that is, find a UMVUE directly by finding h(T ) such
that Eθ(h(T )) = g(θ).

2. Given the complete sufficient statistic T for θ and another statistic T0 that
is unbiased, condition the unbiased statistic on the complete sufficient
statistic; that is, find a UMVUE as h(T ) = Eθ(T0(X)|T ). (This process is
sometimes called “Rao-Blackwellization”.)
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3. Let T0 be such that Eθ(T0) = g(θ) and Eθ(T
2
0 ) < ∞. We find a UMVUE

by finding U where Eθ(U) = 0 so as to minimize E((T0 − U)2). Useful
estimators clearly must have finite second moment, otherwise, we cannot
minimize a variance by combining the estimators. This method makes use
of the equivalence class of unbiased estimators.

We will now consider examples of each of these methods.

Finding an UMVUE by Forming an Unbiased Function of a
Complete Sufficient Statistic

Example 5.6 UMVUE of various parametric functions in a normal
distribution
Let X1, X2, . . . , Xn be a random sample from a N(µ, σ2) distribution with
unknown θ = (µ, σ2). (Notice that n ≥ 2.) In Example 3.6, we have seen that
T = (X, S2) is sufficient and complete for θ.

For various g(θ) we will find the UMVUEs directly by finding h(T ) such
that Eθ(h(T )) = g(θ):

• for g(θ) = µ:
h(T ) = X (5.6)

• for g(θ) = σ2:
h(T ) = S2 (5.7)

• for g(θ) = µ2:
h(T ) = X2 − S2/n (5.8)

• for g(θ) = σp, with p ≥ 2:

h(T ) =
(n − 1)p/2Γ((n− 1)/2)

2p/2Γ((n− 1 + p)/2)
Sp (5.9)

• for g(θ) = µ/σ if n ≥ 3:

h(T ) =
21/2Γ((n − 1)/2)

(n − 1)1/2Γ((n − 2)/2)
X/S. (5.10)

We get the last two estimators by using the fact that (n− 1)S2/σ2 ∼ χ2
n−1.

Example 5.7 UMVUE of the variance in a Bernoulli distribution
Given random sample of size n from Bernoulli(π). We want to estimate g(π) =
π(1−π). We have a complete sufficient statistic, T =

∑
Xi. The unbiasedness

condition is
n∑

t=0

(
n

t

)
h(t)πt(1− π)n−t = π(1− π).

Rewriting this in terms of the odds ρ = π/(1− π), we have, for all ρ ∈]0,∞[,
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n∑

t=0

(
n

t

)
h(t)ρt = ρ(1 + ρ)n−2

=

n−1∑

t=1

(
n− 2

t− 1

)
ρt.

Now since for each t, the coefficient of ρt must be the same on both sides of
the equation, we have the UMVUE of the Bernoulli variance to be

∑
xi(n−

∑
xi)

n(n − 1)
. (5.11)

Note that this is the same estimator as 5.7 for the variance in a normal
distribution.

Example 5.8 UMVUE of the upper limit in a uniform distribution
Consider the uniform distribution U(0, θ). In Example 3.7 we saw that X(n)

is complete sufficient for θ. An UMVUE for θ therefore is (1 + 1/n)X(n).

Also see Example 3.1 in MS2.

Example 5.9 UMVUE in a two-parameter exponential distribution

Lebesgue PDF of the two-parameter exponential with parameter (α, θ) is

θ−1e−(x−α)/θI]α,∞[(x)

Suppose we have observations X1, X2, . . . , Xn. In Examples 1.11 and 1.18, we
found the distributions of X(1) and

∑
Xi − nX(1), and in Example 3.8 we

showed that T = (X(1),
∑
Xi − nX(1)) is sufficient and complete for (α, θ).

Hence, all we have to do is adjust them to be unbiased.

Tα = X(1) −
1

n(n− 1)

∑
(Xi −X(1)).

and

Tθ =
1

n− 1

∑
(Xi −X(1)).

Also see Example 3.2 in MS2.

UMVUE by Conditioning an Unbiased Estimator on a Sufficient
Statistic

See Example 3.3 in MS2.
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UMVUE by Minimizing the Variance within the Equivalence
Class of Unbiased Estimators

******

5.1.4 Other Properties of UMVUEs

In addition to the obvious desirable properties of UMVUEs, we should point
out that UMVUEs lack some other desirable properties. We can do this by
citing examples.

First, as in Example 5.5, we see that the UMVUE may not be in the
parameter space.

The next example shows that the UMVUE may not be a minimax estima-
tion, even under the same loss function, that is, squared-error.

Example 5.10 UMVUE that is not minimax (continuation of Ex-
ample 5.5)
Consider a random sample of size n from the Bernoulli family of distributions
with parameter π. The UMVUE of π is T = X/n. Under the squared-error
loss, the risk, that is, the variance in this case is π(1 − π)/n. This is the
smallest risk possible for an unbiased estimator, by inequality (3.39).

The maximum risk for T is easily seen to be 1/(4n) (when π = 1/2). Now,
consider the estimator

T ∗ =
X

n

n1/2

1 + n1/2
+

1

2(1 + n1/2)
.

This has risk

R(T ∗, π) = Eπ((T ∗ − π)2)

= Eπ

((
X

n

n1/2

1 + n1/2
+

πn1/2

2(1 + n1/2)
− πn1/2

2(1 + n1/2)
+

1

2(1 + n1/2)
− π

)2
)

=

(
n1/2

1 + n1/2

)2

Eπ

((
X

n
− π

)2
)

+

(
πn1/2

1 + n1/2
+

1

2(1 + n1/2)
− π

)2

=

(
n1/2

1 + n1/2

)2
π(1− π)

n
+

(
1− 2π

2(1 + n1/2)

)2

=
1

4(1 + n1/2)2
. (5.12)

The risk of T ∗ is less than the maximum risk of T ; therefore, T is not
minimax.

Now we might ask is T ∗ minimax?
We first note that the risk (5.12) is constant, so T ∗ is minimax if it is

admissible or if it is a Bayesian estimator (in either case with respect to the
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squared-error loss). We can see that T ∗ is Bayesian estimator (with a beta
prior). (You are asked to prove this in Exercise 4.10 on page 383.) As we show
in Chapter 4, a Bayes estimator with a constant risk is a minimax estimator;
hence, δ∗ is minimax. (This example is due to Lehmann.)

Although we may initially be led to consideration of UMVU estimators
by consideration of a squared-error loss, which leads to a mean squared-error
risk, the UMVUE may not minimize the MSE. It was the fact that we could
not minimize the MSE uniformly that led us to add on the requirement of un-
biasedness. There may, however, be estimators that have a uniformly smaller
MSE than the UMVUE. An example of this is in the estimation of the vari-
ance in a normal distribution. In Example 5.6 we have seen that the UMVUE
of σ2 in the normal distribution is S2, while in Example 3.13 we have seen
that the MLE of σ2 is (n − 1)S2/n, and by equation (3.55) on page 243, we
see that the MSE of the MLE is uniformly less than the MSE of the UMVUE.

There are other ways in which UMVUEs may not be very good as es-
timators; see, for example, Exercise 5.2. A further undesirable property of
UMVUEs is that they are not invariant to transformation.

5.1.5 Lower Bounds on the Variance of Unbiased Estimators

The three Fisher information regularity conditions (see page 168) play a major
role in UMVUE. In particular, these conditions allow us to develop a lower
bound on the variance of any unbiased estimator.

The Information Inequality (CRLB) for Unbiased Estimators

What is the smallest variance an unbiased estimator can have? For an un-
biased estimator T of g(θ) in a family of densities satisfying the regularity
conditions and such that T has a finite second moment, the answer results
from inequality (3.83) on page 256 for the scalar estimator T and estimand
g(θ). (Note that θ itself may be a vector.) That is the information inequality
or the Cramér-Rao lower bound (CRLB), and it results from the covariance
inequality.

If g(θ) is a vector, then ∂g(θ)/∂θ is the Jacobian, and we have

V(T (X)) �
(
∂

∂θ
g(θ)

)T

(I(θ))
−1 ∂

∂θ
g(θ), (5.13)

where we assume the existence of all quantities in the expression.
Note the meaning of this relationship in the multiparameter case: it says

that the matrix

V(T (X)) −
(
∂

∂θ
g(θ)

)T

(I(θ))
−1 ∂

∂θ
g(θ) (5.14)

is nonnegative definite. (This includes the zero matrix; the zero matrix is
nonnegative definite.)
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Example 5.11 Fisher efficiency in a normal distribution
Consider a random sample X1, X2, . . . , Xn from the N(µ, σ2) distribution. In
Example 3.9, we used the parametrization θ = (µ, σ). Now we will use the
parametrization θ = (µ, σ2). The joint log density is

logp(µ,σ)(x) = c− n

2
log(σ2)−

∑

i

(xi − µ)2/(2σ2). (5.15)

The information matrix is diagonal, so the inverse of the information matrix
is particularly simple:

I(θ)−1 =

[
σ2

n
0

0 σ4

2(n−1)

]
. (5.16)

For the simple case of g(θ) = (µ, σ2), we have the unbiased estimator,

T (X) =

(
X,

n∑

i=1

(Xi −X)2/(n− 1)

)
,

and

V(T (X)) =

[
σ2

n
0

0 σ4

2(n−1)

]
, (5.17)

which is the same as the inverse of the information matrix. The estimators
are Fisher efficient.

It is important to know in what situations an unbiased estimator can
achieve the CRLB. Notice this would depend on both p(X, θ) and g(θ). Let
us consider this question for the case of scalar θ and scalar function g. The
necessary and sufficient condition that an estimator T of g(θ) attain the CRLB
is that (T − g(θ)) be proportional to ∂ log(p(X, θ))/∂θ a.e.; that is, for some
a that does not depend on X,

∂ log(p(X, θ))

∂θ
= a(θ)(T − g(θ)) a.e. (5.18)

This means that the CRLB can be obtained by an unbiased estimator only in
the one-parameter exponential family.

For example, there are unbiased estimators of the mean in the normal,
Poisson, and binomial families that attain the CRLB. There is no unbiased
estimator of θ that attains the CRLB in the family of distributions with
Lebesgue densities proportional to (1+(x−θ)2)−1 (this is the Cauchy family).

If the CRLB is attained for an estimator of g(θ), it cannot be attained
for any other (independent) function of θ. For example, there is no unbiased
estimator of µ2 in the normal distribution that achieves the CRLB.

If the CRLB is not sharp, that is, if it cannot be attained, there may be
other (larger) bounds, for example the Bhattacharyya bound. These sharper
bounds are usually based on higher-order derivatives.

The following example is from Romano and Siegel (1986), who attribute
it to Bickel and Doksum.
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Example 5.12 UMVUE in Exponential Family That Does Not At-
tain the CRLB
Let X have a Poisson distribution with PDF

p(x) = θye−θ/y!, y = 0, 1, 2, . . . ,

and suppose we want to estimate g(θ) = e−θ.
For a sample of size 1, let

T (X) =

{
1 if X = 0
0 otherwise.

We see that T (X) has expectation e−θ and so is unbiased for the estimand.
We know that X is sufficient, and we see that it is complete by considering
a function g such that E(g(X)) = 0 for all θ > 0. For such a function, for all
θ > 0, we have

e−θ
∞∑

i=0

g(i)
1

i!
θi = 0.

A power series that is identically zero in an interval must have all coefficients
zero, and so g(x) = 0 a.e.; hence, X is complete.

Now, by the Lehmann-Scheffé theorem, T = E(T |X) is UMVUE for e−θ,
and since it has finite variance, V(T ) = e−θ(1−e−θ), it is the unique UMVUE.

We can work out the Fisher information to be

Iθ = E

((
∂ log(p(X; θ))

∂θ

)2
)

= E

((
−1 +

X

θ

)2
)

=
1

θ2
E(X2) − 2

θ
E(X) + 1

=
1

θ
.

Hence, the CRLB for the variance of unbiased estimators of g(θ) = e−θ is
θe−2θ. By expanding e−θ in a Taylor series, we see that V(T ) = e−θ(1−e−θ) >
θe−2θ; hence, the UMVUE does not attain the CRLB.

The Bhattacharyya Lower Bound

We now consider a simple case in which θ is a scalar (and, hence the estimand
g(θ) and the estimator T (X) are scalars).

For the PDF f(x; θ) and the Borel scalar function g(θ) assume that each
is differentiable r times, and write
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f(r) =
∂rf(x; θ)

∂r

and

g(r) =
∂rg(θ)

∂r
.

Let T be an unbiased estimator of g(θ).
Now, form the function

Ds = T − g(θ) −
s∑

r=1

arf
(r)/f, (5.19)

where the ar are constants to be determined. Now, we have

E(f(r)/f) = 0 (5.20)

as before, and since T be an unbiased estimator for g(θ), we have

E(Ds) = 0.

The variance of Ds is therefore,

E(D2
s) =

∫ (
T − g(θ) −

s∑

r=1

arf
(r)/f

)2

fdx. (5.21)

We now seek to minimize this quantity in the ar. To do so, for p = 1, . . . , s,
we differentiate and set equal to zero:

∫ (
T − g(θ) −

s∑

r=1

arf
(r)/f

)
(f(p)/f)fdx = 0, (5.22)

which yields

∫
(T − g(θ))f(p)dx =

s∑

r=1

ar

∫
f(r)

f

f(p)

f
fdx. (5.23)

Because of (5.20), the left-hand side of (5.23) is

∫
Tf(p)dx = g(p)(θ). (5.24)

(Compare this with
∫
Tfdx = g(θ).)

The right-hand side of (5.23) is

s∑

r=1

arE

(
f(r)

f

f(p)

f

)
.
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Substituting back into (5.23) we have

g(p)(θ) =

s∑

r=1

arE

(
f(r)

f

f(p)

f

)
, (5.25)

for p = 1, . . . , s. If the matrix of coefficients of the ar is nonsingular, we can
invert them to solve. For notational simplicity, let,

Jrp = E

(
f(r)

f

f(p)

f

)
.

Then

ar =

s∑

p=1

g(p)(θ)J−1
rp .

Hence, at its minimum value

Ds = T − g(θ) −
s∑

r=1

s∑

p=1

g(p)(θ)J−1
rp f

(r)/f. (5.26)

and the variance of Ds from (5.21) is

E(D2
s) =

∫ (
T − g(θ) −

s∑

r=1

s∑

p=1

g(p)(θ)J−1
rp f

(r)/f

)2

fdx. (5.27)

We now use the fact that the derivative is zero, equation (5.22), to get

E(D2
s ) =

∫
(T − g(θ))2fdx−

s∑

r=1

s∑

p=1

g(p)(θ)J−1
rp

∫
Tf(r)dx, (5.28)

which, because T is unbiased using equation (5.24), yields

E(D2
s ) = V(T ) −

s∑

r=1

s∑

p=1

g(p)(θ)J−1
rp g

(r)(θ).

Finally, because the left-hand side of this is nonnegative, we have the Bhat-
tacharyya bound on the variance of T :

V(T ) ≥
s∑

r=1

s∑

p=1

g(p)(θ)J−1
rp g

(r)(θ). (5.29)

Notice that in the case of s = 1, this is the same as the CRLB.
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5.2 U-Statistics

In estimation problems it is often fruitful to represent the estimand as some
functional of the CDF, P . The mean, for example, if it exists is

M(P ) =

∫
x dP. (5.30)

Given the exchangeable random variables X1, . . . , Xn with CDF P , we can
form a plug-in estimator of M(P ) by applying the functional to the ECDF.

In more complicated cases, the property of interest may be the quantile
associated with π, that is, the unique value yπ defined by

Ξπ(P ) = inf
y
{y : P (y) ≥ π}. (5.31)

There is a basic difference in the functionals in equations (5.30) and (5.31).
The first is an expected value, E(Xi) for each i. The second functional,
however, cannot be written as an expectation. (Bickel and Lehmann (1969)
showed this.)

5.2.1 Expectation Functionals and Kernels

In the following, we will consider the class of statistical functions that can be
written as an expectation of a function h of some subsample, Xi1 , . . . , Xim ,
where i1, . . . , im are distinct elements of {1, . . . , n}:

θ = Θ(P )

= E(h(Xi1 , . . . , Xim)). (5.32)

Such Θs are called expectation functionals. The function h is called the kernel
of the expectation functional. The number of arguments of the kernel is called
the order of the kernel.

In the case of M in equation (5.30) above, h is the identity and the order
m is 1.

Notice that we have unbiasedness of the kernel function for θ by the way
we define the terms.

Expectation functionals that relate to parameter of interest are often easy
to define. The simplest is just E(h(Xi)). The utility of expectation function-
als lies in the ease of working with them coupled with some useful general
properties.

Note that without loss of generality we can assume that h is symmetric in
its arguments because the Xis are exchangeable, and so even if h is not sym-
metric, any permutation (i1, . . . , im) of the indexes has the same expectation,
so we could form a function that is symmetric in the arguments and has the
same expectation:
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h̄(X1, . . . , Xm) =
1

m!

∑

all permutations

h(Xi1 , . . . , Xim).

Example 5.13 symmetric kernel

If X1
d
= X2

d
= X and X1, X2, and X are exchangeable, we can write the

variance of the random variable X as

V(X) = E(X2
1 )− E(X1)E(X2).

This may suggest the kernel

h(x1, x2) = x2
1 − x1x2, (5.33)

which is not symmetric, that is, h(x1, x2) 6= h(x2, x1). We can, however, form
a kernel that is equivalent (in the sense of expected value) by a linear combi-
nation (with equal weights):

h̄(x1, x2) =
1

2
(h(x1, x2) + h(x2, x1))

=
1

2
(x1 − x2)

2, (5.34)

which is symmetric.

Because of the symmetry, we will just need to consider h evaluated over
the possible combinations of m items from the sample of size n. Furthermore,
because the Xij are exchangeable, the properties of h(Xi1 , . . . , Xim) are the
same as the properties of h(X1, . . . , Xm).

Degree of Expectation Functional

We might wonder what is the minimum number of arguments a kernel that
is associated with a given expectation functional must have.

Example 5.14
Consider a single observation X from a N(µ, σ2) distribution with both µ
and σ2 unknown. Is there an unbiased estimator of σ2 based on X? Suppose
T (X) is unbiased for σ2. Now, suppose σ2 = σ2

0 , some fixed value; that is,
E(T (X)) = σ2

0 . Because X is complete sufficient statistic for µ, E(T (X)) = σ2
0

for all µ implies T (X) = σ2
0 a.e.; that is, T (X) cannot be unbiased for σ2.

We have seen that we do have an unbiased estimator of the variance from
a sample of size 2, X1 and X2. It is the sample variance, which can be written
as 1

2
(X1 −X2)

2, as suggested in Example 5.13.

The analysis in the previous example leads us to the concept of the degree
of an expectation functional or statistical function (see page 392). This is the
minimum number of observations that can be combined in such a way that
the expectation of the combination is the given functional. From the facts
above, we see that the degree of the variance functional is 2.
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5.2.2 Kernels and U-Statistics

Now consider the estimation of the expectation functional Θ(P ) in equa-
tion (5.32), given a random sample X1, . . . , Xn, where n ≥ m.

Clearly h(X1, . . . , Xm) is an unbiased estimator of θ = Θ(P ), and so is
h(Xi1 , . . . , Xim) for any m-tuple, 1 ≤ i1 < · · · < im ≤ n; hence, we have that

U =
1(
n
m

)
∑

all combinations

h(Xi1 , . . . , Xim) (5.35)

is unbiased for θ.
A statistic of this form is called a U-statistic. The U-statistic is a function

of all n items in the sample. The function h, which is called the kernel of the
U-statistic is a function of m arguments. We also refer to the order of the
kernel as the order of the U-statistic.

Examples

Example 5.15 rth raw moment: M ′
r(P ) = E(Xr)

In the simplest U-statistic for r = 1, the kernel is of order 1 and h is the
identity, h(x) = x. This is just the sample mean. More generally, we have the
rth raw population moment by defining hr(xi) = xr

i , yielding the first order
U-statistic

U(X1, . . . , Xn) =
1

n

n∑

i=1

Xr
i ,

which is the rth sample moment.
(The notation hr will be used differently below.***)

Example 5.16 rth power of the mean: (E(X))
r

Another simple U-statistic with expectation (E(X))
r

where the rth order ker-
nel is h(x1, . . . , xr) = x1 · · ·xr. The U-statistic

U(X1, . . . , Xn) =
1(
n
r

)
∑

all combinations

Xi1 · · ·Xir

has expectation (E(X))r.

Example 5.17 Pr(X ≤ a): Θ(P ) = E
(
I]∞,a](X)

)
= P (a)

Compare this with the quantile functional in equation (5.31), which cannot
be expressed as an expectation functional. The quantile problem is related to
an inverse problem in which the property of interest is the π; that is, given a
value a, estimate P (a). We can write an expectation functional and arrive at
the U-statistic
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U(X1, . . . , Xn) =
1(
n
1

)
n∑

i=1

I]−∞,a](Xi)

= Pn(a),

where Pn is the ECDF.

Example 5.18 Gini’s mean difference

Θ(P ) = E (|X1 −X2|)
A familiar second order U-statistic is Gini’s mean difference, in which h(x1, x2) =
|x2 − x1|, for n ≥ 2,

U =
1(
n
2

)
∑

i<j

|Xj −Xi|. (5.36)

Example 5.19 covariance: Σ(PY Z) = Cov(Y, Z)
Let X = (Y, Z). We form the second order kernel

h(x1, x2) =
1

2
(y1 − y2)(z1 − z2), (5.37)

where xi = (yi, zi). We see that

E(h(X1 , X2)) =
1

2
(E(Y1Z1) − E(Y1)E(Z2) + E(Y2Z2)− E(Y1)E(Z2))

= Cov(U, Z).

We form the U-statistic

U(X1, . . . , Xn) =
1(
n
2

)
n∑

i<j

h(Xi, Xj). (5.38)

This U-statistic is the sample covariance S2
y,z, that is,

U(x1, . . . , xn) =
1

n− 1

n∑

i=1

(yi − ȳ)(zi − z̄),

which is unbiased for the population covariance if it exists.
Notice that if Y = Z, the U-statistic

U(X1, . . . , Xn) =
2

n(n − 1)

n∑

i<j

h(Xi, Xj). (5.39)

is the sample variance S2 , which is unbiased for the population variance if it
exists. The kernel (5.37) is the same as (5.33), which we put in the symmetric
form (5.34).
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Partitioning the Sample

Notice that while the kernel is a function of onlym arguments, U is a function
of all n random variables, U(X1, . . . , Xn).

Some useful statistical techniques involve partitioning of a given sample.
The jackknife (see Section 3.6.1 beginning on page 301) is based on a system-
atic partitioning of the sample, and the bootstrap (see Section 3.6.2 beginning
on page 304) is based on a random resampling of the sample.

If we index the elements of a given sample of size n as {1, . . . , n}, for given
a integer r with 1 ≤ r ≤ n, we may form the sample with indexes

S = {i1, . . . , ir} ⊆ {1, . . . , n}.

Corresponding to a statistic Tn computed from the full sample, we often use
the notation Tr,S to denote the corresponding statistic computed from the
sample indexed by S; that is,

Tr,S = Tr(Xi1 , . . . , Xir ).

To analyze statistical properties of the U statistic, we need to know which
elements of the sample occur in each term in the sum (5.35) over all combina-
tions. Sometimes it is useful to order these combinations in a systematic way.
A lexicographic ordering is often the best way to do this. In one lexicographic
ordering, we write the labels as an m-tuple (i1, . . . , im) and index the set of
combinations such that (i1, . . . , im) is less than (j1, . . . , jm), if i1 < j1 or else
if for r > 1, ik = jk for k < r and ir < jr. This ordering makes it easy
to identify a pattern of the terms in the sum (5.35) in which any particular
Xi appears. The element X1, for example, appears in the first

(
n−1
m−1

)
terms,

and the element X2, appears in the first
(

n−2
m−2

)
terms and in the

(
n−2
m−3

)
terms

following the first
(

n−1
m−1

)
terms. Hence, X1 and X2 occur together in

(
n−2
m−2

)

terms. These patterns become increasingly complicated of course.
It is instructive to note some simple results of the sum of Tr,S , for various

forms of Tn, over all combinations of a given sample, as in equation (5.35).
We will denote such a summation as

∑

C

Tr,S .

Now, as an example, let

Tn =

n∑

i=1

Xi/n = X.

Then

T 2
n =

1

n2




n∑

i=1

X2
i +

∑

i 6=j

XiXj


 , (5.40)
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∑

C

Tr,S =

(
n− 1

r − 1

)
n

r
Tn, (5.41)

∑

C

TnTr,S = Tn

∑

C

Tr,S

=

(
n− 1

r − 1

)
n

r
T 2

n , (5.42)

and

∑

C

T 2
r,S =

(
n− 2

r − 2

)
1

r2




n∑

i=1

X2
i +

∑

i 6=j

XiXj




+

((
n− 1

r − 1

)
−
(
n− 2

r − 2

))
1

r2

n∑

i=1

X2
i

=

(
n− 2

r − 2

)
1

r2

(
n2T 2

n +
n − r
r − 1

n∑

i=1

X2
i

)
. (5.43)

U-Statistic as a Conditional Expectation of the Kernel

Notice that a U-statistic could be defined in terms of a conditional expectation
of the kernel, given a sufficient statistic, say the order statistics. That is, if U is
as given in equation (5.35), X1, . . . , Xn is a random sample and X(1), . . . , X(n)

are the order statistics from the given distribution, and h is anmth order kernel
(with m ≤ n), then

U = E
(
h(X1, . . . , Xm)|X(1), . . . , X(n)

)
. (5.44)

Example 5.13 shows that the kernel is not unique; that is, the same U-
statistic could be formed from different kernels.

Variations of the Order of the Kernel

We informally defined the order of the kernel as the “number of arguments” in
the kernel, and by this we meant the number of sample items included in the
kernel. Occasionally, the kernel will include some argument computed from
the full sample; that is, an mth order kernel involves more than m items from
the sample; hence the precise meaning of “order” breaks down somewhat. An
example of such a kernel is one that is a function of a single observation as well
as of the sample mean, h(xi, x). Such a kernel obviously cannot be symmetric.
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Example 5.20 variance
Writing the variance of the random variable X as

V(X) = E ((X − E(X))
2
)

may suggest the kernel
h(xi, x̄) = (xi − x)2. (5.45)

At first glance, we might think that the expected value of this kernel is σ2.
Because Xi is included in X, however, we have

E
(
h(Xi, X)

)
= E





(n − 1)Xi/n−

∑

j 6=i

Xj/n




2



= E


(n− 1)2X2

i /n
2 − 2(n− 1)Xi

∑

j 6=i

Xj/n
2

+
∑

j 6=k 6=i

XjXk/n
2 +

∑

j 6=i

X2
j /n

2




= (n− 1)2µ2/n2 + (n− 1)2σ2/n2 − 2(n− 1)(n− 1)µ2/n2

+(n− 1)(n− 2)µ2/n2 + (n− 1)µ2/n2 + (n − 1)σ2/n2

=
n− 1

n
σ2,

and the U-statistic associated with this kernel of course also has expectation
n−1

n σ2. On more careful thought, we would expect the expected value of the
kernel to be less than σ2, because the expectation of (Xi − µ)2, which does
not have (n− 1)Xi/n subtracted out, is σ2.

This is not an example of a U-statistic that is “biased”. A U-statistic is
always (tautologically) unbiased for its expectation, if it exists. It we want a
U-statistic for the variance, we have started with the wrong kernel!.

If instead of the kernel h above, we used the kernel

g(Xi, X) =
n

n− 1
(Xi −X)2, (5.46)

we would have an expectation functional of interest; that is, one such that
E(g(X1, . . . , Xm)) is something of interest, namely σ2.

Example 5.21 jackknife variance estimator
The jackknife variance estimator (3.166)

∑N
j=1(T

∗
j − T )2

r(r − 1)
.

is a U-statistic whose kernel is of order n− d, but the kernel also involves all
n observations.
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Generalized U-Statistics

We can generalize U-statistics in an obvious way to independent random sam-
ples from more than one population. The sample sizes can be different. We do
not even require that the number of elements used as arguments to the kernel
be the same.

Example 5.22 two-sample Wilcoxon statistic
A common U-statistic involving two populations is the two-sample Wilcoxon
statistic. For this, we assume that we have two samples X11, . . . , X1n1 and
X21, . . . , X2n2. The kernel is h(x1i, x2j) = I]−∞,0](x2j − x1i). The two-sample
Wilcoxon statistic is

U =
1

n1n2

n1∑

i=1

n2∑

j=1

I]−∞,0](X2j −X1i). (5.47)

This is an unbiased estimator of Pr(X11 ≤ X21).
The more familiar form of this statistic is n1n2U , and in this form it is

called the Mann-Whitney statistic.
The two sample Wilcoxon statistic or the Mann-Whitney statistic can be

used to test that the distributions of two populations are the same versus
the alternative that a realization from one distribution is typically smaller
(or larger) than a realization from the other distribution. Although the two
sample Wilcoxon statistic is sometimes used to test whether one population
has a larger median than that of another population, if the distributions have
quite different shapes, a typical value from the first population may tend to
be smaller than a typical value from the second population.

5.2.3 Properties of U-Statistics

U-statistics have a number of interesting properties. U-statistics are often
useful in nonparametric inference because, among other reasons, they are
asymptotically the same as the plug-in estimator that is based on the em-
pirical CDF. Some of the important statistics used in modern computational
statistical methods are U-statistics.

By conditioning on the order statistics, we can show that a UMVUE can
be expressed as a U-statistic.

Theorem 5.3
Let X1, . . . , Xn be a random sample from a distribution with parameter θ and
with finite variance. Let T = T (X1, . . . , Xn) be unbiased for θ. Then there is
a U-statistic, U , that is also unbiased for θ, and

V(U) ≤ V(T ).
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Proof.
We first define an nth order expectation kernel to be associated with T ; in
fact, it is the function itself:

h(Xi1 , . . . , Xin) = T (Xi1 , . . . , Xin).

The associated U-statistic is

U =
1

n!

∑

C

T (Xi1 , . . . , Xin)

Now, as in equation (5.44), we write

U = E
(
T (Xi1 , . . . , Xin)|X(1), . . . , X(n)

)
.

Hence,

E
(
U2
)

= E
((

E
(
T |X(1), . . . , X(n)

))2)

≤ E
(
E
(
T 2|X(1), . . . , X(n)

))

= E
(
T 2
)
.

with equality if and only if E
(
T |X(1), . . . , X(n)

)
is degenerate and equals T

with probability 1.
We will assume E(h(X1, . . . , Xm)2) < ∞. We first introduce some addi-

tional notation for convenience.
(The notation hr problem ***)
For k = 1, . . . , m, let

hk(x1, . . . , xk) = E(h(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk)

= E(h(x1, . . . , xk, Xk+1, . . . , Xm)). (5.48)

We have hm = h and

hk(x1, . . . , xk) = E(hk+1(x1, . . . , xk, Xk+1, . . . , Xm)). (5.49)

Now, we define the centered versions of the h: for k = 1, . . . , m,

h̃k = hk − E(h(X1, . . . , Xm)), (5.50)

and let
h̃ = h̃m

We see that the corresponding centered U-statistic is

U − E(U) =
1(
n
m

)
∑

C

h̃(Xi1 , . . . , Xim) (5.51)

This notation is convenient in the demonstration that a sequence of ad-
justed kernels forms a martingale (see Serfling (1980), page 177).

It is also a simple matter to work out the variance of the corresponding
U-statistic.
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Theorem 5.4 (Hoeffding’s Theorem)
Let U be a U-statistic with mth order kernel h with E(h(X1 , . . . , Xm)2) <∞.
Then

V(U) =
1(
n
m

)
m∑

k=1

(
m

k

)(
n−m
m− k

)
ζk (5.52)

where
ζk = V(hk(X1, . . . , Xk)). (5.53)

Proof.
MS2 p. 176.

Projections of U-Statistics

One method of working out the asymptotic distribution of a U-statistic is by
use of projections

We first relate Theorem 1.65 on page 119 to the U-statistic,

Un =
1(
n
m

)
∑

all combinations

h(Xi1 , . . . , Xim).

Let Ũn be the projection of Un onto X1, . . . , Xn. (See Section 1.5.3 beginning
on page 116.) Recall, as in equation (5.48),

h1(x1) = E(h(X1 , X2, . . . , Xm)|X1 = x1)

= E(h(x1, X2, . . . , Xm)).

and
h̃1 = h1 − E(h(X1, . . . , Xm)),

Then, starting with the definition of Ũn as a projection, we have

Ũn = E(Un) +

n∑

i=1

(E(Un |Xi) − E(Un))

= E(Un) +
m

n

n∑

i=1

h̃1(Xi).

This yields

V(Ũn) =
m2

n
ζ1,

where, in the notation of equation (5.53), ζ1 = V(h1(X1)).
Hence, by Hoeffding’s theorem (actually a corollary of it), and Theo-

rem 1.65, we have
E((Un − Ũn)2) ∈ O(n−2).

If ζ1 > 0, this yields

√
n(Un − E(Un))

d→ N(0, m2ζ1).

(Theorem 3.5(i) in MS2.)
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Computational Complexity

Evaluating a U-statistic can be computationally intensive, with the number of
arithmetic operations of O(nm). As we discussed on page 303 for the delete-d
jackknife, we may reduce the number of computations by using only some
of the possible combinations. There are various ways that the combinations
could be chosen, including, of course, just a random sampling. The U-statistic
would be approximated by an average of the kernel evaluated only over the
random sampling of the subsets.

5.3 Asymptotically Unbiased Estimation

A sequence of estimators that are unbiased for any finite sample size is unbi-
ased in the limit and is asymptotically unbiased. There are, however, many
situations when an unbiased estimator in a finite sample does not exist, or
when we cannot form one easily, or when a biased estimator has better MSE
for any finite sample than an unbiased estimator. A biased estimator that
is asymptotically unbiased, and for which there is no dominating unbiased
estimator, is often considered optimal.

Sometimes, by studying the nature of the bias, it may be possible to iden-
tify a correction, as in the following example that uses the jackknife (see
Section 3.6.1 on page 301).

Example 5.23 Jackknife Bias Reduction
Suppose that we can represent the bias of T as a power series in n−1; that is,

Bias(T ) = E(T ) − θ

=
∞∑

q=1

aq

nq
, (5.54)

where the aq do not involve n. If all aq = 0, the estimator is unbiased. If
a1 6= 0, the order of the bias is n−1. (Such an estimator is sometimes called
“second-order accurate”. “First-order” accuracy implies a bias of order n−1/2.)

Using the power series representation for the bias of T , we see that the
bias of the jackknife estimator is
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Bias(J(T )) = E(J(T )) − θ

= n(E(T ) − θ) − n− 1

n

n∑

j=1

E(T(−j) − θ)

= n

∞∑

q=1

aq

nq
− (n− 1)

( ∞∑

q=1

aq

(n− 1)q

)

= a2

(
1

n
− 1

n− 1

)
+ a3

(
1

n2
− 1

(n− 1)2

)
+ . . .

= −a2

(
1

n(n − 1)

)
+ a3

(
1

n2
− 1

(n − 1)2

)
+ . . . ; (5.55)

that is, the bias of the jackknife estimator, Bias(J(T )), is at most of order
n−2. If aq = 0 for q = 2, . . ., the jackknife estimator is unbiased.

This reduction in the bias is a major reason for using the jackknife. Any
explicit analysis of the bias reduction, however, depends on a representation
of the bias in a power series in n−1 with constant coefficients. This may not
be possible, of course.

From

E(J(T )) − θ = E(T ) − θ + (n− 1)


E(T ) − 1

n

n∑

j=1

E(T(−j))


 ,

we have the jackknife estimator of the bias in T ,

BJ = (n− 1)
(
T (•) − T

)
, (5.56)

and the jackknife bias-corrected estimator of θ,

TJ = nT − (n − 1)T (•). (5.57)

Example 5.24 Higher-Order Bias Corrections
Suppose that we pursue the bias correction to higher orders by using a second
application of the jackknife. The pseudovalues are

T ∗∗
j = nJ(T ) − (n− 1)J(T(−j)). (5.58)

Assuming the same series representations for the bias as before, a second-order
jackknife estimator,

J2(T ) =
n2J(T ) − (n − 1)2

∑n
j=1 J(T )(−j)/n

n2 − (n − 1)2
, (5.59)

is unbiased to order O(n−3).
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There are two major differences between this estimator and the first-order
jackknifed estimator. For the first-order jackknife, J(T ) differs from T by a
quantity of order n−1; hence, if T has variance of order n−1 (as we usually
hope), the variance of J(T ) is asymptotically the same as that of T . In other
words, the bias reduction carries no penalty in increased variance. This is not
the case for higher-order bias correction of J2(T ).

The other difference is that in the bias expansion,

E(T ) − θ =

∞∑

q=1

aq/n
q,

if aq = 0 for q ≥ 2, then the first-order jackknifed estimator is unbiased. For
the second-order jackknifed estimator, even if aq = 0 for q ≥ 3, the estimator
may not be unbiased. Its bias is

Bias(J2(T )) =
a2

(n− 1)(n − 2)(2n− 1)
; (5.60)

that is, it is still of order n−3.

We will consider four general kinds of estimators that may be of this type:
estimators based on the method of moments, functions of unbiased estimators,
V-statistics, and quantile estimators. Some of these estimators arise as plug-in
statistics in the ECDF, such as those based on the method of moments, and
others from a general plug-in rule, in which individual estimators are used in
different parts of the formula for the estimand, such as ratio estimators.

We would like for such biased estimators to have either limiting bias or
asymptotic bias of zero.

5.3.1 Method of Moments Estimators

If the estimand is written as a functional of the CDF, θ = Θ(P ), an estimator

formed by applying Θ to the ECDF, θ̂ = Θ(Pn) is call a plug-in estimator.
If Θ is an expectation functional of the form

∫
xrdP (x), that is, if Θ is

a raw moment, then the plug-in estimator Θ(Pn) is unbiased for Θ. Central
moments are more often of interest interest. A plug-in estimator of a central
moment, just as the central moment itself, can be written as a function of the
corresponding raw moment and the first moment. Such estimators are called
method of moments estimators.

An example of an estimator based on the method of moments is S̃2 =
(n−1)S2/n as an estimator of the population variance, σ2. This is the second
central moment of the sample, just as σ2 is the second central moment of the
population. We have seen that, in certain conditions, the MSE of S̃2 is less
than that of S2, and while it is biased, its limiting and asymptotic bias is zero
and is of order 1/n.

Although the second central sample moment is biased, the raw sample
moments are unbiased for the corresponding raw population moments, if they
exist.
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5.3.2 Ratio Estimators

Ratio estimators, that is, estimators composed of the ratio of two separate
estimators, arise often in sampling applications. Another situation is when
an estimator is based on a linear combination of observations with different
variances. If we have some way of estimating the variances so we can form
a weighted linear combination, the resulting estimator will be biased, but its
MSE may be better than the unweighted estimator. Also, it is often the case
that the biased estimator is asymptotically normal and unbiased.

5.3.3 V-Statistics

As we have seen, a U-statistic is an unbiased estimator of an expectation func-
tional; specifically, if Θ(P ) = E(h(X1, . . . , Xm)) the U-statistic with kernel h
is unbiased for Θ(P ). Applying the functional Θ to the ECDF Pn, we have

Θ(Pn) =
1

nm

n∑

i1=1

· · ·
n∑

im=1

h(Xi1 , . . . , Xim)

= V (say), (5.61)

which we call the V-statistic associated with the kernel h, or equivalently
associated with the U-statistic with kernel h. Recalling that Θ(Pn) in general
is not unbiased for Θ(P ), we do not expect a V-statistic to be unbiased in
general. However, in view of the asymptotic properties of Pn, we might expect
V-statistics to have good asymptotic properties.

A simple example is the variance, for which the U-statistic in equa-
tion (5.39) is unbiased. The V-statistic with the same kernel is

V =
1

2n2

n∑

i=1

n∑

j=1

(Xi −Xj)
2 (5.62)

=
1

2n2

n∑

i=1

n∑

j=1

(X2
i +X2

j − 2XiXj)

=
n− 1

n
S2,

where S2 is the sample variance. This V-statistic is the same as the plug-in
estimator of the population variance, and as with the plug-in estimator, no
particular underlying distribution is assumed. It is also the same as the MLE
estimator given an assumed underlying normal distribution. The V-statistic
is biased for the population variance; but as we have seen, it has a smaller
MSE than the unbiased U-statistic.

The development of V-statistics can be based on the idea of applying the
same functional to the ECDF Fn as the functional that defines the estimand
when applied to the CDF F , and which is the basis for the U-statistics. Since

Theory of Statistics c©2000–2025 James E. Gentle



418 5 Unbiased Point Estimation

the ECDF assigns probability 1/n to each point of the values X1, . . . , Xn, any
m independent variables with CDF Fn take on each of the possible m-tuples
(Xi1 , . . . , Xim) with probability 1/nm. The plug-in estimator, call it V, of θ
is therefore

V =
1

nm

n∑

i1=1

· · ·
n∑

im=1

h(Xi1 , . . . , Xim).

Notice for m = 1, V is a U-statistic; but consider m = 2, as above. We have

U =
1

n(n− 1)

∑

i

∑

j 6=i

h(Xi, Xj),

however

V =
1

n2

n∑

i=1

n∑

j=1

h(Xi, Xj)

=
1

n2

∑

i

∑

j 6=i

h(Xi, Xj) +
1

n2

n∑

i=1

h(Xi, Xi)

While, as we have seen U is unbiased for θ, we see that V is biased:

E(V ) =
n− 1

n
θ+

1

n
E(h(X1, X1))

= θ +
1

n
(E(h(X1, X1)) − θ) .

An example of a V-statistic with m = 2 uses h(x1, x2) = (x1 − x2)
2/2, as

in equation (5.62), and results in (n− 1)S2/n as an estimator of σ2, which is
of course asymptotically unbiased.

Theorem 3.16 in MS2 shows that under certain general conditions, V-
statistics have limiting normal distributions and are asymptotically unbiased.

5.3.4 Estimation of Quantiles

plug-in
finite sample properties – Harrel-Davis estimator
asymptotic normality (ch 1)

5.4 Asymptotic Efficiency

Often a statistical procedure does not have some desirable property for any
finite sample size, but the procedure does have that property asymptotically.
The asymptotic properties that are of most interest are those defined in terms
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of a sequence that has a limiting standard normal distribution, N(0, 1), or more
generally, Nk(0, Ik). A standard normal distribution of a statistic is desirable
because in that case, it is easy to associate statements of probabilities with
values of the statistic. It is also desirable because it is often easy to work out
the distribution of functions of a statistic that has a normal distribution.

It is important to remember the difference in an asymptotic property and
a limiting property. An asymptotic distribution is the same as a limiting distri-
bution, but other asymptotic properties are defined, somewhat arbitrarily, in
terms of a limiting distribution of some function of the sequence of statistics
and of a finite divergent or convergent sequence, an. This seems to mean that
a particular asymptotic property, such as, say, the asymptotic variance, de-
pends on what function of the sequence of statistics that we choose. Although
there may be some degree of arbitrariness in “an” asymptotic expectation,
there is a certain uniqueness, as expressed in Proposition 2.3 in MS2.

5.4.1 Asymptotic Relative Efficiency

We assume a family of distributions P, a sequence of estimators {Tn} of
g(θ), and a sequence of constants {an} with limn→∞ an = ∞ or with

limn→∞ an = a > 0, and such that anTn(X)
d→ T and 0 < E(T ) < ∞.

We define the asymptotic mean squared error of {Tn} for estimating g(θ) wrt
P as an asymptotic expectation of (Tn − g(θ))2 ; that is, E((T − g(θ))2)/an,
which we denote as AMSE(Tn, g(θ),P).

For comparing two estimators, we may use the asymptotic relative effi-
ciency, which for the estimators Sn and Tn of g(θ) wrt P is

ARE(Sn, Tn,P) = AMSE(Sn , g(θ),P)/AMSE(Tn, g(θ),P).

5.4.2 Asymptotically Efficient Estimators

Relative efficiency is a useful concept for comparing two estimators, whether or
not they are unbiased. When we restrict our attention to unbiased estimators
we use the phrase Fisher efficient to refer to an estimator that attains its
Cramér-Rao lower bound (Definition 3.8). Again, notice the slight difference in
“efficiency” and “efficient”; while one meaning of “efficiency” is a relative term
that is not restricted to unbiased estimators (or other unbiased procedures, as
we will see later), “efficient” is absolute. “Efficient” only applies to unbiased
estimators, and an estimator either is or is not efficient. The state of being
efficient, of course is called “efficiency”. This is another meaning of the term.
The phrase “Fisher efficiency” helps to emphasis this difference.

We consider the problem of estimating the k-vector θ based on a random
sample X1, . . . , Xn. We denote the sequence of estimators as {θ̂n}. Suppose

(Vn(θ))
− 1

2

(
θ̂n − θ

)
d→ Nk(0, Ik),
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where, for each n, Vn(θ) is a k×k positive definite matrix. From the definition

of asymptotic expectation of
(
θ̂n − θ

)2

, Vn(θ) is the asymptotic variance-

covariance matrix of θ̂n. Note that this matrix may depend on θ. We should
note that for any fixed n, Vn(θ) is not necessarily the variance-covariance

matrix of θ̂n; that is, it is possible that Vn(θ) 6= V(θ̂n).
Just as we have defined Fisher efficiency for an unbiased estimator of fixed

size, we define a sequence to be asymptotically Fisher efficient if the sequence
is asymptotically unbiased, the Fisher information matrix In(θ) exists and is

positive definite for each n, and Vn(θ) = (In(θ))−1 for each n. The definition
of asymptotically (Fisher) efficiency is often limited even further so as to apply
only to estimators that are asymptotically normal. (MS2 uses the restricted
definition.)

Being asymptotically efficient does not mean for any fixed n that θ̂n is
efficient. First of all, for fixed n, θ̂n may not even be unbiased; even if it is
unbiased, however, it may not be efficient.

As we have emphasized many times, asymptotic properties are different
from limiting properties. As a striking example of this, consider a very simple
example from Romano and Siegel (1986).

Example 5.25 Asymptotic and Limiting Properties

Let X1, . . . , Xn
iid∼ N1(µ, 1), and consider a randomized estimator µ̂n of µ

defined by

µ̂n =




Xn with probability 1− 1

n

n2 with probability 1
n .

It is clear that n1/2(µ̂n−µ)
d→ N(0, 1), and furthermore, the Fisher information

for µ is n−1/2. The estimator µ̂n is therefore asymptotically Fisher efficient.
The bias of µ̂n, however, is

E(µ̂n − µ) = µ

(
1− 1

n

)
+ n− µ = n− µ/n,

which tends to infinity, and the variance is

V(µ̂n) = E(µ̂2)− (E(µ̂))2

=

(
1− 1

n

)
1

n
+

(
1

n

)
n4 −

(
µ

(
1− 1

n

)
+ n

)2

= n3 + O(n2),

which also tends to infinity. Hence, we have an asymptotically Fisher efficient
estimator whose limiting bias and limiting variance are both infinite.

The example can be generalized to any estimator Tn of g(θ) such that

V(Tn) = 1/n and n1/2(Tn − g(θ)) d→ N(0, 1). From Tn form the estimator
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T̃n =




Tn with probability 1− 1

n

n2 with probability 1
n .

The estimator T̃n is also asymptotically Fisher efficient but has infinite limit-
ing bias and infinite limiting variance.

Asymptotic Efficiency and Consistency

Although asymptotic efficiency implies that the estimator is asymptotically
unbiased, even if the limiting variance is zero, asymptotic efficiency does not
imply consistency. The counterexample above shows this.

Likewise, of course, consistency does not imply asymptotic efficiency. There
are many reasons. First, asymptotic efficiency is usually only defined in the
case of asymptotic normality (of course, it is unlikely that a consistent esti-
mator would not be asymptotically normal). More importantly, the fact that
both the bias and the variance go to zero as required by consistency, is not
very strong. There are many ways both of these can go to zero without re-
quiring asymptotic unbiasedness or that the asymptotic variance satisfy the
asymptotic version of the information inequality.

The Asymptotic Variance-Covariance Matrix

In the problem of estimating the k-vector θ based on a random sample
X1, . . . , Xn with the sequence of estimators as {θ̂n}, if

(Vn(θ))
− 1

2

(
θ̂n − θ

)
d→ Nk(0, Ik),

where, for each n, Vn(θ) is a k × k positive definite matrix, then Vn(θ) is the

asymptotic variance-covariance matrix of θ̂n. As we have noted, for any fixed
n, Vn(θ) is not necessarily the variance-covariance matrix of θ̂n.

If Vn(θ) = V(θ̂n), then under the information inequality regularity condi-
tions that yield the CRLB, we know that

Vn(θ) � (In(θ))−1 ,

where In(θ) is the Fisher information matrix.

Superefficiency

Although if Vn(θ) 6= V(θ̂n), the CRLB says nothing about the relation-

ship between Vn(θ) and (In(θ))
−1

, we might expect that Vn(θ) � (In(θ))
−1

.
That this is not necessarily the case is shown by a simple example given by
Joseph Hodges in a lecture in 1951, published in Le Cam (1953) (see also
Romano and Siegel (1986)).
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Example 5.26 Hodges’ Superefficient Estimator

Let X1, . . . , Xn
iid∼ N1(µ, 1), and consider an estimator µ̂n of µ defined by

µ̂n =




Xn if |Xn| ≥ n−1/4

tXn otherwise,

for some fixed t with |t| < 1.
We have √

n(Tn − g(θ)) d→ N(0, v(θ)),

where v(θ) = 1 if θ 6= 0 and v(θ) = t2 if θ = 0. (This takes a little working
out; consider the two parts.)

Notice that I(θ) = 1 and g′(θ) = 1, hence, at θ = 0, with |t| < 1, we have

v(θ) <
(g′(θ))2

I(θ)
.

The estimator µ̂n is sometimes called “Hodges’ superefficient estimator”.

What gives Example 5.26 its kick is the dependence of the asymptotic
distribution of µ̂n on µ. If µ 6= 0, µ̂n has the same asymptotic distribution
as Xn, and obeys the CRLB, both in its variance for finite n (even though
it is biased) and in its asymptotic variance. However, if µ = 0, µ̂n is still
asymptotically unbiased, but the asymptotic variance of µ̂n is t2/n, which is
smaller than the inverse of asymptotic Fisher information, 1/n.

A point in the parameter space at which this anomaly occurs is called
a point of superefficiency. Le Cam has shown that under certain regularity
conditions (that are slightly more stringent than the information inequality
regularity conditions, see page 169) the number of points of superefficiency
is countable. I list all of these regularity conditions in the statement of the
following theorem, which is due to Le Cam (1953).

Theorem 5.5
Let X1, . . . , Xn be iid *****************

Proof.

Superefficiency is not important in applications (that is, where n is finite)
any decrease in mean squared error at a point of superefficiency is accompanied
by an increase in mean squared error at nearby points (and, of course, if we
knew the parameter was a point of superefficiency, we would probably not be
estimating it.
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5.5 Applications

Many methods of statistical inference rely on samples of identically distributed
random variables. Two major areas of application of the methods are in anal-
ysis of linear models and sampling of finite populations.

5.5.1 Estimation in Linear Models

In a simple variation on the requirement of identical distributions, we assume
a model with two components, one “systematic” and one random, and the
distributions of the observable random variables depend on the systematic
component.

Systematic and Random Components

The most common form of linear model is one in which a random variable Y
is the sum of a systematic component that determines its expected value and
random component that is the value of an underlying unobservable random
variable that has an expected value of 0. The systematic component may be
a function of some additional variables x and parameters θ. If we represent
the underlying unobservable random with expectation 0, as ε, we have

Y = f(x, θ) + ε. (5.63)

In this setup the mean of the random variable Y is determined by the param-
eter θ and the values of the x variables, which are covariates (also called re-
gressors, carriers, or independent variables). We generally treat the covariates
as fixed variables, that is, whether or not we could also model the covariates
as random variables, in the simplest cases, we will use their observed values
without regard to their origin.

Regression Models

The model above is a regression model. In the simplest variation, the observ-
able random variables are independent, and have distributions in the same
location family: P = {Pf(x,θ),Pε

}. The family Pε of distributions Pε of the
random component may be a parametric family, such as N(0, σ2), or it may
be a nonparametric family. Whatever other assumptions on Pε, we assume
E(ε) = 0.

Linear Models

Often we assume that the systematic component is a linear combination of
the covariates. This setup is called a linear model, and is usually written in
the form
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Y = xTβ + E, (5.64)

where Y is the observable random variable, x is an observable p-vector of
covariates, β is an unknown and unobservable p-vector of parameters, and E
is an unobservable random variable with E(E) = 0 and V(E) = σ2I. The
parameter space for β is B ⊆ IRp.

An item of a random sample from this model may be denoted

Yi = xT
i β +Ei, (5.65)

and a random sample be written in the vector-matrix form

Y = Xβ + E, (5.66)

where Y and E are n-vectors, X is an n × p matrix whose rows are the xT
i ,

and β is the p-vector above. A sample of realizations may be written in the
vector-matrix form

y = Xβ + ε. (5.67)

where y and ε are n-vectors. This is the most commonly used notation.

Inference in a Linear Model

For estimation in a linear model, rather than formulating a decision problem
and seeking a minimum risk estimator, we usually begin with a different ap-
proach. Estimation in a linear model is most commonly developed based on
two simple heuristics: least squares and unbiasedness.

The degree of β is p, meaning that the minimum number of observations
required for unbiased estimation of β is p. Inferences about characteristics
of the distribution of ε require additional observations, however, and so we
assume n > p in the following.

In statistical inference, we can think of β either as an unobservable random
variable or as an unknown constant. If we think of it as an unknown constant
and we want to determine a value of it that optimizes some objective function
(such as a likelihood or a sum of squares), then we first must substitute a
variable for the constant. Although we often skip over this step, it is important
conceptually.

Least Squares Solutions of Overdetermined Linear Systems

Having substituted the variable b is in place of the unknown model parameter
β, we have an overdetermined linear system

y ≈ Xb, (5.68)

where y and X are given, b is unknown, and y ∈ IRn, X ∈ IRn×p, and b ∈ IRp.
Solving for b in this system is a common problem in linear algebra. It is
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one aspect of the statistical problem of fitting the model (5.66), in which we
assume that y is a realization of a random variable Y with E(Y ) = Xβ, but
for the time being we will just consider the algebraic issues in solving, or
“fitting”, the overdetermined system.

Fitting an overdetermined system y ≈ Xb involves a choice of a criterion
for the goodness of the approximation. A common choice is the squared error;
that is, a solution is a vector b that minimizes ‖y − Xb‖2. This follows the
approach to statistical inference discussed in Section 3.2.3. The solution to
the linear algebra problem (5.68) is often called an “estimator” even though
there is no underlying probability distribution.

We define a least squares estimator (LSE) of b or of β in equation (5.66)
as

b∗ = arg min
b∈B

‖y −Xb‖2, (5.69)

where ‖c‖ = ‖c‖2 =
√
cTc =

√∑p
i=1 c

2
i for the p-vector c.

A least squares estimator of β may or may not be unique. Whether or not
b∗ is unique,

‖y −Xb∗‖2 (5.70)

is unique. This is because the objective function is convex and bounded below.
The least squares estimator is obtained by direct minimization of

s(b) = ‖y −Xb‖2
= yTy − 2bTXTy + bTXTXb.

First of all, we note that s(b) is differentiable, and

∂2

∂b2
s(b) = XTX

is nonnegative definitive. We therefore know that at the minimum, we have
the estimating equation

∂s(b)/∂b = 0. (5.71)

The estimating equation leads to the normal equations:

XTXb = XTy. (5.72)

The coefficient matrix in these equations has a special form; it is a Gramian
matrix. We may use b∗ to denote any solution to the normal equations formed
from the linear system y = Xb, that is

b∗ = (XTX)−XTy. (5.73)

Notice that if X is not of full rank, b∗ is not unique.
A unique solution to these equations is

β̂ = (XTX)+XTy; (5.74)

that is, the solution arising from the Moore-Penrose inverse (see page 784).
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LSE in a Probability Model

The mechanical aspects of least squares fitting do not rely on any probability
distributions.

An LSE of β yields LSEs of other quantities. In general, for an estimand
θ that can be expressed as

θ = Eg(Y, β̂), (5.75)

we call θ̂ = g(y, β̂) the LSE of θ. Notice that this definition preserves unbi-
asedness if the relationships are linear.

If the quantities in the equations correspond to n observations that follow
the model (5.64), then we form an LSE of lTβ, for given l ∈ IRp, as

lTβ̂. (5.76)

While this quantity may not be unique, the quantity

‖Y −Xβ̂‖2/(n− p) (5.77)

is unique; it is the LSE of V(ε) = σ2; and furthermore, it is unbiased for σ2

(exercise).

Linear U-Estimability

One of the most important questions for statistical inference involves esti-
mating or testing some linear combination of the elements of the parameter
β; for example, we may wish to estimate β1 − β2 or to test the hypothesis
that β1− β2 = c1 for some constant c1. In general, we will consider the linear
combination lTβ. Whether or not it makes sense to estimate such a linear
combination depends on whether there is a function of the observable random
variable Y such that

g(E(Y )) = lTβ. (5.78)

We generally restrict our attention to linear functions of E(Y ) and formally
define a linear combination lTβ to be (linearly) U-estimable if and only if there
exists a vector t such that

tTE(Y ) = lTβ (5.79)

for any β.
It is clear that if X is of full column rank, then lTβ is linearly estimable

for any l. More generally, it is easy to see that lTβ is linearly estimable for
any l ∈ span(XT). (The t vector in equation (5.79) is just the normalized
coefficients expressing l in terms of the columns of X.)

Estimability depends only on the simplest distributional assumption about
the model; that is, that E(ε) = 0.

Theorem 5.6
Let Y = Xβ + ε where E(ε) = 0. Let lTβ be a linearly estimable function and

let β̂ = (XTX)+XTY . Then lTβ̂ is unbiased for lTβ.
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Proof.
Because l ∈ span(XT) = span(XTX), we can write

l = XTXt̃, (5.80)

for some vector t̃ Now, we have

E(lTβ̂) = E(lT(XTX)+XTY )

= t̃TXTX(XTX)+XTXβ

= t̃TXTXβ

= lTβ. (5.81)

Although we have been taking β̂ to be (XTX)+XTY , the equations above
follow for other least squares fits, b∗ = (XTX)−XTY , for any generalized
inverse. In fact, the estimator of lTβ is invariant to the choice of the generalized
inverse.

Theorem 5.7
Let Y = Xβ + ε where E(ε) = 0. Let lTβ be a linearly estimable function, let

β̂ = (XTX)+XTY and let b∗ = (XTX)−XTY . Then lTb∗ = lTβ̂.

Proof.
If b∗ = (XTX)−XTY , we have XTXb∗ = XTY , and so

lTβ̂ − lTb∗ = t̃TXTX(β̂ − b∗) = t̃T(XTY −XTY ) = 0.

Gauss-Markov Theorem

The Gauss-Markov theorem provides a restricted optimality property for es-
timators of estimable functions of β under the condition that E(ε) = 0 and
V(ε) = σ2I; that is, in addition to the assumption of zero expectation, which
we have used above, we also assume that the elements of ε have constant
variance and that their covariances are zero. Note that we do not assume
independence or normality.

The Gauss-Markov theorem states that lTβ̂ is the unique best linear un-
biased estimator (BLUE) of the estimable function lTβ. (Recall that Theo-
rem 5.7 tells us that the inner product is invariant to the choice of the general-
ized inverse; that is, lTb∗ = lTβ̂, where b∗ and β̂ are given in equations (5.73)
and (5.74) respectively.) “Linear” estimator in this context means a linear

combination of X; that is, an estimator in the form aTX. It is clear that lTβ̂
is linear, and we have already seen that it is unbiased for lTβ. “Best” in this
context means that its variance is no greater than any other estimator that
fits the requirements.
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Theorem 5.8 (Gauss-Markov theorem)
Let Y = Xβ + ε where E(ε) = 0 and V(ε) = σ2I, and assume lTβ is linearly

estimable. Let β̂ = (XTX)+XTY . Then lTβ̂ is the a.s. unique BLUE of lTβ.

Proof.
Let aTY be any unbiased estimator of lTβ, and write l = XTY t̃ as in equa-
tion (5.80) above. Because aTY is unbiased for any β, as we saw above, it

must be the case that aTX = lT. Recalling that XTXβ̂ = XTY , we have

V(aTY ) = V(aTY − lTβ̂ + lTβ̂)

= V(aTY − t̃TXTY + lTβ̂)

= V(aTY − t̃TXTY ) + V(lTβ̂) + 2Cov(aTY − t̃TXTY, t̃TXTY ).

Now, under the assumptions on the variance-covariance matrix of ε, which is
also the (conditional, given X) variance-covariance matrix of Y , we have

Cov(aTY − t̃TXTY, lTβ̂) = (aT − t̃TXT)σ2IXt̃

= (aTX − t̃TXTX)σ2It̃

= (lT − lT)σ2It̃

= 0;

that is,
V(aTY ) = V(aTY − t̃TXTY ) + V(lTβ̂).

This implies that
V(aTY ) ≥ V(lTβ̂);

that is, lTβ̂ has minimum variance among the linear unbiased estimators of
lTβ.

To see that it is unique, we consider the case in which V(aTY ) = V(lTβ̂);
that is, V(aTY − t̃TXTY ) = 0. For this variance to equal 0, it must be the

case that aT − t̃TXT = 0 or aTY = t̃TXTY = lTβ̂ a.s.; that is, lTβ̂ is the
a.s. unique linear unbiased estimator that achieves the minimum variance.

If we assume further that ε ∼ Nn(0, σ2I), we see that lTβ̂ is the uniformly
minimum variance unbiased estimator (UMVUE) for lTβ. This is because

(XTY, (Y −Xβ̂)T(Y −Xβ̂)) is complete and sufficient for (β, σ2). This line

of reasoning also implies that (Y −Xβ̂)T(Y −Xβ̂)/(n−r), where r = rank(X),
is UMVUE for σ2.

****** biased estimator with smaller MSE

Example 5.27 Inadmissibility of the LSE in the Linear Model
inadmissible under squared-error loss regularization; see page 252
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Optimal Properties of the Moore-Penrose Inverse

The solution corresponding to the Moore-Penrose inverse is unique because
that generalized inverse is unique. That solution is interesting for another
reason.

Theorem 5.9
Let b∗ be any solution to the normal equations (5.72), that is,

b∗ = (XTX)−XTY,

and let
β̂ = (XTX)+XTY

then
‖β̂‖2 ≤ ‖b∗‖2.

Proof.
To see that this solution has minimum norm, first factor Z, as

X = QRUT,

and form the Moore-Penrose inverse as

X+ = U

[
R−1

1 0
0 0

]
QT.

Now let
β̂ = X+Y.

This is a least squares solution (that is, we have chosen a specific least squares
solution).

Now, let

QTY =

(
c1
c2

)
,

where c1 has exactly r elements and c2 has n− r elements, and let

UTb =

(
t1
t2

)
,

where b is the variable in the norm ‖Y −Xb‖2 that we seek to minimize, and
where t1 has r elements.

Because multiplication by an orthogonal matrix does not change the norm,
we have

‖Y −Xb‖2 = ‖QT(Y −XUUTb)‖2

=

∣∣∣∣
∣∣∣∣
(
c1
c2

)
−
[
R1 0
0 0

](
t1
t2

)∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
(
c1 −R1t1

c2

)∣∣∣∣
∣∣∣∣
2

.
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The residual norm is minimized for t1 = R−1
1 c1 and t2 arbitrary. However, if

t2 = 0, then ‖t‖2 is also minimized. Because UTb = t and U is orthogonal,

‖b‖2 = ‖t‖2 = ‖t1‖2 + ‖t2‖2, and so with t2 = 0, that is, with b = β̂, ‖β̂‖2 is
the minimum among the norms of all least squares solutions, ‖b∗‖2.

Quadratic Forms

Quadratic forms in nonnegative definite or positive definite matrices arise
often in statistical applications, especially in the analysis of linear models. The
analysis often involves the decomposition of a quadratic form in the positive
definite matrix A, yTAy, into a sum, yTA1y + yTA2y, where A1 + A2 = A
and A1 and A2 are nonnegative definite matrices.

Cochran’s Theorems

There are various facts that are sometimes called Cochran’s theorem. The
simplest one concerns k symmetric idempotent n × n matrices, A1, . . . , Ak

that sum to the identity matrix.

Theorem 5.10 (Cochran’s theorem I)
Let A1, . . . , Ak be symmetric idempotent n× n matrices such that

In = A1 + · · ·+Ak.

Then
AiAj = 0 for all i 6= j.

Proof.
For an arbitrary j, for some matrix V , we have

V TAjV = diag(Ir , 0),

where r = rank(Aj). Now

In = V TInV

=

k∑

i=1

V TAiV

= diag(Ir , 0) +
∑

i 6=j

V TAiV,

which implies ∑

i 6=j

V TAiV = diag(0, In−r).

Now for each i, V TAiV is idempotent, and because the diagonal elements of
a symmetric idempotent matrix are all nonnegative, and hence the equation
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implies implies that for each i 6= j, the first r diagonal elements are 0. Fur-
thermore, since these diagonal elements are 0, all elements in the first r rows
and columns are 0. We have, therefore, for each i 6= j,

V TAiV = diag(0, Bi)

for some (n − r) × (n − r) symmetric idempotent matrix Bi. Now, for any
i 6= j, consider AiAj and form V TAiAjV . We have

V TAiAjV = (V TAiV )(V TAjV )

= diag(0, Bi)diag(Ir, 0)

= 0.

Because V is nonsingular, this implies the desired conclusion; that is, that
AiAj = 0 for any i 6= j.

We can now extend this result to an idempotent matrix in place of I; that
is, for an idempotent matrix A with A = A1 + · · ·+ Ak.

Theorem 5.11 (Cochran’s theorem II)
Let A1, . . . , Ak be n× n symmetric matrices and let

A = A1 + · · ·+Ak.

Then any two of the following conditions imply the third one:

(a). A is idempotent.
(b). Ai is idempotent for i = 1, . . . , k.
(c). AiAj = 0 for all i 6= j.

(The theorem also applies to nonsymmetric matrices if condition (c) is aug-
mented with the requirement that rank(A2

i ) = rank(Ai) for all i. We will
restrict our attention to symmetric matrices, however, because in most appli-
cations of these results, the matrices are symmetric.)
Proof.
First, if we assume properties (a) and (b), we can show that property (c)
follows for the special case A = I.

Now, let us assume properties (b) and (c) and show that property (a)
holds. With properties (b) and (c), we have

AA = (A1 + · · ·+Ak) (A1 + · · ·+Ak)

=

k∑

i=1

AiAi +
∑

i 6=j

k∑

j=1

AiAj

=

k∑

i=1

Ai

= A.
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Hence, we have property (a); that is, A is idempotent.
Finally, let us assume properties (a) and (c). Property (b) follows imme-

diately from
A2

i = AiAi = AiA = AiAA = A2
iA = A3

i

and the fact that Ap+1 = Ap =⇒ A is idempotent.

Theorem 5.12 (Cochran’s theorem IIa)
Any two of the properties (a) through (c) also imply a fourth property:

(d). rank(A) = rank(A1) + · · ·+ rank(Ak).

Proof.
We first note that any two of properties (a) through (c) imply the third one,
so we will just use properties (a) and (b). Property (a) gives

rank(A) = tr(A) = tr(A1 + · · ·+Ak) = tr(A1) + · · ·+ tr(Ak),

and property (b) states that the latter expression is rank(A1)+· · ·+rank(Ak),
thus yielding property (d).

There is also a partial converse: properties (a) and (d) imply the other
properties.

One of the most important special cases of Cochran’s theorem is when
A = I in the sum:

In = A1 + · · ·+Ak.

The identity matrix is idempotent, so if rank(A1) + · · ·+ rank(Ak) = n, all
the properties above hold. (See Gentle (2007), pages 283–285.)

In applications of linear models, a quadratic form involving Y is often
partitioned into a sum of quadratic forms. The most important statistical
application of Cochran’s theorem is for the distribution of quadratic forms of
normally distributed random vectors.

Theorem 5.13 (Cochran’s theorem III)
Assume that Y is distributed as Nd(µ, Id), and for i = 1, . . .k, let Ai be a d×d
symmetric matrix with rank ri such that

∑
i Ai = Id. This yields a partition

of the total sum of squares Y TY into k components:

Y TY = Y TA1Y + · · ·+ Y TAkY.

Then the Y TAiY have independent noncentral chi-squared distributions χ2
ri

(δi)
with δi = µTAiµ if and only if

∑
i ri = d.

Proof.
This follows from the results above and the multivariate normal distribution.
(See Gentle (2007), pages 324–325.)
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The “Sum of Squares” Quadratic Form

In statistical analysis, we often compare the variability within various sub-
samples with the overall variability of the full sample. This is the basic idea in
the common method called analysis of variance (AOV). The variability within
any sample is usually measured by the sum of squares of the elements in the
sample from their overall mean,

∑
(yi − ȳ)2.

This sum of squares can be expressed as a quadratic form in an idempotent
matrix. We can develop this matrix by use of the expressions for recursive
computation of the variance. The basic matrix is the Helmert matrix (see
Gentle (2007), page 308):

Hn =




1/
√
n 1/

√
n 1/

√
n · · · 1/

√
n

1/
√

2 −1/
√

2 0 · · · 0

1/
√

6 1/
√

6 −2/
√

6 · · · 0
...

...
...

. . .
...

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · − (n−1)√
n(n−1)




(5.82)

Note that the Helmert matrix is orthogonal:

HT
nHn = HnH

T
n = In.

The (n−1)×nmatrix below the first row of the Helmert matrix is of particular
interest. Let

Hn =




1/
√
n 1T

n

.........
Kn−1


 . (5.83)

First note that the two partitions are orthogonal to each other:

1/
√
n 1T

nKn−1 = 0. (5.84)

(This also follows from the orthogonality of Hn of course.)
Now let

A = KT
n−1Kn−1, (5.85)

that is,

A =




n−1
n

−1
n · · · −1

n−1
n

n−1
n · · · −1

n
...

...
. . .

...
−1
n

−1
n · · · n−1

n


 (5.86)

Note that, for a sample of size n, A is the matrix of the quadratic form
that yields

∑
(xi − x̄)2:

yTAy =
∑

(yi − ȳ)2. (5.87)

We can form similar matrices for subsamples so as to decompose a sum of
squares.
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Example 5.28 one-way fixed-effects AOV model
Consider the linear model

Yij = µ+ αi + εij, i = 1, . . . , m; j = 1, . . . , n, (5.88)

where we assume that E(εij) = 0 and V(εij) = σ2 for all i, j, and Cov(εij, εi′j′) =
0 if i 6= i′ or j 6= j′. This can be expressed in the form of the linear
model (5.66), Y = Xβ +E, where β = (µ, α1, . . . , αm) and

X =




1 1 0 · · · 0
...

...
...

...
...

1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

...
...

1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1
...

...
...

...
...

1 0 0 · · · 1




(5.89)

Letting

Y i =

n∑

j=1

Yij/n (5.90)

and

Y =

m∑

i=1

Y i/m, (5.91)

we may form two sums of squares

SSA = n

m∑

i=1

(Y i − Y )2 (5.92)

and

SSE =

m∑

i=1

n∑

j=1

(Yij − Y i)
2, (5.93)

which have the property that

m∑

i=1

n∑

j=1

(Yij − Y )2 = SSA + SSE. (5.94)

Both SSA and SSE can be expressed as quadratic forms in matrices similar
to KT

n−1Kn−1, where Kn−1 is given in equation (5.83). This is what you are
asked to do in Exercise 5.7.
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The question of interest in a model such is this is whether the αi are
different from one another; that is, whether or not it is meaningful to group
the Yij based on the i.

Example 5.29 estimating the effects in a one-way fixed-effects AOV
model (continuation of Example 5.28)
The individual αi are not U-estimable. We can see this because in this case,
l = (0, . . . , 1, . . .) and so l is not in the row space ofX in (5.89). (This argument
follows from the condition in equation (5.79).) We see that l = (1, . . . , 1, . . .)
and so l is not in the row space of X and so µ + αi is estimable, and its
UMVUE is Y i. Also, αi − αj for i 6= j is estimable because it corresponds to
an l with first element 0, and all other elements 0 except for two, one of which
is 1 the other is −1. Such vectors are called contrasts.

For any linear combination of β = (µ, α1, . . . , αm) that is estimable, say

lTβ, we see that the a.s. unique UMVUE is lTβ̂, where β̂ = (XTX)+XTY
(equation (5.74)).

Although the form of the AOV model (5.88) is the one that is commonly
used, we see that a closely related model could be formed by restricting this
model so that

∑
i αi = 0. This related model is Yij = θi + εij. The θi in this

restricted model are U-estimable.

Notice that so far we have not assumed any specific family of distributions
for the AOV model. We have unique UMVUEs. To answer the question posed
above of whether the αi are actually different from one another, however,
we need a basis for a statistical test. We might attempt some kind of non-
parametric test based on rankings, but in the next example, we will make the
common assumption that the random components have a normal distribution.
Note that the previous assumption of 0 covariances gives independence if we
assume normality. Cochran’s theorem tells us what the distributions are.

Example 5.30 distribution of the sums of squares in a one-way fixed-
effects AOV model (continuation of Example 5.28)
If we assume that εij ∼ N(0, 1), we know the distributions of functions of SSA
and SSE, and on that basis we can assess the significance of the αi. We have

1

σ2


SSA− n

m− 1

m∑

i=1

(
αi −

m∑

i=1

αi/m

)2

 ∼ χ2

m−1 (5.95)

and
1

σ2
SSE ∼ χ2

m(n−1). (5.96)

(Exercise 5.8.)

The UMVUE of σ2 is SSE/(m(n − 1)). Note that the UMVUE of σ2 is
the same as the general result given in equation (5.77). (Exercise 5.9.) The
UMVUE is consistent in n for m fixed, and is consistent in m for n fixed.
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You are to show this in Exercise 5.10. Compare this with the MLE of σ2 in
Example 6.27 in Chapter 6.

The model in equation (5.88) is called the one-way AOV model. If the αi

in this model are assumed to be constants, it is called a “fixed-effects model”.
A fixed-effects model is also sometimes called “model I”. Now let’s consider a
variant of this called a “random-effects model” or “model II”, because the αi

in this model are assumed to be iid random variables.

Example 5.31 UMVUEs of the variances in the one-way random-
effects AOV model
Consider the linear model

Yij = µ+ δi + εij, i = 1, . . . , m; j = 1, . . . , n, (5.97)

where the δi are identically distributed with E(δi) = 0, V(δi) = σ2
δ , and

Cov(δi, δĩ) = 0 for i 6= ĩ, and the εij are independent of the δi and are
identically distributed with with E(εij) = 0, V(εij) = σ2

ε , and Cov(εij , εĩj̃) = 0

for either i 6= ĩ or j 6= j̃.
An important difference in the random-effects model and the fixed-effects

model is that in the random-effects model, we do not have independence of
the observables. We have

Cov(Yij, Yĩj̃) =




σ2

δ + σ2
ε for i = ĩ, j = j̃,

σ2
δ for i = ĩ, j 6= j̃,

0 for i 6= ĩ.

(5.98)

A model such as this may be appropriate when there are a large number
of possible treatments and m of them are chosen randomly and applied to
experimental units whose responses Yij are observed. While in the fixed-effects
model (5.88), we are interested in whether α1 = · · · = αm = 0, in the random-
effects model, we are interested in whether σ2

δ = 0, which would result in a
similar practical decision about the treatments.

In the model (5.97) the variance of each Yij is σ2
δ +σ2

ε , and our interest in
using the model is to make inference on the relative sizes of the components of
the variance σ2

δ and σ2
ε . The model is sometimes called a “variance components

model”.
Let us suppose now that δi

iid∼ N(0, σ2
δ), where σ2

δ ≥ 0, and εij
iid∼ N(0, σ2

ε ),
where as usual σ2 > 0. This will allow us to determine exact sampling distri-
butions of the relevant statistics.

We transform the model using Helmert matrices Hm and Hn as in equa-
tion (5.82).

Let

Y =



Y11 · · · Y1n

...
...

Ym1 · · · Ymn


 ; δ =



δ1
...
δm


 ; and ε =



ε11 · · · ε1n

...
...

εm1 · · · εmn


 .
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We now write the original model as

Y = δ1T
n + ε.

Now, for the transformations. Let

Z = HmXH
T
n ,

δ̃ = Hmδ,

and
ε̃ = HmεH

T
n .

We first of all note that the transformations are all nonsingular and

Z = H1T
n + ε̃.

Next, we see because of the orthonormality of the Helmert matrices that
the distributions of δ̃ and ε̃ are the same as those of δ and ε and they are still
independent. Furthermore, the Zij are independent, and we have

Zi1
iid∼ N(0, σ2

a + σ2), for i = 1, . . . , m

and
Zij

iid∼ N(0, σ2), for i = 1, . . . , m; j = 2, . . . , n0.

To continue with the analysis, we follow the same steps as in Example 5.28,
and get the same decomposition of the “adjusted total sum of squares” as in
equation (5.94):

m∑

i=1

n∑

j=1

(Zij − Z)2 = SSA + SSE. (5.99)

Again, we get chi-squared distributions, but the distribution involving SSA
is not the same as in expression (5.95) for the fixed-effects model.

Forming
MSA = SSA/(m− 1)

and
MSE = SSE/(m(n− 1)),

we see that
E(MSA) = nσ2

δ + σ2
ε

and
E(MSE) = σ2

ε .

Unbiased estimators of σ2
δ and σ2

ε are therefore

s2δ = (MSA −MSE)/n (5.100)
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and
s2ε = MSE, (5.101)

and we can also see that these are UMVUEs.
Now we note something that might at first glance be surprising: s2δ in

equation (5.100) may be negative. This occurs if (m − 1)MSA/m < MSE.
This will be the case if the variation among Yij for a fixed i is relatively large
compared to the variation among Y i (or similarly, if the variation among Zij

for a fixed i is relatively large compared to the variation among Zi).

Compare this with the MLEs in Example 6.29 in Chapter 6

Predictions in the Linear Model

Given a vector x0, use of β̂ in equation (5.64), with E set to E(E), we have
the predicted value of Y given x0:

Ŷ0 = β̂Tx0

= ((XTX)+XTy)Tx0. (5.102)

If x0 ∈ span(X), then from Theorem 5.7, (b∗)Tx0 = β̂Tx0, so in this case the
predicted value of Y is invariant to choice of the generalized inverse.

In the model (5.66) corresponding to a set of n observations on the
model (5.64), we have predicted values of the response Y at all rows within
X:

Ŷ = Xβ̂

= X(XTX)+XTY. (5.103)

From equation (3.42), we see that this has the minimum MSE of any function
of X.

The idempotent projection matrix X(XTX)+XT is called the “hat ma-

trix” because given Y , it provides Ŷ . (See page 795 for properties of projection
matrices.)

We see from Definition 1.46 page 117 that Ŷ is the projection of Y onto
the column space of X. (This is a slightly different meaning of the word
“projection”, but obviously the meanings are related.) From Theorem 1.64

we see that the “residual vector” Y − Ŷ is orthogonal to the columns of X;
that is, Cov(Y − Ŷ , x) = 0 for any column x of X, and since Ŷ is a linear

combination of the columns of X, Cov(Y − Ŷ , Ŷ ) = 0. If we assume a normal
distribution for ε, then 0 covariance implies independence.

5.5.2 Estimation in Survey Samples of Finite Populations

A substantial proportion of all applications of statistics deal with sample sur-
veys in finite populations. Some aspects of this kind of application distinguish
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it from other areas of applied statistics. Särndal et al. (1997) provide a general
coverage of the theory and methods. Valliant et al. (2000) provide a different
perspective on some of the particular issues of inference in finite populations.

Finite Populations

We think of a finite population as being a finite set P = {(1, y1), . . . , (N, yN )}.
Our interest will be in making inferences about the population using a sample
S = {(L1, X1), . . . , (Ln, Xn)}. We will also refer to X = {X1, . . . , Xn} as
the “sample”. In discussions of sampling it is common to use n to denote
the size of the sample and N to denote the size of the population. Another
common notation used in sampling is Y to denote the population total, Y =∑N

i=1 yi. Estimation of the total is one of the most basic objectives in sampling
applications.

The parameter that characterizes the population is θ = (y1, . . . , yN). The
parameter space, Θ, is the subspace of IRN containing all possible values of
the yi.

There are two approaches to the analysis of the problem. In one, which
is the more common and which we will follow, P is essentially the sample
space. In another approach P or θ is thought of as some random sample from
a sample space or parameter space, called a “superpopulation”.

The sample is completely determined by the set LS = {i1, . . . , in} of in-
dexes of P that correspond to elements in X. For analysis of sampling meth-
ods, we define an indicator

Ii =

{
1 if i ∈ LS

0 othersise.

“Sampling” can be thought of as selecting the elements of LS, that is, the
labels of the population elements.

Probability-based inferences about P are determined by the method of
selection of S. This determines the probability of getting any particular S,
which we will denote by p(S). If p(S) is constant for all S, we call the selected
sample a simple random sample.

A sample may be collected without replacement or with replacement. (The
meanings of these are just what the words mean. In sampling without replace-
ment, the elements of S are distinct.) Sampling with replacement is generally
easier to analyze, because it is the same as taking a random sample from a
discrete uniform distribution. Sampling without replacement is more common
and it is what we will assume throughout.

There are many variations on the method of collecting a sample. Both a
general knowledge of the population and some consideration of the mechani-
cal aspects of collecting the sample may lead to the use of stratified sampling,
cluster sampling, multi-stage sampling, systematic sampling, or other varia-
tions.
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Estimation

We are interested in “good” estimators, specifically UMVUEs, of estimable
functions of θ. An interesting estimable function of θ is Y =

∑N
i=1 θi.

One of the most important results is the following theorem.

Theorem 5.14
(i) if p(S) > 0 for all S, then the set of order statistics X(1), . . . , X(n) is
complete for all θ ∈ Θ.
and
(ii) if p(S) is constant for all S, then the order statistics X(1), . . . , X(n) are
sufficient for all θ ∈ Θ.

This theorem is somewhat similar to Corollary 3.1.1, which applied to the
family of distributions dominated by Lebesgue measure. The sufficiency is
generally straightforward, and we expect it to hold in any iid case.

The completeness is a little more complicated, and the proof of Theorem
3.13 in MS2 is worth looking at. The set of order statistics may be complete
in some family, such as the family of distributions dominated by Lebesgue
measure, but may not be complete in some subfamily, such as the family of
normal distributions with mean 0.

After we have (i) and (ii), we have
(iii): For any estimable function of θ, its unique UMVUE is the unbiased
estimator T (X1, . . . , Xn) that is symmetric in its arguments. (The symmetry
makes the connection to the order statistics.)

Example 5.32 UMVUE of population total using simple random
sample
Consider estimation of Y = g(θ) =

∑N
i=1 yi from the simple random sample

X1, . . . , Xn. We first note that

Ŷ =
N

n

∑

i∈LS

yi

=
N

n

N∑

i=1

Iiyi

is unbiased for Y :

E(Ŷ ) =
N

n

N∑

i=1

yiE(Ii)

=
N∑

i=1

yi.

From Theorem 5.14, we can see easily that Ŷ = Ny is the UMVUE of Y .
Now we consider the variance of Ŷ . First, note that
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V(Ii) =
n

N

(
1− n

N

)

(it’s Bernoulli), and for i 6= j,

Cov(Ii, Ij) = E(IiIj)− E(Ii)E(Ij )

=
n(n− 1)

N(N − 1)
− n2

N2
.

Hence,

V(Ŷ ) =
N2

n2
V

(
N∑

i=1

Iiyi

)

=
N2

n2




N∑

i=1

y2
i V(Ii) + 2

∑

1≤i≤j≤N

yiyjCov(Ii, Ij)




=
N

n

(
1− n

N

)



N∑

i=1

y2
i −

2

N − 1

∑

1≤i≤j≤N

yiyj




=
N2

n

(
1− n

N

) 1

N − 1

N∑

i=1

(
yi −

Y

N

)2

. (5.104)

We see that the variance of Ŷ is composed of three factors, an expansion
factor N2/n, a finite population correction factor (1−n/N), and the variance
of a selection from a finite population,

σ2 =
1

N − 1

N∑

i=1

(
yi −

Y

N

)2

. (5.105)

The sample variance S2 is unbiased for σ2, and so from this we have
immediately the UMVUE of V(Ŷ ) (Exercise 5.11).

Horvitz-Thompson Estimation

The properties of any statistic derived from a sample X1, . . . , Xn depend on
the sampling design; that is, on how the items in the sample were selected. The
two main properties of the design are the probability that a specific population
item, say yi, is selected, and the probability that two specific population items,
say yi and yj are both selected. Probabilities of combinations of larger sets
may also be of interest, but we can work out simple expectations and variances
just based on these two kinds of probabilities.

Let πi be the probability that yi is included in the sample, and let πij be
the probability that both yi and yj are included.
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If πi > 0 for all i, the Horvitz-Thompson estimator of the population total
is

ŶHT =
∑

i∈LS

yi

πi
. (5.106)

It is easy to see that ŶHT is unbiased for Y :

E
(
ŶHT

)
= E

(∑

i∈LS

yi

πi

)

=

N∑

i=1

(
yi

πi
πi

)

=

N∑

i=1

yi.

The variance of the Horvitz-Thompson estimator depends on the πij as
well as the πi:

V
(
ŶHT

)
=

N∑

i=1

N∑

j=i+1

(πiπj − πij)

(
yi

πi
− yj

πj

)2

(5.107)

(Exercise 5.12). Expressions for other sampling estimators are often shown in
a similar manner.

An important approximation for working out variances of more compli-
cated sampling estimators is linearization, especially when the estimator in-
volves a ratio.

Notes and Further Reading

Most of the material in this chapter is covered in MS2 Chapter 3 and Section
4.5, and in TPE2 Chapter 2.

Unbiasedness

The property of unbiasedness for point estimators was given a solid but pre-
liminary treatment by Halmos (1946).

Unbiasedness has a heuristic appeal, although people will sometimes ques-
tion its relevance by pointing out that it provides no guarantee of the goodness
of an estimator in a single set of data. That argument, however, could apply to
most measures of the quality of an estimator. Similar types of arguments could
bring into question any consideration of asymptotic properties of statistical
procedures.

Unbiasedness is particularly useful when the loss is squared-error, because
in that case unbiasedness may lead to uniformly minimum risk estimators. For
absolute-error loss functions, a corresponding approach would be to require
median unbiasedness.
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Fisher Efficient Estimators and Exponential Families

Fisher efficient estimators occur only in exponential families, and there is
always one in an exponential family. This fact had been know for some time,
but the first rigorous proof was given by Wijsman (1973).

U-Statistics

The fundamental paper by Hoeffding (1948) considered the asymptotic nor-
mality of certain unbiased point estimators and introduced the class of es-
timators that he named U-statistics. Serfling (1980) provides an extensive
discussion of U-statistics, as well as V-statistics. The statement and proof
Theorem 5.3 and the use of the conditional kernels hk as in equation (5.48)
follow Serfling. Kowalski and Tu (2008) consider several applications of U-
statistics in a variety of settings.

Exercises

5.1. Show that the estimator (5.3) in Example 5.1 is the UMVUE of π. (Note
that there are three things to show: (t − 1)/(N − 1) is unbiased, it has
minimum variance among all unbiased estimators, and it is unique —
“the” implies uniqueness.)

5.2. Consider the problem of using a sample of size 1 for estimating g(θ) = e−3θ

where θ is the parameter in a Poisson distribution.
a) Show that T (X) = (−2)X is unbiased for g(θ).
b) Show that T (X) = (−2)X is a UMVUE g(θ).
c) What is wrong with this estimator?

5.3. Show that the estimators (5.11) and (5.7) are the same.
5.4. Show that the h(T )s in Example 5.6 are unbiased for the g(θ)s given.
5.5. Define an alternative kernel for U-statistic that is unbiased for the covari-

ance in Example 5.19; that is, instead of the kernel in equation (5.37),
give a kernel similar to that in equation (5.46). Show that the resulting
U-statistic is unbiased for the covariance.

5.6. In the setup of model (5.64), show that the LSE ‖Y − Xβ̂‖2/(n − p) is
unbiased for σ2.

5.7. Let Xij = µ+αi + εij, i = 1, . . . , m, j = 1, . . . , n, where αi’s and εij’s
are independent random variables, αi ∼ N(0, σ2

α), εij ∼ N(0, σ2
ε ), and µ,

σ2
α, and σ2

ε are unknown parameters. Let

X i =

n∑

j=1

Xij/n,

X =

m∑

i=1

X i/m,
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MSA = n

m∑

i=1

(X i −X)2/(m− 1),

and

MSE =

m∑

i=1

n∑

j=1

(Xij −Xi)
2/(m(n − 1)).

Express MSA and MSE as quadratic forms using parts of Helmert matrices
and use Chochran’s theorem to show that they are independent.

5.8. Show that the quantities in expressions (5.95) and (5.96) have the chi-
squared distributions claimed.

5.9. Show that the UMVUE of σ2, SSE/(m(n − 1)), given in Example 5.28
is the same as the UMVUE of σ2 for the general linear model given in
equation (5.77).
Hint: Write the model given in equation (5.88) in the form of the general
linear model in equation (5.67).

5.10. Suppose Xij
iid∼ N(µi, σ

2) for i = 1, . . . , m and j = 1, . . . , n. (Compare the
one-way AOV model of Examples 5.28, 5.29, and 5.30.)
a) Determine the UMVUE Tmn(X) of σ2.
b) Show that Tmn(X) is consistent in mean squared error for σ2 as m→
∞ and n remains fixed.

c) Show that Tmn(X) is consistent in mean squared error for σ2 as n→
∞ and m remains fixed.

5.11. Show that the sample variance S2 is the UMVUE of σ2 in equation (5.105)

of Example 5.32. Hence, determine the UMVUE of V(Ŷ ).
5.12. Show that the variance of the Horvitz-Thompson estimator is as shown in

equation (5.107), for given πi and πij. This is tedious, but it requires very
little other than “advanced arithmetic” and simple properties of variances
of sums.
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Statistical Inference Based on Likelihood

The concepts of probability theory can be applied to statistical analyses in a
very straightforward manner: we assume that observed events are governed
by some data-generating process that depends on a probability distribution
P , and our observations of those events can be used to make inferences about
the probability distribution. The various ways that we use the observations
to make those inferences constitute the main body of statistical theory. One
of the general approaches that I outlined in Section 3.2 involves the use of a
likelihood function. We considered this approach briefly in Section 3.2.1. In
this chapter, we will explore the use of likelihood in statistical inference more
fully. In this chapter, the emphasis will be on estimation, and in Chapter 7,
we will consider use of likelihood in testing statistical hypotheses.

Although methods based on the likelihood may not have the logical ap-
peal of methods based on a decision-theoretic approach, they do have an intu-
itive appeal. More importantly, estimators and tests based on this approach
have a number of desirable mathematical properties, especially asymptotic
properties. Methods based on maximizing the likelihood are grounded on the
likelihood principle.

We begin with some general definitions and notation for methods based
on the likelihood principle, and then look at specific applications.

6.1 The Likelihood Function and Its Use in Statistical
Inference

Definition 6.1 (likelihood function)
Given a sample x1, . . . , xn from distributions with probability densities pi(x)
with respect to a common σ-finite measure, the likelihood function is defined
as

Ln(pi ; x) = c

n∏

i=1

pi(xi), (6.1)
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where c ∈ IR+ is any constant independent of the pi.

It is common to speak of Ln(pi ; X) with c = 1 as “the” likelihood function,
and in the following, we will not write the c.

Methods based on the likelihood function are often chosen because of their
asymptotic properties, and so it is common to use the n subscript as in equa-
tion (6.1); in the following, however, we will usually find it convenient to drop
the n.

As we generally do in discussing methods of statistical inference, in some
cases, we will view the sample x1, . . . , xn as a set of constants. In cases when
we want to consider the probabilistic or statistical properties of the statistical
methods, we will view the observations as a vector of random variables.

In equation (6.1), the domain of the likelihood function is some class of
distributions specified by their probability densities, P = {pi(x)}, where all
PDFs are dominated by a common σ-finite measure. In applications, often
the PDFs are of a common parametric form, so equivalently, we can think of
the domain of the likelihood function as being a parameter space, say Θ. In
that case, the family of densities can be written as P = {pθ(x)} where θ ∈ Θ,
the known parameter space. It is usually more convenient to write pθ(x) as
p(x ; θ), and we often write the likelihood function (6.1) as

L(θ ; x) =

n∏

i=1

p(xi ; θ). (6.2)

Although in equation (6.2), we have written L(θ ; x), the expression
L(pθ ; x) may be more appropriate because it reminds us of an essential in-
gredient in the likelihood, namely a PDF.

What Likelihood Is Not

The differences in a likelihood and a PDF are illustrated clearly in Example 1.5
on page 20. A likelihood is neither a probability nor a probability density.
Notice, for example, that while the definite integrals over IR+ of both PDFs
in in Example 1.5 are 1, the definite integrals over IR+ of the likelihood (1.21)
in Example 1.5 are not the same, as we can easily see from the plots on the
right side of Figure 1.2.

It is not appropriate to refer to the “likelihood of an observation”. We use
the term “likelihood” in the sense of the likelihood of a model or the likelihood
of a distribution given observations.

The Log-Likelihood Function

The log-likelihood function,

lL(θ ; x) = logL(θ ; x), (6.3)
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is a sum rather than a product. We often denote the log-likelihood without
the “L” subscript. The notation for the likelihood and the log-likelihood varies
with authors. My own choice of an uppercase “L” for the likelihood and a
lowercase “l” for the log-likelihood is long-standing, and not based on any
notational optimality consideration. Because of the variation in the notation
for the log-likelihood, I will often use the “lL” notation because this expression
is suggestive of the meaning.

We will often work with either the likelihood or the log-likelihood as if
there is only one observation.

Likelihood Principle

According to the likelihood principle in statistical inference all of the informa-
tion that the data provide concerning the relative merits of two hypotheses is
contained in the likelihood ratio of those hypotheses and the data; that is, if
for x and y,

L(θ ; x)

L(θ ; y)
= c(x, y) ∀θ, (6.4)

where c(x, y) is constant for given x and y, then any inference about θ based
on x should be in agreement with any inference about θ based on y.

Although at first glance, we may think that the likelihood principle is so
obviously the right way to make decisions, Example 6.1 may cause us to think
more critically about this principle.

The likelihood principle asserts that for making inferences about a proba-
bility distribution, the overall data-generating process need not be considered;
only the observed data are relevant.

Example 6.1 The likelihood principle in sampling from a Bernoulli
distribution
In Example 3.12 we considered the problem of making inferences on the pa-
rameter π in a family of Bernoulli distributions.

One approach was to take a random sample of size n, X1, . . . , Xn from the
Bernoulli(π), and then use T =

∑
Xi, which has a binomial distribution with

parameters n and π.
Another approach was to take a sequential sample, X1, X2, . . ., until a

fixed number t of 1’s have occurred. The size of the sample N is random and
the random variable N has a negative binomial distribution with parameters
t and π.

Now, suppose we take the first approach with n = n0 and we observe
T = t0; and then we take the second approach with t = t0 and we observe
N = n0. Using the PDFs in equations 3.43 and 3.44 we get the likelihoods

LB(π) =

(
n0

t0

)
πt0(1− π)n0−t0 (6.5)

and
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LNB(π) =

(
n0 − 1

t0 − 1

)
πt0(1− π)9. (6.6)

Because LB(π)/LNB(π) does not involve π, the maxima of the likelihoods
will occur at the same point. A maximum likelihood estimator of π based on
a binomial observation of t0 out of n0 is the same as a maximum likelihood
estimator of π based on a negative binomial observation of n0 for t0 1’s because
the maximum of the likelihood occurs at the same place, t0/n0. The estimators
conform to the likelihood principle. Recall that the UMVU estimators are
different. (Example 5.1 and follow-up in Example 5.5 and Exercise 5.1.)

Further comments on Example 6.1
We see that the likelihood principle allows the likelihood function to be de-
fined as any member of an equivalence class {cL : c ∈ IR+}, as in the defini-
tion (3.45).

The likelihood principle, however, is stronger than just the requirement
that the estimator be invariant. It says that because LB(π)/LNB(π) does not
involve π, any decision about π based on a binomial observation of 3 out of
12 should be the same as any decision about π based on a negative binomial
observation of 12 for 3 1’s. Because the variance of π̂ does depend on whether a
binomial distribution or a negative binomial distribution is assumed, the fact
that the estimators are the same does not imply that the inference follows the
likelihood principle. See Example 6.9.

We will revisit this example again in Example 7.12 on page 539, where we
wish to test a statistical hypothesis concerning π. We get different conclusions
in a significance test.

6.2 Maximum Likelihood Parametric Estimation

Let us assume a parametric model; that is, a family of densities P = {p(x ; θ)}
where θ ∈ Θ, a known parameter space.

For a sample X1, . . . , Xn from a distribution with probability density
p(x ; θ), we write the likelihood function as a function of a variable in place
of the parameter:

L(t ; x) =

n∏

i=1

p(xi ; t). (6.7)

Note the reversal in roles of variables and parameters. While I really like to
write the likelihood as a function of a variable of something other than the
parameter, which I think of as fixed, I usually write it like everyone else; that
is, I write

L(θ ; x) =

n∏

i=1

p(xi ; θ).
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In the likelihood function the data, that is, the realizations of the vari-
ables in the density function, are considered as fixed, and the parameters are
considered as variables of the optimization problem,

max
θ

L(θ ; x). (6.8)

For given x, the relative values of L(θ ; x) are important. For given x1 and
x2, the relative values of L(θ ; x1) and L(θ ; x2) are not relevant. Notice in
Example 1.5, while L(θ ; 5) ≤ L(θ ; 1) for all θ, maxL(θ ; 5) occurs at θ = 5,
and maxL(θ ; 1) occurs at θ = 1. Notice also in Example 6.1, while LB(π)
in equation (6.5) is uniformly less than LNB(π) in equation (6.6), they both
achieve their maximum at the same point, π = 1/4.

Closure of the Parameter Space

It is important to specify the domain of the likelihood function. If Θ is the
domain of L in equation (6.7), we want to maximize L for t ∈ Θ; that is,
maximum likelihood often involves a constrained optimization problem.

There may be difficulties with this maximization problem (6.8), however,
because of open sets. The first kind of problem is because the parameter space
may be open. We address that problem in our definition the optimal estimator
below. See Example 6.4. The second kind of open set may be the region over
which the likelihood function is positive. This problem may arise because the
support of the distribution is open and is dependent on the parameter to be
estimated. We address that problem by adding a zero-probability set to the
support (see Example 6.5 below).

For certain properties of statistics that are derived from a likelihood ap-
proach, it is necessary to consider the parameter space Θ to be closed (see,
for example, Wald (1949)). Often in a given probability model, such as the
exponential or the binomial, we do not assume Θ to be closed. If Θ is not
a closed set, however, the maximum in (6.8) may not exist, so we consider
the closure of Θ, Θ. (If Θ is closed Θ is the same set, so we can always just
consider Θ.)

6.2.1 Definition and Examples

Definition 6.2 (maximum likelihood estimate; estimator)
Let L(θ ; x) be the likelihood of θ ∈ Θ for the observations x from a distri-
bution with PDF with respect to a σ-finite measure ν . A maximum likelihood
estimate, or MLE, of θ, written θ̂, is defined as

θ̂ = arg max
θ∈Θ

L(θ ; x), (6.9)

if it exists. There may be more than solution; any one is an MLE. If x is
viewed as a random variable, then θ̂ is called a maximum likelihood estimator
of θ.
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While I like to use the “hat” notation to mean an MLE, I also sometimes use
it to mean any estimate or estimator.

The estimate (or estimator) θ̂ is a Borel function of the observations or of
the random variables.

We use “MLE” to denote either a maximum likelihood estimate or estima-
tor, or to denote the method of maximum likelihood estimation. The proper
meaning can be determined from the context. If the term MLE is used in a
statement about a maximum likelihood estimate or estimator, the statement
can be assumed to apply to both the estimate and the estimator.

If θ̂ in (6.9) exists, we also have

θ̂ = arg max
θ∈Θ

lL(θ ; x), (6.10)

that is, the MLE can be identified either from the likelihood function or from
the log-likelihood.

The Likelihood Equations

Notice that finding an MLE means to solve a constrained optimization prob-
lem. In simple cases, the constraints may not be active. In even simpler cases,
the likelihood is differentiable, and the MLE occurs at a stationary point in
the interior of the constraint space. In these happy cases, the MLE can be
identified by differentiation.

If the likelihood function or the log-likelihood function is differentiable
within Θ◦, we call

∇L(θ ; x) = 0 (6.11)

or
∇lL(θ ; x) = 0 (6.12)

the likelihood equations.
If θr ∈ Θ◦ is a root of the likelihood equations and if the Hessian HL(θr)

evaluated at θr is negative definite, then θr ∈ Θ◦ is a local optimizer of L
(and of lL). (See Theorem 0.0.13.)

If the maximum occurs within Θ◦, then every MLE is a root of the like-
lihood equations. There may be other roots within Θ◦, of course. Any such
root of the likelihood equation, called an RLE, may be of interest.

Example 6.2 MLE in the exponential family (continuation of Ex-
ample 1.5)
In the exponential family of Example 1.5, with a sample x1, . . . , xn, the like-
lihood in equation (1.21) becomes

L(θ ; x) = θ−ne−
Pn

i=1 xi/θIIR+
(θ),

whose derivative wrt θ is
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(
−nθ−n−1e−

Pn
i=1 xi/θ + θ−n−2

n∑

i=1

xie
−

Pn
i=1 xi/θ

)
IIR+

(θ).

Equating this to zero, we obtain

θ̂ =

n∑

i=1

xi/n

as a stationary point. Checking the second derivative, we find it is negative
at θ̂, and so we conclude that θ̂ is indeed the MLE of θ, and it is the only
maximizer. Also, from the plot on the right side of Figure 1.2, we have visual
confirmation. Of course, Figure 1.2 is for a sample of size one.

We can easily see that for a sample of size n this graph would be similar,
but it would have a sharper peak; see Figure 6.1.
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Figure 6.1. Likelihood for Different Sample Sizes

The fact that the likelihood has a sharper peak is in agreement with our
expectation that the estimate should be “better” if we have a larger sample.

Example 6.3 MLE in the exponential family with right censoring
In use of the exponential family for modeling “lifetimes”, say of lightbulbs, it
is often the case that the experiment is terminated before all of the random
variables are realized; that is, we may have a potential sample x1, . . . , xn,
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but actually we only have values for the xi < tc, where tc is some fixed
and known value. It might be called the “censoring time”. This setup is yields
censored data, in particular, it is right censored data, because the larger values
are censored. Suppose that t1, . . . , tr observations are obtained, leaving n− r
unobserved values of the potential sample. In this setup, the time tc is fixed,
and so r is a random variable. We could also contemplate an experimental
setup in which r is chosen in advance, and so the censoring time tc is a
random variable. (These two data-generating processes are similar to the two
experiments we described for Bernoulli data in Example 3.12, and to which we
have alluded in other examples.) The first method is called “Type I censoring”
(upper bound on the observation fixed) and the other method is called “Type
II censoring” (fixed number of observed values to be taken).

Censoring is different from a situation in which the distribution is trun-
cated, as in Exercise 2.14 on page 203.

For right censored data with n, r, and tc as described above from any
distribution with PDF f(x; θ) and CDF F (x; θ), the likelihood function is

L(θ; x) =
r∏

i=1

f(ti; θ)(1− F (tc; θ))
n−r .

We may note in passing that the likelihood is the same for type I and type
II censoring, just as we saw it to be in the binomial and negative binomial
distributions arising from Bernoulli data in Example 3.12.

Now, for the case where the distribution is exponential with parameter θ,
we have the likelihood function

L(θ; x)
1

θr
e

Pr
i=1 ti/θe(n−r)tc/θ.

The maximum, which we can find by differentiation, occurs at

θ̂ = T/r,

where T =
∑r

i=1 ti + (n− r)tc is called the “total time on test”.

MLE in ∂Θ

If Θ is open, and if the maximizer in equation (6.9) is in ∂Θ, the distribution
defined by the MLE may be degenerate, as can be the case in the following
example.

Example 6.4 MLE of Bernoulli parameter
Consider the Bernoulli family of distributions with parameter π. In the usual
definition of this family, π ∈ Π =]0, 1[. Suppose we take a random sample
X1, . . . , Xn. The log-likelihood is

lL(π ; x) =

n∑

i=1

xi log(π) +

(
n−

n∑

i=1

xi

)
log(1 − π). (6.13)
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This is a concave differentiable function, so we can get the maximum by
differentiating and setting the result to zero. We obtain

π̂ =

n∑

i=1

xi/n. (6.14)

If
∑n

i=1 xi = 0 or if
∑n

i=1 xi = n, π̂ /∈ Π, but π̂ ∈ Π so π̂ is the MLE of π.
Note that in this case, the MLE corresponds to the Bayes estimator with

loss function (4.52) and uniform prior (see page 360) and to the UMVUE (see
page 394).

Further comments on Example 6.4
In Example 6.1 we considered the problem of making inferences on the pa-
rameter π in a family of Bernoulli distributions, and considered two different
approaches. One approach was to take a random sample of size n, X1, . . . , Xn

from the Bernoulli(π), and then use T =
∑
Xi, which has a binomial distri-

bution with parameters n and π. Another approach was to take a sequential
sample, X1, X2, . . ., until a fixed number t of 1’s have occurred. The likeli-
hood principle tells us that if the data are the same, we should reach the
same conclusions. In Example 6.1 we wrote the likelihood functions based on
these two different approaches. One was the same as in equation (6.13) and
so the MLE under that setup would be that given in equation (6.14). After
canceling constants, the other log-likelihood in Example 6.1 was also

n∑

i=1

xi log(π) +

(
n−

n∑

i=1

xi

)
log(1 − π),

so a that sampling scheme yields the same MLE, if n and
∑n

i=1 xi are the
same.

Of course making inferences about a parameter involves more than just
obtaining a good estimate of it. We will consider the problem again in Exam-
ples 6.9 and 7.12.

Allowing an MLE to be in Θ−Θ is preferable to saying that an MLE does
not exist. It does, however, ignore the question of continuity of L(θ ; x) over
Θ, and it allows an estimated PDF that is degenerate.

We have encountered this situation before in the case of UMVUEs; see
Example 5.5.

While the open parameter space in Example 6.4 would lead to a problem
with existence of the MLE if its definition was as a maximum over the pa-
rameter space instead of its closure, an open support can likewise lead to a
problem. Consider a distribution with Lebesgue PDF

pX(x) = h(x, θ)IS(θ)(x) (6.15)

where S(θ) is open. In this case, the likelihood has the form

Theory of Statistics c©2000–2025 James E. Gentle



454 6 Statistical Inference Based on Likelihood

L(θ ; x) = h(x, θ)IR(x)(θ), (6.16)

where R(x) is open. It is quite possible that supL(θ ; x) will occur on R(x)−
R(x).

Example 6.5 MLE in U(0, θ); closed support

Consider X1, . . . , Xn
iid∼ U(0, θ), with θ ∈ Θ = IR+. The PDF is

pX(x) =
1

θ
I[0,θ](x). (6.17)

The likelihood is

L(θ ; x) =
1

θ
I[x(n),∞[(θ). (6.18)

The MLE is easily seen to be θ̂ = x(n). In Example 5.8, we saw that the
UMVUE of θ is (1 + 1/n)x(n).

Suppose we take the support to be the open interval ]0, θ[. (Despite Def-
inition 1.12, such a support is often assumed.) The likelihood function then
is

L(θ ; x) =
1

θ
I]x(n),∞[(θ).

This is discontinuous and it does not have a maximum, as we see in Figure 6.2.

θ

x(n)

L

]

(

Figure 6.2. Discontinuous Likelihood with No Maximum
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In this case the maximum of the likelihood does not exist, but the supre-
mum of the likelihood occurs at x(n) and it is finite. We would like to call x(n)

the MLE of θ.
We can reasonably do this by modifying the definition of the family of

distributions by adding a zero-probability set to the support. We redefine the
family in equation (6.15) to have the Lebesgue PDF

pX(x) =
1

θ
I[0,θ](x). (6.19)

Now, the open interval ]x(n),∞[ where the likelihood was positive before be-
comes a half-closed interval [x(n),∞[, and the maximum of the likelihood
occurs at x(n).

This is one reason why we define the support to be closed.
This approach is cleaner than solving the logical problem by defining the

MLE in terms of the sup rather than the max. A definition in terms of the sup
may not address problems that could arise due to various types of discontinuity
of L(θ ; x) at the boundary of S(θ).

MLE of More than One Parameter

It is usually more difficult to determine the MLE of more than one parameter.
The likelihood equation in that case is a system of equations. Also, of course,
the likelihood equation, whether a single equation or a system, may not be
easy to solve, as the following example shows.

Example 6.6 MLE of the parameters in a gamma distribution
Consider the gamma family of distributions with parameters α and β. Given
a random sample x1, . . . , xn, the log-likelihood of α and β is

lL(α, β ; x) = −nα log(β)−n log(Γ(α)))+(α−1)
∑

log(xi)−
1

β

∑
xi. (6.20)

This yields the likelihood equations

− n log(β) − nΓ′(α)

Γ(α)
+
∑

log(xi) = 0 (6.21)

and

− nα

β
+

1

β2

∑
xi = 0. (6.22)

Checking the Hessian (at any point in the domain), we see that a root of the
likelihood equations is a local minimizer.

At the solution we have

β̂ =
∑

xi/(nα̂) (6.23)

and
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log(α̂) − Γ′(α̂)

Γ(α̂)
+
∑

log(xi)/n− log(
∑

xi/n) = 0. (6.24)

There is no closed form solution. A numerical method must be used; see
Example 6.14.

Sometimes in multiple-parameter models, the parameters are functionally
independent and the optimization can be performed on different parts of the
separable likelihood function. This is the case for a normal distribution, as we
see in Example 6.25.

Example 6.7 MLE in the exponential family with range dependency

Consider the two-parameter exponential family, that is, a shifted version of the
exponential family of distributions. This family is the subject of Example 5.9
on page 397. The Lebesgue PDF is

θ−1e−(x−α)/θI]α,∞[(x)

Suppose we have observations X1, X2, . . . , Xn. The likelihood function is

L(α, θ;X) = θ−n exp
(
−
∑

(Xi − α)/θ
)

I]0,X(1)](α)I]0,∞[(θ).

This is 0 when α > X(1), but it is increasing in α on ]0, X(1)] independently
of θ.

Hence, the MLE of α is X(1).
Now, we substitute this back into L(α, θ;X) and maximize wrt θ, that is,

we solve
max

θ

(
θ−n exp

(
−
∑

(Xi −X(1))/θ
))

.

We do this by forming and solving the likelihood equation, noting that it
yields a maximum within the parameter space. We get

θ̂ =
1

n

∑
(Xi −X(1)).

In Example 5.9, we found the UMVUEs:

Tα = X(1) −
1

n(n− 1)

∑
(Xi −X(1))

and

Tθ =
1

n− 1

∑
(Xi −X(1)).

(Recall that we find a complete sufficient statistic and then manipulate it to
be unbiased.) Notice the similarity of these to the MLEs, which are biased.
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6.2.2 Finite Sample Properties of MLEs

Any approach to estimation may occasionally yield very poor or meaningless
estimators. In addition to the possibly negative UMVUEs for variance com-
ponents in Example 5.31, we have seen in Exercise 5.2 that a UMVUE of
g(θ) = e−3θ in a Poisson distribution is not a very good estimator. While in
some cases the MLE is more reasonable (see Exercise 6.1), in other cases the
MLE may be very poor.

As we have mentioned, MLEs have a nice intuitive property. In Section 6.3
we will see that they also often have good asymptotic properties.

We now consider some other properties; some useful and some less desir-
able.

Relation to Sufficient Statistics

Theorem 6.1
If there is a sufficient statistic and an MLE exists, then an MLE is a function
of the sufficient statistic.

Proof.
This follows directly from the factorization theorem.

Relation to Efficient Statistics

Given the three Fisher information regularity conditions (see page 168) we
have defined “Fisher efficient estimators” as unbiased estimators that achieve
the lower bound on their variance.

Theorem 6.2

Assume the FI regularity conditions for a family of distributions {Pθ} with
the additional Le Cam-type requirement that the Fisher information matrix
I(θ) is positive definite for all θ. Let T (X) be a Fisher efficient estimator of
θ. Then T (X) is an MLE of θ.

Proof.
Let pθ(x) be the PDF. We have

∂

∂θ
log(pθ(x)) = I(θ)(T (x) − θ)

for any θ and x. Clearly, for θ = T (x), this equation is 0 (hence, T (X) is an
RLE). Because I(θ), which is the negative of the Hessian of the likelihood, is
positive definite for all θ, the likelihood is convex in θ and T (x) maximizes
the likelihood.

Notice that without the additional requirement of a positive definite in-
formation matrix, Theorem 6.2 would yield only the conclusion that T (X) is
an RLE.
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Equivariance of MLEs

If θ̂ is a good estimator of θ, it would seem to be reasonable that g(θ̂) is a good
estimator of g(θ), where g is a Borel function. “Good”, of course, is relative
to some criterion. In a decision-theoretic approach, we seek L-invariance; that
is, invariance of the loss function (see page 266). Even if the loss function is
invariant, other properties may not be preserved. If the criterion is UMVU,
then the estimator in general will not have this equivariance property; that
is, if θ̂ is a UMVUE of θ, then g(θ̂) may not be a UMVUE of g(θ). (It is not
even unbiased in general.)

We now consider the problem of determining the MLE of g(θ) when we

have an MLE θ̂ of θ. Following the definition of an MLE, the MLE of g(θ)
should be the maximizer of the likelihood function of g(θ). If the function g
is not one-to-one, the likelihood function of g(θ) may not be well-defined. We
therefore introduce the induced likelihood.

Definition 6.3 (induced likelihood)
Let {pθ : θ ∈ Θ} with Θ ⊆ IRd be a family of PDFs wrt a common σ-
finite measure, and let L(θ) be the likelihood associated with this family,
given observations. Now let g be a Borel function from Θ to Λ ⊆ IRd1 where
1 ≤ d1 ≤ d. Then

L̃(λ) = sup
{θ : θ∈Θ and g(θ)=λ}

L(θ) (6.25)

is called the induced likelihood function for the transformed parameter.

The induced likelihood provides an appropriate MLE for g(θ) in the sense of
the following theorem.

Theorem 6.3
Suppose {pθ : θ ∈ Θ} with Θ ⊆ IRd is a family of PDFs wrt a common

σ-finite measure with associated likelihood L(θ). Let θ̂ be an MLE of θ. Now

let g be a Borel function from Θ to Λ ⊆ IRd1 where 1 ≤ d1 ≤ d and let L̃(λ)

be the resulting induced likelihood. Then g(θ̂) maximizes L̃(λ).

Proof.
Follows directly from definitions, but it is an exercise to fill in the details.

Usually when we consider reparametrizations, as in Section 2.6, with one-
to-one functions. This provides a clean approach to the question of the MLE
of g(θ) without having to introduce an induced likelihood.

Given the distribution Pθ for the random variable X, suppose we seek
an MLE of g̃(θ). If g̃ is not one-to-one, then g̃(θ) does not provide enough
information to define the distribution Pg̃(θ) forX. Therefore, we cannot define
the likelihood for g̃(θ).

If g̃(θ) is one-to-one, let g(θ) = g̃(θ), otherwise, define

g(θ) = (g̃(θ), h(θ))
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in such a way that g(θ) is one-to-one. The function h is not unique, but g−1

is unique; the likelihood is well-defined; g(θ̂) is an MLE of g(θ); and so g̃(θ̂)
is an MLE of g̃(θ). Compare this with the results of Theorem 6.3 above.

Example 6.8 MLE of the variance in a Bernoulli distribution
Consider the Bernoulli family of distributions with parameter π. The vari-
ance of a Bernoulli distribution is g(π) = π(1 − π). Given a random sample
x1, . . . , xn, the MLE of π is

π̂ =

n∑

i=1

xi/n,

as we saw in Example 6.4, hence the MLE of the variance is

1

n

∑
xi

(
1−

∑
xi/n

)
. (6.26)

Note that this estimator is biased and that it is the same estimator as that of
the variance in a normal distribution from Example 3.13:

∑
(xi − x̄)2/n.

As we saw in Example 5.7, the UMVUE of the variance in a Bernoulli
distribution is, as in equation (5.11),

1

n− 1

∑
xi

(
1−

∑
xi/n

)
.

The difference in the MLE and the UMVUE of the variance in the Bernoulli
distribution is the same as the difference in the estimators of the variance in
the normal distribution that we encountered in Example 3.13 and Exam-
ple 5.6. How do the MSEs of the estimators of the variance in a Bernoulli
distribution compare? (Exercise 6.6.)

Whenever the variance of a distribution can be expressed as a function
of other parameters g(θ), as in the case of the Bernoulli distribution, the

estimator of the variance is g(θ̂), where θ̂ is an MLE of θ. The MLE of the

variance of the gamma distribution, for example, is α̂β̂2 , where α̂ and β̂ are
the MLEs in Example 6.6. The plug-in estimator of the variance of the gamma
distribution, given the sample, X1, X2 . . . , Xn, as always, is

1

n

n∑

i=1

(
Xi −X

)2
.

Example 6.9 The likelihood principle in sampling from a Bernoulli
distribution
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In Example 6.1 we considered the problem of making inferences on the param-
eter π in a family of Bernoulli distributions by either taking a random sample
of size n and using T =

∑
Xi, which has a binomial distribution, or by taking

a sample, X1, X2, . . ., until a fixed number t of 1’s have occurred and observing
the size of the sample N , which has a negative binomial distribution. Given
T = t or N = n, either way, we get the MLE

π̂ = t/n.

To make inferences on π using π̂ we need the variance V(π̂). Under the bino-
mial distribution, we need the variance of T/n, which is π(1 − π)/n, whose
MLE as in Example 6.8 is π̂(1 − π̂)/n. Under the negative binomial distri-
bution, we need the variance of t/N . The variance of N is t(1 − π)/π2 and
its MLE is the same with π̂ in place of π. The variance of t/N cannot be
expressed in closed form. (See Stephan (1945).)

Although we have seen in equations (6.5) and (6.6) that the ratio of the
likelihoods does not involve π and the MLEs based on the two data-generating
processes conform to the likelihood principle, the variances of the MLEs are
different.

Other Properties of MLEs

Some properties of MLEs are not always desirable.
First of all, we note that an MLE may be biased. The most familiar ex-

ample of this is the MLE of the variance, as seen in Examples 6.8 and 3.13.
Another example is the MLE of the location parameter in the uniform distri-
bution in Example 6.5.

Although the MLE approach is usually an intuitively logical one, it is not
based on a formal decision theory, so it is not surprising that MLEs may not
possess certain desirable properties that are formulated from that perspective.

An example of a likelihood function that is not very useful without some
modification is in nonparametric probability density estimation. Suppose we
assume that a sample comes from a distribution with continuous PDF p(x).
The likelihood is

∏n
i=1 p(xi). Even under the assumption of continuity, there

is no solution. We will discuss this problem in Chapter 8.
C. R. Rao cites another example in which the likelihood function is not

very meaningful.

Example 6.10 a meaningless MLE
Consider an urn containing N balls labeled 1, . . . , N and also labeled with
distinct real numbers θ1, . . . , θN (with N known). For a sample without re-
placement of size n < N where we observe (xi, yi) = (label, θlabel), what is the
likelihood function? It is either 0, if the label and θlabel for at least one ob-

servation is inconsistent, or
(
N
n

)−1
, otherwise; and, of course, we don’t know!
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This likelihood function is not informative, and could not be used, for exam-
ple, for estimating θ = θ1 + · · ·+ θN . (There is a pretty good estimator of θ;
it is N(

∑
yi)/n.)

There are other interesting examples in which MLEs do not have desirable
(or expected) properties.

• An MLE may be discontinuous in the data. This is obviously the case for
a discrete distribution, but it can also occur in a contaminated continuous
distribution as, for example, in the case of ε-mixture distribution family
with CDF

Pxc,ε(x) = (1 − ε)P (x) + εI[xc,∞[(x), (6.27)

where 0 ≤ ε ≤ 1.
• An MLE may not be a function of a sufficient statistic (if the MLE is not

unique).
• An MLE may not satisfy the likelihood equation as, for example, when the

likelihood function is not differentiable at its maximum, as in Example 6.5.
• The likelihood equation may have a unique root, yet no MLE exists. While

there are examples in which the roots of the likelihood equations occur
at minima of the likelihood, this situation does not arise in any realistic
distribution (that I am aware of). Romano and Siegel (1986) construct a
location family of distributions with support on

IR− {x1 + θ, x2 + θ : x1 < x2},

where x1 and x2 are known but θ is unknown, with a Lebesgue density
p(x) that rises as x ↗ x1 to a singularity at x1 and rises as x ↙ x2 to a
singularity at x2 and that is continuous and strictly convex over ]x1, x2[
and singular at both x1 and x2. With a single observation, the likelihood
equation has a root at the minimum of the convex portion of the density
between x1 + θ and x2 + θ, but the likelihood increases without bound at
both x1 + θ and x2 + θ.

• An MLE may differ from an MME; in particular an MLE of the population
mean may not be the sample mean.

Note that Theorem 6.1 hints at two other issues: nonuniqueness of an MLE
and existence of an MLE. We now consider these.

Nonuniqueness

There are many cases in which the MLEs are not unique (and I’m not just
referring to RLEs). The following examples illustrate this.

Example 6.11 likelihood in a Cauchy family
Consider the Cauchy distribution with location parameter θ. The likelihood
equation is
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n∑

i=1

2(xi − θ)
1 + (xi − θ)2

= 0.

This may have multiple roots (depending on the sample), and so the one
yielding the maximum would be the MLE. Depending on the sample, however,
multiple roots can yield the same value of the likelihood function.

Another example in which the MLE is not unique is U(θ − 1/2, θ + 1/2).

Example 6.12 likelihood in a uniform family with fixed range
Given the sample x1, . . . , xn, the likelihood function for U(θ − 1/2, θ + 1/2)
is

I[x(n)−1/2, x(1)+1/2](θ).

It is maximized at any value between x(n) − 1/2 and x(1) + 1/2.

Nonexistence and Other Properties

We have already mentioned situations in which the likelihood approach does
not seem to be the logical way, and have seen that sometimes in nonparametric
problems, the MLE does not exist. This often happens when there are more
“things to estimate” than there are observations. This can also happen in
parametric problems. It may happen that the maximum does not exist because
the likelihood is unbounded from above. In this case the argmax does not exist,
and the maximum likelihood estimate does not exist.

Example 6.13 nonexistence of MLE
Consider the normal family of distributions with parameters µ and σ2. Sup-
pose we have one observation x. The log-likelihood is

lL(µ, σ2 ; x) = −1

2
log(2πσ2) − (x− µ)2

2σ2
,

which is unbounded when µ = x and σ2 approaches zero. It is therefore clear
that no MLE of σ2 exists. Strictly speaking, we could also say that no MLE
of µ exists either; however, for any fixed value of σ2 in the (open) parameter
space, µ = x maximizes the likelihood, so it is reasonable to call x the MLE
of µ.

Recall from Example 5.14 that the degree of the variance functional is 2.

In this case, some people prefer to say that the likelihood function does not
exist; that is, they suggest that the definition of a likelihood function include
boundedness.
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6.2.3 The Score Function and the Likelihood Equations

In several of the preceding examples, we found the MLEs by differentiating
the likelihood and equating the derivative to zero. In many cases, of course,
we cannot find an MLE by just differentiating the likelihood; Example 6.5
is such a case. We will discuss methods of finding an MLE in Section 6.2.4
beginning on page 465.

In the following we will generally consider only the log-likelihood, and we
will assume that it is differentiable within Θ◦.

The derivative of the log-likelihood is the score function sn(θ ; x) (equa-
tion (3.57) on page 244). The score function is important in computations for
determining an MLE, as we see in Section 6.2.4, but it is also important in
studying properties of roots of the likelihood equation, especially asymptotic
properties, as we see in Section 6.3.

The score function is an estimating function and leads to the likelihood
equation ∇lL(θ ; x) = 0 or

sn(θ ; x) = 0, (6.28)

which is an estimating equation, similar to the estimating equation (5.71) for
least squares estimators. Generalizations of these equations are called “gener-
alized estimating equations”, or GEEs; see Section 3.2.5.

Any root of the likelihood equations, which is called an RLE, may be an
MLE. A theorem from functional analysis, usually proved in the context of
numerical optimization, states that if θ∗ is an RLE and HlL (θ∗ ; x) is negative
definite, then there is a local maximum at θ∗. This may allow us to determine
that an RLE is an MLE. There are, of course, other ways of determining
whether an RLE is an MLE. In MLE, the determination that an RLE is
actually an MLE is an important step in the process.

The Log-Likelihood Function and the Score Function in Regular
Families

In the regular case satisfying the three Fisher information regularity conditions
(see page 168), the likelihood function and consequently the log-likelihood
are twice differentiable within Θ◦, and the operations of differentiation and
integration can be interchanged. In this case, the score estimating function is
unbiased (see Definition 3.7):

Eθ(sn(θ ; X)) =

∫

X

∂

∂θ
lL(θ ; x)p(x; θ)dx

=

∫

X

∂

∂θ
p(x; θ)dx

=
∂

∂θ

∫

X
p(x; θ)dx

= 0. (6.29)
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The derivatives of the log-likelihood function relate directly to useful con-
cepts in statistical inference. If it exists, the derivative of the log-likelihood
is the relative rate of change, with respect to the parameter placeholder θ, of
the probability density function at a fixed observation. If θ is a scalar, some
positive function of the derivative, such as its square or its absolute value, is
obviously a measure of the effect of change in the parameter, or of change
in the estimate of the parameter. More generally, an outer product of the
derivative with itself is a useful measure of the changes in the components of
the parameter:

∇lL
(
θ(k) ; x

) (
∇lL

(
θ(k) ; x

))T

.

Notice that the average of this quantity with respect to the probability density
of the random variable X,

I(θ1 ; X) = Eθ1

(
∇lL

(
θ(k) ; X

) (
∇lL

(
θ(k) ; X

))T
)
, (6.30)

is the information matrix for an observation on Y about the parameter θ.
If θ is a scalar, the square of the first derivative is the negative of the

second derivative,

(
∂

∂θ
lL(θ ; x)

)2

= − ∂2

∂θ2
lL(θ ; x),

or, in general,

∇lL
(
θ(k) ; x

) (
∇lL

(
θ(k) ; x

))T

= −HlL

(
θ(k) ; x

)
. (6.31)

MLEs in Exponential Families

If X has a distribution in the exponential class and we write its density in the
natural or canonical form, the likelihood has the form

L(η ; x) = exp(ηTT (x)− ζ(η))h(x). (6.32)

The log-likelihood equation is particularly simple:

T (x)− ∂ζ(η)

∂η
= 0. (6.33)

Newton’s method for solving the likelihood equation is

η(k) = η(k−1) −
(
∂2ζ(η)

∂η(∂η)T

∣∣
η=η(k−1)

)−1 (
T (x)− ∂ζ(η)

∂η

∣∣
η=η(k−1)

)
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Note that the second term includes the Fisher information matrix for η.
(The expectation is constant.) (Note that the FI matrix is not for a distribu-
tion; it is for a parametrization of a distribution.)

We have

V(T (X)) =
∂2ζ(η)

∂η(∂η)T
|η=η .

Note that the variance is evaluated at the true η (even though in an expression
such as ∂η it must be a variable).

If we have a full-rank member of the exponential class then V is positive
definite, and hence there is a unique maximum.

If we write

µ(η) =
∂ζ(η)

∂η
,

in the full-rank case, µ−1 exists and so we have the solution to the likelihood
equation:

η̂ = µ−1(T (x)). (6.34)

So maximum likelihood estimation is very nice for the exponential class.

6.2.4 Finding an MLE

Notice that the problem of obtaining an MLE is a constrained optimization
problem; that is, an objective function is to be optimized subject to the con-
straints that the solution be within the closure of the parameter space.

In some cases the MLE occurs at a stationary point, which can be identified
by differentiation. That is not always the case, however. A standard example
in which the MLE does not occur at a stationary point is a distribution in
which the range depends on the parameter, and the simplest such distribution
is the uniform U(0, θ), which was the subject of Example 6.5.

In this section, we will discuss some standard methods of maximizing a
likelihood function and also some methods that are useful in more complicated
situations.

Computations

If the log-likelihood is twice differentiable and if the range does not depend
on the parameter, Equation (6.31) is interesting because the second deriva-
tive, or an approximation of it, is used in a Newton-like method to solve the
maximization problem (6.10). Newton’s equation

HlL (θ(k−1) ; x) d(k) = ∇lL(θ(k−1) ; x) (6.35)

is used to determine the step direction in the kth iteration. A quasi-Newton
method uses a matrix H̃lL(θ(k−1)) in place of the Hessian HlL (θ(k−1)). (See
notes on optimization in Appendix 0.4.)
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In terms of the score function, and taking the step length to be 1, equa-
tion (6.35) gives the iteration

θ(k) = θ(k−1) −
(
∇sn(θ(k−1) ; x)

)−1

sn(θ(k−1) ; x). (6.36)

Fisher Scoring on the Log-Likelihood

In “Fisher scoring”, the Hessian in Newton’s method is replaced by its ex-
pected value. The iterates then are

θ̂k+1 = θ̂k −H−1
l (θ̂k|x)∇l(θ̂k|x).

Example 6.14 Computing the MLE of the parameters in a gamma
distribution (continuation of Example 6.6)
The likelihood equations for the gamma(α, β) distribution in Example 6.6 led
to the two equations

β̂ = x̄/α̂

and

log(α̂)− Γ′(α̂)

Γ(α̂)
+
∑

log(xi)/n− log(x̄) = 0. (6.37)

The two unknowns in these equations are separable, so we merely need to
solve (6.37) in one unknown. The Hessian and gradient in equation (6.35)
or (6.36) are scalars.

The function

Ψ(α) =
Γ′(α)

Γ(α)
(6.38)

is called the psi function or the digamma function (see Olver et al. (2010)).
The R software package has a function for evaluation of the digamma function.
If Newton’s method (see Appendix 0.4) is to be used to solve equation (6.37),
we also need Ψ′(α). This is called the trigamma function, and it is also avail-
able in R.

To see how we may compute this, let us generate some artificial data and
solve the likelihood equations using the iterations in equation (6.36).

# Generate artificial data

alpha <- 2

beta <- 5

n <- 10

x <- rgamma(n,alpha,scale=beta)

# Define functions to solve likelihood equation

sna <- function(meanlog,logmean,a0){

log(a0)-digamma(a0)+meanlog-logmean

}
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snaprime <- function(meanlog,logmean,a0){

1/a0 -trigamma(a0)

}

# Initialize data for algorithm

n <- 10

meanlog <- sum(log(x))/n

logmean <- log(mean(x))

# Initialize starting value, set tolerance, loop

tol <- 10e-7

ak <- 3; akp1 <- ak+3*tol

iter <- 100

i <- 0

while (abs(akp1-ak)>tol&i<iter){

i <- i+1

ak <- max(tol,akp1)

akp1 <- ak -

sna(meanlog,logmean,ak)/snaprime(meanlog,logmean,ak)

}

bk <- mean(x)/ak

ak

bk

i

Depending on the sample, this code will converge in 5 to 10 iterations.

One-Step MLE

Perhaps surprisingly, one iteration of equation (6.36) often gives a good ap-
proximation using any “reasonable” starting value. The result of one iteration
is called a “one-step MLE”.

Example 6.15 Computing the one-step MLEs of the parameters in
a gamma distribution (continuation of Example 6.14)

# Generate artificial data and initialize for algorithm

x <- rgamma(n,alpha,scale=beta)

n <- 10

meanlog <- sum(log(x))/n

logmean <- log(mean(x))

# Initialize starting value, set tolerance, loop

tol <- 10e-7

ak <- 3; akp1 <- ak+3*tol
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iter <- 100

i <- 0

while (abs(akp1-ak)>tol&i<iter){

i <- i+1

ak <- max(tol,akp1)

akp1 <- ak -

sna(meanlog,logmean,ak)/snaprime(meanlog,logmean,ak)

}

bk <- mean(x)/ak

ak

bk

ak <- 3; akp1 <- ak+3*tol; ak1 <- akp1

akp1 <- ak1 -

sna(meanlog,logmean,ak1)/snaprime(meanlog,logmean,ak1)

ak1 <- akp1

bk1 <- mean(x)/ak1

ak1

bk1

Here are some results from several runs on artificial data. The one-step MLE
is generally close to the MLE.

converged 3.017 4.001 4.297 1.687 2.703 2.499 4.955
one-step 3.017 3.746 3.892 0.584 2.668 2.393 4.161

Nondifferentiable Likelihood Functions

The definition of MLEs does not depend on the existence of a likelihood
equation. The likelihood function may not be differentiable with respect to
the parameter, as in the following example in which the parameter space is
countable.

Example 6.16 MLE in the hypergeometric distribution
Consider a common problem in quality assurance. A batch ofN items contains
an unknown numberM of defective items. We take a random sample of n items
from the batch, and observing that the sample contains x defective items, we
wish to estimate M . The likelihood is

L(M, N, n; x) =

(
M

x

)(
N −M
n− x

)
/

(
N

n

)
, (6.39)

over the appropriate ranges of N , M , n, and x, which are all nonnegative
integers. This is a single-parameter distribution, because we assume N and n
are known due to the setup of the problem. The parameter space is

M = {0, 1, . . . , N},

with M = 0 yielding a degenerate distribution.
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The likelihood is not differentiable in M (it is not even continuous in
M), so there is no likelihood equation. The function does have a maximum,
however, and so an MLE exits.

Even if a function is not differentiable, we can seek a maximum by iden-
tifying a point of change from increasing to decreasing. We approximate a
derivative:

L(M)

L(M − 1)
=

This is larger than 1, that is, the function is increasing, so long as M <
(N + 1)x/n and greater than 1 otherwise. Hence, the MLE is

M̂ = d(N + 1)x/ne.

Note that this is biased. The UMVUE of M is Nx/n.

EM Methods

Expectation Maximization methods are iterative methods for finding an MLE.
Although EM methods do not rely on missing data, they can be explained
most easily in terms of a random sample that consists of two components, one
observed and one unobserved or missing. EM methods can also be used for
other applications.

Missing Data

A simple example of missing data occurs in life-testing, when, for example,
a number of electrical units are switched on and the time when each fails is
recorded.

In such an experiment, it is usually necessary to curtail the recordings
prior to the failure of all units.

The failure times of the units still working are unobserved, but the num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.

Mixtures

Another common example that motivates the EM algorithm is a finite mixture
model.

Each observation comes from an unknown one of an assumed set of distri-
butions. The missing data is the distribution indicator.

The parameters of the distributions are to be estimated. As a side benefit,
the class membership indicator is estimated.
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Applications of EM Methods

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods involve missing-data problems,
but this is not necessary.

Often, an EM method can be constructed based on an artificial “missing”
random variable to supplement the observable data.

Example 6.17 MLE in a multinomial model

One of the simplest examples of the EM method was given by Dempster et al.
(1977).

Consider the multinomial distribution with four outcomes, that is, the
multinomial with probability function,

p(x1, x2, x3, x4) =
n!

x1!x2!x3!x4!
πx1

1 πx2

2 πx3

3 πx4

4 ,

with n = x1+x2 +x3 +x4 and 1 = π1+π2 +π3 +π4. Suppose the probabilities
are related by a single parameter, θ, with 0 ≤ θ ≤ 1:

π1 =
1

2
+

1

4
θ

π2 =
1

4
− 1

4
θ

π3 =
1

4
− 1

4
θ

π4 =
1

4
θ.

Given an observation (x1, x2, x3, x4), the log-likelihood function is

l(θ) = x1 log(2 + θ) + (x2 + x3) log(1− θ) + x4 log(θ) + c

and

dl(θ)/dθ =
x1

2 + θ
− x2 + x3

1− θ +
x4

θ
.

The objective is to estimate θ.
Dempster, Laird, and Rubin used n = 197 and x = (125, 18, 20, 34). (For

this simple problem, the MLE of θ can be determined by solving a simple
polynomial equation, but let’s proceed with an EM formulation.)

To use the EM algorithm on this problem, we can think of a multinomial
with five classes, which is formed from the original multinomial by splitting
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the first class into two with associated probabilities 1/2 and θ/4. The original
variable x1 is now the sum of u1 and u2. Under this reformulation, we now
have a maximum likelihood estimate of θ by considering u2 + x4 (or x2 + x3)
to be a realization of a binomial with n = u2 + x4 + x2 + x3 and π = θ
(or 1 − θ). However, we do not know u2 (or u1). Proceeding as if we had a
five-outcome multinomial observation with two missing elements, we have the
log-likelihood for the complete data,

lc(θ) = (u2 + x4) log(θ) + (x2 + x3) log(1− θ),

and the maximum likelihood estimate for θ is

u2 + x4

u2 + x2 + x3 + x4
.

The E-step of the iterative EM algorithm fills in the missing or unobserv-
able value with its expected value given a current value of the parameter, θ(k),
and the observed data. Because lc(θ) is linear in the data, we have

E (lc(θ)) = E(u2 + x4) log(θ) + E(x2 + x3) log(1− θ).

Under this setup, with θ = θ(k),

Eθ(k)(u2) =
1

4
x1θ

(k) /

(
1

2
+

1

4
x1θ

(k)

)

= u
(k)
2 .

We now maximize Eθ(k) (lc(θ)). This maximum occurs at

θ(k+1) = (u
(k)
2 + x4)/(u

(k)
2 + x2 + x3 + x4).

The following R statements execute a single iteration, after tk has been
initialized to some value between 0 and 1.

u2kp1 <- x[1]*tk/(2+tk)

tk <- (u2kp1 + x[4])/(sum(x)-x[1]+u2kp1)

Within just a few iterations, tk settles to approximately 0.62682.

Example 6.18 MLE in a variation of the life-testing experiment
Consider an experiment described by Flury and Zoppè (2000). It is assumed
that the lifetime of light bulbs follows the exponential distribution with mean
θ. To estimate θ, n light bulbs were tested until they all failed. Their failure
times were recorded as x1, . . . , xn. In a separate experiment, m bulbs were
tested, but the individual failure times were not recorded. Only the number
of bulbs, r, that had failed at time t was recorded. This is a slightly different
setup as in Example 6.3.

The missing data are the failure times of the bulbs in the second experi-
ment, u1, . . . , um. We have
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lc(θ ; x, u) = −n(log θ + x̄/θ) −
m∑

i=1

(log θ + ui/θ).

The expected value for a bulb still burning is

t+ θ

and the expected value of one that has burned out is

θ − te−t/θ(k)

1− e−t/θ(k)
.

Therefore, using a provisional value θ(k), and the fact that r out of m
bulbs have burned out, we have EU |x,θ(k)(lc) as

q(k)(x, θ) = −(n +m) log(θ)

−1

θ

(
nx̄+ (m− r)(t+ θ(k)) + r(θ(k) − th(k))

)
,

where h(k) is given by

h(k) =
e−t/θ(k)

1− e−t/θ(k)
.

The kth M step determines the maximum with respect to the variable θ,
which, given θ(k), occurs at

θ(k+1) =
1

n+m

(
nx̄+ (m− r)(t + θ(k)) + r(θ(k) − th(k))

)
. (6.40)

Starting with a positive number θ(0), equation (6.40) is iterated until conver-
gence. The expectation q(k) does not need to be updated explicitly.

To see how this works, let’s generate some artificial data and try it out.
Some R code to implement this is:

# Generate data from the exponential with theta=2,

# and with the second experiment truncated at t=3.

# Note that R uses a form of the exponential in

# which the parameter is a multiplier; i.e., the R

# parameter is 1/theta.

# Set the seed, so computations are reproducible.

set.seed(4)

n <- 100

m <- 500

theta <- 2

t <- 3

x <- rexp(n,1/theta)

r<-min(which(sort(rexp(m,1/theta))>=3))-1

Theory of Statistics c©2000–2025 James E. Gentle



6.2 Maximum Likelihood Parametric Estimation 473

Some R code to implement the EM algorithm:

# We begin with theta=1.

# (Note theta.k is set to theta.kp1 at

# the beginning of the loop.)

theta.k<-.01

theta.kp1<-1

# Do some preliminary computations.

n.xbar<-sum(x)

# Then loop and test for convergence

theta.k <- theta.kp1

theta.kp1 <- (n.xbar +

(m-r)*(t+theta.k) +

r*(theta.k-

t*exp(-t/theta.k)/(1-exp(-t/theta.k))

)

)/(n+m)

The value of θ stabilizes to less than 0.1% change at 1.912 in 6 iterations.

This example is interesting because if we assume that the distribution of
the light bulbs is uniform, U(0, θ) (such bulbs are called “heavybulbs”!), the
EM algorithm cannot be applied.

Maximum likelihood methods must be used with some care whenever the
range of the distribution depends on the parameter.

In this case, however, there is another problem. It is in computing
q(k)(x, θ), which does not exist for θ < θ(k−1).

Example 6.19 MLE in a normal mixtures model
A two-component normal mixture model can be defined by two normal distri-
butions, N(µ1, σ

2
1) and N(µ2, σ

2
2), and the probability that the random variable

(the observable) arises from the first distribution is w.
The parameter in this model is the vector θ = (w, µ1, σ

2
1, µ2, σ

2
2). (Note

that w and the σs have the obvious constraints.)
The pdf of the mixture is

p(y; θ) = wp1(y;µ1, σ
2
1) + (1− w)p2(y;µ2 , σ

2
2),

where pj(y;µj , σ
2
j ) is the normal pdf with parameters µj and σ2

j . (I am
just writing them this way for convenience; p1 and p2 are actually the same
parametrized function of course.)

In the standard formulation with C = (X,U), X represents the observed
data, and the unobserved U represents class membership.

Let U = 1 if the observation is from the first distribution and U = 0 if the
observation is from the second distribution.
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The unconditional E(U) is the probability that an observation comes from
the first distribution, which of course is w.

Suppose we have n observations on X, x1, . . . , xn.
Given a provisional value of θ, we can compute the conditional expected

value E(U |x) for any realization of X. It is merely

E(U |x, θ(k)) =
w(k)p1(x;µ

(k)
1 , σ2(k)

1 )

p(x;w(k), µ
(k)
1 , σ2(k)

1 , µ
(k)
2 , σ2(k)

2 )

The M step is just the familiar MLE of the parameters:

w(k+1) =
1

n

∑
E(U |xi, θ

(k))

µ
(k+1)
1 =

1

nw(k+1)

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

1 =
1

nw(k+1)

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
1 )2

µ
(k+1)
2 =

1

n(1−w(k+1))

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

2 =
1

n(1−w(k+1))

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
2 )2

**** variations **** relate to AOV

****** rewrite all this:
In maximum likelihood estimation, the objective function is the likelihood,

LX(θ; x) or the log-likelihood, lX(θ; x). (Recall that a likelihood depends on
a known distributional form for the data; that is why we use the notation
LX(θ; x) and lX(θ; x), where “X” represents the random variable of the dis-
tribution.)

The variable for the optimization is θ; thus in an iterative algorithm, we
find θ(1), θ(2), . . ..

One type of alternating method is based on conditional optimization
and a conditional bounding function alternates between updating θ(k) using
maximum likelihood and conditional expected values. This method is called
the EM method because the alternating steps involve an expectation and a
maximization.

Given θ(k−1) we seek a function qk(x, θ) that has a known relationship
with lX(θ; x), and then we determine θ(k) to maximize qk(x, θ) (subject to
any constraints on acceptable values of θ).

The minorizing function qk(x, θ) is formed as a conditional expectation
of a joint likelihood. In addition to the data we have observed, call it X, we
assume we have some unobserved data U .
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Thus, we have “complete” data C = (X,U) given the actual observed data
X, and the other component, U , of C that is not observed.

Let LC(θ; c) be the likelihood of the complete data, and let LX(θ; x) be the
likelihood of the observed data, with similar notation for the log-likelihoods.
We refer to LC(θ; c) as the “complete likelihood”.

There are thus two likelihoods, one based on the complete (but unknown)
sample, and one based only on the observed sample.

We wish to estimate the parameter θ, which figures in the distribution of
both components of C.

The conditional likelihood of C given X is

LC|X(θ; c|x) = LC(θ; x, u)/LX(θ; x),

or
lC|X(θ; c|x) = lC(θ; x, u)− lX(θ; x).

Note that the conditional of C given X is the same as the conditional of
U given X, and we may write it either way, either C|X or U |X.

Because we do not have all the observations, LC|X(θ; c|x) and LC(θ; c)
have

• unknown variables (the unobserved U)
• the usual unknown parameter.

Hence, we cannot follow the usual approach of maximizing the likelihood with
given data.

We concentrate on the unobserved or missing data first.
We use a provisional value of θ(k−1) to approximate the complete likelihood

based on the expected value of U given X = x.
The expected value of the likelihood, which will generally be a function of

both θ and θ(k−1), minorizes the objective function of interest, LX(θ; x), as
we will see.

We then maximize this minorizing function with respect to θ to get θ(k).
Let LC(θ ; x, u) and lC (θ ; x, u) denote, respectively, the likelihood and

the log-likelihood for the complete sample. The objective function, that is, the
likelihood for the observed X, is

LX(θ ; x) =

∫
LC(θ ; x, u) du,

and lX(θ ; x) = logLX(θ ; x).
After representing the function of interest, LX(θ ; x), as an integral, the

problem is to determine this function; that is, to average over U . (This is what
the integral does, but we do not know what to integrate.) The average over
U is the expected value with respect to the marginal distribution of U .

This is a standard problem in statistics: we estimate an expectation using
observed data.
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In this case, however, even the values that we average to estimate the
expectation depends on θ, so we use a provisional value of θ.

We begin with a provisional value of θ, call it θ(0).
Given any provisional value θ(k−1), we will compute a provisional value

θ(k) that increases (or at least does not decrease) the conditional expected
value of the complete likelihood.

The EM approach to maximizing LX(θ ; x) has two alternating steps. The
steps are iterated until convergence.

E step : compute qk(x, θ) = EU |x,θ(k−1)

(
lC(θ; x, U)

)
.

M step : determine θ(k) to maximize qk(x, θ), or at least to increase it (subject
to any constraints on acceptable values of θ).

Convergence of the EM Method

Is lX(θ(k); x) ≥ lX(θ(k−1); x)?
(If it is, of course, then LX(θ(k); x) ≥ LX(θ(k−1); x), because the log is
monotone increasing.)

The sequence θ(1), θ(2), . . . converges to a local maximum of the observed-
data likelihood L(θ ; x) under fairly general conditions. (It can be very slow
to converge, however.)

Why EM Works

The real issue is whether the EM sequence

{θ(k)} → arg max
θ

lX(θ; x)

(= arg max
θ

LX(θ; x)).

If lX(·) is bounded (and it better be!), this is essentially equivalent to to asking
if

lX(θ(k); x) ≥ lX(θ(k−1); x).

(So long as in a sufficient number of steps the inequality is strict.)
Using an equation from before, we first write

lX(θ; X) = lC(θ; (X,U)) − lU |X(θ;U |X),

and then take the conditional expectation of functions of U given x and under
the assumption that θ has the provisional value θ(k−1):

lX(θ; X) = EU |x,θ(k−1)

(
lC(θ; (x, U))

)
− EU |x,θ(k−1)

(
lU |X(θ;U |x)

)

= qk(x, θ)− hk(x, θ),
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where
hk(x, θ) = EU |x,θ(k−1)

(
lU |X(θ;U |x)

)
.

Now, consider
lX(θ(k); X) − lX(θ(k−1); X).

This has two parts:
qk(x, θ(k)) − qk(x, θ(k−1))

and
−
(
hk(x, θ(k))− hk(x, θ(k−1))

)
.

The first part is nonnegative from the M part of the kth step.
What about the second part? We will show that it is nonnegative also (or

without the minus sign it is nonpositive).
For the other part, for given θ(k−1) and any θ, ignoring the minus sign,
...

hk(x, θ)− hk(x, θ(k−1))

= EU |x,θ(k−1)

(
lU |X(θ;U |x)

)
− EU |x,θ(k−1)

(
lU |X(θ(k−1);U |x)

)

= EU |x,θ(k−1)

(
log
(
LU |x(θ;U |x)/LU |X(θ(k−1);U |x)

))

≤ log
(
EU |x,θ(k−1)

(
LU |X(θ;U |x)/LU |X(θ(k−1);U |x)

))

(by Jensen′s inequality)

= log

∫

D(U)

LU |X(θ;U |x)
LU |X(θ(k−1);U |x) LU |X(θ(k−1);U |x) du

= log

∫

D(U)

LU |X(θ;U |x) du

= 0.

So the second term is also nonnegative, and hence,

lX(θ(k); x) ≥ lX(θ(k−1); x).

A Minorizing Function in EM Algorithms

With lX(θ; x) = qk(x, θ) − hk(x, θ), and hk(x, θ) ≤ hk(x, θ(k−1)) from the
previous pages, we have

lX(θ(k−1); x)− qk(x, θ(k−1)) ≤ lX(θ; x)− qk(x, θ);

and so
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qk(x, θ) + c(x, θ(k−1)) ≤ lX(θ; x),

where c(x, θ(k−1)) is constant with respect to θ.
Therefore for given θ(k−1) and any x,

g(θ) = lX(θ(k−1); X) − qk(x, θ(k−1))

is a minorizing function for lX(θ; x).

Alternative Ways of Performing the Computations

There are two kinds of computations that must be performed in each iteration:

• E step : compute qk(x, θ) = EU |x,θ(k−1)

(
lc(θ; x, U)

)
.

• M step : determine θ(k) to maximize qk(x, θ), subject to any constraints
on acceptable values of θ.

There are obviously various ways to perform each of these computations.
A number of papers since 1977 have suggested specific methods for the

computations.
For each specification of a method for doing the computations or each little

modification, a new name is given, just as if it were a new idea:
GEM, ECM, ECME, AECM, GAECM, PXEM, MCEM, AEM, EM1, SEM

E Step

There are various ways the expectation step can be carried out.
In the happy case of a “nice” distribution, the expectation can be com-

puted in closed form. Otherwise, computing the expectation is a numerical
quadrature problem. There are various procedures for quadrature, including
Monte Carlo.

Some people have called an EM method that uses Monte Carlo to evalu-
ate the expectation an MCEM method. (If a Newton-Cotes method is used,
however, we do not call it an NCEM method!) The additional Monte Carlo
computations add a lot to the overall time required for convergence of the EM
method.

An additional problem in using Monte Carlo in the expectation step may
be that the distribution of C is difficult to simulate. The convergence criterion
for optimization methods that involve Monte Carlo generally should be tighter
than for deterministic methods.

M Step

For the maximization step, there are even more choices.
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The first thing to note, as we mentioned earlier for alternating algorithms
generally, is that rather than maximizing qk, we can just require that the
overall sequence increase.

Dempster et al. (1977) suggested requiring only an increase in the expected
value; that is, take θ(k) so that

qk(u, θ
(k)) ≥ qk−1(u, θ

(k−1)).

They called this a generalized EM algorithm, or GEM. (Even in the paper
that introduced the “EM” acronym, another acronym was suggested for a
variation.) If a one-step Newton method is used to do this, some people have
called this a EM1 method.

Meng and Rubin (1993) describe a GEM algorithm in which the M-step

is an alternating conditional maximization; that is, if θ = (θ1 , θ2), first θ
(k)
1 is

determined to maximize q subject to the constraint θ2 = θ
(k−1)
2 ; then θ

(k)
2 is

determined to maximize qk subject to the constraint θ1 = θ
(k)
1 . This sometimes

simplifies the maximization problem so that it can be done in closed form.
They call this an expectation conditional maximization method, ECM.

Alternate Ways of Terminating the Computations

In any iterative algorithm, we must have some way of deciding to terminate
the computations. (The generally-accepted definition of “algorithm” requires
that it terminate. In any event, of course, we want the computations to cease
at some point.)

One way of deciding to terminate the computations is based on conver-
gence; if the computations have converged we quit. In addition, we also have
some criterion by which we decide to quit anyway.

In an iterative optimization algorithm, there are two obvious ways of de-
ciding when convergence has occurred. One is when the decision variables
(the estimates in MLE) are no longer changing appreciably, and the other is
when the value of the objective function (the likelihood) is no longer changing
appreciably.

Convergence

It is easy to think of cases in which the objective function converges, but the
decision variables do not. All that is required is that the objective function
is flat over a region at its maximum. In statistical terms, the corresponds to
unidentifiability.

The Variance of Estimators Defined by the EM Method

As is usual for estimators defined as solutions to optimization problems, we
may have some difficulty in determining the statistical properties of the esti-
mators.
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Louis (1982) suggested a method of estimating the variance-covariance
matrix of the estimator by use of the gradient and Hessian of the complete-
data log-likelihood, lLc(θ ; u, v). Kim and Taylor (1995) also described ways
of estimating the variance-covariance matrix using computations that are part
of the EM steps.

It is interesting to note that under certain assumptions on the distribution,
the iteratively reweighted least squares method can be formulated as an EM
method (see Dempster et al. (1980)).

Missing Data

Although EM methods do not rely on missing data, they can be explained
most easily in terms of a random sample that consists of two components, one
observed and one unobserved or missing.

A simple example of missing data occurs in life-testing, when, for example,
a number of electrical units are switched on and the time when each fails is
recorded.

In such an experiment, it is usually necessary to curtail the recordings
prior to the failure of all units.

The failure times of the units still working are unobserved, but the num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.

Mixtures

Another common example that motivates the EM algorithm is a finite mixture
model.

Each observation comes from an unknown one of an assumed set of distri-
butions. The missing data is the distribution indicator.

The parameters of the distributions are to be estimated. As a side benefit,
the class membership indicator is estimated.

Applications of EM Methods

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods involve missing-data problems,
but this is not necessary.

Often, an EM method can be constructed based on an artificial “missing”
random variable to supplement the observable data.
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6.3 Asymptotic Properties of MLEs, RLEs, and GEE
Estimators

The argmax of the likelihood function, that is, the MLE of the argument of
the likelihood function, is obviously an important statistic.

In many cases, a likelihood equation exists, and often in those cases, the
MLE is a root of the likelihood equation. In some cases there are roots of the
likelihood equation (RLEs) that may or may not be an MLE.

6.3.1 Asymptotic Distributions of MLEs and RLEs

We recall that asymptotic expectations are defined as expectations in asymp-
totic distributions (rather than as limits of expectations). The first step in
studying asymptotic properties is to determine the asymptotic distribution.

Example 6.20 asymptotic distribution of the MLE of the variance
in a Bernoulli family
In Example 6.8 we determined the MLE of the variance g(π) = π(1 − π) in
the Bernoulli family of distributions with parameter π. The MLE of g(π) is
Tn = X(1−X).

From Example 1.25 on page 95, we get its asymptotic distributions as

√
n(g(π) − Tn)→ N(0, π(1− π)(1 − 2π)2),

if π 6= 1/2, and if π = 1/2,

4n(g(π) − Tn)
d→ χ2

1.

6.3.2 Asymptotic Efficiency of MLEs and RLEs

One of the most important properties of roots of the likelihood equation, given
the Le Cam regularity conditions (see page 169), is asymptotic efficiency. The
regularity conditions are the same as those for Le Cam’s theorem on the
countability of superefficient estimators (see page 421). ******************
fix

For distributions that satisfy the Le Cam regularity conditions (these con-
ditions are essentially the FI regularity conditions plus a condition on the
FI matrix), there is a nice sequence of the likelihood equation (6.12) that is
formed from the sequence of score functions,

sn(θ) = ∇lLn(θ ; x). (6.41)
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Theorem 6.4
Assume the Le Cam regularity conditions for a family of distributions {Pθ},
and let sn(θ) be the score function for a sample of size n. There is a sequence

of estimators θ̂n such that

Pr(sn(θ̂n) = 0)→ 1,

and
θ̂n

p→ θ.

Proof.

For a sequence in a Le Cam regular family that satisfies the conclusion of
Theorem 6.4, there is an even more remarkable fact. We have seen in Theo-
rem 6.2 that, with the FI regularity conditions, if there is an efficient estimator,
then that estimator is an MLE.

Theorem 6.5
Assume the Le Cam regularity conditions for a family of distributions {Pθ},
and let sn(θ) be the score function for a sample of size n. Any consistent

sequence of RLEs, that is, any consistent sequence θ̂n that satisfies

sn(θ̂n) = 0,

is asymptotically efficient.

Proof.

Notice the differences in Theorems 6.2 and 6.5. Theorem 6.2 for finite sam-
ple efficiency requires only the FI regularity conditions for RLEs (or with the
additional requirement of a positive definite information matrix for an MLE),
but is predicated on the existence of an efficient estimator. As is often the case
in asymptotic efficiency, Theorem 6.5 requires the Le Cam regularity condi-
tions but it gives a stronger result: consistency yields asymptotic efficiency.

It is important to be clear on what these theorems say. They apply to
RLEs, which may be MLEs of the parameter, which as a variable is the variable
of differentiation, say θ, in the score function. If θ̂ is the MLE of θ, then by
definition, g(θ̂) is the MLE of g(θ). If θ̂ is asymptotically efficient for estimating

θ, that does not mean that g(θ̂) is asymptotically efficient for estimating g(θ).

Example 6.21 an MLE that is not asymptotically efficient
In Example 6.8 we determined that the MLE of the variance g(π) = π(1− π)
in the Bernoulli family of distributions with parameter π is Tn = X(1 −X),
and in Example 6.20 we determined its asymptotic distribution.

When π 6= 1/2, we have

√
n(g(π) − Tn)→ N(0, π(1− π)(1 − 2π)2),
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and when π = 1/2, we have

4n(g(π) − Tn)
d→ χ2

1.

Hence, Tn is asymptotically biased.

Asymptotic Relative Efficiency

Remember that the ARE is the ratio of two asymptotic expectations — not
the asymptotic expectation of a ratio, and certainly not the limit of a ratio;
although of course sometimes these three things are the same.

Example 6.22 ARE(MLE, UNVUE) in the exponential family with
range dependency

In Examples 5.9 and 6.7 we considered the two parameter exponential
distribution with Lebesgue PDF

θ−1e−(x−α)/θI]α,∞[(x).

In Example 5.9, we found the UMVUEs:

Tαn = X(1) −
1

n(n− 1)

∑
(Xi −X(1))

and

Tθn =
1

n− 1

∑
(Xi −X(1)).

In Example 6.7, we found the MLEs:

α̂n = X(1)

and

θ̂n =
1

n

∑
(Xi −X(1)).

The distributions for θ̂ and Tθ are relatively easy. We worked out the
distribution of Tθ in Example 1.18, and θ̂ is just a scalar multiple of Tθ.
Because of the relationship between θ̂ and Tθ, however, we do not even need
the asymptotic distributions.

In Example 1.11 we found that the distribution of α̂ is a two-parameter
exponential distribution with parameters α and θ/n; hence,

n(X(1) − α)
d→ exponential(0, θ).

Now let us consider the ARE of the MLE to the UMVUE for these two
parameters.
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• ARE(MLE,UMVUE) for θ.
This is an easy case, because the estimators always differ by the ratio
n/(n− 1). We do not even need the asymptotic distributions. The ARE is
1.

• ARE(MLE,UMVUE) for α.
We have found the asymptotic distributions of U = α̂−α and V = Tα−α,
so we just work out the asymptotic expectations of U2 and V 2. We get
E(V 2) = θ and E(U2) = θ + θ2. Therefore, the ARE is θ/(θ + θ2).

6.3.3 Inconsistent MLEs

In previous sections, we have seen that sometimes MLEs do not have some
statistical properties that we usually expect of good estimators.

The discussion in this section has focused on MLEs (or RLEs) that are
consistent. It is not necessarily the case that MLEs are consistent, however.
The following example is from Romano and Siegel (1986).

Example 6.23 rational, irrational estimand
Let X1, . . . , Xn be a sample from N(θ, 1). Define the estimand g(θ) as

g(θ) =

{
−θ if θ is irrational
θ if θ is rational.

Because Xn is the MLE of θ, g(Xn) is the MLE of g(θ). Now Xn ∼ N(θ, 1/n)
and so is almost surely irrational; hence, g(Xn) = −Xn a.s. Now, by the
SLLN, we have g(Xn) = −θ a.s. Hence, if θ is a rational number 6= 0, then

g(Xn)
a.s.→ −θ 6= θ = g(θ).

While that example may seem somewhat contrived, consider an example
due to Ferguson.

Example 6.24 mixtures
Let X1, . . . , Xn be a sample from from the distribution with PDF wrt
Lebesgue measure

pX(x; θ) = (1− θ)pT(x; θ, δ(θ)) + θpU(x),

where θ ∈ [0, 1], δ(θ) is a continuous decreasing function of θ with δ(0) = 1
and 0 < δ(θ) ≤ 1− θ for 0 < θ < 1, and

pT(x; θ, δ(θ)) =
1

δ(θ)

(
1− |x− θ|

δ(θ)

)
I[θ−δ(θ),θ+δ(θ)](x)
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and

pU(x) =
1

2
I[−1,1](x).

The distribution is a mixture of a triangular distribution centered on θ and
the U(−1, 1) distribution.

Note that the densities are continuous in θ for any x and is defined on
[0, 1] and therefore an MLE exists.

Let θ̂n = θ̂(X1, . . . , Xn) denote any MLE of θ. Now, if θ < 1, then

pX(x; θ) ≤ (1 − θ)/δ(θ) + θ/2 < 1/δ(θ) +
1

2
,

and so for any α < 1

max
0≤θ≤α

ln(θ)

n
≤ log

(
1

δ(θ)
+

1

2

)
<∞.

Now, if we could choose δ(θ) so that

max
0≤θ≤1

ln(θ)

n

a.s.→ ∞,

then θ̂n will eventually be greater than α for any α < 1, and so the MLE is
not consistent.

So, can we choose such a δ(θ)?
Let

Mn = max(X1, . . . , Xn),

hence Mn
a.s.→ ∞, and

max
0≤θ≤1

ln(θ)

n
≥ ln(Mn)

n

≥ n − 1

n
log

(
Mn

2

)
+

1

n
log

(
1−Mn

δ(Mn)

)
,

and so

lim inf
n

max
0≤θ≤1

ln(θ)

n
≥ log

(
1

2

)
+ lim inf

n
log

(
1−Mn

δ(Mn)

)
a.s.

So we need to choose δ(θ) so that the last limit is infinite a.s. Now, ∀θMn
a.s.→

∞, and the slowest rate is for θ = 1, because that distribution has the smallest
mass in a sufficiently small neighborhood of 1. Therefore, all we need to do is
choose δ(θ) → 0 as θ → 1 fast enough so that the limit is infinite a.s. when
θ = 0.

So now for 0 < ε < 1,
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∑

n

Prθ=0(n
1/4(1 −Mn) > ε) =

∑

n

Prθ=0(Mn < 1− εn−1/4)

=
∑

n

(
1− ε2n

−1/4

2

)n

≤
∑

n

exp

(
−ε2n

−1/4

2

)

< ∞.

Hence, by the Borel-Cantelli lemma, n1/4(1−Mn)→ 0 a.s. Finally, choosing

δ(θ) = (1− θ) exp
(
−(1 − θ)−4 + 1

)
,

we have a function that satisfies the requirements above (it is continuous
decreasing with δ(0) = 1 and 0 < δ(θ) ≤ 1− θ for 0 < θ < 1) and it is such
that

1

n
log

(
1−Mn

δ(Mn)

)
=

1

n(1−Mn)4
− 1

n

a.s.→ ∞.

This says that any MLE of θ must tend to 1 a.s., and so cannot be consistent.

In addition to these examples, we recall the Neyman-Scott problem in
Example 6.27, where the ordinary MLE of the variance is not consistent,
but we were able to reformulate the problem so as to obtain an MLE of the
variance that is consistent.

6.3.4 Properties of GEE Estimators

Consistency of GEE Estimators

The roots of a generalized estimating equation

sn(γ) = 0

often have good asymptotic properties.
If the GEE is chosen so that

Eθ(sn(θ)) = 0,

or else so that the asymptotic expectation of {xn} is zero *****************
The class of estimators arising from the generalized estimating equa-

tions (3.77) and (3.79), under very general assumptions have an asymptotic
normal distribution. This is Theorem 5.13 in MS2.
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√
n(θ̂n − θ) d→ N(0, σ2

F ),

where {θ̂n} is a sequence of GEE estimators and

σ2
F =

∫
(ψ(x, θ))2dF (x)/(ψ′(x, θ))2.

6.4 Application: MLEs in Generalized Linear Models

6.4.1 MLEs in Linear Models

In the case of underlying normal probability distribution, estimation of
the mean based on least squares is the same as MLE. Consider a linear
model (5.66) as discussed in Section 5.5.1.

Example 6.25 MLE in a linear model
Let

Y = Xβ + E, (6.42)

where Y and E are n-vectors with E(E) = 0 and V(E) = σ2In, X is an
n × p matrix whose rows are the xT

i , and β is the p-vector parameter. In
Section 5.5.1 we studied a least squares estimator of β; that is,

b∗ = arg min
b∈B

‖Y −Xb‖2 (6.43)

= (XTX)−XTY. (6.44)

Even if X is not of full rank, in which case the least squares estimator is
not unique, we found that the least squares estimator has certain optimal
properties for estimable functions.

Of course at this point, we could not use MLE — we do not have a distri-
bution. We could define a least squares estimator without an assumption on
the distribution of Y or E, but for an MLE we need an assumption on the
distribution.

After we considered the least-squares estimator without a specific distri-
bution, next in Section 5.5.1, we considered the additional assumption in the
model that

E ∼ Nn(0, σ2In),

or
Y ∼ Nn(Xβ, σ2In).

In that case, we found that the least squares estimator yielded the unique
UMVUE for any estimable function of β and for σ2. Again, let us assume

Y ∼ Nn(Xβ, σ2In),
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yielding, for an observed y, the log-likelihood

lL(β, σ2 y,X) = −n
2

log(2πσ2) − 1

2σ2
(y −Xβ)T(y −Xβ). (6.45)

Maximizing this function with respect to β is the same as minimizing the
expression in equation (6.43), and so an MLE of β is the same as a least
squares estimator of β.

Estimation of σ2, however, is different. In the case of least squares estima-
tion on page 426, with no specific assumptions about the distribution of E in
the model (6.42), we had no basis for forming an objective function of squares
to minimize. With an assumption of normality, however, instead of explicitly
forming a least squares problem for estimating σ2, using a least squares es-
timator of β, b∗, we merely used the distribution of (y −Xb∗)T(y −Xb∗) to
form a UMVUE of σ2,

s2 = (Y −Xb∗)T(Y −Xb∗)/(n− r), (6.46)

where r = rank(X).
In the case of maximum likelihood, we directly determine the value of σ2

that maximizes the expression in equation (6.45). This is an easy optimization
problem. The solution is

σ̂2 = (y −Xβ̂)T(y −Xβ̂)/n (6.47)

where β̂ = b∗ is an MLE of β. Compare the MLE of σ2 with the least squares
estimator, and note that the MLE is biased. Recall that we have encountered
these two estimators in the simpler cases of Example 3.13 (MLE) and 5.6
(UMVUE). See also equation (3.55).

In Examples 5.28, 5.29 and 5.30 (starting on page 434), we considered
UMVUE in a special case of the linear model called the fixed-effects one-way
AOV model. We now consider MLE in this model.

Example 6.26 MLE in the one-way fixed-effects AOV model
We consider the model

Yij = µ+ αi + εij, i = 1, . . . , m; j = 1, . . . , n. (6.48)

For least squares or UMVUE we do not need to assume any particular distri-
bution; all we need assume is that E(εij) = 0 and V(εij) = σ2 for all i, j, and
Cov(εij, εi′j′) = 0 if i 6= i′ or j 6= j′. For MLE, however, we need to assume
a distribution, and so we will assume each εij has a normal distribution with
the additional assumptions about expected values.

Proceeding to write the likelihood under the normal assumption, we see
that an MLE is β̂ = (XTX)−XTY for any generalized inverse of (XTX),
which is the same as the least squares estimator obtained in equation (5.73).
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Example 6.27 ML estimation of the variance in the one-way fixed-
effects AOV model
In Example 5.30, we assumed a normal distribution for the residuals, and
obtained the distribution of the sum of squares

SSE =

m∑

i=1

n∑

j=1

(Yij − Y i)
2,

and from that we obtained the UMVUE of σ2 as SSE/m(n − 1).
From maximization of the likelihood, we obtain the MLE of σ2 as

σ̂2 =
1

nm

m∑

i=1

n∑

j=1

(Yij − Y i)
2 (6.49)

(exercise).
While the MLE of σ2 is consistent in mean squared error as n → ∞

and m remains fixed, it is not consistent as m → ∞ and n remains fixed
(Exercise 6.3).

There are interesting ways of getting around the lack of consistency of the
variance estimator in Example 6.27. In the next example, we will illustrate
an approach that is a simple use of a more general method called REML, for
“residual maximum likelihood” (also called “restricted maximum likelihood”).

Example 6.28 REML estimation of the variance in the one-way
fixed-effects AOV model
In the preceding examples suppose there are only two observations per group;
that is, the model is

Yij = µ+ αi + εij, i = 1, . . . , m; j = 1, 2,

with all of the other assumptions made above.
The MLE of σ2 in equation (6.49) can be written as

σ̂2 =
1

4m

m∑

i=1

2∑

j=1

(Yi1 − Yi2)
2. (6.50)

We see that the limiting expectation of σ̂2 as m → ∞ is σ/2; that is, the
estimator is not consistent. (This particular setup is called the “Neyman-Scott
problem”. In a fixed sample, of course, the estimator is biased, and there is
no reason to expect any change unless n instead of m were to increase.)

We see that the problem is caused by the unknown means, and as m
increases the number of unknown parameters increases linearly in m. We can,
however, reformulate the problem so as to focus on σ2. For i = 1, . . . , m,
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let Zi = Yi1 − Yi2. Now, using Zi, the likelihood is based on the N(0, 2σ2)
distribution. Under the likelihood for this setup, which we call REML, we get
the maximum likelihood estimate

σ̂2
REML =

1

2m

m∑

i=1

2∑

j=1

(Zi)
2. (6.51)

which is consistent in m for σ2.

In the next example, we will consider a random-effects model.

Example 6.29 MLE in the one-way random-effects AOV model
Consider the linear model in Example 5.31 on page 436,

Yij = µ+ δi + εij, i = 1, . . . , m; j = 1, . . . , n, (6.52)

where the δi are identically distributed with E(δi) = 0, V(δi) = σ2
δ , and

Cov(δi, δĩ) = 0 for i 6= ĩ, and the εij are independent of the δi and are
identically distributed with with E(εij) = 0, V(εij) = σ2

ε , and Cov(εij , εĩj̃) = 0

for either i 6= ĩ or j 6= j̃.
In order to use a likelihood approach, of course, we need to make assump-

tions about the distributions of the random variables. Let us suppose now

that δi
iid∼ N(0, σ2

δ), where σ2
δ ≥ 0, and εij

iid∼ N(0, σ2
ε ), where as usual σ2 > 0.

Our interest in using the model is to make inference on the relative sizes
of the components of the variance σ2

δ and σ2
ε .

In Example 5.31, we obtained the UMVUEs of σ2
δ and σ2

ε , and noted that
the unbiased estimator of σ2

δ may be negative.
Now we consider the MLE of σ2

δ and σ2
ε . In the case of the model (6.52) with

the assumption of normality and independence, using the PDF obtained in Ex-
ample exa:onewayAOVmodel2, it is relatively easy to write the log-likelihood,

lL(µ, σ2
δ , σ

2
ε ; y) = −1

2

(
mn log(2π) +m(n − 1) log(σ2

ε ) +m log(σ2
δ )

+SSE/σ2
ε + SSA/(σ2

ε + nσ2
δ) +mn(ȳ − µ)2/(σ2

ε + nσ2
δ )
)
.

(6.53)

The MLEs must be in the closure of the parameter space, which for σ2
δ and

σ2
ε is ĪR+. From this we have the MLEs

• if (m− 1)MSA/m ≥ MSE

σ̂2
δ =

1

n

(
m− 1

m
MSA−MSE

)
(6.54)

σ̂2
ε = MSE (6.55)

• if (m− 1)MSA/m < MSE

σ̂2
δ = 0 (6.56)

σ̂2
ε =

m− 1

m
MSE. (6.57)
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Again we should note that we are dealing with a special model in Exam-
ple 6.29; it is “balanced”; that is, for each i, there is a constant number of
j’s. If, instead, we had j = 1, . . . , ni, we would not be able to write out the
log-likelihood so easily, and the MLEs would be very difficult to determine.

6.4.2 MLEs in Generalized Linear Models

Regression models such as (3.5)

Y = f(X ; θ) + E

are very useful in statistical applications. In this form, we assume indepen-
dent observations (Y1, x1), . . . , (Yn, xn) and Y to represent an n-vector, X to
represent an n × p matrix whose rows are the xT

i , and E to represent an
unobservable n-vector of random variables∼ Pτ , with unknown Pτ , but with
E(E) = 0 and V(E) = σ2I.

The expression “f(·)” represents a systematic effect related to the values
of “X”, and “E” represents a random effect, an unexplained effect, or simply
a “residual” that is added to the systematic effect.

A model in which the parameters are additively separable and with an
additive random effect is sometimes called an additive model:

Y = f(X)θ + ε.

A simple version of this is called a linear (additive) model:

Y = Xβ + ε, (6.58)

where β is a p-vector of parameters. We have considered specific instances of
this model in Examples 6.25 and 5.31.

Either form of the additive model can be generalized with a “link function”
to be a generalized additive model.

In the following, we will concentrate on the linear model, Y = Xβ+ε, and
we will discuss the link function and the generalization of the linear model,
which is called a generalized linear model (GLM or GLIM).

Let us assume that the distribution of the residual has a first moment and
that it is known. In that case, we can take its mean to be 0, otherwise, we can
incorporate it into Xβ. (If the first moment does not exist, we can work with
the median.) Hence, assuming the mean of the residual exists, the model can
be written as

E(Y ) = Xβ,

that is, the expected value of Y is the systematic effect in the model. More
generally, we can think of the model as being a location family with PDF
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pε(ε) = pε(y −Xβ), (6.59)

wrt a given σ-finite measure.
In the linear model (6.58), if ε ∼ N(0, σ2), as we usually assume, we can

easily identify ηi, T (yi), and ζ(ηi) in equation (6.32), and of course, h(yi) ≡ 1.
This is a location-scale family.

Generalized Linear Models

A model as in equation (6.58) has limitations. Suppose, for example, that we
are interested in modeling a response that is binary, for example, two states of
a medical patient, “diseased” or “disease-free”. As usual, we set up a random
variable to map the sample space to IR:

Y : {disease-free,diseased} 7→ {0, 1}.

The linear model X = Zβ + ε does not make sense. It is continuous and
unbounded.

A more useful model may address Pr(X = 0).
To make this more concrete, consider the situation in which several groups

of subjects are each administered a given dose of a drug, and the number
responding in each group is recorded. The data consist of the counts yi re-
sponding in the ith group, which received a level xi of the drug.

A basic model is
P(Yi = 0|xi) = 1− πi

P(Yi = 1|xi) = πi
(6.60)

The question is how does π depend on x?
A linear dependence, π = β0+β1x does not fit well in this kind of situation

– unless we impose restrictions, π would not be between 0 and 1.
We can try a transformation to [0, 1].
Suppose we impose an invertible function on

η = β0 + β1x

that will map it into [0, 1]:
π = h(η), (6.61)

or
g(π) = η. (6.62)

We call this a link function.
A common model following this setup is

πx = Φ(β0 + β1x), (6.63)

where Φ is the normal cumulative distribution function, and β0 and β1 are
unknown parameters to be estimated. This is called a probit model. The link
function in this case is Φ−1.
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The related logit model, in which the log odds ratio log(π/(1 − π)) is of
interest, has as link function

η = log

(
π

1− π

)
. (6.64)

Other possibilities are the complementary log-log function

η = log(− log(1− π)), (6.65)

and the log-log function,

η = − log(− log(π)). (6.66)

Link Functions

The link function relates the systematic component to the mean of the random
variable.

In the case of the linear model, let ηi be the systematic component for a
given value of the independent variable,

ηi = β0 + β1x1i + · · ·βpxpi,

and let µi = E(Y ), as before. Let g be the link function:

ηi = g(µi).

In this case, the link function is linear in a set of parameters, βj , and it is
usually more natural to think in terms of these parameters rather than θ,

g

(
d

dθ
b(θi)

)
= g(µi) = ηi = xT

i β.

The generalized linear model can now be thought of as consisting of three
parts:

1. the systematic component
2. the random component
3. the link between the systematic and random components.

In the context of generalized linear models, a standard linear model has a
systematic component of

β0 + β1x1i + · · ·βmxmi,

a random component that is an identical and independent normal distribution
for each observation, and a link function that is the identity.
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Fitting Generalized Linear Models

Our initial objective is to fit the model, that is, to determine estimates of the
βj.

The model parameters are usually determined either by a maximum likeli-
hood method or by minimizing some function of the residuals. One approach
is to use the link function and do a least squares fit of η using the residuals
yi− µi. It is better, however, to maximize the likelihood or, alternatively, the
log-likelihood,

l(θ, φ|y) =

n∑

i=1

yiθi − b(θi)

a(φ)
+ c(yi, φ).

The most common method of optimizing this function is “Fisher scoring”,
which is a method like Newton’s method, except that some quantities are
replaced by their expected values.

In the generalized linear model, where the likelihood is linked to the pa-
rameters that are really of interest, this still must be cast in terms that will
yield values for β̂.

Analysis of Deviance

Our approach to modeling involves using the observations (including the real-
izations of the random variables) as fixed values and treating the parameters
as variables (not random variables, however). The original model was then
encapsulated into a likelihood function, L(θ|y), and the principle of fitting
the model was maximization of the likelihood with respect to the parameters.
The log likelihood, l(θ|x), is usually used.

In model fitting an important issue is how well does the model fit the data?
How do we measure the fit? Maybe use residuals. (Remember, some methods
of model fitting work this way; they minimize some function of the residuals.)
We compare different models by means of the measure of the fit based on
the residuals. We make inference about parameters based on changes in the
measure of fit.

Using the likelihood approach, we make inference about parameters based
on changes in the likelihood. Likelihood ratio tests are based on this principle.

A convenient way of comparing models or making inference about the
parameters is with the deviance function, which is a likelihood ratio:

D(y|θ̂) = 2
(
l(θmax|y) − l(θ̂|y)

)
,

where θ̂ is the fit of a potential model.
For generalized linear models the analysis of deviance plays a role similar

to that of the analysis of sums of squares (analysis of “variance”) in linear
models.
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Under appropriate assumptions, when θ1 is a subvector of θ2, the difference
in deviances of two models, D(y|θ̂2)−D(y|θ̂1) has an asymptotic chi-squared
distribution with degrees of freedom equal to the difference in the number of
parameters.

******************* repeat below For models with a binary response
variable, we need a different measure of residuals. Because we are measuring
the model fit in terms of the deviance, D, we may think of the observations as
each contributing a quantity di, such that

∑
di = D. (Exactly what that value

is depends on the form of the systematic component and the link function that
are in the likelihood.) The quantity

ri = sign(yi − µ̂i)
√
di

increases in (yi − µ̂i) and
∑
r2i = D. We call ri the deviance residual.

For the logit model,

ri = sign(yi − µ̂i)
√
−2 (yi log(π̂i) + (1− yi) log(1− π̂i))

Generalized Additive Models

The mechanical process of dealing with generalized additive models parallels
that of dealing with generalized linear models. There are some very important
differences, however. The most important is probably that the distribution of
the deviances is not worked out.

The meaning of degrees of freedom is also somewhat different.
So, first, we work out an analogous concept for degrees of freedom.
The response variable is Bernoulli (or binomial). We model the log odds

ratios as

log

(
πi

1− πi

)
= ηi

= β0 + β1x1i + · · ·+ β6x6i

= xT
i β.

For a binomial with number mi, we write the log-likelihood,

l(π|y) =

n∑

i=1

(yi log(πi/(1− πi)) +mi log(1− πi)) ,

where a constant involvingmi and yi has been omitted. Substituting, we have,

l(β|y) =

n∑

i=1

yix
T
i β −

n∑

i=1

mi log
(
1 + exp(xT

i β)
)
.

The log likelihood depends on y only through XTy.
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∂l

∂πi
=
yi −miπi

πi(1− πi)

Using the chain rule, we have

∂l

∂βj
=

n∑

i=1

yi −miπi

πi(1− πi)

∂πi

∂βj

=
n∑

i=1

yi −miπi

πi(1− πi)

dπi

dηi
xij

The Fisher information is

−E

(
∂2l

∂βj∂βk

)
=

n∑

i=1

mi

πi(1− πi)

∂πi

∂βj

∂πi

∂βk

=

n∑

i=1

mi(dπi/dηi)
2

πi(1− πi)
xijxik

= (XTWX)jk,

where W is a diagonal matrix of weights,

mi(dπi/dηi)
2

πi(1− πi)

Notice
dπi

dηi
= πi(1− πi),

so we have the simple expression,

∂l

∂β
= XT(y −mπ)

in matrix notation, and for the weights we have,

miπi(1− πi)

Use Newton’s method,

β̂(k+1) = β̂(k) −H−1
l (β̂(k))∇l(β̂(k)),

in which Hl is replaced by

E

(
− ∂2l

∂β∂βT
.

)

Using β̂(k), we form π̂(k) and η̂(k), and then, an adjusted y(k),

y
(k)
i = η̂(k) +

(y −miπ̂
(k)
i )

mi

dηi

dπi

This leads to
β̂(k+1) = (XTW (k)X)−1XTW (k)y(k),

and it suggests an iteratively reweighted least squares (IRLS) algorithm.
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Residuals

For models with a binary response variable, we need a different measure of
residuals. Because we are measuring the model fit in terms of the deviance, D,
we may think of the observations as each contributing a quantity di, such that∑
di = D. (Exactly what that value is depends on the form of the systematic

component and the link function that are in the likelihood.) The quantity

rD
i = sign(yi − µ̂i)

√
di

increases in (yi − µ̂i) and
∑

(rD
i )2 = D. We call rD

i the deviance residual.
For the logit model,

rD
i = sign(yi − µ̂i)

√
−2 (yi log(π̂i) + (1− yi) log(1− π̂i)).

Another kind of residual is called the “working” residual. It is

rW
i = (yi − µ̂i)

∂η̂i

∂µ̂i
,

where the derivatives are evaluated at the final iteration of the scoring algo-
rithm.

In the logistic regression model, these working residuals are

yi − π̂i

π̂i(1− π̂i)

Residuals can be standardized by taking into account their different stan-
dard deviations that result from the influence.

This is the same kind of concept as influence in linear models. Here, how-
ever, we have

β̂(k+1) = (XTW (k)X)−1XTW (k)y(k),

where the weights are

miπ̂
(k)
i (1 − π̂(k)

i ).

One measure is the diagonal of the hat matrix:

W
1
2X(XTWX)−1XTW

1
2

In the case of generalized linear models, the hat matrix is only the predic-
tion transformation matrix for the linear, systematic component.

Data consisting of counts, for example, the number of certain events within
a fixed period of time, give rise naturally to a Poisson model. The relationship
between the mean and the covariates is often assumed to be multiplicative,
giving rise to a log-linear model,

log(µ) = η = xTβ.
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Another possibility for count data is that the covariates have an additive
effect and the direct relation

µ = xTβ

can be used.
Notice that the mean of the binomial and the Poisson distributions deter-

mine the variance.
In practice the variance of discrete response data, such as binomial or Pois-

son data, is observed to exceed the nominal variance that would be determined
by the mean.

This phenomenon is referred to as “over-dispersion”. There may be logical
explanations for over-dispersion, such as additional heterogeneity over and
above what is accounted for by the covariates, or some more complicated
variance structure arising from correlations among the responses.

6.5 Variations on the Likelihood

There are situations in which a likelihood equation either cannot be written
or else it is not solvable. This may happen because of too many parameters,
for example. In such cases an approximate likelihood equation may be more
appropriate. In other cases, there may be a nuisance parameter that compli-
cates the computation of the MLE for the parameter of interest. In both kind
of these situations, we use approximate likelihood methods.

6.5.1 Quasi-likelihood Methods

Another way we deal with nuisance parameters in maximum likelihood estima-
tion is by making some simplifying approximations. One type of simplification
is to reduce the dimensionality of the nuisance parameters by assuming some
relationship among them. This yields a “quasi-likelihood” function. This may
allow us to solve what otherwise might be a very difficult problem. In some
cases it may not affect the MLE for the parameters of interest. A common
application in which quasi-likelihood methods are useful is in estimation of
parameters in a generalized linear model.

Quasi-likelihood Methods in Generalized Linear Models

Over-dispersion in the generalized linear model can often be accounted for
by the nuisance parameter φ in the likelihood. For example, we modify the
simple binomial model so the variance is

V(yi|xi) = φ
πi(1− πi)

ni
.
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Notice the multiplier φ is constant, while π depends on the covariates and
n depends on the group size. This of course leads to a more complicated
likelihood function, but it may not be necessary to use the actual likelihood.

Quasi-likelihood and need not correspond to any particular distribution;
rather quasi can be used to combine any available link and variance function.

Wedderburn (1974) introduced a quasi-likelihood function to allow

E(y|x) = µ = h(xTβ)

and
V(y|x) = σ2(µ) = φv(µ),

where φ is the (nuisance) dispersion parameter in the likelihood and v(µ) is
a variance function that is entirely separate from the likelihood.

Quasi-likelihood methods require only specification of a relationship be-
tween the mean and variance of the response.

In a multiparameter case, θ = (θ1, θ2), we may be interested in only some
of the parameters, or in some function of the parameters, perhaps a transfor-
mation into a lower-dimensional space. There are various ways of approaching
this.

6.5.2 Nonparametric and Semiparametric Models

Empirical Likelihood

Profile Likelihood

If θ = (θ1, θ2) and our interest is only in θ1 , the simplest way of handling this
is just to consider θ2 to be fixed, perhaps at several different values, one at a
time. If θ2 is fixed, the likelihood L(θ1 ; θ2, x) is called a profile likelihood or
concentrated likelihood of θ1 for given θ2 and x.

*** build up Example 6.7 ... 2-D, then profile ******** the derivative is
not useful in finding the MLE is in a parametric-support family. For example,

assume X1, . . . , Xn
iid∼exponential(α, 1). The likelihood is

L(α ; x) = e−
P

(xi−α)I]−∞,x(1)](α).

Setting the derivative to 0 is not a useful way to find a stationary point. (Note
that the derivative of the indicator function is the Dirac delta function.) In
fact, the max does not occur at a stationary point. The MLE of α is x(1).

******************** relate this to Examples 1.5 and 6.5
****** make 2-D plot
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Exponential(α,1)

(

]

α x(1)

L(
α

;x
)

In some cases, it turns out that the estimation of a subset of the param-
eters does not depend on the value of some other subset. A good method of
estimation of β in a linear model X = Zβ + ε where the residuals ε have
a common variance σ2 and zero correlation can be performed equally well
no matter what the value of σ2 is. (The Gauss-Markov theorem tells us that
the least-squares method yields a good estimator.) If the residuals are inde-
pendently distributed as normals with a common variance, we can formulate
the problem as a problem in maximum likelihood estimation. The MLE for β
(which just happens to be the same as the LSE) can be thought of in terms of
a profile likelihood, because a particular value of σ2 could be chosen a priori.
(This is of course not necessary because the maximum or the likelihood with
respect to β occurs at the same point regardless of the value of σ2.)

Conditional Likelihood

When there is a nuisance parameter for which we have a sufficient statistic,
a simple approach is to use the PDF conditional on the sufficient statistic to
form the likelihood function for the parameter of interest. After doing this, the
MLE procedure continues as in the usual case. If the PDFs can be factored
so that one factor includes θ2 and some function of the sample, S(x), and the
other factor, given S(x), is free of θ2, then this factorization can be carried
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into the likelihood. Such a likelihood is called a conditional likelihood of θ1
given S(x).

Conditional likelihood methods often arise in applications in which the pa-
rameters of two different distributions are to be compared; that is, when only
their relative values are of interest. Suppose µ = (µ1, µ2) and let θ1 = µ1/µ2.
Although our interest is in θ1, we may not be able to write the likelihood as a
function of θ1. If, however, we can find θ2 for which we have a sufficient statis-
tic, T2(X), and we can factor the likelihood using the factorization theorem
so that the factor corresponding to conditional distribution of X given T2(X)
does not depend on θ2. This factor, as a function of θ1, is the conditional
likelihood function.

Sometimes a profile likelihood can be thought of as a particularly sim-
ple conditional likelihood. The linear model estimation problem referred to
above could be formulated as a conditional likelihood. The actual form of the
likelihood would be more complicated, but the solution is equivalent to the
solution in which we think of the likelihood as a profile likelihood.

Conditional Likelihood for the Exponential Class

If X has a distribution in the exponential class with θ = (η1, η2), and its
likelihood can be written in the form

L(θ ; x) = exp(ηT
1 T1(x) + ηT

2 T2(x)− ζ(η1, η2))h(x),

or, in the log-likelihood form,

lL(θ ; x) = ηT
1 T1(x) + ηT

2 T2(x)− ζ(η1, η2) + c(x),

we can easily write the conditional log-likelihood:

lL(η1 ; x ; T2) = ηT
1 T1(x) + ζ̃(η1, T2) + c(x).

Notice that this decomposition can be achieved iff η1 is a linear function of θ.
If our interest is only in η1, we only determine the argument that maximizes

the function
ηT
1 T1(x) + ζ̃(η1, T2),

which is does not depend on η2.
*********************

Partial Likelihood

The idea of partial likelihood is somewhat similar to conditional likelihood.
The most common area of application is in semiparametric models. These are
models of the form

f(x; θ) = g(x; θ)h(x), (6.67)
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where x is observable, θ is unknown and unobservable, g is a function of known
form, but f and h are of unknown form. The estimation problem has two
components: the estimation of parameter θ and the nonparametric estimation
of the function h.

In the setup of equation (6.67) when f(x; θ) is the PDF of the observable,
we form a partial likelihood function based on g(x; θ). This partial likelihood
is an likelihood in the sense that it is a constant multiple (wrt θ) of the full
likelihood function. The parameter θ can be estimated using the ordinary
method for MLE.

The most common example of this kind of problem in statistical inference
is estimation of the proportional hazards model. Rather than discuss partial
likelihood further here, I will postpone consideration of this semiparametric
problem to Section 8.4 beginning on page 576.

Notes and Further Reading

Most of the material in this chapter is covered in MS2 Section 4.4, Section
4.5,and Section 5.4, and in TPE2 Chapter 6.

Likelihood and Probability

Although it is natural to think of the distribution that yields the largest
lieklihood as the “most probable” distribution that gave rise to an observed
sample, it is important not to think of the likelihood function, even if it could
be properly normalized, as a probability density. In the likelihood approach to
statistical inference, there is no posterior conditional probability distribution
as there is in a Bayesian approach. The book by Edwards (1992) provides a
good discussion of the fundamental concept of likelihood.

EM Methods

EM methods were first discussed systematically by Dempster et al. (1977). A
general reference for EM methods is Ng et al. (2012).

Computations

The R function fitdistr in the MASS library computes the MLEs for a number
of common distributions.

Multiple RLEs

There are interesting open questions associated with determining if an RLE
yields a global maximum. See, for example, Biernacki (2005).
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Maximum Likelihood in Linear Models

Variance Components

The problem of estimation of variance components in linear models received
considerable attention during the later heyday of the development of statisti-
cal methods for analysis of variance. The MLEs for the between-variance, σ2

δ ,
and the residual variance, σ2

ε , in the balanced one-way random-effects model
(equations (6.54) through (6.57)) were given by Herbach (1959). Thompson Jr.
(1962) suggested a restricted maximum likelihood approach in which the es-
timator is required to be equivariant. This method has come to be the most
commonly used method of variance components estimation. This method is a
more general form of REML, which we used in a special case in Example 6.27.

As we mentioned, there are great differences in methods of estimation
of variance components depending on whether the data are balanced, as in
Example 5.31, or unbalanced. Various problems of variance component es-
timation in unbalanced one-way models were discussed by Harville (1969).
Searle et al. (1992) provide a thorough coverage of the various ways of esti-
mating variance components and the underlying theory.

Unbiasedness and Consistency

While many MLEs are biased, most of the ones encountered in common situa-
tions are at least consistent in mean squared error. Neyman and Scott (1948)
give an example, which is a simplified version of an example due to Wald, of
an MLEs that is not consistent. The problem is the standard one-way ANOVA
model with two observations per class. The asymptotics are in the number
of classes, and hence, of course in the number of observations. The model is
Xij ∼ N(µj , σ

2) with i = 1, 2 and j = 1, 2, . . .. The asymptotic (and constant)
expectation of the MLE of σ2 is σ2/2. This example certainly shows that
MLEs may behave very poorly, but its special property should be recognized.
The dimension of the parameter space is growing at the same rate as the
number of observations.

Quasilikelihood

The idea of a quasilikelihood began with the work of Wedderburn (1974) on
generalized linear models. This work merged with the earlier work of Durbin
(1960) and Godambe (1960) on estimating functions. Heyde (1997) covers the
important topics in the area.

Empirical Likelihood

The initial studies of empirical likelihood were in the application of likelihood
ratio methods in nonparametric inference in the 1970s. Owen (2001) provides
and introduction and summary.
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Exercises

6.1. Consider the problem in Exercise 5.2 of using a sample of size 1 for esti-
mating g(θ) = e−3θ where θ is the parameter in a Poisson distribution.
What is the MLE of g(θ)?

6.2. Show that the MLE of σ2 in the one-way fixed-effects model is as given
in equation (6.49) on page 489.

6.3. Suppose Xij
iid∼ N(µi, σ

2) for i = 1, . . . , m and j = 1, . . . , n. (Compare
Exercise 5.10 on page 444.)
a) Show that the MLE of σ2 is not consistent in mean squared error as

m→∞ and n remains fixed.
b) Show that the MLE of σ2 is consistent in mean squared error as n→∞

and m remains fixed.
6.4. a) Show that the log-likelihood given in equation (6.53) is correct.

b) Show that the MLEs given in equations (6.54) through (6.57) maxi-
mize the likelihood over (̄IR+)2.

6.5. Fill in the details for the proof of Theorem 6.3.
6.6. Given a Bernoulli distribution with parameter π. We wish to estimate the

variance g(π) = π(1 − π). Compare the MSE of the UMVUE in equa-
tion (5.11) with the MLE in equation (6.26).

6.7. Determine the MLE of µ for the distribution with CDF given in equa-
tion (6.27) if P (x) is the CDF of the distribution N(µ, σ2). At what point
is it discontinuous in the data?

6.8. Computations for variations on Example 6.19. Use a computer program,
maybe R to generate some artificial data to use to experiment with
the EM method in some variations of the normal mixtures model. Take
θ = (0.7, 0, 1, 1, 2). The following R code will generate 300 observations
from such a model.

# Generate data from normal mixture.

# Note that R uses sigma, rather than sigma^2 in rnorm.

# Set the seed, so computations are reproducible.

set.seed(4)

n <- 300

w <- 0.7

mu1 <- 0

sigma21 <- 1

mu2 <- 5

sigma22 <- 2

x <- ifelse(runif(n)<w,

rnorm(n,mu1,sqrt(sigma21)),rnorm(n,mu2,sqrt(sigma22)))

a) Assume that µ1, σ
2
1 , µ2, and σ2

2 are all known and use EM to estimate
θ1 = w.
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b) Assume that σ2
1 and σ2

2 are known and use EM to estimate θ1, θ2, and
θ4.

c) Assume that all are unknown and use EM to estimate θ.

6.9. Consider another variation on the normal mixture in Example 6.19. As-
sume that w is known and σ2

1 = σ2
2 = σ2, but µ1, µ2, and σ2 are unknown.

If w = 1/2, this setup is similar to the two-class one-way fixed effects AOV
model in Example 6.26. What are the differences? Compare the estimators
in the two setups.
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Statistical Hypotheses and Confidence Sets

In a frequentist approach to statistical hypothesis testing, the basic problem
is to decide whether or not to reject a statement about the distribution of
a random variable. The statement must be expressible in terms of member-
ship in a well-defined class. The hypothesis can therefore be expressed by
the statement that the distribution of the random variable X is in the class
PH = {Pθ : θ ∈ ΘH}. An hypothesis of this form is called a statistical hy-
pothesis.

The basic paradigm of statistical hypothesis testing was described in Sec-
tion 3.5.1, beginning on page 290. We first review some of those ideas in Sec-
tion 7.1, and then in Section 7.2 we consider the issue of optimality of tests.
We first consider the Neyman-Pearson Fundamental Lemma, which identifies
the optimal procedure for testing one simple hypothesis versus another simple
hypothesis. Then we discuss tests that are uniformly optimal in Section 7.2.2.
As we saw in the point estimation problem, it is often not possible to de-
velop a procedure that is uniformly optimal, so just as with the estimation
problem, we can impose restrictions, such as unbiasedness or invariance, or
we can define uniformity in terms of some global risk. Because hypothesis
testing is essentially a binary decision problem, a minimax criterion usually
is not relevant, but use of global averaging may be appropriate. (This is done
in the Bayesian approaches described in Section 4.5, and we will not pursue
it further in this chapter.)

If we impose restrictions on certain properties of the acceptable tests, we
then proceed to find uniformly most powerful tests under those restrictions.
We discuss unbiasedness of tests in Section 7.2.3, and we discuss uniformly
most powerful unbiased tests in Section 7.2.4. In Section 7.3, we discuss gen-
eral methods for constructing tests based on asymptotic distributions. Next
we consider additional topics in testing statistical hypotheses, such as non-
parametric tests, multiple tests, and sequential tests.

Confidence sets are closely related to hypothesis testing. In general, rejec-
tion of an hypothesis is equivalent to the hypothesis corresponding to a set
of parameters or of distributions outside of a confidence set constructed at
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a level of confidence that corresponds to the level of significance of the test.
The basic ideas of confidence sets were discussed in Section 3.5.2, beginning on
page 296. The related concept of credible sets was described in Section 4.6.1,
beginning on page 372. Beginning in Section 7.1 of the present chapter, we
discuss confidence sets in somewhat more detail.

The Decisions in Hypothesis Testing

It is in hypothesis testing more than in any other type of statistical inference
that the conflict among various fundamental philosophies come into sharpest
focus.

Neyman-Pearson; two
Fisher significance test; one
one, where the other is “all others”
evidence as measured by likelihood

7.1 Statistical Hypotheses

A problem in statistical hypothesis testing is set in the context of a given
broad family of distributions, P = {Pθ : θ ∈ Θ}. As in other problems in
statistical inference, the objective is to decide whether the given observations
arose from some subset of distributions PH ⊆ P.

The statistical hypothesis is a statement of the form “the family of distri-
butions is PH”, where PH ⊆ P, or perhaps “θ ∈ ΘH”, where ΘH ⊆ Θ.

The full statement consists of two pieces, one part an assumption, “assume
the distribution of X is in the class”, and the other part the hypothesis,
“θ ∈ ΘH , where ΘH ⊆ Θ.” Given the assumptions, and the definition of ΘH ,
we often denote the hypothesis as H , and write it as

H : θ ∈ ΘH . (7.1)

Two Hypotheses

While, in general, to reject the hypothesis H would mean to decide that
θ /∈ ΘH , it is generally more convenient to formulate the testing problem as
one of deciding between two statements:

H0 : θ ∈ Θ0 (7.2)

and
H1 : θ ∈ Θ1, (7.3)

where Θ0∩Θ1 = ∅. These two hypotheses could also be expressed as “the fam-
ily of distributions is P0” and “the family of distributions is P1”, respectively,
with the obvious meanings of P0 and P1.

We do not treat H0 and H1 symmetrically; H0 is the hypothesis (or “null
hypothesis”) to be tested and H1 is the alternative. This distinction is impor-
tant in developing a methodology of testing.
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Tests of Hypotheses

To test the hypotheses means to choose one hypothesis or the other; that is,
to make a decision, d, where d is a real number that indicates the hypothesis
accepted. As usual in statistical inference, we have a sample X from the
relevant family of distributions and a statistic T (X) on which we base our
decision.

A nonrandomized test procedure is a rule δ(X) that assigns two decisions
to two disjoint subsets, C0 and C1, of the range of T (X) that we call the test
statistic. We equate those two decisions with the real numbers 0 and 1, so
δ(X) is a real-valued function,

δ(x) =

{
0 for T (x) ∈ C0

1 for T (x) ∈ C1.
(7.4)

Note for i = 0, 1,
Pr(δ(X) = i) = Pr(T (X) ∈ Ci). (7.5)

We call C1 the critical region, and generally denote it by just C.
A test δ(X) is associated with a critical region C. We may use the term

“critical region” either to denote a set of values of a statistic T (X) or just of
the sample X itself.

If δ(X) takes the value 0, the decision is not to reject; if δ(X) takes the
value 1, the decision is to reject. If the range of δ(X) is {0, 1}, the test is a
nonrandomized test.

Although occasionally it may be useful to choose the range of δ(X) as
some other set of real numbers, such as {d0, d1} or even a set with cardinality
greater than 2, we generally define the decision rule so that δ(X) ∈ [0, 1]. If
the range is taken to be the closed interval [0, 1], we can interpret a value of
δ(X) as the probability that the null hypothesis is rejected.

If it is not the case that δ(X) equals 0 or 1 a.s., we call the test a randomized
test.

Errors in Decisions Made in Testing

There are four possibilities in a test of an hypothesis: the hypothesis may be
true, and the test may or may not reject it, or the hypothesis may be false,
and the test may or may not reject it. The result of a statistical hypothesis
test can be incorrect in two distinct ways: it can reject a true hypothesis or
it can fail to reject a false hypothesis. We call rejecting a true hypothesis a
“type I error”, and failing to reject a false hypothesis a “type II error”.

Our standard approach in hypothesis testing is to control the level of the
probability of a type I error under the assumptions, and to try to find a test
subject to that level that has a small probability of a type II error.

We call the maximum allowable probability of a type I error the “signifi-
cance level”, and usually denote it by α.
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We call the probability of rejecting the null hypothesis the power of the
test, and will denote it by β. If the alternate hypothesis is the true state of
nature, the power is one minus the probability of a type II error.

It is clear that we can easily decrease the probability of one type of error
(if its probability is positive) at the cost of increasing the probability of the
other.

In a common approach to hypothesis testing under the given assumptions
on X (and using the notation above), we choose α ∈]0, 1[ and require that
δ(X) be such that

Pr(δ(X) = 1 | θ ∈ Θ0) ≤ α. (7.6)

and, subject to this, find δ(X) so as to minimize

Pr(δ(X) = 0 | θ ∈ Θ1). (7.7)

Optimality of a test T is defined in terms of this constrained optimization
problem.

Notice that the restriction on the type I error applies ∀θ ∈ Θ0. We call

sup
θ∈Θ0

Pr(δ(X) = 1 | θ) (7.8)

the size of the test. If the size of the test is less than the significance level, then
the test can be modified, possibly by use of an auxiliary random mechanism.

In common applications, Θ0 ∪ Θ1 forms a convex region in IRk, and Θ0

contains the set of common closure points of Θ0 and Θ1 and Pr(δ(X) = 1 | θ)
is a continuous function of θ; hence the sup in equation (7.8) is generally a
max. (The set of common closure points, that is, the boundary between Θ0

and Θ1, will have a prominent role in identifying optimal tests.)
If the size is less than the level of significance, the test is said to be con-

servative, and in that case, we often refer to α as the “nominal size”.

Example 7.1 Testing in the exponential family

Suppose we have observations X1, . . . , Xn
iid∼exponential(θ). The Lebesgue

PDF is
pθ(x) = θ−1e−x/θI]0,∞[(x),

with θ ∈]0,∞[. Suppose now we wish to test

H0 : θ ≤ θ0 versus H1 : θ > θ0.

We know that X is sufficient for θ. If H1 is true, X is likely to be larger
than if H0 is true, so a reasonable test may be to reject H0 if T (X) = X > cα,
where cα is some fixed positive constant; that is,

δ(X) = I]cα ,∞[(T (X)).

We choose cα so as to control the probability of a type I error. We call T (X)
the test statistic.
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Knowing the distribution of X to be gamma(n, θ/n), we can now work out

Pr(δ(X) = 1 | θ) = Pr(T (X) > cα | θ),

which, for θ < θ0 is the probability of a type I error. We set up the testing
procedure so as to limit the probability of this type of error to be no more
than α.

For θ ≥ θ0
1− Pr(δ(X) = 1 | θ)

is the probability of a type II error.
Over the full range of θ, we identify the power of the test as

β(θ) = Pr(δ(X) = 1 | θ).

These probabilities for n = 1, as a function of θ, are shown in Figure 7.1.

Performance of Test

0 θθ0

α

1 − α

0.5

]

(

H0 H1

β(θ)

type I error

type II error

correct rejection

Figure 7.1. Probabilities of Type I and Type II Errors

Now, for a given significance level α, we choose cα so that
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Pr(T (X) > cα | θ ≤ θ0) ≤ α.

This is satisfied for cα if Pr(Y > cα) = α, where Y is a random variable with
the gamma(n, θ0/n) distribution.

p-Values

Note that there is a difference in choosing the test procedure, and in using
the test. To use the test, the question of the choice of α comes back. Does it
make sense to choose α first, and then proceed to apply the test just to end
up with a decision d0 or d1? It is not likely that this rigid approach would
be very useful for most objectives. In statistical data analysis our objectives
are usually broader than just deciding which of two hypotheses appears to be
true based on some arbitrary standard for “truth”. On the other hand, if we
have a well-developed procedure for testing the two hypotheses, the decision
rule in this procedure could be very useful in data analysis.

One common approach is to use the functional form of the rule, but not to
pre-define the critical region. Then, given the same setup of null hypothesis and
alternative, to collect data X = x, and to determine the smallest value α̂(x)
at which the null hypothesis would be rejected. The value α̂(x) is called the p-
value of x associated with the hypotheses. The p-value indicates the strength
of the evidence of the data against the null hypothesis. If the alternative
hypothesis is “everything else”, a test based a p-value is a significance test.

Although use of p-values represents a fundamentally different approach
to hypothesis testing than an approach based on a pre-selected significance
level, the p-value does correspond to the “smallest” significance under which
the null hypothesis would be rejected. Because of practical considerations,
computer software packages implementing statistical hypothesis testing pro-
cedures report p-values instead of “reject” or “do not reject”.

Example 7.2 Testing in the exponential family; p-value
Consider again the problem in Example 7.1, where we had observations

X1, . . . , Xn
iid∼exponential(θ), and wished to test

H0 : θ ≤ θ0 versus H1 : θ > θ0.

Our test was based on T (X) = X > c, where c was some fixed positive con-
stant chosen so that Pr(Y > c) = α, where Y is a random variable distributed
as gamma(n, θ0/n).

Suppose instead of choosing c, we merely compute Pr(Y > x̄), where x̄ is
the mean of the set of observations. This is the p-value for the null hypothesis
and the given data.

If the p-value is less than a prechosen significance level α, then the null
hypothesis is rejected.

***** tests
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Power of a Statistical Test

We call the probability of rejecting H0 the power of the test, and denote it by
β, or for the particular test δ(X), by βδ. The power is defined over the full
set of distributions in the union of the hypotheses. For hypotheses concerning
the parameter θ, as in Example 7.1, the power can be represented as a curve
β(θ), as shown in Figure 7.1. We see that the power function of the test, for
any given θ ∈ Θ as

βδ(θ) = Eθ(δ(X)). (7.9)

The power in the case that H1 is true is 1 minus the probability of a
type II error. Thus, minimizing the error in equation (7.7) is equivalent to
maximizing the power within Θ1.

The probability of a type II error is generally a function of the true distri-
bution of the sample Pθ, and hence so is the power, which we may emphasize
by the notation βδ(Pθ) or βδ(θ). In much of the following, we will assume
that θ ∈ Θ ⊆ IRk; that is, the statistical inference is “parametric”. This setup
is primarily one of convenience, because most concepts carry over to more
general nonparametric situations. There are some cases, however, when they
do not, as for example, when we speak of continuity wrt θ. We now can focus
on the test under either hypothesis (that is, under either subset of the family
of distributions) in a unified fashion.

Because the power is generally a function of θ, what does maximizing the
power mean? That is, maximize it for what values of θ? Ideally, we would
like a procedure that yields the maximum for all values of θ; that is, one that
is most powerful for all values of θ. We call such a procedure a uniformly
most powerful or UMP test. For a given problem, finding such procedures, or
establishing that they do not exist, will be one of our primary objectives.

In some cases, βδ(θ) may be a continuous function of θ. Such cases may
allow us to apply analytic methods for identifying most powerful tests within a
class of tests satisfying certain desirable restrictions. (We do this on page 525.)

Randomized Tests

We defined a randomized test (page 293) as one whose range is not a.s. {0, 1}.
Because in this definition, a randomized test does not yield a “yes/no” decision
about the hypothesis being tested, a test with a random component is more
useful.

Given a randomized test δ(X) that maps X onto {0, 1}∪DR, we can con-
struct a test with a random component using the rule that if if δ(X) ∈ DR,
then the experiment R is performed with δR(X) chosen so that the overall
probability of a type I error is the desired level. The experiment R is indepen-
dent of the random variable about whose distribution the hypothesis applies
to. As a practical matter a U(0, 1) random variable can be used to define
the random experiment. The random variable itself is often simulated on a
computer.
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A test with a random component may be useful for establishing properties
of tests or as counterexamples to some statement about a given test. (We
often use randomized estimators in this way; see Example 5.25.)

Another use of tests with random components is in problems with count-
able sample spaces when a critical region within the sample space cannot be
constructed so that the test has a specified size.

While randomized estimators rarely have application in practice, random-
ized test procedures can actually be used to increase the power of a conser-
vative test. Use of a randomized test in this way would not make much sense
in real-world data analysis, but if there are regulatory conditions to satisfy, it
might needed to achieve an exact size.

7.2 Optimal Tests

Testing statistical hypotheses involves making a decision whether or not to
reject a null hypothesis. If the decision is not to reject we may possibly make
a secondary decision as to whether or not to continue collecting data, as we
discuss in Section 7.6. For the moment, we will ignore the sequential testing
problem and address the more basic question of optimality in testing. We first
need a measure or criterion.

A general approach to defining optimality is to define a loss function that
increases in the “badness” of the statistical decision, and to formulate the risk
as the expected value of that loss function within the context of the family
of probability models being considered. Optimal procedures are those that
minimize the risk. The decision-theoretic approach formalizes these concepts.

Decision-Theoretic Approach

The decision space in a testing problem is usually {0, 1}, which corresponds
respectively to not rejecting and rejecting the hypothesis. (We may also allow
for another alternative corresponding to “making no decision”.) As in the
decision-theoretic setup, we seek to minimize the risk:

R(P, δ) = E
(
L(P, δ(X))

)
. (7.10)

In the case of the 0-1 loss function and the four possibilities, the risk is
just the probability of either type of error.

We want a test procedure that minimizes the risk, but rather than taking
into account the total expected loss in the risk (7.10), we generally prefer to
restrict the probability of a type I error as in inequality (7.6) and then, subject
to that, minimize the probability of a type II error as in equation (7.7), which
is equivalent to maximizing the power under the alternative hypothesis. This
approach is minimizes the risk subject to a restriction that the contribution
to the risk from one type of loss is no greater than a specified amount.

The issue of a uniformly most powerful test is similar to the issue of a
uniformly minimum risk test subject to a restriction.
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An Optimal Test in a Simple Situation

First, consider the problem of picking the optimal critical region C in a prob-
lem of testing the hypothesis that a discrete random variable has the prob-
ability mass function p0(x) versus the alternative that it has the probability
mass function p1(x). We will develop an optimal test for any given significance
level based on one observation.

For x 3 p0(x) > 0, let

r(x) =
p1(x)

p0(x)
, (7.11)

and label the values of x for which r is defined so that

r(xr1 ) ≥ r(xr2) ≥ · · · .

Let N be the set of x for which p0(x) = 0 and p1(x) > 0. Assume that
there exists a j such that

j∑

i=1

p0(xri) = α.

If S is the set of x for which we reject the test, we see that the significance
level is ∑

x∈S

p0(x).

and the power over the region of the alternative hypothesis is

∑

x∈S

p1(x).

Then it is clear that if C = {xr1 , . . . , xrj}∪N , then
∑

x∈S p1(x) is maximized
over all sets C subject to the restriction on the size of the test.

If there does not exist a j such that
∑j

i=1 p0(xri ) = α, the rule is to put
xr1 , . . . , xrj in C so long as

j∑

i=1

p0(xri ) = α∗ < α.

We then define a randomized auxiliary test R

Pr(R = d1) = δR(xrj+1 )

= (α − α∗)/p0(xrj+1 )

It is clear in this way that
∑

x∈S p1(x) is maximized subject to the restriction
on the size of the test.
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Example 7.3 Testing between two discrete distributions
Consider two distributions with support on a subset of {0, 1, 2, 3, 4, 5}. Let
p0(x) and p1(x) be the probability mass functions. Based on one observation,
we want to test H0 : p0(x) is the mass function versus H1 : p1(x) is the
mass function.

Suppose the distributions are as shown in Table 7.1, where we also show
the values of r and the labels on x determined by r.

Table 7.1. Two Probability Distributions

x 0 1 2 3 4 5

p0 .05 .10 .15 0 .50 .20
p1 .15 .40 .30 .05 .05 .05

r 3 4 2 - 1/10 2/5
label 2 1 3 - 5 4

Thus, for example, we see xr1 = 1 and xr2 = 0. Also, N = {3}.
For given α, we choose C such that

∑

x∈C

p0(x) ≤ α

and so as to maximize ∑

x∈C

p1(x).

We find the optimal C by first ordering r(xi1) ≥ r(xi2) ≥ · · · and then
satisfying

∑
x∈C p0(x) ≤ α. The ordered possibilities for C in this example

are
{1} ∪ {3}, {1, 0} ∪ {3}, {1, 0, 2}∪ {3}, · · · .

Notice that including N in the critical region does not cost us anything (in
terms of the type I error that we are controlling).

Now, for any given significance level, we can determine the optimum test
based on one observation.

• Suppose α = .10. Then the optimal critical region is C = {1, 3}, and the
power for the null hypothesis is βδ(p1) = .45.

• Suppose α = .15. Then the optimal critical region is C = {0, 1, 3}, and the
power for the null hypothesis is βδ(p1) = .60.

• Suppose α = .05. We cannot put 1 in C, with probability 1, but if we put
1 in C with probability 0.5, the α level is satisfied, and the power for the
null hypothesis is βδ(p1) = .25.

• Suppose α = .20. We choose C = {0, 1, 3} with probability 2/3 and C =
{0, 1, 2, 3} with probability 1/3. The α level is satisfied, and the power for
the null hypothesis is βδ(p1) = .75.
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All of these tests are most powerful based on a single observation for the given
values of α.

We can extend this idea to tests based on two observations. We see imme-
diately that the ordered critical regions are

C1 = {1, 3} × {1, 3}, C1 ∪ {1, 3} × {0, 3}, · · · .

Extending this direct enumeration would be tedious, but, at this point we
have grasped the implication: the ratio of the likelihoods is the basis for the
most powerful test. This is the Neyman-Pearson Fundamental Lemma.

7.2.1 The Neyman-Pearson Fundamental Lemma

Example 7.3 illustrates the way we can approach the problem of testing any
simple hypothesis against another simple hypothesis so long as we have a
PDF. Notice the pivotal role played by ratio r in equation (7.11). This is a
ratio of likelihoods.

Thinking of the hypotheses in terms of a parameter θ that indexes these
two PDFs by θ0 and θ1, for a sampleX = x, we have the likelihoods associated
with the two hypotheses as L(θ0 ; x) and L(θ1; x). We may be able to define an
α-level critical region for nonrandomized tests in terms of the ratio of these
likelihoods: Let us assume that a positive number k exists such that there is
a subset of the sample space C with complement with respect to the sample
space Cc, such that

L(θ1; x)

L(θ0; x)
≥ k ∀x ∈ C

L(θ1 ; x)

L(θ0 ; x)
≤ k ∀x ∈ Cc

(7.12)

and
α = Pr(X ∈ C | H0).

(Notice that such a k and C may not exist.) For testing H0 that the distribu-
tion of X is P0 versus the alternative H1 that the distribution of X is P1, we
can see that C is the best critical region of size α for testing H0 versus H1;
that is, if A is any critical region of size α, then

∫

C

L(θ1) −
∫

A

L(θ1) ≥ 0 (7.13)

(exercise).
The critical region defined in equation (7.12) illustrates the basic concepts,

but it leaves some open questions. Following these ideas, the Neyman-Pearson
Fundamental Lemma precisely identifies the most powerful test for a simple
hypothesis versus another simple hypothesis and furthermore shows that the
test is a.s. unique.
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Theorem 7.1 (Neyman-Pearson Fundamental Lemma)
Let P0 and P1 be distributions with PDFs that are defined with respect to a
common σ-finite measure. For given data X, let L(P0;X) and L(P1;X) be
the respective likelihood functions.

To test H0 : P0 versus H1 : P1 at the level α ∈]0, 1[,

(i) there exists a test δ such that

EP0 (δ(X)) = α (7.14)

and

δ(X) =





1 L(P1;X) > cL(P0;X)
γ L(P1;X) = cL(P0;X)
0 L(θ1 ;X) < cL(P0;X)

; (7.15)

(ii) δ is most powerful test
(iii) if δ̃ is a test that is as powerful as δ, then δ̃(X) = δ(X) a.e. µ.

Proof.

Example 7.4 Testing hypotheses about the parameter in a Bernoulli
distribution
Suppose we assume a Bernoulli(π) distribution for the independently observed
random variables X1, . . . , Xn, and we wish to test H0 : π = 1/4 versus
H1 : π = 3/4 at the level α = 0.05. If X is the number of 1s; that is, if
X =

∑n
i=1Xi, then X has a binomial distribution under either H0 or H1 and

so the likelihoods in equation (7.15) are based on binomial PDFs. The optimal
test δ(X), following the Neyman-Pearson setup, is based on the relationship
of the ratio L(P1, x)/L(P0, x) to a constant c as in equation (7.15) such that
EP0(δ(X)) = 0.05.

Now, suppose n = 30 and the number of 1s observed is x. The ratio of the
likelihoods is

L(P1, x)

L(P0, x)
= 32x−30, (7.16)

and larger values of x yield a value of 1 for δ(X). Since x can take on only the
values 0, 1, . . . , 30, the ratio can take on only 31 different values. If the value
of c is chosen so that the test rejects H0 if x ≥ 12, then

EP0 (δ(X)) = Pr(X ≥ 12) = 0.05065828 = α−, (7.17)

say, while if c is chosen so that the test rejects H0 if x ≥ 13, then

EP0(δ(X)) = 0.02159364 = α+. (7.18)

From equation (7.16), we see that c = 3−4 and from equations (7.17)
and (7.18) we see that γ = (α−α−)/(α+−α−) = 0.9773512 in equation (7.15).
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Use of Sufficient Statistics

It is a useful fact that if there is a sufficient statistic S(X) for θ, and δ̃(X) is
an α-level test for an hypothesis specifying values of θ, then there exists an
α-level test for the same hypothesis, δ(S) that depends only on S(X), and
which has power at least as great as that of δ̃(X). We see this by factoring
the likelihoods.

Nuisance Parameters and Similar Regions

It is often the case that there are additional parameters not specified by
the hypotheses being tested. In this situation we have θ = (θs, θu), and the
hypothesis may be of the form H0 : θs = θs0 or more generally, for the
sample space,

H0 : Θ = Θ0,

where Θ0 does not restrict some of the parameters. The hypothesis specifies
the family of distributions as P0 = {Pθ ; θ ∈ Θ0}.

The problem is that the performance of the test, that is, E(δ(X)) may
depend on the value of θu, even though we are not interested in θu. There
is nothing we can do about this over the full parameter space, but since we
think it is important to control the size of the test, we require, for given α,

EH0 (δ(X)) = α.

(Strictly speaking, we may only require that this expectation be bounded
above by α.) Hence, we seek a procedure δ(X) such that E(δ(X)) = α over
the subspace θ = (θs0, θu).

Is this possible? It certainly is if α = 1; that is, if the rejection region is
the entire sample space. Are there regions similar to the sample space in this
regard? Maybe.

If a critical region R is such that PrH0(X ∈ R) = α for all values of θ, the
region is called an α-level similar region with respect to θ = (θs0, θu), or with
respect to H0, or with respect to P0.

A test δ(X) such that Eθ(δ(X)) = α for all θ ∈ H0 is called an α-level
similar test with respect to θ = (θs0, θu).

Now, suppose S is a sufficient statistic for the family P0 = {Pθ ; θ ∈ Θ0}.
Let δ(X) be a test that satisfies

E(δ(X)|S) = α a.e. P0.

In this case, we have

EH0 (δ(X)) = EH0(E(δ(X)|S))

= α;
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hence, the test is similar wrt P0. This condition on the critical region is called
Neyman structure.

The concepts of similarity and Neyman structure are relevant for unbiased
tests, which we will consider in Section 7.2.3.

Now suppose that U is boundedly complete sufficient for θu. If

E(EH0 (δ(X)|U)) = α,

then the test has Neyman structure. While the power may still depend on θu,
this fact may allow us to determine optimal tests of given size without regard
to the nuisance parameters.

7.2.2 Uniformly Most Powerful Tests

The probability of a type I error is limited to α or less. We seek a procedure
that yields the minimum probability of a type II error, given that bound
on the probability of a type I error. This would be a “most powerful” test.
Ideally, the test would be most powerful for all values of θ ∈ Θ1. We call
such a procedure a uniformly most powerful or UMP α-level test. For a given
problem, finding such tests, or establishing that they do not exist, will be
one of our primary objectives. The Neyman-Pearson Lemma gives us a way
of determining whether a UMP test exists, and if so how to find one. The
main issue is the likelihood ratio as a function of the parameter in the region
specified by a composite H1. If the likelihood ratio is monotone, then we have
a UMP based on the ratio.

Generalizing the Optimal Test to Hypotheses of Intervals: UMP
Tests

Although it applies to a simple alternative (and hence “uniform” properties
do not make much sense), the Neyman-Pearson Lemma gives us a way of
determining whether a uniformly most powerful (UMP) test exists, and if so
how to find one. We are often interested in testing hypotheses in which either
or both of Θ0 and Θ1 are convex regions of IR (or IRk).

We must look at the likelihood ratio as a function both of a scalar pa-
rameter θ and of a scalar function of x. The question is whether, for given
θ0 and any θ1 > θ0 (or equivalently any θ1 < θ0), the likelihood is monotone
in some scalar function of x; that is, whether the family of distributions of
interest is parameterized by a scalar in such a way that it has a monotone
likelihood ratio (see page 167 and Exercise 2.5). In that case, it is clear that
we can extend the test in (7.15) to be uniformly most powerful for testing
H0 : θ = θ0 against an alternative H1 : θ > θ0 (or θ1 < θ0).

Example 7.5 Testing hypotheses about the parameter in a Bernoulli
distribution (continuation of Example 7.4)
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Syppose we assume a Bernoulli(π) distribution, and we wish to test H0 : π =
1/4 versus H1 : π > 1/4 at the level α = 0.05. The alternative hypothesis is
certainly more reasonable than the one in Example 7.4.

************* modify Example 7.4
****** also mention randomization *** don’t do it
In this case, we do not have the problem of conflicting evidence mentioned

on page 541.

The exponential class of distributions is important because UMP tests are
easy to find for families of distributions in that class. Discrete distributions
are especially simple, but there is nothing special about them. Example 7.1
developed a test for H0 : θ ≤ θ0 versus the alternative H1 : θ > θ0 in a
one-parameter exponential distribution, that is clearly UMP, as we can see
by using the formulation (7.15) in a pointwise fashion. (The one-parameter
exponential distribution, with density over the positive reals θ−1e−x/θ is a
member of the exponential class. Recall that the two-parameter exponential
distribution used is not a member of the exponential family.)

Let us first identify some classes of hypotheses.

• simple versus simple

H0 : θ = θ0 versus H1 : θ = θ1. (7.19)

• one-sided
H0 : θ ≤ θ0 versus H1 : θ > θ0. (7.20)

• two-sided; null on extremes

H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2. (7.21)

• two-sided; null in center

H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2. (7.22)

We can examine tests of these hypotheses in the context of the exponential
family of Example 7.1.

Example 7.6 Testing in the exponential family

Suppose we have observations X1, . . . , Xn
iid∼exponential(θ). In Example 7.1,

we developed a “reasonable” test of the hypothesis H0 : θ ≤ θ0 versus
H1 : θ > θ0. We will now use the test of equation (7.15) for these hypotheses,
as well as the other hypotheses listed above.

We will consider a test at the α level for each type of hypothesis. We will
develop a test based on the statistic T (X) = X, which is sufficient for θ.

For the given observations, the likelihood is L(θ;X) = θ−ne−
P

Xi/θI]0,∞[(θ).

• First, we wish to test

H0 : θ = θ0 versus H1 : θ = θ1.
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We must find a cα such that

Prθ0

(
θ−n
1 e−

P
Xi/θ1 > cαθ

−n
0 e−

P
Xi/θ0

)

+λPrθ0

(
θ−n
1 e−

P
Xi/θ1 = cαθ

−n
0 e−

P
Xi/θ0

)
= α.

Because the second probability is 0, we have

Prθ0

(
θ−n
1 e−nX/θ1 > cαθ

−n
0 e−nX/θ0

)
= α;

that is,

Prθ0

(
n log(θ1) + nX/θ1 < − log(cα) + n log(θ0) + nX/θ0

)
= α.

• We wish to test

H0 : θ ≤ θ0 versus H1 : θ > θ0.

These are the hypotheses of Example 7.1. A reasonable test may be to
reject H0 if T (X) = X > cα, where cα is some fixed positive constant;
that is,

δ(X) = I]cα ,∞[(T (X)).

We choose cα so as to control the probability of a type I error.
Knowing the distribution of X to be gamma(n, θ/n), we can now work out

Pr(δ(X) = 1 | θ) = Pr(T (X) > cα | θ),

which, for θ < θ0 is the probability of a type I error. We set up the testing
procedure so as to limit the probability of this type of error to be no more
than α.
For θ ≥ θ0

1− Pr(δ(X) = 1 | θ)
is the probability of a type II error.
Over the full range of θ, we identify the power of the test as

β(θ) = Pr(δ(X) = 1 | θ).

• We wish to test

H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2.

This we can do in the same manner as above.
• We wish to test

H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2.

We cannot do this as above; in fact, there is no UMP test. We will explore
our options in the next section.
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Nonexistence of UMP Tests

One of the most interesting cases in which a UMP test cannot exist is when the
alternative hypothesis is two-sided as in hypothesis (7.22). Hypothesis (7.22)
is essentially equivalent to the pair of hypotheses with a simple null:

H0 : θ = θ0 versus H1 : θ 6= θ0.

If Θ = IRd, it is easy to see that in most cases of practical interest no UMP test
can exist for these hypotheses, and you should reason through this statement
to see that it is true.

So what can we do?

This is similar to the problem in point estimation when we realized we
could not have an estimator that would uniformly minimize the risk. In that
case, we added a requirement of unbiasedness or invariance, or else we added
some global property of the risk, such as minimum averaged risk or minimum
maximum risk. We might introduce similar criteria for the testing problem.

First, let’s consider a desirable property of tests that we will call unbiased-
ness.

7.2.3 Unbiasedness of Tests

Recall that there are a couple of standard definitions of unbiasedness.

• If a random variable X has a distribution with parameter θ, for a point
estimator T (X) of an estimand g(θ) to be unbiased means that

Eθ(T (X)) = g(θ).

Although no loss function is specified in this meaning of unbiasedness,
we know that such an estimator minimizes the risk based on a squared-
error loss function. (This last statement is not iff. Under squared-error loss
the conditions of minimum risk and unbiasedness defined in this way are
equivalent if g is continuous and not constant over any open subset of the
parameter space and if Eθ(T (X)) is a continuous function of θ.)

• Another definition of unbiasedness is given with direct reference to a loss
function. This is sometimes called L-unbiasedness. The estimator (or more
generally, the procedure) T (X) is said to be L-unbiased under the loss
function L, if for all θ and θ̃,

Eθ(L(θ, T (X))) ≤ Eθ(L(θ̃, T (X))).

Notice the subtle differences in this property and the property of an esti-
mator that may result from an approach in which we seek a minimum-risk
estimator; that is, an approach in which we seek to solve the minimization
problem,
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min
T

Eθ(L(θ, T (X)))

for all θ. This latter problem does not have a solution. (Recall the approach
is to add other restrictions on T (X).)
L-unbiasedness under a squared-error also leads to the previous definition
of unbiasedness.

Unbiasedness in hypothesis testing is the property that the test is more
likely to reject the null hypothesis at any point in the parameter space specified
by the alternative hypothesis than it is at any point in the parameter space
specified by the null hypothesis.

Definition 7.1 (unbiased test)
The α-level test δ with power function βδ(θ) = Eθ(δ(X)) for the hypothesis
H0 : θ ∈ ΘH0 versus H1 : θ ∈ ΘH1 is said to be unbiased if

βδ(θ) ≤ α ∀ θ ∈ ΘH0

and
βδ(θ) ≥ α ∀ θ ∈ ΘH1 .

Notice that this unbiasedness depends not only on the hypotheses, but also
on the significance level.

This definition of unbiasedness for a test is L-unbiasedness if the loss
function is 0-1.

In many cases of interest, the power function βδ(θ) is a continuous function
of θ. In such cases, we may be particularly interested in the power on any
common boundary point of ΘH0 and ΘH1 , that is,

B = ∂ΘH0 ∩ ∂ΘH1 .

The condition of unbiasedness of Definition 7.1 implies that βδ(θ) = α for any
θ ∈ B. We recognize this condition in terms of the similar regions that we
have previously defined, and we immediately have

Theorem 7.2 An unbiased test with continuous power function is similar on
the boundary.

7.2.4 UMP Unbiased (UMPU) Tests

We will be interested in UMP tests that are unbiased; that is, in UMPU tests.
We first note that if an α-level UMP test exists, it is unbiased, because

its power is at least as great as the power of the constant test (for all x),
δ(x) = α. Hence, any UMP test is automatically UMPU.

Unbiasedness becomes relevant when no UMP exists, such as when the
alternative hypothesis is two-sided:

Theory of Statistics c©2000–2025 James E. Gentle



7.2 Optimal Tests 525

H0 : θ = θ0 versus H1 : θ 6= θ0.

Hence, we may restrict our attention to tests with the desirable property of
unbiasedness.

In the following we consider the hypothesisH0 : θ ∈ ΘH0 versus H1 : θ ∈
ΘH1 , and we seek a test that is UMP within the restricted class of unbiased
tests.

We will also restrict our attention to hypotheses in which

B = ∂ΘH0 ∩ ∂ΘH1 6= ∅, (7.23)

and to tests with power functions that are continuous in θ.

Theorem 7.3 Let δ(X) be an α-level test of hypotheses satisfying (7.23) that
is similar on B and that has continuous power function in θ ∈ ΘH0 ∪ΘH1 . If
δ∗(X) is uniformly most powerful among such tests, then δ∗(X) is a UMPU
test.

Proof. Because δ∗(X) is uniformly at least as powerful as δ(X) ≡ α, δ∗(X)
is unbiased, and hence δ∗(X) is a UMPU test.

Use of Theorem 7.3, when it applies, is one of the simplest ways of deter-
mining a UMPU test, or given a test, to show that it is UMPU. This theorem
has immediate applications in tests of hypotheses in exponential families. The-
orem 6.4 in MS2 summarizes those results.

Similar UMPU tests remain so in the presence of nuisance parameters.
***************** more on Neyman structure, similarity

7.2.5 UMP Invariant (UMPI) Tests

We generally want statistical procedures to be invariant to various transfor-
mations of the problem. For example, if the observables X are transformed
in some way, it should be possible to transform a “good” test for a certain
hypothesis in some obvious way so that the test remains “good” using the
transformed data. (This of course means that the hypothesis is also trans-
formed.)

To address this issue more precisely, we consider transformation groups G,
G,**** fix notation and G∗, defined and discussed beginning on page 280.

We are often able to define optimal tests under the restriction of invariance.
A test δ is said to be invariant under G, whose domain is the sample space

X , if for all x ∈ X and g ∈ G,

δ(g(x)) = δ(x). (7.24)

(This is just the definition of an invariant function, equation (0.1.103).)
We seek most powerful invariant tests. (They are invariant because the ac-

cept/reject decision does not change.) Because of the meaning of “invariance”
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in this context, the most powerful invariant test is uniformly most powerful
(UMPI), just as we saw in the case of the equivariant minimum risk estimator.
The procedure for finding UMPI (or just MPI) tests is similar to the proce-
dure used in the estimation problem. For a given class of transformations, we
first attempt to characterize the form of φ, and then to determine the most
powerful test of that form. Because of the relationship of invariant functions
to a maximal invariant function, we may base our procedure on a maximal
invariant function.

As an example, consider the group G of translations, for x = (x1, . . . , xn):

g(x) = (x1 + c, . . . , xn + c).

Just as before, we see that for n > 1, the set of differences

yi = xi − xn for i = 1, . . . , n− 1,

is invariant under G. This function is also maximal invariant. For x and x̃, let
y(x) = y(x̃). So we have for i = 1, . . . , n− 1,

x̃i − x̃n = xi − xn

= (xi + c)− (xn + c)

= g(x),

and therefore the function is maximal invariant. Now, suppose we have
the sample X = (X1, . . . , Xn) and we wish to test the hypothesis that
the density of X is p0(x1 − θ, . . . , xn − θ) versus the alternative that it is
p1(x1− θ, . . . , xn− θ). This testing problem is invariant under the group G of
translations, with the induced group of transformations G of the parameter
space (which are translations also). Notice that there is only one orbit of G,
the full parameter space. The most powerful invariant test will be based on
Y = (X1 −Xn, . . . , Xn−1 −Xn). The density of Y under the null hypothesis
is given by ∫

p0(y1 + z, . . . , yn−1 + z, z)dz,

and the density of Y under the alternate hypothesis is similar. Because
both densities are independent of θ, we have two simple hypotheses, and the
Neyman-Pearson lemma gives us the UMP test among the class of invariant
tests. The rejection criterion is

∫
p1(y1 + u, . . . , yn + u)du∫
p0(y1 + u, . . . , yn + u)du

> c,

for some c.
As we might expect, there are cases in which invariant procedures do not

exist. For n = 1 there are no invariant functions under G in the translation
example above. In such situations, obviously, we cannot seek UMP invariant
tests.
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7.2.6 Equivariance, Unbiasedness, and Admissibility

In some problems, the principles of invariance and unbiasedness are com-
pletely different; and in some cases, one may be relevant and the other totally
irrelevant. In other cases there is a close connection between the two.

For the testing problem, the most interesting relationship between invari-
ance and unbiasedness is that if a unique up to sets of measure zero UMPU
test exists, and a UMPI test up to sets of measure zero exists, then the two
tests are the same up to sets of measure zero:

Theorem 7.4
equivalence of UMPI and UMPU

Proof.

Admissibility of a statistical procedure means that there is no procedure
that is at least as “good” as the given procedure everywhere, and better
than the given procedure somewhere. In the case of testing “good” means
“powerful”, and, of course, everything depends on the level of the test.

A UMPU test is admissible, but a UMPI test is not necessarily admissible.

7.2.7 Asymptotic Tests

We develop various asymptotic tests based on asymptotic distributions of tests
and test statistics. For example, the asymptotic distribution of a maximum
of a likelihood is a chi-squared and the ratio of two is asymptotically an F .

We assume a family of distributions P, a sequence of statistics {δn} based
on a random sample X1, . . . , Xn. In hypothesis testing, the standard setup is
that we have an observable random variable with a distribution in the family
P. Our hypotheses concern a specific member P ∈ P. We want to test

H0 : P ∈ P0 versus H1 : P ∈ P1,

where P0 ⊆ P, P1 ⊆ P, and P0 ∩ P1 = ∅.
We consider a sequence of tests {δn}, with power function β(δn, P ).
For use of asymptotic approximations for hypothesis testing, we first need

the concepts of asymptotic significance and limiting size, as discussed on
page 314. These concepts apply to the asymptotic behavior of the test un-
der the null hypothesis. We also must consider the consistency and uniform
consistency, which concern the asymptotic behavior of the test under the al-
ternative hypothesis. These properties ensure that the the propbability of a
type II error goes to zero. We may also be interested in a different type of
asymptotic behavior under the null hypothesis, in which we reqiure that the
propbability of a type I error go to zero. The concept of Chernoff consistency
is relevant here.
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Definition 7.2 (Chernoff consistency)
The sequence of tests {δn} with power function β(δ(Xn), P ) is Chernoff-
consistent for the test iff δn is consistent and furthermore,

lim
n→∞

β(δ(Xn), P ) = 0 ∀P ∈ P0. (7.25)

7.3 Likelihood Ratio Tests, Wald Tests, and Score Tests

We see that the Neyman-Pearson Lemma leads directly to use of the ratio of
the likelihoods in constructing tests. Now we want to generalize this approach
and to study the properties of tests based on that ratio.

There are two types of tests that arise from likelihood ratio tests. These
are called Wald tests and score tests. Score tests are also called Rao test or
Lagrange multiplier tests.

The Wald tests and score tests are asymptotically equivalent. They are
consistent under the Le Cam regularity conditions, and they are Chernoff-
consistent if α is chosen so that as n→∞, α→ 0 and χ2

r,αn
∈ o(n).

7.3.1 Likelihood Ratio Tests

Although as we have emphasized, the likelihood is a function of the distri-
bution rather than of the random variable, we want to study its properties
under the distribution of the random variable. Using the idea of the ratio as
in the test (7.12) of H0 : θ ∈ Θ0, but inverting that ratio and including both
hypotheses in the denominator, we define the likelihood ratio as

λ(X) =
supθ∈Θ0

L(θ;X)

supθ∈Θ L(θ;X)
. (7.26)

The test, similarly to (7.12), rejects H0 if λ(X) ≤ cα, where cα is some value
in [0, 1]. Tests such as this are called likelihood ratio tests. (We should note
that there are other definitions of a likelihood ratio; in particular, in TSH3
its denominator is the sup over the alternative hypothesis. If the alternative
hypothesis does not specify Θ − Θ0, such a definition requires specification
of both H0, and H1; whereas (7.26) requires specification only of H0. Also,
the direction of the inequality depends on the ratio; it may be inverted —
compare the ratios in (7.12) and (7.26).)

The likelihood ratio may not exist, but if it is well defined, clearly it is
in the interval [0, 1], and values close to 1 provide evidence that the null
hypothesis is true, and values close to 0 provide evidence that it is false.

If there is no cα such that

Pr(λ(X) ≤ cα|H0) = α,
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then it is very unlikely that the likelihood ratio test is UMP. In such cases cα
is chosen so that Pr(λ(X) ≤ cα|H0) < α and a randomization procedure is
used to raise the probability of rejection.

Example 7.7 Likelihood ratio test in the exponential family (con-
tinuation of Example 7.1)

We have observations X1, . . . , Xn
iid∼exponential(θ). The likelihood is

L(θ, ; x) = θ−ne−nx̄/θI]0,∞[(θ).

Suppose as before, we wish to test

H0 : θ ≤ θ0 versus H1 : θ > θ0.

From equation (7.26), we have

λ(X) =
max0<θ≤θ0 L(θ;X)

max0<θ L(θ;X)
= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗.

From the analysis in Example 7.1, we know that *****************

Asymptotic Likelihood Ratio Tests

Some of the most important properties of LR tests are asymptotic ones.
There are various ways of using the likelihood to build practical tests.

Some are asymptotic tests that use MLEs (or RLEs).

Regularity Conditions

The interesting asymptotic properties of LR tests depend on the Le Cam reg-
ularity conditions, which go slightly beyond the Fisher information regularity
conditions. (See page 169.)

These are the conditions to ensure that superefficiency can only occur
over a set of Lebesgue measure 0 (Theorem 5.5, page 422), the asymptotic
efficiency of RLEs (Theorem 6.5, page 482), and the chi-squared asymptotic
distribution of the likelihood ratio (Theorem 7.5 below).

Asymptotic Significance of LR Tests

We consider a general form of the null hypothesis,

H0 : R(θ) = 0 (7.27)

versus the alternative
H1 : R(θ) 6= 0, (7.28)

for a continuously differentiable function R(θ) from IRk to IRr . (The notation
of MS2, H0 : θ = g(ϑ) where ϑ is a (k − r)-vector, although slightly different,
is equivalent.)
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Theorem 7.5
assuming the Le Cam regularity conditions, says that under H0,

−2 log(λn)
d→ χ2

r ,

where χ2
r is a random variable with a chi-squared distribution with r degrees

of freedom and r is the number of elements in R(θ). (In the simple case, r is
the number of equations in the null hypothesis.)

Proof.

This allows us to determine the asymptotic significance of an LR test. It
is also the basis for constructing asymptotically correct confidence sets, as we
discuss beginning on page 551.

7.3.2 Wald Tests

For the hypostheses (7.27) and (7.28), the Wald test uses the test statistic

Wn =
(
R(θ̂)

)T
((

S(θ̂)
)T (

In(θ̂)
)−1

S(θ̂)

)−1

R(θ̂), (7.29)

where S(θ) = ∂R(θ)/∂θ and In(θ) is the Fisher information matrix, and these

two quantities are evaluated at an MLE or RLE θ̂. The test rejects the null
hypothesis when this value is large.

Notice that for the simple hypothesis H0 : θ = θ0, S(θ) = 1, and so this
simplifies to

(θ̂ − θ0)TIn(θ̂)(θ̂ − θ0). (7.30)

An asymptotic test can be constructed because Wn
d→ Y , where Y ∼ χ2

r

and r is the number of elements in R(θ). This is proved in Theorem 6.6 of
MS2, page 434.

The test rejects at the α level if Wn > χ2
r,1−α, where χ2

r,1−α is the 1− α
quantile of the chi-squared distribution with r degrees of freedom. (Note that
MS2 denotes this quantity as χ2

r,α.)

7.3.3 Score Tests

A related test is the Rao score test, sometimes called a Lagrange multiplier
test. It is based on a MLE or RLE θ̃ under the restriction that R(θ) = 0
(whence the Lagrange multiplier), and rejects H0 when the following is large:

Rn = (sn(θ̃))T
(
In(θ̃)

)−1

sn(θ̃), (7.31)

where sn(θ) = ∂lL(θ)/∂θ, and is called the score function (see page 244).
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An asymptotic test can be constructed because Rn
d→ Y , where Y ∼ χ2

r

and r is the number of elements in R(θ). This is proved in Theorem 6.6 (ii)
of MS2.

The test rejects at the α level if Rn > χ2
r,1−α, where χ2

r,1−α is the 1 − α
quantile of the chi-squared distribution with r degrees of freedom.

7.3.4 Examples

Example 7.8 tests in a binomial model
*****

H0 : π = π0 versus H0 : π 6= π0

Wald – uses estimated values

Wn =
π̂ − π0√

π̂(1−π̂)
n

problems when x = 0
asymptotically valid of course, but not good for finite (especially for small)

n
Score – uses hypothesized values as well as estimated values

Rn =
π̂ − π0√
π0(1−π0)

n

no problems when x = 0
usually better than Wald for finite (especially for small) n

Example 7.9 tests in a linear model
Consider a general regression model:

Xi = f(zi, β) + εi, where εi
iid∼ N(0, σ2). (7.32)

For given k × r matrix L, we want to test

H0 : Lβ = β0. (7.33)

Let X be the sample (it’s an n-vector). Let Z be the matrix whose rows
are the zi.

The log likelihood is

log `(β;X) = c(σ2) − 1

2σ2
(X − f(Z, β))T(X − f(Z, β)).

The MLE is the LSE, β̂.
Let β̃ be the maximizer of the log likelihood under the restriction Lβ = β0.
The likelihood ratio is the same as the difference in the log likelihoods.
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The maximum of the unrestricted log likelihood (minus a constant) is the
minimum of the residuals:

1

2σ2
(X − f(Z, β̂))T(X − f(Z, β̂)) =

1

2σ2
SSE(β̂)

and likewise, for the restricted:

1

2σ2
(X − f(Z, β̃))T(X − f(Z, β̃)) =

1

2σ2
SSE(β̃).

Now, the difference,

SSE(β̂)− SSE(β̃)

σ2
,

has an asymptotic χ2(r) distribution. (Note that the 2 goes away.)
We also have that

SSE(β̂)

σ2

has an asymptotic χ2(n − k) distribution.
So for the likelihood ratio test we get an F -type statistic:

(SSE(β̂) − SSE(β̃))/r

SSE(β̂)/(n − k)
. (7.34)

Use unrestricted MLE β̂ and consider Lβ̂ − β0 .

V(β̂)→
(
JT

f(β̂)
Jf(β̂)

)−1

σ2,

and so

V(Lβ̂)→ L
(
JT

f(β̂)
Jf(β̂)

)−1

LTσ2,

where Jf(β̂) is the n× k Jacobian matrix.

Hence, we can write an asymptotic χ2(r) statistic as

(Lβ̂ − β0)
T

(
L
(
JT

f(β̂)
Jf(β̂)

)−1

LTs2
)−1

(Lβ̂ − β0)

We can form a Wishart-type statistic from this.
If r = 1, L is just a vector (the linear combination), and we can take the

square root and from a “pseudo t”:

LTβ̂ − β0

s

√
LT
(
JT

f(β̂)
Jf(β̂)

)−1

L

.

Get MLE with the restriction Lβ = β0 using a Lagrange multiplier, λ of
length r.
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Minimize

1

2σ2
(X − f(Z, β))T(X − f(Z, β)) +

1

σ2
(Lβ − β0)

Tλ.

Differentiate and set = 0:

−JT
f(β̂)

(X − f(Z, β̂)) + LTλ = 0

Lβ̂ − β0 = 0.

JT
f(β̂)

(X − f(Z, β̂)) is called the score vector. It is of length k.

Now V(X − f(Z, β̂)) → σ2In, so the variance of the score vector, and
hence, also of LTλ, goes to σ2JT

f(β)Jf(β) .

(Note this is the true β in this expression.)
Estimate the variance of the score vector with σ̃2JT

f(β̃)
Jf(β̃),

where σ̃2 = SSE(β̃)/(n− k + r).
Hence, we use LTλ̃ and its estimated variance.
Get

1

σ̃2
λ̃TL

(
JT

f(β̃)
Jf(β̃)

)−1

LTλ̃ (7.35)

It is asymptotically χ2(r).
This is the Lagrange multiplier form.
Another form:
Use JT

f(β̃)
(X − f(Z, β̃)) in place of LTλ̃.

Get

1

σ̃2
(X − f(Z, β̃))TJf(β̃)

(
JT

f(β̃)
Jf(β̃)

)−1

JT
f(β̃)

(X − f(Z, β̃)) (7.36)

This is the score form. Except for the method of computing it, it is the
same as the Lagrange multiplier form.

This is the SSReg in the AOV for a regression model.

Example 7.10 an anomalous score test
Morgan et al. (2007) illustrate some interesting issues using a simple example
of counts of numbers of stillbirths in each of a sample of litters of laboratory
animals. They suggest that a zero-inflated Poisson is an appropriate model.
This distribution is an ω mixture of a point mass at 0 and a Poisson distribu-
tion. The CDF (in a notation we will use often later) is

P0,ω(x|λ) = (1− ω)P (x|λ) + ωI[0,∞[(x),

where P (x) is the Poisson CDF with parameter λ.
(Write the PDF (under the counting measure). Is this a reasonable prob-

ability model? What are the assumptions? Do the litter sizes matter?)
If we denote the number of litters in which the number of observed still-

births is i by ni, the log-likelihood function is
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l(ω, λ) = n0 log
(
ω + (1 − ω)e−λ

)
+

∞∑

i=1

ni log(1−ω)−
∞∑

i=1

niλ+

∞∑

i=1

ini log(λ)+c.

Suppose we want to test the null hypothesis that ω = 0.
The score test has the form

sTJ−1s,

where s is the score vector and J is either the observed or the expected
information matrix. For each we substitute ω = 0 and λ = λ̂0, where λ̂0 =∑∞

i=1 ini/n with n =
∑∞

i=0 ni, which is the MLE when ω = 0.
Let

n+ =
∞∑

i=1

ni

and

d =

∞∑

i=0

ini.

The frequency of 0s is important. Let

f0 = n0/n.

Taking the derivatives and setting ω = 0, we have

∂l

∂ω
= n0e

λ − n,

∂l

∂λ
= −n+ d/λ,

∂2l

∂ω2
= −n− n0e

2λ + n0e
λ,

∂2l

∂ωλ
= n0e

λ,

and
∂2l

∂λ2
= −d/λ2.

So, substituting the observed data and the restricted MLE, we have ob-
served information matrix

O(0, λ̂0) = n

[
1 + f0e

2λ̂0 − 2f0e
λ̂0 −f0eλ̂0

−f0eλ̂0 1/λ̂0

]
.

Now, for the expected information matrix when ω = 0, we first observe that
E(n0) = ne−λ, E(d) = nλ, and E(n+) = n(1− e−λ); hence
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I(0, λ̂0) = n

[
eλ̂0 − 1 −1

−1 1/λ̂0

]
.

Hence, the score test statistic can be written as

κ(λ̂0)(n0e
λ̂0 − n)2,

where κ(λ̂0) is the (1,1) element of the inverse of either O(0, λ̂0) or I(0, λ̂0).
Inverting the matrices (they are 2 × 2), we have as the test statistic for

the score test, either

sI =
ne−λ̂0(1− θ)2

1− e−λ̂0 − λ̂0e−λ̂0

or

sO =
ne−λ̂0 (1− θ)2

e−λ̂0 + θ − 2θe−λ̂0θ2λ̂0e−λ̂0

,

where θ = f0e
λ̂0 , which is the ratio of the observed proportion of 0 counts to

the estimated probability of a zero count under the Poisson model. (If n0 is
actually the number expected under the Poisson model, then θ = 1.)

Now consider the actual data reported by Morgan et al. (2007) for still-
births in each litter of a sample of 402 litters of laboratory animals.

No. stillbirths 0 1 2 3 4 5 6 7 8 9 10 11
No. litters 314 48 20 7 5 2 2 1 2 0 0 1

For these data, we have n = 402, d = 185, λ̂0 = 0.4602, e−λ̂0 = 0.6312,
and θ = 1.2376.

What is interesting is the difference in sI and sO .
In this particular example, if all ni for i ≥ 1 are held constant at the

observed values, but different values of n0 are considered, as n0 increases the
ratio sI/sO increases from about 1/4 to 1 (when the n0 is the expected number
under the Poisson model; i.e., θ = 1), and then decreases, actually becoming
negative (around n0 = 100).

This example illustrates an interesting case. The score test is inconsistent
because the observed information generates negative variance estimates at the
MLE under the null hypothesis. (The score test can also be inconsistent if the
expected likelihood equation has spurious roots.)

7.4 Nonparametric Tests

7.4.1 Permutation Tests

For i = 1, 2, given the random Xi1, . . . , Xini from a a distribution with con-
tinuous CDF Fi, we wish to test
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H0 : F1 = F2 versus H0 : F1 6= F2.

Π(X), where X = {Xij : i = 1, 2; j = 1, . . . , ni}
Π({X1, . . . , Xk}), for any Π , where Π(A) denotes a permutation of the

elements of the set A.
***************

7.4.2 Sign Tests and Rank Tests

We have a sample X1, . . . , Xn and the associated ranks of the absolute values,
R̃(X). We denote the subvector of R̃(X) that corresponds to positive values
of X as R+(X), and let n∗ be the number of positive values of X. We let
Ro

+(X) be the vector of the elements of R+(X) in increasing order. We let J
be a continuous and strictly increasing function on [0, 1], and let

W (Ro
+) = J(Ro

+1/n) + · · ·+ J(Ro
+n∗

/n) (7.37)

7.4.3 Goodness of Fit Tests

Kolmogorov-Smirnov (KS) Test

If P1 and P2 are CDFs, the L∞ norm of their difference is called the Kol-
mogorov distance between the two distributions; that is, the Kolmogorov dis-
tance between two CDFs P1 and P2, written as ρK(P1, P2), is defined as

ρK(P1, P2) = sup |P1 − P2|. (7.38)

Because a CDF is bounded by 0 and 1, it is clear that

ρK(P1, P2) ≤ 1, (7.39)

and if the supports S1 and S2 are such that x1 ∈ S1 and x2 ∈ S2 implies x1 ≤
x2 with at least one x1 ∈ S1 is less than some x2 ∈ S2, then ρK(P1, P2) = 1.

If one or both of P1 and P2 are ECDFs we can compute the Kolmogorov
distance fairly easily using the order statistics.

*** distribution

Cramér von Mises Test

7.4.4 Empirical Likelihood Ratio Tests

7.5 Multiple Tests

In many applications, we test several hypotheses using only one set of obser-
vations. For example in the one-way fixed-effects AOV model
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Yij = µ+ αi + εij, i = 1, . . . , m, j = 1, . . . , n,

the usual hypothesis of interest is

H0 : α1 = · · · = αm = 0.

This can be thought of as several separate hypotheses, H0i : αi = 0; and the
researcher is not just interested in whether all αi = 0. Which effects are larger,
or which set of effects differ for other effects, and similar questions would be
of interest.

In other types of applications, different populations may be tested in the
same way and in some tests the null hypothesis is rejected and in others it
is not. An example of such a situation is in seeking to identify human genes
associated with a particular condition, say a certain type of illness. A common
way of doing this is by use of DNA microarrays. The observations come from
a set of subjects with the condition and from another set of subjects without
the condition. A large number of genes from each subject are compared across
the two groups. An hypothesis of “no difference” is to be tested for each gene.
What is the probability that a gene will erroneously be identified as different
across the two groups; that is, what is the probability that a type I error
occurs in such a situation?

In such cases of multiple testing, the question of errors is not so straight-
forward. We begin by considering a single error within a family of tests. The
family is any group of tests that we want to consider together. In the one-way
model, the family would be the multiple comparisons among the effects. The
probability of a type I error in any test in the family is called the family wise
error rate, or FWER.

There are several ways to measure the errors. Letting m be the number of
tests, F be the number of false positives, T be the number of true positives, and
S = F + T be the total number of “discoveries”, or rejected null hypotheses,
we define various error measures. The family wise error rate, as above, is

FWER = Pr(F ≥ 1).

The per comparison error rate is

PCER = E(F )/m.

The false discovery rate is

FDR = E(F/S).

The false nondiscovery rate is

FNR = E(T/S).
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The Benjamini-Hochberg (BH) method for controlling FDR works as fol-
lows. First, order the m p-values from the tests: p1 ≤ · · · ≤ pm. Then de-
termine a threshold value for rejection by finding the largest integer j such
that pj ≤ jα/m. Finally, reject any hypothesis whose p-value is smaller than
or equal to pj . Benjamini and Hochberg (1995) prove that this procedure is
guaranteed to force FDR ≤ α. Genovese and Wasserman (2002), however,
showed that this procedure does not minimize FNR subject to FDR ≤ α for
a given α.

Example 7.11 Variable selection in a linear regression model
One of the most common instances of multiple hypotheses testing is in the
variable selection problem in linear regression.

7.6 Sequential Tests

In the simplest formulation of statistical hypothesis testing, corresponding
to the setup of the Neyman-Pearson lemma, we test a given hypothesized
distribution versus another given distribution. After setting some ground rules
regarding the probability of falsely rejecting the null hypothesis, and then
determining the optimal test in the case of simple hypotheses, we determined
more general optimal tests in cases for which they exist, and for other cases,
we determined optimal tests among classes of tests that had certain desirable
properties. In some cases, the tests involved regions within the sample space
in which the decision between the two hypotheses was made randomly; that is,
based on a random process over and above the randomness of the distributions
of interest.

Another logical approach to take when the data generated by the process of
interest does not lead to a clear decision is to decide to take more observations.
Recognizing at the outset that this is a possibility, we may decide to design
the test as a sequential procedure. We take a small number of observations,
and if the evidence is strong enough either to accept the null hypothesis or
to reject it, the test is complete and we make the appropriate decision. On
the other hand, if the evidence from the small sample is not strong enough,
we take some additional observations and perform the test again. We repeat
these steps as necessary.

Sequential procedures always present issues that may affect the inference.
There are various kinds of sequential procedures. Example 7.12, which revis-
its an inference problem in a Bernoulli distribution that has been considered
in Examples 3.12 and 6.1, sets up an experiment in which Bernoulli random
variables are to be observed until a specified number of successes are observed.
Although in some sense this is a sequential procedure (and it does raise ques-
tions about the principles underlying our statistical inference), the stopping
rule is not dependent on the inference.
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In a sequential testing procedure, at any point, the question of whether
or not to continue observing random variables depends on the inference that
could be made at that point. If the hypothesis can be rejected or if it is
very unlikely that it can be rejected, the decision is made, and the test is
terminated; otherwise, the test continues. When we refer to a “sequential
test”, this is the type of situation we have in mind.

7.6.1 Sequential Probability Ratio Tests

Let us again consider the test of a simple null hypothesis against a simple
alternative. Thinking of the hypotheses in terms of a parameter θ that indexes
these two PDFs by θ0 and θ1, for a sample of size n, we have the likelihoods
associated with the two hypotheses as Ln(θ0; x) and Ln(θ1 ; x). The best test
indicates that we should reject if

Ln(θ0; x)

Ln(θ1; x)
≤ k,

for some appropriately chosen k.
define and show optimality

7.6.2 Sequential Reliability Tests

7.7 The Likelihood Principle and Tests of Hypotheses

*** introduce; refer to likelihood in N-P

Tests of Hypotheses that Depend on the Data-Generating Process

***

Example 7.12 Sampling in a Bernoulli distribution; p-values and
the likelihood principle revisited
In Examples 3.12 and 6.1, we have considered the family of Bernoulli distri-
butions that is formed from the class of the probability measures Pπ({1}) = π
and Pπ({0}) = 1− π on the measurable space (Ω = {0, 1},F = 2Ω). Suppose
now we wish to test

H0 : π ≥ 0.5 versus H1 : π < 0.5.

As we indicated in Example 3.12 there are two ways we could set up an
experiment to make inferences on π. One approach is to take a random sample
of size n, X1, . . . , Xn from the Bernoulli(π), and then use some function of
that sample as an estimator. An obvious statistic to use is the number of 1’s
in the sample, that is, T =

∑
Xi. To assess the performance of an estimator
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using T , we would first determine its distribution and then use the properties
of that distribution to decide what would be a good estimator based on T .

A very different approach is to take a sequential sample, X1, X2, . . ., until
a fixed number t of 1’s have occurred. This yields N , the number of trials
until t 1’s have occurred.

The distribution of T is binomial with parameters n and π; its PDF is

pT (t ; n, π) =

(
n

t

)
πt(1− π)n−t, t = 0, 1, . . . , n. (7.40)

The distribution of N is the negative binomial with parameters t and π,
and its PDF is

pN(n ; t, π) =

(
n− 1

t− 1

)
πt(1− π)n−t, n = t, t+ 1, . . . . (7.41)

Suppose we do this both ways. We choose n = 12 for the first method
and t = 3 for the second method. Now, suppose that for the first method, we
observe T = 3 and for the second method, we observe N = 12. The ratio of
the likelihoods satisfies equation (6.4); that is, it does not involve π, so by the
likelihood principle, we should make the same conclusions about π.

Let us now compute the respective p-values for a one-sided test. For the
binomial setup we get p = 0.073 (using the R function pbinom(3,12,0.5)),
but for the negative binomial setup we get p = 0.033 (using the R function
1-pnbinom(8,3,0.5) in which the first argument is the number of “failures”
before the number of “successes” specified in the second argument). The p-
values are different, and in fact, if we had decided to perform the test at the
α = 0.05 significance level, in one case we would reject the null hypothesis
and in the other case we would not.

Further comments on Example 7.12
The problem in a significance test as we have just described is determining
what is “more extreme”. In the sampling design that specifies a stopping
rule based on n that leads to a binomial distribution, “more extreme” means
T ∈ {0, . . . , t}, and in a data-generating process that depends on a specified
number of 1’s, “more extreme” means N ∈ {n, n+ 1, . . .}.

Notice the key element in the example: in one case, the experiment that
was conducted to gather information is completely independent of what is
observed, while in the other case the experiment itself depended on what is
observed. The latter type of experiment is often a type of Markov process in
which there is a stopping time as in equation (1.263).

This example illustrates a basic conflict between the likelihood principle
and significance testing. Observance of the likelihood principle while making
inferences about a probability distribution leads us to ignore the overall data-
generating process. The likelihood principle states that only the observed data
are relevant.
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Monte Carlo simulation would be an appropriate way to study this sit-
uation. The data could be obtained by a process that involves a stopping
rule, and the tests could be performed in a manner that ignores the process.
Whether or not the test is valid could be assessed by evaluating the p-value
under the null hypothesis.

You are asked to explore this issue in Exercise 7.5.

Evidence Supporting Hypotheses

Example 7.4 is a good illustration of the Neyman-Pearson solution to a simple
hypothesis testing problem. We might look at this problem in a slightly differ-
ent context, however, as suggested on page 318. This particular example, in
fact, is used in Royall (1997) to show how the data actually provide evidence
that might contradict our decision based on the Neyman-Pearson hypothesis
testing approach.

Example 7.13 Critique of the hypothesis test of Example 7.4
Let’s consider the Bernoulli distribution of Example 7.4 and the two hypothe-
ses regarding the parameter π, H0 : π = 1/4 and H1 : π = 3/4. The test is
based on x, the total number of 1s in n trials. When n = 30, the Neyman-
Pearson testing procedure at the level α = 0.05 rejects H0 in favor of H1 if
x ≥ 13.

Looking at the problem of choosing H0 or H1 based on the evidence in the
data, however, we might ask what evidence x = 13 provides. The likelihood
ratio in equation 7.16 is

L(P1, x)

L(P0, x)
= 1/81,

which would seem to be rather compelling evidence in favor of H0 over H1.
An additional problem with the test in Example 7.4 is the manner in which

a decision is made if x = 12. In order to achieve an exact size of α = 0.05,
a randomization procedure that does not depend on the evidence of the data
is required. This kind of randomization procedure does not seem to be a
reasonable way to make a statistical decision.

The alternative approach to hypothesis testing involves a comparison of
the evidence from the data in favor of each of the competing hypotheses.

This approach is similar to the use of the Bayes factor discussed in Sec-
tion 4.5.3.

7.8 Confidence Sets

For statistical confidence sets, the basic problem is to use a random sample
X from an unknown distribution P to determine a random subfamily A(X)
of a given family of distributions P such that
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PrP (PS 3 P ) ≥ 1− α ∀P ∈ P, (7.42)

for some given α ∈]0, 1[. The set PS is called a 1−α confidence set or confidence
set. The “confidence level” is 1 − α, so we sometimes call it a “level 1 − α
confidence set”. Notice that α is given a priori. We call

inf
P∈P

PrP (PS 3 P ) (7.43)

the confidence coefficient of PS .
If the confidence coefficient of PS is > 1 − α, then PS is said to be a

conservative 1− α confidence set.
We generally wish to determine a region with a given confidence coefficient,

rather than with a given significance level.
If the distributions are characterized by a parameter θ in a given parameter

space Θ an equivalent 1− α confidence set for θ is a random subset ΘS such
that

Prθ (ΘS 3 θ) ≥ 1− α ∀θ ∈ Θ. (7.44)

The basic paradigm of statistical confidence sets was described in Sec-
tion 3.5.2, beginning on page 296. We first review some of those basic ideas,
starting first with simple interval confidence sets. Then in Section 7.9 we dis-
cuss optimality of confidence sets.

As we have seen in other problems in statistical inference, it is often not
possible to develop a procedure that is uniformly optimal. As with the estima-
tion problem, we can impose restrictions, such as unbiasedness or equivariance.

We can define optimality in terms of a global averaging over the family
of distributions of interest. If the the global averaging is considered to be a
true probability distribution, then the resulting confidence intervals can be
interpreted differently, and it can be said that the probability that the distri-
bution of the observations is in some fixed family is some stated amount. The
HPD Bayesian credible regions discussed in Section 4.6.2 can also be thought
of as optimal sets that address similar applications in which confidence sets
are used.

Because determining an exact 1− α confidence set requires that we know
the exact distribution of some statistic, we often have to form approximate
confidence sets. There are three common ways that we do this as discussed
in Section 3.1.4. In Section 7.10 we discuss asymptotic confidence sets, and in
Section 7.11, bootstrap confidence sets.

Our usual notion of a confidence interval relies on a frequency approach to
probability, and it leads to the definition of a 1−α confidence interval for the
(scalar) parameter θ as the random interval [TL, TU ], that has the property

Pr (TL ≤ θ ≤ TU ) = 1− α.

This is also called a (1− α)100% confidence interval. The interval [TL, TU ] is
not uniquely determined.
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The concept extends easily to vector-valued parameters. A simple exten-
sion would be merely to let TL and TU , and let the confidence set be hyper-
rectangle defined by the cross products of the intervals. Rather than taking
vectors TL and TU , however, we generally define other types of regions; in
particular, we often take an ellipsoidal region whose shape is determined by
the covariances of the estimators.

A realization of the random interval, say [tL, tU ], is also called a confidence
interval. Although it may seem natural to state that the “probability that θ
is in [tL, tU ] is 1 − α”, this statement can be misleading unless a certain
underlying probability structure is assumed.

In practice, the interval is usually specified with respect to an estimator
of θ, T (X). If we know the sampling distribution of T − θ, we may determine
c1 and c2 such that

Pr (c1 ≤ T − θ ≤ c2) = 1− α;

and hence
Pr (T − c2 ≤ θ ≤ T − c1) = 1− α.

If either TL or TU is infinite or corresponds to a bound on acceptable values
of θ, the confidence interval is one-sided. For two-sided confidence intervals,
we may seek to make the probability on either side of T to be equal. This
is called an equal-tail confidence interval. We may, rather, choose to make
c1 = −c2, and/or to minimize |c2 − c1| or |c1| or |c2|. This is similar in spirit
to seeking an estimator with small variance.

Prediction Sets

We often want to identify a set in which a future observation on a random
variable has a high probability of occurring. This kind of set is called a pre-
diction set.
For example, we may assume a given sample X1, . . . , Xn is from a N(µ, σ2)
and we wish to determine a measurable set C(X) such that for a future ob-
servation Xn+1

inf
P∈P

PrP (Xn+1 ∈ C(X)) ≥ 1− α.
More generally, instead of Xn+1, we could define a prediction interval for

any random variable Y .
The difference in this and a confidence set for µ is that there is an addi-

tional source of variation. The prediction set will be larger, so as to account
for this extra variation.

We may want to separate the statements about Xn+1 or Y and C(X). A
tolerance set attempts to do this.

Given a sample X, a measurable set S(X), and numbers δ and α in ]0, 1[,
if

inf
P∈P

(PrP (Y ∈ S(X)|X) ≥ δ) ≥ 1− α,

then S(X) is called a δ-tolerance set for Y with confidence level 1− α.

Theory of Statistics c©2000–2025 James E. Gentle



544 7 Statistical Hypotheses and Confidence Sets

Randomized confidence Sets

For discrete distributions, as we have seen, sometimes to achieve a test of a
specified size, we had to use a randomized test.

Confidence sets may have exactly the same problem – and solution – in
forming confidence sets for parameters in discrete distributions. We form ran-
domized confidence sets. The idea is the same as in randomized tests, and
we will discuss randomized confidence sets in the context of hypothesis tests
below.

Pivotal Functions

A straightforward way to form a confidence interval is to use a function of the
sample that also involves the parameter of interest, but that does not involve
any nuisance parameters. This kind of function is called a pivotal function.
The confidence interval is then formed by separating the parameter from the
sample values, as in Example 3.24 on page 298.

Example 7.14 Confidence Interval for a Quantile
***distribution free

For a given parameter and family of distributions there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use.

Approximate Pivot Values

It may not be possible to identify a pivotal quantity for a particular parameter.
In that case, we may seek an approximate pivot. A function is asymptotically
pivotal if a sequence of linear transformations of the function is pivotal in the
limit as n→∞.

*** nuisance parameters ***** find consistent estimator
If the distribution of T is known, c1 and c2 can be determined. If the

distribution of T is not known, some other approach must be used. A common
method is to use some numerical approximation to the distribution. Another
method is to use bootstrap samples from the ECDF.

Relation to Acceptance Regions of Hypothesis Tests

A test at the α level has a very close relationship with a 1−α level confidence
set.

When we test the hypothesis H0 : θ ∈ ΘH0 at the α level, we form
a critical region for a test statistic or rejection region for the values of the
observable X. This region is such that the probability that the test statistic
is in it is ≤ α.
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For any given θ0 ∈ Θ, consider the nonrandomized test Tθ0 for testing the
simple hypothesis H0 : θ = θ0, against some alternative H1. We let A(θ0) be
the set of all x such that the test statistic is not in the critical region; that is,
A(θ0) is the acceptance region.

Now, for any θ and any value x in the range of X, we let

C(x) = {θ : x ∈ A(θ)}.
For testing H0 : θ = θ0 at the α significance level, we have

sup Pr(X /∈ A(θ0) | θ = θ0) ≤ α;

that is,

1− α ≤ inf Pr(X ∈ A(θ0) | θ = θ0) = inf Pr(C(X) 3 θ0 | θ = θ0).

This holds for any θ0, so

inf
P∈P

PrP (C(X) 3 θ) = inf
θ0∈Θ

inf PrP (C(X) 3 θ0 | θ = θ0)

≥ 1− α.
Hence, C(X) is a 1− α level confidence set for θ.
If the size of the test is α, the inequalities are equalities, and so the confi-

dence coefficient is 1− α.
For example, suppose Y1, Y2, . . . , Yn is a random sample from a N(µ, σ2)

distribution, and Y is the sample mean.
To test H0 : µ = µ0, against the universal alternative, we form the test

statistic

T (X) =

√
n(n− 1) (Y − µ0)√∑ (

Yi − Y
)2

which, under the null hypothesis, has a Student’s t distribution with n − 1
degrees of freedom.

An acceptance region at the α level is
[
t(α/2), t(1−α/2)

]
,

and hence, putting these limits on T (X) and inverting, we get
[
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
]
,

which is a 1− α level confidence interval.
The test has size α and so the confidence coefficient is 1− α.

Randomized Confidence Sets

To form a 1 − α confidence level set, we form a nonrandomized confidence
set (which may be null) with 1 − α1 confidence level, with 0 ≤ α1 ≤ α, and
then we define a random experiment with some event that has a probability
of α− α1.
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7.9 Optimal Confidence Sets

Just as we refer to a test as being “valid” if the significance level of the test is
not exceeded (that is, if the probability of rejecting a true null hypothesis is
bounded by the level of significance), we refer to a a confidence interval that
has a probability of at least the confidence level as being “correct”.

We often evaluate a confidence set using a family of distributions that does
not include the true parameter.

For example, “accuracy” refers to the (true) probability of the set including
an incorrect value. A confidence that is more accurate has a smaller probability
of including a distribution that did not give rise to the sample. This is a general
way relates to the size of the confidence set.

Size of Confidence Sets

The “volume” (or “length”) of a confidence set is the Lebesgue measure of
the set:

vol(ΘS) =

∫

ΘS

dθ̃.

This may not be finite.
If the volume is finite, we have (Theorem 7.6 in MS2)

Eθ(vol(ΘS)) =

∫

θ 6=θ̃

Prθ(ΘS 3 θ̃)dθ̃.

We see this by a simple application of Fubini’s theorem to handle the integral
over the product space, and then an interchange of integration:

Want to minimize volume (if appropriate; i.e., finite.)

7.9.1 Most Accurate Confidence Set

Accuracy of Confidence Sets

**********Want to maximize accuracy.???????????
Confidence sets can be thought of a a family of tests of hypotheses of the

form θ ∈ H0(θ̃) versus θ ∈ H1(θ̃). A confidence set of size 1 − α is equivalent
to a critical region S(X) such that

Pr
(
S(X) 3 θ̃

)
≥ 1− α ∀ θ ∈ H0

(
θ̃
)
.

The power of the related tests is just

Pr
(
S(X) 3 θ̃

)

for any θ. In testing hypotheses, we are concerned about maximizing this for
θ ∈ H1(θ̃).
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This is called the accuracy of the confidence set, and so in this terminology,
we seek the most accurate confidence set, and, of course, the uniformly most
accurate confidence region. Similarly to the case of UMP tests, the uniformly
most accurate confidence region may or may not exist.

The question of existence of uniformly most accurate confidence intervals
also depends on whether or not there are nuisance parameters. Just as with
UMP tests, in the presence of nuisance parameters, usually uniformly most
accurate confidence intervals do not exist. (We must add other restrictions on
the intervals, as we see below.) The nonexistence of uniformly most accurate
confidence sets can also be addressed by imposing unbiasedness.

Uniformly most accurate 1− α level set:
Prθ(ΘS 3 θ̃) is minimum among all 1− α level sets and ∀θ̃ 6= θ.

This definition of UMA may not be so relevant in the case of a one-sided
confidence interval.

If Θ̃ is a subset of Θ that does not include θ, and

Prθ(ΘS 3 θ̃) ≤ Prθ(ΘeS 3 θ̃)
for any 1 − α level set ΘeS and ∀θ̃ ∈ Θ̃, then ΘS is said to be Θ̃-uniformly
most accurate.

A confidence set formed by inverting a nonrandomized UMP test is UMA.
We see this easily from the definitions of UMP and UMA. (This is Theorem

7.4 in MS2.)

7.9.2 Unbiased Confidence Sets

With tests, sometimes no UMP exists, and hence we added a criterion, such
as unbiasedness or invariance.

Likewise, sometimes we cannot form a UMA confidence interval, so we add
some criterion.

We define unbiasedness in terms of a subset Θ̃ that does not include the
true θ.

A 1− α level confidence set C(X) is said to be Θ̃-unbiased if

Prθ(ΘS 3 θ̃) ≤ 1− α ∀θ̃ ∈ Θ̃.

If Θ̃ = {θ}c, we call the set unbiased.

A Θ̃-unbiased set that is uniformly more accurate (“more” is defined simi-

larly to “most”) than any other Θ̃-unbiased set is said to be a uniformly most
accurate unbiased (UMAU) set. *********************

The concept of unbiasedness in tests carries over immediately to confidence
sets. A family of confidence sets of size 1− α is said to be unbiased if

Pr
(
S(X) 3 θ̃

)
≤ 1− α ∀ θ ∈ H1

(
θ̃
)
.

In the case of nuisance parameters θu, unbiasedness means that this holds
for all values of the nuisance parameters. In this case, similar regions and
Neyman structure also are relevant, just as in the case of testing.
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Volume of a Confidence Set

If there are no nuisance parameters, the expected volume of a confidence set
is usually known a priori, e.g., for µ in N(µ, 1).

What about a confidence set for µ in N(µ, σ2), with σ2 unknown?
The expected length is proportional to σ, and can be very long. (This is a

consequence of the fact that two normal distributions N(µ1, σ
2) and N(µ2, σ

2)
become indistinguishable as σ →∞.

The length of the confidence interval is inversely proportional to
√
n. How

about a sequential procedure?

A Sequential Procedure for a Confidence Set

Let X1, X2, . . .
iid∼ N(µ, σ2).

Fix n0. Let x̄0 =
∑n0

i=1 xi/n0 and s20 =
∑n0

i=1(xi − x̄0)
2/(n0 − 1).

Now, for measurable function of s, a and b, for n ≥ n0, let

a1 = · · · = an0 = a

and
an0+1 = · · · = an = b.

Then

Y =

∑n
i=1 ai(Xi − µ)√
S2

0

∑n
i=1 a

2
i

has a Student’s t distribution with n0 − 1 df.

Controlling the Volume

Now compute s2 from an initial sample of size n0. Let c be a given positive
constant. Now choose n− n0 additional observations where

n = max

(
n0 + 1,

[
s2

c

]
+ 1

)
.

Then there exists numbers a1, . . . , an with a1 = · · · = an0 and an0+1 = · · · =
an such that

∑n
i=1 ai = 1 and

∑n
i=1 a

2
i = c/s2.

And so (from above),
∑n

i=1 ai(Xi − µ)/
√
c has a Student’s t distribution

with n0 − 1 df.
Therefore, givenX1, . . . , Xn0 the expected length of the confidence interval

can be controlled.

Example 7.15 Confidence Interval in Inverse Regression
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Consider E(Y |x) = β0 + β1x. Suppose we want to estimate the point at
which β0 + β1x has a preassigned value; for example find dosage x = −β0/β1

at which E(Y |x) = 0.
This is equivalent to finding the value v = (x− x̄)/

√∑
(xi − x̄)2 at which

y = γ0 + γ1v = 0.

So we want to find v = −γ0/γ1.
The most accurate unbiased confidence sets for −γ0/γ1 can be obtained

from UMPU tests of the hypothesis −γ0/γ1 = v0.
Acceptance regions of these tests are given by

|v0
∑
viYi + Ȳ |/

√
1
n + v2

0√(∑
(Yi − Ȳ )2 − (

∑
viYi)2

)
/(n− 2)

≤ c

where ∫ c

−c

p(y)dy = 1− α,

where p is the PDF of t with n− 2 df.
So square and get quadratic inequalities in v:

v2
(
c2s2 − (

∑
viYi)

2
)
− 2vȲ

∑
viYi +

1

n
(c2x2 − nȲ ) ≥ 0.

Now let v and v be the roots of the equation.
So the confidence statement becomes

v ≤ γ0

γ1
≤ v if

|∑ viYi|
s

> c,

γ0

γ1
< v or

γ0

γ1
> v if

|∑ viYi|
s

< c,

and if = c, no solution.
If y = γ0 + γ1v is nearly parallel to the v-axis, then the intercept with the

v-axis will be large in absolute value and its sign is sensitive to a small change
in the angle.

Suppose in the quadratic that nȲ 2 + (
∑
viYi)

2 < c2s2, then there is no
real solution.

For the confidence levels to remain valid, the confidence interval must be
the whole real line.

7.9.3 Equivariant Confidence Sets

The connection we have seen between a 1 − α confidence set S(x), and the
acceptance region of a α-level test, A(θ), that is
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S(x) 3 θ ⇔ x ∈ A(θ),

can often be used to relate UMP invariant tests to best equivariant confidence
sets.

Equivariance for confidence sets is defined similarly to equivariance in
other settings.

Under the notation developed above, for the group of transformations G
and the induced transformation groups G∗ and G, a confidence set S(x) is
equivariant if for all x ∈ X and g ∈ G,

g∗(S(x)) = S(g(x)).

The uniformly most powerful property of the test corresponds to uniformly
minimizing the probability that the confidence set contains incorrect values,
and the invariance corresponds to equivariance.

An equivariant set that is Θ̃-uniformly more accurate (“more” is defined
similarly to “most”) than any other equivariant set is said to be a uniformly
most accurate equivariant (UMAE) set.

There are situations in which there do not exist confidence sets that have
uniformly minimum probability of including incorrect values. In such cases,
we may retain the requirement for equivariance, but impose some other crite-
rion, such as expected smallest size (wrt Lebesgue measure) of the confidence
interval.

7.10 Asymptotic Confidence sets

It is often difficult to determine sets with a specified confidence coefficient or
significance level, or with other specified properties.

In such cases it may be useful to determine a set that “approximately”
meets the specified requirements.

What does “approximately” mean?

• uses numerical approximations
• uses approximate distributions
• uses a random procedure
• uses asymptotics

We assume a random sample X1, . . . , Xn from P ∈ P
An asymptotic significance level of a confidence set C(X) for g(θ) is 1−α

if
lim inf

n
Pr(C(X) 3 θ) ≥ 1− α for any P ∈ P.

The limiting confidence coefficient of a confidence set C(X) for θ is

lim
n

inf
P∈P

Pr(C(X) 3 θ)
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if it exists.
Example (MS2). Suppose X1, . . . , X − n are iid from a distribution with

CDF PX and finite mean µ and variance σ2. Suppose σ2 is known, and we
want to form a 1−α level confidence interval for µ. Unless PX is specified, we
can only seek a confidence interval with asymptotic significance level 1−α. We
have an asymptotic pivot T (X, µ) = (X − µ)/σ, and

√
nT has an asymptotic

N(0, 1) distribution. We then form an interval

C(X) = (C1(X), C2(X))

= (X − σz1−α/2/
√

:n, X + σz1−α/2/
√

:n),

where z1−α/2 = Φ−1(1−α/2) and Φ is the N(0, 1) CDF. Now consider Pr(µ ∈
C(X)). We have

Asymptotic Correctness and Accuracy

A confidence set C(X) for θ is 1− α asymptotically correct if

lim
n

Pr(C(X) 3 θ) = 1− α.

A confidence set C(X) for θ is 1−α lth-order asymptotically accurate if it
is 1− α asymptotically correct and

lim
n

Pr(C(X) 3 θ) = 1− α+ O(n−l/2).

Asymptotic Accuracy of Confidence sets

**************************

Constructing Asymptotic Confidence Sets

There are two straightforward ways of constructing good asymptotic confi-
dence sets.

One is based on an asymptotically pivotal function, that is one whose lim-
iting distribution does not depend on any parameters other than the one of
the confidence set.

Another method is to invert the acceptance region of a test. The properties
of the test carry over to the confidence set.

The likelihood yields statistics with good asymptotic properties (for testing
or for confidence sets).

See Example 7.24.
Woodruff’s interval
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7.11 Bootstrap Confidence Sets

A method of forming a confidence interval for a parameter θ is to find a pivotal
quantity that involves θ and a statistic T , f(T, θ), and then to rearrange the
terms in a probability statement of the form

Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α. (7.45)

When distributions are difficult to work out, we may use bootstrap methods
for estimating and/or approximating the percentiles, f(α/2) and f(1−α/2).

Basic Intervals

For computing confidence intervals for a mean, the pivotal quantity is likely
to be of the form T − θ.

The simplest application of the bootstrap to forming a confidence interval
is to use the sampling distribution of T ∗−T0 as an approximation to the sam-
pling distribution of T − θ; that is, instead of using f(T, θ), we use f(T ∗, T0),
where T0 is the value of T in the given sample.

The percentiles of the sampling distribution determine f(α/2) and f(1−α/2)

in
Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α.

Monte Carlo to Get Basic Intervals

If we cannot determine the sampling distribution of T ∗ − T , we can easily
estimate it by Monte Carlo methods.

For the case f(T, θ) = T −θ, the probability statement above is equivalent
to

Pr
(
T − f(1−α/2) ≤ θ ≤ T − f(α/2)

)
= 1− α. (7.46)

The f(π) may be estimated from the percentiles of a Monte Carlo sample
of T ∗ − T0.

Bootstrap-t Intervals

Methods of inference based on a normal distribution often work well even
when the underlying distribution is not normal.

A useful approximate confidence interval for a location parameter can
often be constructed using as a template the familiar confidence interval for
the mean of a normal distribution,

[
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
]
,

where t(π) is a percentile from the Student’s t distribution, and s2 is the usual
sample variance.
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A confidence interval for any parameter constructed in this pattern is
called a bootstrap-t interval. A bootstrap-t interval has the form

[
T − t̂(1−α/2)

√
V̂(T ), T − t̂(α/2)

√
V̂(T )

]
. (7.47)

In the interval
[
T − t̂(1−α/2)

√
V̂(T ), T − t̂(α/2)

√
V̂(T )

]

t̂(π) is the estimated percentile from the studentized statistic,

T ∗ − T0√
V̂(T ∗)

.

For many estimators T , no simple expression is available for V̂(T ).
The variance could be estimated using a bootstrap. This bootstrap nested

in the bootstrap to determine t̂(π) increases the computational burden multi-
plicatively.

If the underlying distribution is normal and T is a sample mean, the inter-
val in expression (7.47) is an exact (1−α)100% confidence interval of shortest
length.

If the underlying distribution is not normal, however, this confidence in-
terval may not have good properties. In particular, it may not even be of size
(1 − α)100%. An asymmetric underlying distribution can have particularly
deleterious effects on one-sided confidence intervals.

If the estimators T and V̂(T ) are based on sums of squares of deviations,
the bootstrap-t interval performs very poorly when the underlying distribution
has heavy tails. This is to be expected, of course. Bootstrap procedures can
be no better than the statistics used.

Bootstrap Percentile Confidence Intervals

Given a random sample (y1, . . . , yn) from an unknown distribution with CDF
P , we want an interval estimate of a parameter, θ = Θ(P ), for which we have
a point estimator, T .

If T ∗ is a bootstrap estimator for θ based on the bootstrap sample
(y∗1 , . . . , y

∗
n), and if GT∗(t) is the distribution function for T ∗, then the

exact upper 1 − α confidence limit for θ is the value t∗(1−α), such that

GT∗(t∗(1−α)) = 1− α.
This is called the percentile upper confidence limit.
A lower limit is obtained similarly, and an interval is based on the lower

and upper limits.
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Monte Carlo for Bootstrap Percentile Confidence Intervals

In practice, we generally use Monte Carlo and m bootstrap samples to esti-
mate these quantities.

The probability-symmetric bootstrap percentile confidence interval of size
(1− α)100% is thus [

t∗(α/2), t∗(1−α/2)

]
,

where t∗(π) is the [πm]th order statistic of a sample of size m of T ∗.

(Note that we are using T and t, and hence T ∗ and t∗, to represent estima-
tors and estimates in general; that is, t∗(π) here does not refer to a percentile

of the Student’s t distribution.)
This percentile interval is based on the ideal bootstrap and may be esti-

mated by Monte Carlo simulation.

Confidence Intervals Based on Transformations

Suppose that there is a monotonically increasing transformation g and a con-
stant c such that the random variable

W = c(g(T ∗)− g(θ)) (7.48)

has a symmetric distribution about zero. Here g(θ) is in the role of a mean
and c is a scale or standard deviation.

Let H be the distribution function of W , so

GT∗(t) = H (c(g(t) − g(θ))) (7.49)

and
t∗(1−α/2) = g−1

(
g(t∗) +w(1−α/2)/c

)
, (7.50)

where w(1−α/2) is the (1−α/2) quantile of W . The other quantile t∗(α/2) would
be determined analogously.

Instead of approximating the ideal interval with a Monte Carlo sample, we
could use a transformation to a known W and compute the interval that way.
Use of an exact transformation g to a known random variable W , of course, is
just as difficult as evaluation of the ideal bootstrap interval. Nevertheless, we
see that forming the ideal bootstrap confidence interval is equivalent to using
the transformation g and the distribution function H .

Because transformations to approximate normality are well-understood
and widely used, in practice, we generally choose g as a transformation to
normality. The random variable W above is a standard normal random vari-
able, Z. The relevant distribution function is Φ, the normal CDF. The normal
approximations have a basis in the central limit property. Central limit ap-
proximations often have a bias of order O(n−1), however, so in small samples,
the percentile intervals may not be very good.
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Bias in Intervals Due to Bias in the Estimator

It is likely that the transformed statistic g(T ∗) in equation (7.48) is biased for
the transformed θ, even if the untransformed statistic is unbiased for θ.

We can account for the possible bias by using the transformation

Z = c(g(T ∗)− g(θ)) + z0,

and, analogous to equation (7.49), we have

GT∗(t) = Φ (c(g(t) − g(θ)) + z0) .

The bias correction z0 is Φ−1 (GT∗(t)).

Bias in Intervals Due to Lack of Symmetry

Even when we are estimating θ directly with T ∗ (that is, g is the identity),
another possible problem in determining percentiles for the confidence interval
is the lack of symmetry of the distribution about z0.

We would therefore need to make some adjustments in the quantiles in-
stead of using equation (7.50) without some correction.

Correcting the Bias in Intervals

Rather than correcting the quantiles directly, we may adjust their levels.
For an interval of confidence (1−α), instead of (t∗(α/2), t∗(1−α/2)), we take

[
t∗(α1)

, t∗(α2)

]
,

where the adjusted probabilities α1 and α2 are determined so as to reduce the
bias and to allow for the lack of symmetry.

As we often do, even for a nonnormal underlying distribution, we relate
α1 and α2 to percentiles of the normal distribution.

To allow for the lack of symmetry—that is, for a scale difference below
and above z0—we use quantiles about that point.

Efron (1987), who developed this method, introduced an “acceleration”,
a, and used the distance a(z0 + z(π)).

Using values for the bias correction and the acceleration determined from
the data, Efron suggested the quantile adjustments

α1 = Φ

(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)

and

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)
.
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Use of these adjustments to the level of the quantiles for confidence inter-
vals is called the bias-corrected and accelerated, or “BCa”, method.

This method automatically takes care of the problems of bias or asymmetry
resulting from transformations that we discussed above.

Note that if â = ẑ0 = 0, then α1 = Φ(z(α)) and α2 = Φ(z(1−α)). In this
case, the BCa is the same as the ordinary percentile method.

The problem now is to estimate the bias correction z0 and the acceleration
a from the data.

Estimating the Correction

The bias-correction term z0 is estimated by correcting the percentile near the
median of the m bootstrap samples:

ẑ0 = Φ−1


 1

m

∑

j

I]−∞,T ]

(
T ∗j
)

 .

The idea is that we approximate the bias of the median (that is, the bias of a
central quantile) and then adjust the other quantiles accordingly.

Estimating the Acceleration

Estimating a is a little more difficult. The way we proceed depends on the
form the bias may take and how we choose to represent it.

Because one cause of bias may be skewness, Efron (1987) adjusted for the
skewness of the distribution of the estimator in the neighborhood of θ.

The skewness is measured by a function of the second and third moments
of T .

We can use the jackknife to estimate the second and third moments of T .
The expression is

â =

∑(
J(T ) − T(i)

)3

6
(∑(

J(T ) − T(i)

)2)3/2
. (7.51)

Bias resulting from other departures from normality, such as heavy tails,
is not addressed by this adjustment.

There are R and S-Plus functions to compute BCa confidence intervals.

Comparisons of Bootstrap-t and BCa Intervals

It is difficult to make analytic comparisons between these two types of boot-
strap confidence intervals.

In some Monte Carlo studies, it has been found that, for moderate and
approximately equal sample sizes,the coverage of BCa intervals is closest to
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the nominal confidence level; however, for samples with very different sizes,
the bootstrap-t intervals were better in the sense of coverage frequency.

Because of the variance of the components in the BCa method, it gen-
erally requires relatively large numbers of bootstrap samples. For location
parameters, for example, we may need m = 1, 000.

Other Bootstrap Confidence Intervals

Another method for bootstrap confidence intervals is based on a delta method
approximation for the standard deviation of the estimator.

This method yields approximate bootstrap confidence, or ABC, intervals.
Terms in the Taylor series expansions are used for computing â and ẑ0

rather than using bootstrap estimates for these terms.
As with the BCa method, bias resulting from other departures from nor-

mality, such as heavy tails, is not addressed.
There are R and S-Plus functions to compute ABC confidence intervals.
************************

7.12 Simultaneous Confidence Sets

If θ = (θ1, θ2) a 1− α level confidence set for θ is a region in IR2, C(X), such
that Prθ(C(X) 3 θ) ≥ 1− α.

Now consider the problem of separate intervals (or sets) in IR1, C(X) and
C2(X), such that Prθ(C1(X) 3 θ1 and C2(X) 3 θ2) ≥ 1− α.

These are called 1− α simultaneous confidence intervals.
This is equivalent to C(X) = C1(X) × C2(X) in the case above. Or, in

general × Ci(X).
(Of course, we may want to minimize expected area or some other geo-

metric measures of C(X).)
There are several methods. In linear models, many methods depend on

contrasts, e.g., Scheffé’s intervals or Tukey’s intervals.
General conservative procedures depend depend on inequalities of proba-

bilities of events.

7.12.1 Bonferroni’s Confidence Intervals

A common conservative procedure called a Bonferroni method is based on the
inequality

Pr (∪Ai) ≤
∑

Pr (Ai) ,

for any events A1, . . . , Ak. For each component of θ, θt, we choose αt with∑
αt = α, and we let Ct(X) be a level 1 − αt confidence interval. It is easy

to see that these are of level 1− α because
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inf Pr(Ct(X) 3 θt ∀t) = Pr(∩{Ct(X) 3 θt})
= 1− Pr ((∩{θt ∈ Ct(X)})c)
= 1− Pr (∪{θt /∈ Ct(X)})
≥ 1−

∑
Pr ({θt /∈ Ct(X)})

≥ 1−
∑

αt

= 1− α.

7.12.2 Scheffé’s Confidence Intervals

7.12.3 Tukey’s Confidence Intervals

Notes and Further Reading

Most of the material in this chapter is covered in MS2, Chapters 6 and 7, and
in TSH3, Chapters 3, 4, and 5.

Foundations

p-values, Fisher; objective posterior probabilities of hypotheses, Jeffreys; test-
ing with fixed error probabilities, Neyman.

Berger (2003)

Significance Tests and the Likelihood Principle

Example 7.12
Lindley and Phillips (1976), a Bayesian view
“Elementary statistics from an advanced standpoint”.
suppose we have only the data from an experiment ...
Edwards (1992) example of measurements taken with defective or limited

instruments (voltmeter)
Royall (1997) ... philosophy of science

Tests for Monotone Likelihood Ratio

Roosen and Hennessy (2004) tests for monotone likelihood ratio.

Types of Tests and Their Relationships to Each Other

Buse (1982) gives an interesting exposition of the three types of tests.
Verbeke and Molenberghs (2007) and Freedman (2007) discussed the ex-

ample of Morgan et al. (Example 7.10), as well as other anomalies of a score
test.
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Sequential Tests

Wald (1945)
Because of the binary nature of statistical hypothesis testing, it is rather

straightforward to add a third choice to obtain more data before making a
decision. Although sequential tests seem natural, the idea of statistical infer-
ence that evolves through sequential sampling is not just limited to hypothesis
testing. In any statistical procedure, some quantification of the uncertainty
should be made. Based on the level of uncertainty, the statistician can choose
to continue sampling. Wald (1947b) described sequential variations on the
general decision-theoretic approach to statistical inference. See also Section
5.2 of Wald (1950).

Multiple Tests

Storey (2002) proposed use of the proportion of false positives for any hypoth-
esis (feature) incurred, on average, when that feature defines the threshold
value. The “q-value” can be calculated for each feature under investigation.

Storey (2003) Bayesian perspective

Exercises

7.1. The p-value is a random variable whose distribution depends on the test
statistic and the state of nature. When the null hypothesis is true, it is
often the case that the distribution of the p-value is U(0, 1).
a) State very clearly a set of conditions that ensures that under the

null hypothesis, the distribution of the p-value is U(0, 1). Given those
conditions, prove that the distribution is U(0, 1) under the null hy-
pothesis.

b) Give an example in which the distribution of the p-values is not uni-
form, even though the null hypothesis is true.

7.2. Prove expression (7.13).
7.3. In the statement of Theorem 7.1, we assume PDFs f0 and f1 both defined

with respect to a common σ-finite measure µ. Does this limit the scope of
the theorem; that is, might there be a situation in which we want to test
between two distributions P0 and P1, yet there does not exist a σ-finite
measure µ by which to define PDFs?

7.4. Consider a case of multiple testing in which the distribution of the p-values
p1, . . . , pm of each of the m tests is U(0, 1) under the null hypothesis. Now
consider

∏
pi. Make a log transformation, and work out a chi-squared

approximation that yields quantiles of the product.
7.5. Consider the data-generating process described in Example 7.12. In that

process Bernoulli(π) results are observed until t 1’s are observed, and the
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number N of random Bernoulli variates is noted. Based on the observed
value of N we wish to test the hypotheses

H0 : π ≥ 0.5 versus H1 : π < 0.5.

using a test of size 0.05. A test with that exact size will require a random
component.
a) Define such a test (based on the negative binomial distribution), and

sketch its power curve.
b) Define a test for the same hypotheses and with the same size based on

t being a realization of a binomial random variable with parameters
N and π.

c) Now, suppose we repeat the experiment as described and we obtain
observations N1, . . . , Nm. What is the mean size of m tests based on
the binomial distributions as in Exercise 7.5b?
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Nonparametric and Robust Inference

A major concern is how well the statistical model corresponds to the data-
generating process. Analyses based on an inappropriate model are likely to
yield misleading conclusions.

One approach is to develop procedures for inference based on a minimal
set of assumptions about the underlying probability distribution. This leads to
what we call nonparametric inference, and includes a wide range of procedures,
such as the nonparametric tests discussed in Section 7.4. In this chapter we
will discuss general methods in other areas of statistical inference.

Another approach is to consider the consequences on inferential procedures
arising from differences in the model and the data-generating process. A major
objective of the field of robust statistics is to identify or develop procedures
that yield useful conclusions even when the data-generating process differs
in certain ways from the statistical model. Such procedures are robust to
departures within a certain class from the assumed model.

8.1 Nonparametric Inference

We have described statistical inference as the process of using observational
data from a population that is in an assumed family of distributions P to
identify a subfamily, PH ⊆ P, that contains the population from which the
data arose. If the assumed family of probability space is (Ω,F , Pθ) where the
index on the probability measure is in some subset Θ ⊆ IRd for some fixed
positive integer d and θ fully determines the measure, we call θ the parameter
and the statistical inference is parametric inference. Statistical inference is
a process of identifying a sub parameter space ΘH ⊆ Θ. For example, we
may assume that a given sample x1, . . . , xn is taken independently from some
member of a family of distributions

P = {N(µ, σ2) | µ ∈ IR, σ2 ∈ IR+},
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and statistical inference in this situation may lead us to place the population
giving rise to the observed sample in the family

PH = {N(µ, σ2) | µ ∈ [µ1, µ2], σ
2 ∈ IR+}

of distributions.
In a more general formulation of the inference problem, rather than iden-

tifying a parameter space, we may make only very general assumptions about
the family of probability distributions. For example, we may assume only
that they have Lebesgue PDFs, or that the PDFs are symmetric, or that all
moments of order less than some integer k are finite. We may be interested
in estimating, or performing tests of hypotheses about, certain distributional
measures. In nonparametric inference, the distributional measures of interest
are those that are likely to exist even for quite “pathological” distributions,
such as the Cauchy distribution. The Cauchy distribution, for example does
not have a mean or variance. It does, however, have a median and an in-
terquartile range. Nonparametric inference often concerns such things as the
median or interquartile range, rather than the mean or variance. The instanti-
ation of the basic paradigm of statistical inference may be to assume a family
of distributions

P = {distributions with Lebesgue PDF},

and statistical inference leads us to place the population giving rise to the
observed sample in the family

PH = {distributions with Lebesgue PDF with median greater than 0}

of distributions.
We can also express the statistical inference problem as beginning with

a given family of distribution P, and identify a subfamily based on values
of some distributional measure expressed as a statistical function (see Sec-
tion 1.1.9, beginning on page 52). The decision, for example, may be that the
population at hand has a probability distribution in the family

PH = {P | P ∈ P and Υ (P ) = ΥH},

where Υ is a functional. In this case, the statistical inference has focused on
the distributional measure Υ (P ), which, of course, may be quite general.

The methods in nonparametric inference are often based on functionals
of the ECDF. The strong convergence of the ECDF, as shown, for example,
in the Glivenko-Cantelli Theorem 1.71 or by the Dvoretzky/Kiefer/Wolfowitz
inequality (1.290), suggest that this approach will result in procedures with
good asymptotic properties.

An example of nonparametric inference is the problem of testing that the
distributions of two populations are the same versus the alternative that a
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realization from one distribution is typically smaller (or larger) than a real-
ization from the other distribution. A U-statistic involving two populations
is The two-sample Wilcoxon statistic U (which happens to be a U-statistic)
discussed in Example 5.22 could be used as a test statistic for this common
problem in nonparametric inference. This U-statistic is an unbiased estimator
of Pr(X11 ≤ X21). If the distributions have similar shapes and differ primarily
by a shift in location, U can be used as a test statistic for an hypothesis in-
volving the medians of the two distributions instead of a two-sample t test for
an hypothesis involving the means (and under the further assumptions that
the distributions are normal with equal variances).

8.2 Inference Based on Order Statistics

8.2.1 Central Order Statistics

Asymptotic Properties

From equation (1.289) we have

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))) .

Now, for a continuous CDF F with PDF f , consider a function g(t) defined
for 0 < t < 1 by

g(t) = F−1(t).

Then

g′(t) =
1

f(F−1(t))
,

and so, using the delta method, we have

√
n(F−1(Fn(x))− x) d→ N

(
0,
F (x)(1− F (x))

(f(x))2

)
. (8.1)

F−1(Fn(x)) lies between the sample quantiles ***
X(dnFn(x)e) fix notation ****

X(dnFn(x)e) − F−1(Fn(x))
a.s.→ 0

√
n(X(dnFn(x)e) − x) d→ N

(
0,
F (x)(1− F (x))

(f(x))2

)
.

location family F (x; θ) = F (x − θ; 0) F (0; 0) = 1/2 density f(x; θ) suppose
f(0; 0) > 0

X̃n sample median

√
n(X̃n − θ) d→ N

(
0,

1

4(f(0))2

)
(8.2)

ARE median vs mean normal 0.637 t3 1.62

Theory of Statistics c©2000–2025 James E. Gentle



564 8 Nonparametric and Robust Inference

8.2.2 Statistics of Extremes

*** tail index Because a PDF must integrate to 1 over the full range of real
numbers, the PDF of a distribution whose range is infinite must approach 0
sufficiently fast in the tails, that is, as the argument of the PDF approaches
−∞ or ∞.

We will just consider the positive side of the distribution, even if the range
is infinite on both sides. We can identify three general forms of the part of
the PDF that determines the tail behavior (that is, the part of the PDF that
contains the argument):

e−|x|α with α > 0, (8.3)

as in the normal, exponential, and double exponential;

|x|−α with α > 1, (8.4)

as in the Pareto (also the related “power distributions”) and the Cauchy (with
some additional terms); and

|x|αe−|x|β , (8.5)

as in the gamma and Weibull.
What happens as x → ∞ determines whether the moments of the distri-

bution are finite.
Consider first the form (8.3). We will call this an exponential tail. (We

sometimes call it a “right exponential tail”, because we are focusing only on
the right side of the range.) Notice that for any α > 0

E(|X|k) =

∫ ∞

0

γxke−|x|αdx < ∞; (8.6)

that is, all moments are finite.
We can see that some distributions with exponential tails have heavier tails

than others. For example, the double exponential distribution has heavier tails
than a normal distribution because

e−|x|2 → 0

faster than
e−|x| → 0.

Now consider the form (8.4). We will call this a polynomial tail or a Pareto
tail because of the form of the Pareto PDF. We call α in expression (8.4) the
tail index of the polynomial tail. (The tail index is also sometimes defined as
this quantity minus 1.) The larger is the tail index the more rapidly the PDF
will approach 0. The moments E(|X|k) will be finite only for k < α. In the
Pareto distribution, for example, the mean is finite only for α > 1 and the
variance is finite only for α > 2.

***
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8.3 Nonparametric Estimation of Functions

An interesting problem in statistics is estimation of a continuous function.
In one common type of this problem, the function expresses a relationship
between one set of variables that are the argument of the function and another
set of variables that are the function value. In one special instance of this kind
of problem, the argument of the is a single variable representing time. The
function in such a case is called a time series model. Statistical inference for
these kinds of problems is based on data of the form (x1, y1), . . . , (xn, yn),
where xi represents an observation on the argument of the function, and yi

represents an observation on the corresponding value of the function. Both
xi and yi could be vectors. Often what is actually observed is xi and yi with
some error, which may be assumed to be realizations of a random variable. In
the case of a time series, xi is a measure of time (and usually denoted as ti).

In another important type of the problem of estimation of a continuous
function, the function represents a probability density. Values of the argument
of the function can be observed but the corresponding values of the function
cannot be observed. A density cannot be observed directly. What is observed
directly corresponds to the antiderivative of the function of interest. Figure 8.1
illustrates the difference in these two situations. The panel on the left shows
observations that consist of pairs of values, the argument and the function
value plus, perhaps, random noise. The panel on the right shows a “rug” of
observations; there are no observed values that correspond to the probability
density function being estimated.

In some common situations, the form of the function is assumed known
and statistical inference involves the parameters that fully specify the func-
tion. This is the common situation in linear or nonlinear regression and in
some problems in time series analysis. If the function is a parametric prob-
ability density function, the problem is the standard one of estimating the
parameters.

In this chapter we consider the problem of nonparametric estimation of
functions; that is, we do not assume that the form of the function is known.
Our objective will not be to develop an expression for the function, but rather
to develop a rule such that, given a value of the argument, an estimate of the
value of the function is provided. This problem, whether nonparametric re-
gression analysis or nonparametric density estimation, is generally difficult,
and the statistical properties of an estimator of a function are more compli-
cated than statistical properties of an estimator of a single parameter or even
of a countable set of parameters.

The usual optimality properties that we use in developing a theory of
estimation of a finite-dimensional parameter must be extended for estimation
of a general function. As we will see, two of the usual desirable properties of
point estimators, namely unbiasedness and maximum likelihood, cannot be
attained in general by estimators of functions.
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Figure 8.1. Nonparametric Function Estimation

Notation

We may denote a function by a single letter, f , for example, or by the func-
tion notation, f(·) or f(x). When f(x) denotes a function, x is merely a
placeholder. The notation f(x), however, may also refer to the value of the
function at the point x. The meaning is usually clear from the context.

Using the common “hat” notation for an estimator, we use f̂ or f̂(x) to
denote the estimator of f or of f(x). Following the usual terminology, we
use the term “estimator” to denote a random variable, and “estimate” to
denote a realization of the random variable. The hat notation is also used
to denote an estimate, so we must determine from the context whether f̂ or
f̂(x) denotes a random variable or a realization of a random variable. The
estimate or the estimator of the value of the function at the point x may
also be denoted by f̂(x). Sometimes, to emphasize that we are estimating the
ordinate of the function rather than evaluating an estimate of the function,

we use the notation f̂(x). In this case also, we often make no distinction in
the notation between the realization (the estimate) and the random variable

(the estimator). We must determine from the context whether f̂(x) or f̂(x)
denotes a random variable or a realization of a random variable. In most
of the following discussion, the hat notation denotes a random variable that
depends on the underlying random variable that yields the sample from which
the estimator is computed.
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Estimation or Approximation

There are many similarities in estimation of functions and approximation of
functions, but we must be aware of the fundamental differences in the two
problems. Estimation of functions is similar to other estimation problems:
we are given a sample of observations; we make certain assumptions about
the probability distribution of the sample; and then we develop estimators.
The estimators are random variables, and how useful they are depends on
properties of their distribution, such as their expected values and their vari-
ances. Approximation of functions is an important aspect of numerical analy-
sis. Functions are often approximated to interpolate functional values between
directly computed or known values. Functions are also approximated as a pre-
lude to quadrature. Methods for estimating functions often use methods for
approximating functions.

8.3.1 General Methods for Estimating Functions

In the problem of function estimation, we may have observations on the func-
tion at specific points in the domain, or we may have indirect measurements
of the function, such as observations that relate to a derivative or an integral
of the function. In either case, the problem of function estimation has the
competing goals of providing a good fit to the observed data and predicting
values at other points. In many cases, a smooth estimate satisfies this latter
objective. In other cases, however, the unknown function itself is not smooth.
Functions with different forms may govern the phenomena in different regimes.
This presents a very difficult problem in function estimation, and it is one that
we will not consider in any detail here.

There are various approaches to estimating functions. Maximum likelihood
has limited usefulness for estimating functions because in general the likeli-
hood is unbounded. A practical approach is to assume that the function is of
a particular form and estimate the parameters that characterize the form. For
example, we may assume that the function is exponential, possibly because of
physical properties such as exponential decay. We may then use various esti-
mation criteria, such as least squares, to estimate the parameter. An extension
of this approach is to assume that the function is a mixture of other functions.
The mixture can be formed by different functions over different domains or
by weighted averages of the functions over the whole domain. Estimation of
the function of interest involves estimation of various parameters as well as
the weights.

Another approach to function estimation is to represent the function of
interest as a linear combination of basis functions, that is, to represent the
function in a series expansion. The basis functions are generally chosen to be
orthogonal over the domain of interest, and the observed data are used to
estimate the coefficients in the series.
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It is often more practical to estimate the function value at a given point.
(Of course, if we can estimate the function at any given point, we can effec-
tively have an estimate at all points.) One way of forming an estimate of a
function at a given point is to take the average at that point of a filtering
function that is evaluated in the vicinity of each data point. The filtering
function is called a kernel, and the result of this approach is called a kernel
estimator.

In the estimation of functions, we must be concerned about the properties
of the estimators at specific points and also about properties over the full
domain. Global properties over the full domain are often defined in terms of
integrals or in terms of suprema or infima.

Function Decomposition and Estimation of the Coefficients in an
Orthogonal Expansion

We first do a PDF decomposition of the function of interest with the proba-
bility density function, p,

f(x) = g(x)p(x). (8.7)

We have

ck = 〈f, qk〉

=

∫

D

qk(x)g(x)p(x)dx

= E(qk(X)g(X)), (8.8)

where X is a random variable whose probability density function is p.
If we can obtain a random sample, x1, . . . , xn, from the distribution with

density p, the ck can be unbiasedly estimated by

ĉk =
1

n

n∑

i=1

qk(xi)g(xi).

The series estimator of the function for all x therefore is

f̂(x) =
1

n

j∑

k=0

n∑

i=1

qk(xi)g(xi)qk(x) (8.9)

for some truncation point j.
The random sample, x1, . . . , xn, may be an observed dataset, or it may be

the output of a random number generator.

Kernel Methods

Another approach to function estimation and approximation is to use a fil-
ter or kernel function to provide local weighting of the observed data. This
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approach ensures that at a given point the observations close to that point
influence the estimate at the point more strongly than more distant obser-
vations. A standard method in this approach is to convolve the observations
with a unimodal function that decreases rapidly away from a central point.
This function is the filter or the kernel. A kernel has two arguments represent-
ing the two points in the convolution, but we typically use a single argument
that represents the distance between the two points.

Some examples of univariate kernel functions are shown below.

uniform: κu(t) = 0.5, for |t| ≤ 1,
quadratic: κq(t) = 0.75(1− t2), for |t| ≤ 1,

normal: κn(t) = 1√
2π

e−t2/2, for all t.

The kernels with finite support are defined to be 0 outside that range. Of-
ten multivariate kernels are formed as products of these or other univariate
kernels.

In kernel methods, the locality of influence is controlled by a window
around the point of interest. The choice of the size of the window is the most
important issue in the use of kernel methods. In practice, for a given choice of
the size of the window, the argument of the kernel function is transformed to
reflect the size. The transformation is accomplished using a positive definite
matrix, V , whose determinant measures the volume (size) of the window.

To estimate the function f at the point x, we first decompose f to have a
factor that is a probability density function, p,

f(x) = g(x)p(x).

For a given set of data, x1, . . . , xn, and a given scaling transformation matrix
V , the kernel estimator of the function at the point x is

f̂(x) = (n|V |)−1
n∑

i=1

g(x)κ
(
V −1(x− xi)

)
. (8.10)

In the univariate case, the size of the window is just the width h. The
argument of the kernel is transformed to s/h, so the function that is convolved
with the function of interest is κ(s/h)/h. The univariate kernel estimator is

f̂(x) =
1

nh

n∑

i=1

g(xi)κ

(
x− xi

h

)
.

8.3.2 Pointwise Properties of Function Estimators

The statistical properties of an estimator of a function at a given point are
analogous to the usual statistical properties of an estimator of a scalar pa-
rameter. The statistical properties involve expectations or other properties of
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random variables. In the following, when we write an expectation, E(·), or
a variance, V(·), the expectations are usually taken with respect to the (un-
known) distribution of the underlying random variable. Occasionally, we may
explicitly indicate the distribution by writing, for example, Ep(·), where p is
the density of the random variable with respect to which the expectation is
taken.

Bias

The bias of the estimator of a function value at the point x is

E
(
f̂(x)

)
− f(x).

If this bias is zero, we would say that the estimator is unbiased at the point
x. If the estimator is unbiased at every point x in the domain of f , we say
that the estimator is pointwise unbiased. Obviously, in order for f̂(·) to be
pointwise unbiased, it must be defined over the full domain of f .

Variance

The variance of the estimator at the point x is

V
(
f̂(x)

)
= E

((
f̂(x)− E

(
f̂(x)

))2
)
.

Estimators with small variance are generally more desirable, and an optimal
estimator is often taken as the one with smallest variance among a class of
unbiased estimators.

Mean Squared Error

The mean squared error, MSE, at the point x is

MSE
(
f̂(x)

)
= E

((
f̂(x) − f(x)

)2)
. (8.11)

The mean squared error is the sum of the variance and the square of the bias:

MSE
(
f̂(x)

)
= E

((
f̂(x)

)2 − 2f̂(x)f(x) +
(
f(x)

)2)

= V
(
f̂(x)

)
+
(
E
(
f̂(x)

)
− f(x)

)2

. (8.12)

Sometimes, the variance of an unbiased estimator is much greater than
that of an estimator that is only slightly biased, so it is often appropriate to
compare the mean squared error of the two estimators. In some cases, as we
will see, unbiased estimators do not exist, so rather than seek an unbiased
estimator with a small variance, we seek an estimator with a small MSE.
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Mean Absolute Error

The mean absolute error, MAE, at the point x is similar to the MSE:

MAE
(
f̂(x)

)
= E

(∣∣f̂(x)− f(x)
∣∣
)
. (8.13)

It is more difficult to do mathematical analysis of the MAE than it is for the
MSE. Furthermore, the MAE does not have a simple decomposition into other
meaningful quantities similar to the MSE.

Consistency

Consistency of an estimator refers to the convergence of the expected value of
the estimator to what is being estimated as the sample size increases without
bound. A point estimator Tn, based on a sample of size n, is consistent for θ
if

E(Tn)→ θ as n→ ∞.
The convergence is stochastic, of course, so there are various types of con-
vergence that can be required for consistency. The most common kind of
convergence considered is weak convergence, or convergence in probability.

In addition to the type of stochastic convergence, we may consider the
convergence of various measures of the estimator. In general, if m is a function
(usually a vector-valued function that is an elementwise norm), we may define
consistency of an estimator Tn in terms of m if

E(m(Tn − θ)) → 0. (8.14)

For an estimator, we are often interested in weak convergence in mean
square or weak convergence in quadratic mean, so the common definition of
consistency of Tn is

E
(
(Tn − θ)T(Tn − θ)

)
→ 0,

where the type of convergence is convergence in probability. Consistency
defined by convergence in mean square is also called L2 consistency. 2
consistence@L2 consistency

If convergence does occur, we are interested in the rate of convergence. We
define rate of convergence in terms of a function of n, say r(n), such that

E(m(Tn − θ)) ∈ O(r(n)).

A common form of r(n) is nα, where α < 0. For example, in the simple case
of a univariate population with a finite mean µ and finite second moment, use
of the sample mean x̄ as the estimator Tn, and use of m(z) = z2, we have

E(m(x̄ − µ)) = E
(
(x̄− µ)2

)

= MSE(x̄)

∈ O
(
n−1

)
.
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In the estimation of a function, we say that the estimator f̂ of the function
f is pointwise consistent if

E
(
f̂(x)

)
→ f(x) (8.15)

for every x the domain of f . Just as in the estimation of a parameter, there
are various kinds of pointwise consistency in the estimation of a function. If
the convergence in expression (8.15) is in probability, for example, we say that
the estimator is weakly pointwise consistent. We could also define other kinds
of pointwise consistency in function estimation along the lines of other types
of consistency.

8.3.3 Global Properties of Estimators of Functions

Often we are interested in some measure of the statistical properties of an
estimator of a function over the full domain of the function. An obvious way
of defining statistical properties of an estimator of an integrable function is
to integrate the pointwise properties discussed in the previous section.

Global properties of a function or the difference between two functions are
often defined in terms of a norm of the function or the difference.

For comparing f̂(x) and f(x), the Lp norm of the error is

(∫

D

∣∣f̂(x)− f(x)
∣∣p dx

)1/p

, (8.16)

where D is the domain of f . The integral may not exist, of course. Clearly,
the estimator f̂ must also be defined over the same domain.

Three useful measures are the L1 norm, also called the integrated absolute
error, or IAE,

IAE(f̂ ) =

∫

D

∣∣∣f̂(x) − f(x)
∣∣∣ dx, (8.17)

the square of the L2 norm, also called the integrated squared error, or ISE,

ISE(f̂ ) =

∫

D

(
f̂(x)− f(x)

)2

dx, (8.18)

and the L∞ norm, the sup absolute error, or SAE,

SAE(f̂ ) = sup
∣∣∣f̂(x)− f(x)

∣∣∣ . (8.19)

The L1 measure is invariant under monotone transformations of the coor-
dinate axes, but the measure based on the L2 norm is not.

The L∞ norm, or SAE, is the most often used measure in general function
approximation. In statistical applications, this measure applied to two cumu-
lative distribution functions is the Kolmogorov distance. The measure is not
so useful in comparing densities and is not often used in density estimation.

Other useful measures of the difference in f̂ and f over the full range of x
are the Kullback-Leibler measure and the Hellinger distance; see Section 0.1.9.
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Integrated Bias and Variance

We now want to develop global concepts of bias and variance for estimators of
functions. Bias and variance are statistical properties that involve expectations
of random variables. The obvious global measures of bias and variance are just
the pointwise measures integrated over the domain. In the case of the bias,
of course, we must integrate the absolute value, otherwise points of negative
bias could cancel out points of positive bias.

The estimator f̂ is pointwise unbiased if

E
(
f̂(x)

)
= f(x) for all x ∈ IRd.

Because we are interested in the bias over the domain of the function, we
define the integrated absolute bias as

IAB
(
f̂
)

=

∫

D

∣∣∣E
(
f̂(x)

)
− f(x)

∣∣∣ dx (8.20)

and the integrated squared bias as

ISB
(
f̂
)

=

∫

D

(
E
(
f̂(x)

)
− f(x)

)2

dx. (8.21)

If the estimator is unbiased, both the integrated absolute bias and inte-
grated squared bias are 0. This, of course, would mean that the estimator is
pointwise unbiased almost everywhere. Although it is not uncommon to have
unbiased estimators of scalar parameters or even of vector parameters with a
countable number of elements, it is not likely that an estimator of a function
could be unbiased at almost all points in a dense domain. (“Almost” means
all except possibly a set with a probability measure of 0.)

The integrated variance is defined in a similar manner:

IV
(
f̂
)

=

∫

D

V
(
f̂(x)

)
dx

=

∫

D

E
((
f̂(x) − E

(
f̂(x)

))2)
dx. (8.22)

Integrated Mean Squared Error and Mean Absolute Error

As we suggested above, global unbiasedness is generally not to be expected. An
important measure for comparing estimators of funtions is, therefore, based
on the mean squared error.

The integrated mean squared error is

IMSE
(
f̂
)

=

∫

D

E
((
f̂(x)− f(x)

)2)
dx

= IV
(
f̂
)

+ ISB
(
f̂
)

(8.23)
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(compare equations (8.11) and (8.12)).
If the expectation integration can be interchanged with the outer integra-

tion in the expression above, we have

IMSE
(
f̂
)

= E

(∫

D

(
f̂(x)− f(x)

)2

dx

)

= MISE
(
f̂
)
,

the mean integrated squared error. We will assume that this interchange leaves
the integrals unchanged, so we will use MISE and IMSE interchangeably.

Similarly, for the integrated mean absolute error, we have

IMAE
(
f̂
)

=

∫

D

E
(∣∣f̂(x) − f(x)

∣∣
)

dx

= E

(∫

D

∣∣∣f̂(x)− f(x)
∣∣∣ dx

)

= MIAE
(
f̂
)
,

the mean integrated absolute error.

Mean SAE

The mean sup absolute error, or MSAE, is

MSAE
(
f̂
)

=

∫

D

E
(
sup
∣∣f̂(x)− f(x)

∣∣
)

dx. (8.24)

This measure is not very useful unless the variation in the function f is rela-
tively small. For example, if f is a density function, f̂ can be a “good” estima-
tor, yet the MSAE may be quite large. On the other hand, if f is a cumulative
distribution function (monotonically ranging from 0 to 1), the MSAE may be
a good measure of how well the estimator performs. As mentioned earlier, the
SAE is the Kolmogorov distance. The Kolmogorov distance (and, hence, the
SAE and the MSAE) does poorly in measuring differences in the tails of the
distribution.

Large-Sample Statistical Properties

The pointwise consistency properties are extended to the full function in the
obvious way. In the notation of expression (8.14), consistency of the function
estimator is defined in terms of

∫

D

E
(
m
(
f̂(x)− f(x)

))
dx→ 0.

The estimator of the function is said to be mean square consistent or L2

consistent if the MISE converges to 0; that is,
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∫

D

E
((
f̂(x)− f(x)

)2)
dx → 0.

If the convergence is weak, that is, if it is convergence in probability, we say
that the function estimator is weakly consistent; if the convergence is strong,
that is, if it is convergence almost surely or with probability 1, we say the
function estimator is strongly consistent.

The estimator of the function is said to be L1 consistent if the mean
integrated absolute error (MIAE) converges to 0; that is,

∫

D

E
(∣∣∣f̂(x)− f(x)

∣∣∣
)

dx → 0.

As with the other kinds of consistency, the nature of the convergence in the
definition may be expressed in the qualifiers “weak” or “strong”.

As we have mentioned above, the integrated absolute error is invariant
under monotone transformations of the coordinate axes, but the L2 measures
are not. As with most work in L1, however, derivation of various properties
of IAE or MIAE is more difficult than for analogous properties with respect
to L2 criteria.

If the MISE converges to 0, we are interested in the rate of convergence.
To determine this, we seek an expression of MISE as a function of n. We do
this by a Taylor series expansion.

In general, if θ̂ is an estimator of θ, the Taylor series for ISE(θ̂), equa-
tion (8.18), about the true value is

ISE
(
θ̂
)

=

∞∑

k=0

1

k!

(
θ̂− θ

)k

ISEk′

(θ), (8.25)

where ISEk′

(θ) represents the kth derivative of ISE evaluated at θ.
Taking the expectation in equation (8.25) yields the MISE. The limit of

the MISE as n→∞ is the asymptotic mean integrated squared error, AMISE.
One of the most important properties of an estimator is the order of the
AMISE.

In the case of an unbiased estimator, the first two terms in the Taylor
series expansion are zero, and the AMISE is

V(θ̂) ISE′′(θ)

to terms of second order.

Other Global Properties of Estimators of Functions

There are often other properties that we would like an estimator of a function
to possess. We may want the estimator to weight given functions in some
particular way. For example, if we know how the function to be estimated,
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f , weights a given function r, we may require that the estimate f̂ weight the
function r in the same way; that is,

∫

D

r(x)f̂(x)dx =

∫

D

r(x)f(x)dx.

We may want to restrict the minimum and maximum values of the esti-
mator. For example, because many functions of interest are nonnegative, we
may want to require that the estimator be nonnegative.

We may want to restrict the variation in the function. This can be thought
of as the “roughness” of the function. A reasonable measure of the variation
is ∫

D

(
f(x) −

∫

D

f(x)dx

)2

dx.

If the integral
∫

D
f(x)dx is constrained to be some constant (such as 1 in the

case that f(x) is a probability density), then the variation can be measured
by the square of the L2 norm,

S(f) =

∫

D

(
f(x)

)2
dx. (8.26)

We may want to restrict the derivatives of the estimator or the smooth-
ness of the estimator. Another intuitive measure of the roughness of a twice-
differentiable and integrable univariate function f is the integral of the square
of the second derivative:

R(f) =

∫

D

(
f ′′(x)

)2
dx. (8.27)

Often, in function estimation, we may seek an estimator f̂ such that its rough-
ness (by some definition) is small.

8.4 Semiparametric Methods and Partial Likelihood

In various contexts, we have considered estimation of probabilities of random
variables being in specified intervals. This is estimation of a CDF evaluated at
specified points. In this section, we will consider related problems of estimation
of functional components of a CDF. These problems can be fully parametric
or they can be semiparametric; that is, there are some “parameters”, but the
form of the PDF or CDF may not be fully specified.

We will focus on models of failure time data. The random variable of
interest is the time to failure (from some arbitrary 0 time). We are interested
in the distribution of the lifetimes of experimental units, for example, how
long an electrical device will continue to operate. These problems may involve
censoring, such as the setup in Example 6.3. A memoryless process, such as in
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that example, is often unrealistic because the survival rate does not depend
on the age of the experimental units. In other settings we may assume the
rate does depend on the age, and so we may be interested in the conditional
rate given that the units have survived for some given time. Alternatively,
or additionally, we may assume that the survival rate depends on observable
covariates. (Note that we will speak of “survival rate” sometimes, and “failure
rate” sometimes.)

8.4.1 The Hazard Function

The hazard function measures the instantaneous rate of failure.

Definition 8.1 (hazard function)
Let F be a CDF with associated PDF f . The hazard function is defined at t,
where F (t) < 1, as

λ(t) = f(t)/(1 − F (t)), (8.28)

and the cumulative hazard function is

Λ(t) =

∫ t

0

λ(s)ds. (8.29)

In applications, the basic function is the survival function S instead of the
CDF F . The survival function is the denominator in the hazard function; that
is, S(t) = 1− F (t).

Note that if the CDF is absolutely continuous, the hazard function is the
derivative of the log of the survival function, and we have

S(t) = exp(−Λ(t)). (8.30)

The common probability models for failure time data are the exponential,
Weibull, log-normal, and gamma families. The hazard function generally is a
function both of the time t, and of the parameters in the probability model.
In the case of the exponential(θ) family, we have

λ(t) =
1

θ
e−t/θ/e−t/θ =

1

θ
.

In applications of with failure time data, the parameter is often taken to be
1/θ, and so the hazard rate is the parameter. In the exponential family the
hazard function is a function only of the parameter in the probability model. It
is constant with respect to time; this corresponds to the memoryless property.
In other cases, the hazard rate may not be constant; see Exercise 8.3.

If f(t) is interpreted as the instantaneous survival rate, then the hazard is
the conditional survival rate, given survival to the point t.
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Theorem 8.1
If λ is the hazard function associated with the random variable T , then

λ(t) = lim
ε↓0

ε−1Pr(t ≤ T < t + ε|T ≥ t). (8.31)

Proof. Exercise 8.5.
In applications we often assume that the hazard function is affected by

a p-vector of observable covariates x; that is, we have a function λ(t, x, θ, β),
where I have written two sets of parameters, θ for those of the basic probability
model (Weibull, for example), and β for parameters in a model of how the
covariates x affect the hazard function. If the effects of the covariates are linear
and additive, we may represent their overall effect by βTx, just as in the linear
models discussed elsewhere in this book. It is unlikely that their effect is linear,
but it is often the case that a function of the linear combination βTx, where
β is a p-vector of unknown constants, seems to correspond well with observed
data. In that case, we may write the conditional hazard function as λ(t; βTx),
suppressing other model parameters.

8.4.2 Proportional Hazards Models

In a very useful class of hazard functions, the effect of the covariates on
the hazard function is multiplicative; that is, the function is of the form
λ(t, x, β) = λ0(t)φ(x, β), where λ0(t) is the “baseline” hazard function if there
is no effect due to the covariates, and φ is some known function, and again we
have suppressed other model parameters. Such models are called proportional
hazards models.

Note that in a proportional hazards model, we can identify a baseline
cumulative hazard function Λ0(t) based only on λ0(t), and furthermore, the
survival function can be written as

1− F (t) = exp(φ(x, β)Λ0(t)). (8.32)

This is an important property of proportional hazards models. The parameters
for the effect of the covariates, that is, β, can be estimated by maximizing
a partial likelihood without any consideration of the hazard function. The
survival function is composed of a parametric component involving β and the
component Λ0(t), which we may estimate without parameters.

*** estimate β using partial likelihood **** refer to Chapter 6.
*** estimate Λ0(t) nonparametrically. give both Breslow’s estimator and

Horowitz’s estimator
If the effects of the covariates are linear and additive with respect to each

other, we may represent the hazard function as λ0(t)φ(βTx). A simple case
may have the form λ0(t)(1 + βTx). This form, of course, would require some
restriction on βTx, similar in some ways to the restriction that partially mo-
tivated the development of generalized linear models. Another form that does
not require any restrictions is
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λ(t; x) = λ0(t)e
βTx. (8.33)

This model of the hazard function is called the Cox proportional hazards
model.

8.5 Nonparametric Estimation of PDFs

***************** Scott (1992) and Scott (2012)
There are obviously many connections between estimation of a CDF and

the corresponding PDF. We have seen that the ECDF is a strongly consistent
estimator of the CDF (Theorem 1.71), but it is not immediately obvious how
to use the ECDF to construct an estimator of the PDF. Nevertheless, in many
cases, an estimate of the PDF is more useful than an estimate of the CDF.

8.5.1 Nonparametric Probability Density Estimation

Estimation of a probability density function is similar to the estimation of
any function, and the properties of the function estimators that we have dis-
cussed are relevant for density function estimators. A density function p(y) is
characterized by two properties:

• it is nonnegative everywhere;
• it integrates to 1 (with the appropriate definition of “integrate”).

In this chapter, we consider several nonparametric estimators of a den-
sity; that is, estimators of a general nonnegative function that integrates to 1
and for which we make no assumptions about a functional form other than,
perhaps, smoothness.

It seems reasonable that we require the density estimate to have the char-
acteristic properties of a density:

• p̂(y) ≥ 0 for all y;
•
∫
IRd p̂(y) dy = 1.

A probability density estimator that is nonnegative and integrates to 1 is
called a bona fide estimator.

Rosenblatt has shown that no unbiased bona fide estimator can exist for
all continuous p. Rather than requiring an unbiased estimator that cannot be
a bona fide estimator, we generally seek a bona fide estimator with small mean
squared error or a sequence of bona fide estimators p̂n that are asymptotically
unbiased; that is,

Ep(p̂n(y)) → p(y) for all y ∈ IRd as n→∞.
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The Likelihood Function

Suppose that we have a random sample, y1, . . . , yn, from a population with
density p. Treating the density p as a variable, we write the likelihood func-
tional as

L(p; y1, . . . , yn) =

n∏

i=1

p(yi).

The maximum likelihood method of estimation obviously cannot be used di-
rectly because this functional is unbounded in p. We may, however, seek an
estimator that maximizes some modification of the likelihood. There are two
reasonable ways to approach this problem. One is to restrict the domain of
the optimization problem. This is called restricted maximum likelihood. The
other is to regularize the estimator by adding a penalty term to the functional
to be optimized. This is called penalized maximum likelihood.

We may seek to maximize the likelihood functional subject to the con-
straint that p be a bona fide density. If we put no further restrictions on
the function p, however, infinite Dirac spikes at each observation give an un-
bounded likelihood, so a maximum likelihood estimator cannot exist, subject
only to the restriction to the bona fide class. An additional restriction that
p be Lebesgue-integrable over some domain D (that is, p ∈ L1(D)) does not
resolve the problem because we can construct sequences of finite spikes at
each observation that grow without bound.

We therefore must restrict the class further. Consider a finite dimensional
class, such as the class of step functions that are bona fide density estimators.
We assume that the sizes of the regions over which the step function is constant
are greater than 0.

For a step function with m regions having constant values, c1, . . . , cm, the
likelihood is

L(c1, . . . , cm; y1, . . . , yn) =

n∏

i=1

p(yi)

=

m∏

k=1

cnk

k , (8.34)

where nk is the number of data points in the kth region. For the step function
to be a bona fide estimator, all ck must be nonnegative and finite. A maximum
therefore exists in the class of step functions that are bona fide estimators.

If vk is the measure of the volume of the kth region (that is, vk is the
length of an interval in the univariate case, the area in the bivariate case, and
so on), we have

m∑

k=1

ckvk = 1.

We incorporate this constraint together with equation (8.34) to form the La-
grangian,
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L(c1, . . . , cm) + λ

(
1−

m∑

k=1

ckvk

)
.

Differentiating the Lagrangian function and setting the derivative to zero, we
have at the maximum point ck = c∗k, for any λ,

∂L

∂ck
= λvk.

Using the derivative of L from equation (8.34), we get

nkL = λc∗kvk.

Summing both sides of this equation over k, we have

nL = λ,

and then substituting, we have

nkL = nLc∗kvk.

Therefore, the maximum of the likelihood occurs at

c∗k =
nk

nvk
.

The restricted maximum likelihood estimator is therefore

p̂(y) =
nk

nvk
, for y ∈ region k,

= 0, otherwise.

(8.35)

Instead of restricting the density estimate to step functions, we could con-
sider other classes of functions, such as piecewise linear functions.

We may also seek other properties, such as smoothness, for the estimated
density. One way of achieving other desirable properties for the estimator is
to use a penalizing function to modify the function to be optimized. Instead
of the likelihood function, we may use a penalized likelihood function of the
form

Lp(p; y1, . . . , yn) =

n∏

i=1

p(yi)e
−T (p), (8.36)

where T (p) is a transform that measures some property that we would like
to minimize. For example, to achieve smoothness, we may use the transform
R(p) of equation (8.27) in the penalizing factor. To choose a function p̂ to
maximize Lp(p) we would have to use some finite series approximation to
T (p̂).

For densities with special properties there may be likelihood approaches
that take advantage of those properties.
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8.5.2 Histogram Estimators

Let us assume finite support D, and construct a fixed partition ofD into a grid
of m nonoverlapping bins Tk. (We can arbitrarily assign bin boundaries to one
or the other bin.) Let vk be the volume of the kth bin (in one dimension, vk

is a length and in this simple case is often denoted hk; in two dimensions, vk

is an area, and so on). The number of such bins we choose, and consequently
their volumes, depends on the sample size n, so we sometimes indicate that
dependence in the notation: vn,k. For the sample y1, . . . , yn, the histogram
estimator of the probability density function is defined as

p̂H(y) =
m∑

k=1

1

vk

∑n
i=1 ITk(yi)

n
ITk(y), for y ∈ D,

= 0, otherwise.

The histogram is the restricted maximum likelihood estimator (8.35).
Letting nk be the number of sample values falling into Tk,

nk =

n∑

i=1

ITk(yi),

we have the simpler expression for the histogram over D,

p̂H(y) =

m∑

k=1

nk

nvk
ITk(y). (8.37)

As we have noted already, this is a bona fide estimator:

p̂H(y) ≥ 0

and

∫

IRd

p̂H(y)dy =

m∑

k=1

nk

nvk
vk

= 1.

Although our discussion generally concerns observations on multivariate
random variables, we should occasionally consider simple univariate observa-
tions. One reason why the univariate case is simpler is that the derivative is a
scalar function. Another reason why we use the univariate case as a model is
because it is easier to visualize. The density of a univariate random variable
is two-dimensional, and densities of other types of random variables are of
higher dimension, so only in the univariate case can the density estimates be
graphed directly.
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In the univariate case, we assume that the support is the finite interval
[a, b]. We partition [a, b] into a grid ofm nonoverlapping bins Tk = [tn,k, tn,k+1)
where

a = tn,1 < tn,2 < . . . < tn,m+1 = b.

The univariate histogram is

p̂H(y) =

m∑

k=1

nk

n(tn,k+1 − tn,k)
ITk(y). (8.38)

If the bins are of equal width, say h (that is, tk = tk−1 +h), the histogram
is

p̂H(y) =
nk

nh
, for y ∈ Tk.

This class of functions consists of polynomial splines of degree 0 with fixed
knots, and the histogram is the maximum likelihood estimator over the class
of step functions. Generalized versions of the histogram can be defined with
respect to splines of higher degree. Splines with degree higher than 1 may
yield negative estimators, but such histograms are also maximum likelihood
estimators over those classes of functions.

The histogram as we have defined it is sometimes called a “density his-
togram”, whereas a “frequency histogram” is not normalized by the n.

Some Properties of the Histogram Estimator

The histogram estimator, being a step function, is discontinuous at cell bound-
aries, and it is zero outside of a finite range. It is sensitive both to the bin size
and to the choice of the origin.

An important advantage of the histogram estimator is its simplicity, both
for computations and for analysis. In addition to its simplicity, as we have
seen, it has two other desirable global properties:

• It is a bona fide density estimator.
• It is the unique maximum likelihood estimator confined to the subspace

of functions of the form

g(t) = ck, for t ∈ Tk,

= 0, otherwise,

and where g(t) ≥ 0 and
∫
∪kTk

g(t) dt = 1.

Pointwise and Binwise Properties

Properties of the histogram vary from bin to bin. From equation (8.37), the
expectation of the histogram estimator at the point y in bin Tk is
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E(p̂H(y)) =
pk

vk
, (8.39)

where

pk =

∫

Tk

p(t) dt (8.40)

is the probability content of the kth bin.
Some pointwise properties of the histogram estimator are the following:

• The bias of the histogram at the point y within the kth bin is

pk

vk
− p(y). (8.41)

Note that the bias is different from bin to bin, even if the bins are of
constant size. The bias tends to decrease as the bin size decreases. We can
bound the bias if we assume a regularity condition on p. If there exists γ
such that for any y1 6= y2 in an interval

|p(y1)− p(y2)| < γ‖y1 − y2‖,

we say that p is Lipschitz-continuous on the interval, and for such a density,
for any ξk in the kth bin, we have

|Bias(p̂H(y))| = |p(ξk) − p(y)|
≤ γk‖ξk − y‖
≤ γkvk. (8.42)

• The variance of the histogram at the point y within the kth bin is

V
(
p̂H(y)

)
= V(nk)/(nvk)2

=
pk(1− pk)

nv2
k

. (8.43)

This is easily seen by recognizing that nk is a binomial random variable
with parameters n and pk. Notice that the variance decreases as the bin
size increases. Note also that the variance is different from bin to bin. We
can bound the variance:

V(p̂H(y)) ≤ pk

nv2
k

.

By the mean-value theorem, we have pk = vkp(ξk) for some ξk ∈ Tk, so
we can write

V(p̂H(y)) ≤ p(ξk)

nvk
.

Notice the tradeoff between bias and variance: as h increases the variance,
equation (8.43), decreases, but the bound on the bias, equation (8.42), in-
creases.
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• The mean squared error of the histogram at the point y within the kth

bin is

MSE
(
p̂H(y)

)
=
pk(1− pk)

nv2
k

+

(
pk

vk
− p(y)

)2

. (8.44)

For a Lipschitz-continuous density, within the kth bin we have

MSE
(
p̂H(y)

)
≤ p(ξk)

nvk
+ γ2

kv
2
k. (8.45)

We easily see that the histogram estimator is L2 pointwise consistent for
a Lipschitz-continuous density if, as n → ∞, for each k, vk → 0 and
nvk → ∞. By differentiating, we see that the minimum of the bound on
the MSE in the kth bin occurs for

h∗(k) =

(
p(ξk)

2γ2
kn

)1/3

. (8.46)

Substituting this value back into MSE, we obtain the order of the optimal
MSE at the point x,

MSE∗(p̂H(y)
)
∈ O

(
n−2/3

)
.

Asymptotic MISE (or AMISE) of Histogram Estimators

Global properties of the histogram are obtained by summing the binwise prop-
erties over all of the bins.

The expressions for the integrated variance and the integrated squared bias
are quite complicated because they depend on the bin sizes and the probability
content of the bins. We will first write the general expressions, and then we will
assume some degree of smoothness of the true density and write approximate
expressions that result from mean values or Taylor approximations. We will
assume rectangular bins for additional simplification. Finally, we will then
consider bins of equal size to simplify the expressions further.

First, consider the integrated variance,

IV
(
p̂H

)
=

∫

IRd

V(p̂H(t)) dt

=

m∑

k=1

∫

Tk

V(p̂H(t)) dt

=

m∑

k=1

pk − p2
k

nvk

=

m∑

k=1

(
1

nvk
−
∑
p(ξk)2vk

n

)
+ o(n−1)

Theory of Statistics c©2000–2025 James E. Gentle



586 8 Nonparametric and Robust Inference

for some ξk ∈ Tk, as before. Now, taking
∑
p(ξk)2vk as an approximation

to the integral
∫

(p(t))2 dt, and letting S be the functional that measures the
variation in a square-integrable function of d variables,

S(g) =

∫

IRd

(g(t))2 dt, (8.47)

we have the integrated variance,

IV
(
p̂H

)
≈

m∑

k=1

1

nvk
− S(p)

n
, (8.48)

and the asymptotic integrated variance,

AIV
(
p̂H

)
=

m∑

k=1

1

nvk
. (8.49)

The measure of the variation, S(p), is a measure of the roughness of the
density because the density integrates to 1.

Now, consider the other term in the integrated MSE, the integrated
squared bias. We will consider the case of rectangular bins, in which hk =
(hk1 , . . . , hkd) is the vector of lengths of sides in the kth bin. In the case of
rectangular bins, vk = Πd

j=1hkj .
We assume that the density can be expanded in a Taylor series, and we

expand the density in the kth bin about t̄k, the midpoint of the rectangular
bin. For t̄k + t ∈ Tk, we have

p(t̄k + t) = p(t̄k) + tT∇p(t̄k) +
1

2
tTHp(t̄k)t+ · · · , (8.50)

where Hp(t̄k) is the Hessian of p evaluated at t̄k.
The probability content of the kth bin, pk, from equation (8.40), can be

expressed as an integral of the Taylor series expansion:

pk =

∫

t̄k+t∈Tk

p(t̄k + t) dt

=

∫ hkd/2

−hkd/2

· · ·
∫ hk1/2

−hk1/2

(
p(t̄k) + tT∇p(t̄k) + . . .

)
dt1 · · ·dtd

= vkp(t̄k) + O
(
hd+2

k∗

)
, (8.51)

where hk∗ = minj hkj. The bias at a point t̄k + t in the kth bin, after substi-
tuting equations (8.50) and (8.51) into equation (8.41), is

pk

vk
− p(t̄k + t) = −tT∇p(t̄k) + O

(
h2

k∗
)
.

For the kth bin the integrated squared bias is
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ISBk(p̂H)

=

∫

Tk

(
(
tT∇p(t̄k)

)2 − O
(
h2

k∗
)
tT∇p(t̄k) + O

(
h4

k∗
)
)

dt

=

∫ hkd/2

−hkd/2

· · ·
∫ hk1/2

−hk1/2

∑

i

∑

j

tkitkj∇ip(t̄k)∇jp(t̄k) dt1 · · ·dtd + O
(
h4+d

k∗

)
.

(8.52)

Many of the expressions above are simpler if we use a constant bin size,
v, or h1, . . . , hd. In the case of constant bin size, the asymptotic integrated
variance in equation (8.49) becomes

AIV
(
p̂H

)
=
m

nv
. (8.53)

In this case, the integral in equation (8.52) simplifies as the integration is
performed term by term because the cross-product terms cancel, and the
integral is

1

12
(h1 · · ·hd)

d∑

j=1

h2
j

(
∇jp(t̄k)

)2
. (8.54)

This is the asymptotic squared bias integrated over the kth bin.

When we sum the expression (8.54) over all bins, the
(
∇jp(t̄k)

)2
become

S
(
∇jp

)
, and we have the asymptotic integrated squared bias,

AISB
(
p̂H

)
=

1

12

d∑

j=1

h2
jS
(
∇jp

)
. (8.55)

Combining the asymptotic integrated variance, equation (8.53), and squared
bias, equation (8.55), for the histogram with rectangular bins of constant size,
we have

AMISE
(
p̂H

)
=

1

n(h1 · · ·hd)
+

1

12

d∑

j=1

h2
jS
(
∇jp

)
. (8.56)

As we have seen before, smaller bin sizes increase the variance but decrease
the squared bias.

Bin Sizes

As we have mentioned and have seen by example, the histogram is very sen-
sitive to the bin sizes, both in appearance and in other properties. Equa-
tion (8.56) for the AMISE assuming constant rectangular bin size is often
used as a guide for determining the bin size to use when constructing a his-
togram. This expression involves S

(
∇jp

)
and so, of course, cannot be used
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directly. Nevertheless, differentiating the expression with respect to hj and
setting the result equal to zero, we have the bin width that is optimal with
respect to the AMISE,

hj∗ = S
(
∇jp

)−1/2

(
6

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n− 1
2+d . (8.57)

Substituting this into equation (8.56), we have the optimal value of the AMISE

1

4

(
36

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n− 2
2+d . (8.58)

Notice that the optimal rate of decrease of AMISE for histogram estimators

is that of O(n− 2
2+d ). Although histograms have several desirable properties,

this order of convergence is not good compared to that of some other bona
fide density estimators, as we will see in later sections.

The expression for the optimal bin width involves S
(
∇jp

)
, where p is

the unknown density. An approach is to choose a value for S
(
∇jp

)
that cor-

responds to some good general distribution. A “good general distribution”,
of course, is the normal with a diagonal variance-covariance matrix. For the
d-variate normal with variance-covariance matrix Σ = diag(σ2

1 , . . . , σ
2
d),

S
(
∇jp

)
=

1

2d+1πd/2σ2
j |Σ|1/2

.

For a univariate normal density with variance σ2,

S(p′) = 1/(4
√
πσ3),

so the optimal constant one-dimensional bin width under the AMISE criterion
is

3.49σn−1/3.

In practice, of course, an estimate of σ must be used. The sample standard
deviation s is one obvious choice. A more robust estimate of the scale is based
on the sample interquartile range, r. The sample interquartile range leads to
a bin width of 2rn−1/3.

The AMISE is essentially an L2 measure. The L∞ criterion—that is, the
sup absolute error (SAE) of equation (8.19)—also leads to an asymptotically
optimal bin width that is proportional to n−1/3.

One of the most commonly used rules is for the number of bins rather
than the width. Assume a symmetric binomial model for the bin counts, that
is, the bin count is just the binomial coefficient. The total sample size n is

m−1∑

k=0

(
m− 1
k

)
= 2m−1,
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and so the number of bins is

m = 1 + log2 n.

Bin Shapes

In the univariate case, histogram bins may vary in size, but each bin is an
interval. For the multivariate case, there are various possibilities for the shapes
of the bins. The simplest shape is the direct extension of an interval, that is a
hyperrectangle. The volume of a hyperrectangle is just vk =

∏
hkj. There are,

of course, other possibilities; any tessellation of the space would work. The
objects may or may not be regular, and they may or may not be of equal size.
Regular, equal-sized geometric figures such as hypercubes have the advantages
of simplicity, both computationally and analytically. In two dimensions, there
are three possible regular tessellations: triangles, squares, and hexagons.

For hyperrectangles of constant size, the univariate theory generally ex-
tends fairly easily to the multivariate case. The histogram density estimator
is

p̂H(y) =
nk

nh1h2 · · ·hd
, for y ∈ Tk,

where the h’s are the lengths of the sides of the rectangles. The variance within
the kth bin is

V(p̂H(y)) =
npk(1− pk)

(nh1h2 · · ·hd)2
, for y ∈ Tk,

and the integrated variance is

IV(p̂H) ≈ 1

nh1h2 · · ·hd
− S(f)

n
.

Other Density Estimators Related to the Histogram

There are several variations of the histogram that are useful as probability
density estimators. The most common modification is to connect points on the
histogram by a continuous curve. A simple way of doing this in the univariate
case leads to the frequency polygon. This is the piecewise linear curve that
connects the midpoints of the bins of the histogram. The endpoints are usually
zero values at the midpoints of two appended bins, one on either side.

The histospline is constructed by interpolating knots of the empirical CDF
with a cubic spline and then differentiating it. More general methods use
splines or orthogonal series to fit the histogram.

As we have mentioned and have seen by example, the histogram is some-
what sensitive in appearance to the location of the bins. To overcome the
problem of location of the bins, a density estimator that is the average of sev-
eral histograms with equal bin widths but different bin locations can be used.
This is called the average shifted histogram, or ASH. It also has desirable
statistical properties, and it is computationally efficient in the multivariate
case.

Theory of Statistics c©2000–2025 James E. Gentle



590 8 Nonparametric and Robust Inference

8.5.3 Kernel Estimators

Kernel methods are probably the most widely used technique for building
nonparametric probability density estimators. They are best understood by
developing them as a special type of histogram. The difference is that the bins
in kernel estimators are centered at the points at which the estimator is to
be computed. The problem of the choice of location of the bins in histogram
estimators does not arise.

Rosenblatt’s Histogram Estimator; Kernels

For the one-dimensional case, Rosenblatt defined a histogram that is shifted
to be centered on the point at which the density is to be estimated. Given the
sample y1, . . . , yn, Rosenblatt’s histogram estimator at the point y is

p̂R(y) =
#{yi s.t. yi ∈]y− h/2, y + h/2] }

nh
. (8.59)

This histogram estimator avoids the ordinary histogram’s constant-slope con-
tribution to the bias. This estimator is a step function with variable lengths
of the intervals that have constant value.

Rosenblatt’s centered histogram can also be written in terms of the ECDF:

p̂R(y) =
Pn(y + h/2)− Pn(y − h/2)

h
,

where, as usual, Pn denotes the ECDF. As seen in this expression, Rosenblatt’s
estimator is a centered finite-difference approximation to the derivative of the
empirical cumulative distribution function (which, of course, is not differen-
tiable at the data points). We could, of course, use the same idea and form
other density estimators using other finite-difference approximations to the
derivative of Pn.

Another way to write Rosenblatt’s shifted histogram estimator over bins
of length h is

p̂R(y) =
1

nh

n∑

i=1

κ

(
y − yi

h

)
, (8.60)

where κ(t) = 1 if |t| < 1/2 and = 0 otherwise. The function κ is a kernel or
filter. In Rosenblatt’s estimator, it is a “boxcar” function, but other kernel
functions could be used.

The estimator extends easily to the multivariate case. In the general kernel
estimator, we usually use a more general scaling of y − yi,

V −1(y − yi),

for some positive-definite matrix V . The determinant of V −1 scales the esti-
mator to account for the scaling within the kernel function. The general kernel
estimator is given by
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p̂K(y) =
1

n|V |

n∑

i=1

κ
(
V −1(y − yi)

)
, (8.61)

where the function κ is called the kernel, and V is the smoothing matrix. The
determinant of the smoothing matrix is exactly analogous to the bin volume
in a histogram estimator. The univariate version of the kernel estimator is the
same as Rosenblatt’s estimator (8.60), but in which a more general function
κ is allowed.

In practice, V is usually taken to be constant for a given sample size, but,
of course, there is no reason for this to be the case, and indeed it may be
better to vary V depending on the number of observations near the point y.
The dependency of the smoothing matrix on the sample size n and on y is
often indicated by the notation Vn(y).

Properties of Kernel Estimators

The appearance of the kernel density estimator depends to some extent on the
support and shape of the kernel. Unlike the histogram estimator, the kernel
density estimator may be continuous and even smooth.

It is easy to see that if the kernel satisfies

κ(t) ≥ 0, (8.62)

and ∫

IRd

κ(t) dt = 1 (8.63)

(that is, if κ is a density), then p̂K(y) is a bona fide density estimator.
There are other requirements that we may impose on the kernel either for

the theoretical properties that result or just for their intuitive appeal. It also
seems reasonable that in estimating the density at the point y, we would want
to emphasize the sample points near y. This could be done in various ways,
but one simple way is to require

∫

IRd

tκ(t) dt = 0. (8.64)

In addition, we may require the kernel to be symmetric about 0.
For multivariate density estimation, the kernels are usually chosen as a

radially symmetric generalization of a univariate kernel. Such a kernel can be
formed as a product of the univariate kernels. For a product kernel, we have
for some constant σ2

κ, ∫

IRd

ttTκ(t) dt = σ2
κId, (8.65)

where Id is the identity matrix of order d. We could also impose this as a
requirement on any kernel, whether it is a product kernel or not. This makes
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the expressions for bias and variance of the estimators simpler. The spread of
the kernel can always be controlled by the smoothing matrix V , so sometimes,
for convenience, we require σ2

κ = 1.
In the following, we will assume the kernel satisfies the properties in equa-

tions (8.62) through (8.65).
The pointwise properties of the kernel estimator are relatively simple to

determine because the estimator at a point is merely the sample mean of n
independent and identically distributed random variables. The expectation
of the kernel estimator (8.61) at the point y is the convolution of the kernel
function and the probability density function,

E (p̂K(y)) =
1

|V |

∫

IRd

κ
(
V −1(y − t)

)
p(t) dt

=

∫

IRd

κ(u)p(y − V u) du, (8.66)

where u = V −1(y − t) (and, hence, du = |V |−1dt).
If we approximate p(y − V u) about y with a three-term Taylor series,

using the properties of the kernel in equations (8.62) through (8.65) and using
properties of the trace, we have

E (p̂K(y)) ≈
∫

IRd

κ(u)

(
p(y) − (V u)T∇p(y) +

1

2
(V u)THp(y)V u

)
du

= p(y) − 0 +
1

2
trace

(
V THp(y)V

)
. (8.67)

To second order in the elements of V (that is, to terms in O(|V |2)), the bias
at the point y is therefore

1

2
trace

(
V V THp(y)

)
. (8.68)

Using the same kinds of expansions and approximations as in equa-
tions (8.66) and (8.67) to evaluate E

(
(p̂K(y))2

)
to get an expression of order

O(|V |/n), and subtracting the square of the expectation in equation (8.67),
we get the approximate variance at y as

V (p̂K(y)) ≈ p(y)

n|V |

∫

IRd

(κ(u))2 du,

or

V (p̂K(y)) ≈ p(y)

n|V |S(κ). (8.69)

Integrating this, because p is a density, we have

AIV
(
p̂K

)
=
S(κ)

n|V | , (8.70)
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and integrating the square of the asymptotic bias in expression (8.68), we have

AISB
(
p̂K

)
=

1

4

∫

IRd

(
trace

(
V THp(y)V

))2
dy. (8.71)

These expressions are much simpler in the univariate case, where the
smoothing matrix V is the smoothing parameter or window width h. We have
a simpler approximation for E (p̂K(y)) than that given in equation (8.67),

E (p̂K(y)) ≈ p(y) +
1

2
h2p′′(y)

∫

IR

u2κ(u) du,

and from this we get a simpler expression for the AISB. After likewise simpli-
fying the AIV, we have

AMISE
(
p̂K

)
=
S(κ)

nh
+

1

4
σ4

κh
4R(p), (8.72)

where we have left the kernel unscaled (that is,
∫
u2κ(u) du = σ2

K).
Minimizing this with respect to h, we have the optimal value of the smooth-

ing parameter

h∗ =

( S(κ)

nσ4
κR(p)

)1/5

; (8.73)

that is, the optimal bandwidth is O(n−1/5).
Substituting the optimal bandwidth back into the expression for the

AMISE, we find that its optimal value in this univariate case is

5

4
R(p)(σκS(κ))4/5 n−4/5. (8.74)

The AMISE for the univariate kernel density estimator is thus in O(n−4/5).
Recall that the AMISE for the univariate histogram density estimator is in
O(n−2/3).

We see that the bias and variance of kernel density estimators have similar
relationships to the smoothing matrix that the bias and variance of histogram
estimators have. As the determinant of the smoothing matrix gets smaller
(that is, as the window of influence around the point at which the estimator
is to be evaluated gets smaller), the bias becomes smaller and the variance
becomes larger. This agrees with what we would expect intuitively.

Kernel-Based Estimator of CDF

We can form an estimator of the CDF based on a kernel PDF estimator pK

by using

K(x) =

∫ x

−∞
κ(t)dt.
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A kernel-based estimator of the CDF is

P̂K(y) =
1

n

n∑

i=1

K

(
y − yi

hn

)
.

Let us consider the convergence of {P̂Kn} to the true CDF P . We recall from
the Glivenko-Cantelli theorem (Theorem 1.71) that the ECDF, Pn converges
to P uniformly; that is, for any P , given ε and η, there exists anN independent
of P such that ∀n ≥ N

Pr

(
sup
y∈IR
|Pn(y) − P (y)| ≥ ε

)
≤ η.

This does not hold for {P̂Kn}. To see this, pick a point y0 for which P (y0) > 0.
Now, assume that (1) for some i, 0 < K((y0 − yi)/hn) < 1, (2) for some
t ∈]0, P (y0)[, K

−1(t) < (y0 − yi)/hn, and (3) hn > 0∀n. (If the kernel is a
PDF and if the kernel density estimator is finite, then these conditions hold.)

*************** Zieliński (2007)

Choice of Kernels

Standard normal densities have these properties described above, so the kernel
is often chosen to be the standard normal density. As it turns out, the kernel
density estimator is not very sensitive to the form of the kernel.

Although the kernel may be from a parametric family of distributions, in
kernel density estimation, we do not estimate those parameters; hence, the
kernel method is a nonparametric method.

Sometimes, a kernel with finite support is easier to work with. In the
univariate case, a useful general form of a compact kernel is

κ(t) = κrs(1 − |t|r)sI[−1,1](t),

where
κrs =

r

2B(1/r, s+ 1)
, for r > 0, s ≥ 0,

and B(a, b) is the complete beta function.
This general form leads to several simple specific cases:

• for r = 1 and s = 0, it is the rectangular kernel;
• for r = 1 and s = 1, it is the triangular kernel;
• for r = 2 and s = 1 (κrs = 3/4), it is the “Epanechnikov” kernel, which

yields the optimal rate of convergence of the MISE (see Epanechnikov,
1969);

• for r = 2 and s = 2 (κrs = 15/16), it is the “biweight” kernel.
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If r = 2 and s→∞, we have the Gaussian kernel (with some rescaling).
As mentioned above, for multivariate density estimation, the kernels are

often chosen as a product of the univariate kernels. The product Epanechnikov
kernel, for example, is

κ(t) =
d+ 2

2cd
(1− tTt)I(tTt≤1),

where

cd =
πd/2

Γ(d/2 + 1)
.

We have seen that the AMISE of a kernel estimator (that is, the sum of
equations (8.70) and (8.71)) depends on S(κ) and the smoothing matrix V .
As we mentioned above, the amount of smoothing (that is, the window of
influence) can be made to depend on σκ. We can establish an approximate
equivalence between two kernels, κ1 and κ2, by choosing the smoothing matrix
to offset the differences in S(κ1) and S(κ2) and in σκ1 and σκ2 .

Computation of Kernel Density Estimators

If the estimate is required at one point only, it is simplest just to compute it
directly. If the estimate is required at several points, it is often more efficient
to compute the estimates in some regular fashion.

If the estimate is required over a grid of points, a fast Fourier transform
(FFT) can be used to speed up the computations.

8.5.4 Choice of Window Widths

An important problem in nonparametric density estimation is to determine
the smoothing parameter, such as the bin volume, the smoothing matrix, the
number of nearest neighbors, or other measures of locality. In kernel density
estimation, the window width has a much greater effect on the estimator than
the kernel itself does.

An objective is to choose the smoothing parameter that minimizes the
MISE. We often can do this for the AMISE, as in equation (8.57) on page 588.
It is not as easy for the MISE. The first problem, of course, is just to estimate
the MISE.

In practice, we use cross validation with varying smoothing parameters
and alternate computations between the MISE and AMISE.

In univariate density estimation, the MISE has terms such as hαS(p′) (for
histograms) or hαS(p′′) (for kernels). We need to estimate the roughness of a
derivative of the density.

Using a histogram, a reasonable estimate of the integral S(p′) is a Riemann
approximation,
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Ŝ(p′) = h
∑(

p̂′(tk)
)2

=
1

n2h3

∑
(nk+1 − nk)2,

where p̂′(tk) is the finite difference at the midpoints of the kth and (k + 1)th

bins; that is,

p̂′(tk) =
nk+1/(nh)− nk/(nh)

h
.

This estimator is biased. For the histogram, for example,

E(Ŝ(p′)) = S(p′) + 2/(nh3) + . . .

A standard estimation scheme is to correct for the 2/(nh3) term in the bias and
plug this back into the formula for the AMISE (which is 1/(nh)+h2S(r′)/12
for the histogram).

We compute the estimated values of the AMISE for various values of h
and choose the one that minimizes the AMISE. This is called biased cross
validation because of the use of the AMISE rather than the MISE.

These same techniques can be used for other density estimators and for
multivariate estimators, although at the expense of considerably more com-
plexity.

8.5.5 Orthogonal Series Estimators

A continuous real function p(x), integrable over a domain D, can be repre-
sented over that domain as an infinite series in terms of a complete spanning
set of real orthogonal functions {fk} over D:

p(x) =
∑

k

ckfk(x). (8.75)

The orthogonality property allows us to determine the coefficients ck in
the expansion (8.75):

ck = 〈fk, p〉. (8.76)

Approximation using a truncated orthogonal series can be particularly
useful in estimation of a probability density function because the orthogonality
relationship provides an equivalence between the coefficient and an expected
value. Expected values can be estimated using observed values of the random
variable and the approximation of the probability density function. Assume
that the probability density function p is approximated by an orthogonal series
{qk} with weight function w(y):

p(y) =
∑

k

ckqk(y).

From equation (8.76), we have
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ck = 〈qk, p〉

=

∫

D

qk(y)p(y)w(y)dy

= E(qk(Y )w(Y )), (8.77)

where Y is a random variable whose probability density function is p.
The ck can therefore be unbiasedly estimated by

ĉk =
1

n

n∑

i=1

qk(yi)w(yi).

The orthogonal series estimator is therefore

p̂S(y) =
1

n

j∑

k=0

n∑

i=1

qk(yi)w(yi)qk(y) (8.78)

for some truncation point j.
Without some modifications, this generally is not a good estimator of the

probability density function. It may not be smooth, and it may have infinite
variance. The estimator may be improved by shrinking the ĉk toward the
origin. The number of terms in the finite series approximation also has a
major effect on the statistical properties of the estimator. Having more terms
is not necessarily better. One useful property of orthogonal series estimators
is that the convergence rate is independent of the dimension. This may make
orthogonal series methods more desirable for higher-dimensional problems.

There are several standard orthogonal series that could be used. The two
most commonly used series are the Fourier and the Hermite. Which is prefer-
able depends on the situation.

The Fourier series is commonly used for distributions with bounded sup-
port. It yields estimators with better properties in the L1 sense.

For distributions with unbounded support, the Hermite polynomials are
most commonly used.

8.6 Perturbations of Probability Distributions

If a task in statistical inference begins with the assumption that the underlying
family of probability distributions is P, we use statistical methods that are
optimized for this family. If, however, the true underlying family of probability
distributions is Pε, where Pε 6= P, our methods of inference may not be very
good. If Pε ⊆ P, our methods are likely to be valid but suboptimal; if Pε ⊇ P,
our methods are likely to be invalid; in more general cases when Pε 6= P, we
may have no knowledge of how the method performs. Our objective is to
identify methods that are likely to be “good” so long as Pε is “relatively
close” to P.
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We often measure the difference in functions by a norm or pseudonorm
functional (see Section 0.1.9 beginning on page 744). The measure of the
difference is called a metric, or pseudometric (see Section 0.1.9).

Functionals of CDFs can be used as measures of the differences between
two distributions. Because of the definition of a CDF, the functionals we use
are true norms and true metrics.

In Section 7.4.3, we discussed ways of measuring the distance between two
different distributions for the purpose of testing goodness of fit, that is, for
testing an hypothesis that a given sample came from some specified distribu-
tion. Functionals used to measure differences between two distributions can
also be used to evaluate the properties of statistical methods, especially if
those methods are defined in terms of functionals.

Distances between Probability Distributions

In Section 0.1.9 beginning on page 747 we discuss various general measures
of the difference between two functions. The difference in two probability dis-
tributions may be measured in terms of a distance between the cumulative
distribution functions such as the Hellinger distance or the Kullback-Leibler
measure as described on page 747, or it may be measured in terms of differ-
ences in probabilities or differences in expected values.

Because we use samples to make inferences about the distances between
probability distributions, the measures of interest are usually taken between
two ECDFs. If we measure the distance between probability distributions
in terms of a distance between the cumulative distribution functions, we can
compare the distance between the ECDFs from the samples. If the comparison
is between a distribution of a sample and some family of distributions, we use
the ECDF from the sample and a CDF from the family; If the comparison is
between the distributions of two samples, we use the ECDFs from the samples.

It is important to note that even though the measure of the difference
between two CDFs may be small, there may be very large differences in prop-
erties of the probability distributions. For example, consider the difference
between the CDF of a standard Cauchy and a standard normal. The sup
difference is about 0.1256. (It occurs near ±1.85.) The sup dif between the
ECDFs for samples of size 20 will often be between 0.2 and 0.3. (That is a
significance level of between 0.83 and 0.34 on a KS test.)

The Kolmogorov Distance; An L∞ Metric

On page 536, we defined the Kolmogorov distance between two CDFs P1 and
P2, ρK(P1, P2), as the L∞ norm of the difference between the two CDFs:

ρK(P1, P2) = sup |P1 − P2|. (8.79)
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The Lévy Metric

Another measure of the distance between two CDFs is the Lévy distance,
defined for the CDFs P1 and P2 as

ρL(P1, P2) = inf{h, s.t. ∀x, P1(x− h)− h ≤ P2(x) ≤ P1(x+ h) + h}. (8.80)

Notice that h is both the deviation in the argument x and the deviation
in the function values.

It can be shown that ρL(P1, P2) is a metric over the set of distribution
functions. It can also be shown that for any CDFs P1 and P2,

ρL(P1, P2) ≤ ρK(P1, P2). (8.81)

Example 8.1 Kolmogorov and Lévy distances between distribu-
tions
Consider the U(0, 1) distribution and the Bernoulli distribution with param-
eter π = 0.3, with CDFs P1 and P2 respectively. Figure 8.2 shows the CDFs
and the Kolmogorov and Lévy distances between them.

We see that if h were any smaller and x = 1, then P1(x− h)− h would be
greater than P2(x). On the other hand, we see that this value of h will satisfy
the inequalities in the definition of the Lévy distance at any point x.

The Wasserstein-Mallows Metric

Another useful measure of the distance between two CDFs is the Mallows
distance or the Wasserstein-Mallows distance. This metric is also called by
various other names, including the Renyi metric, and the “earth movers’ dis-
tance”. We will briefly describe this metric, but we will rarely use it in the
following.

For the CDFs P1 and P2, with random variables X1 having CDF P1 and
X2 having CDF P2, if E(‖X1‖p) and E(‖X2‖p) are finite, this distance is

ρMp(P1, P2) = inf(E(‖X1 −X2‖p))1/p,

where the infimum is taken over all joint distributions P (x1, x2) with marginals
P1 and P2.

If P1 and P2 are univariate ECDFs based on the same number of observa-
tions, we have

ρMp(Pn1, Pn2) =

(
1

n

∑
(|x1(i) − x2(i)|p)

)1/p

.

For a scalar-valued random variable X with CDF P , if U ∼ U(0, 1) then

P−1(U)
d
= X (Corollary 1.7.1); that is,
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Figure 8.2. Two CDFs and the Kolmogorov and Lévy Distances between Them

ρMp(P1, P2) = (E(‖P−1
1 (U)− P−1

2 (U)‖p))1/p,

The first question we might consider given the definition of the Wasserstein-
Mallows metric is whether the infimum exists, and then it is not clear whether
this is indeed a metric. (The triangle inequality is the only hard question.)
Bickel and Freedman (1981) answered both of these questions in the affirma-
tive. The proof is rather complicated for vector-valued random variables; for
scalar-valued random variables, there is a simpler proof in terms of the inverse
CDF.
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A Useful Class of Perturbations

In statistical applications using functionals defined on the CDF, we are in-
terested in how the functional varies for “nearby” CDFs in the distribution
function space.

A simple kind of perturbation of a given distribution is a mixture distribu-
tion with the given distribution as one of the components of the mixture. We
often consider a simple type of function in the neighborhood of the CDF. This
kind of CDF results from adding a single mass point to the given distribution.
For a given CDF P (x), we can define a simple perturbation as

Pxc,ε(x) = (1− ε)P (x) + εI[xc,∞[(x), (8.82)

where 0 ≤ ε ≤ 1. This is an ε-mixture family of distributions that we discussed
on page 194. We will refer to the distribution with CDF P as the reference
distribution. (The reference distribution is the distribution of interest, so I
often refer to it without any qualification.)

A simple interpretation of the perturbation in equation (8.82) is that it
is the CDF of a mixture of a distribution with CDF P and a degenerate
distribution with a single mass point at xc, which may or may not be in the
support of the distribution. The extent of the perturbation depends on ε; if
ε = 0, the distribution is the reference distribution.

If the distribution with CDF P is continuous with PDF p, the PDF of the
mixture is

dPxc,ε(x)/dx = (1− ε)p(x) + εδ(xc − x),
where δ(·) is the Dirac delta function. If the distribution is discrete, the prob-
ability mass function has nonzero probabilities (scaled by (1 − ε)) at each
of the mass points associated with P together with a mass point at xc with
probability ε.

The left-hand graph in Figure 8.3 shows the Lebesgue PDF of a continuous
reference distribution (dotted line) and the PDF of an ε-mixture distribution
(solid line together with the mass point at xc). Over part of the support
the PDF of the mixture is a Lebesgue PDF and over another part of the
support (the single point) it is a probability mass function. The right-hand
graph shows the corresponding CDFs. The reference distribution is a standard
normal, xc = 1, and ε = 0.3. (Such a large value of ε was used so that the
graphs would look better. In most applications when an ε-mixture distribution
is assumed, the value of ε is much smaller, often of the order of .05.)

We will often analyze the sensitivity of statistical methods with respect to
the perturbation of a reference distribution by xc and ε.

Example 8.2 Kolmogorov and Lévy distances between standard
normal and associated ε-mixture distribution
Consider the N(0, 1) distribution and the associated ε-mixture distribution
with xc = 1 and ε = 0.1. Figure 8.4 shows the CDFs and the Kolmogorov and
Lévy distances between them.
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Figure 8.3. PDFs and the CDF of the ε-Mixture Distribution

The Kolmogorov distance is slightly less than ε. The Lévy distance is the
length of a side of the square shown. (The square does not appear to be a
square because the scales of the axes are different.)

Although by both measures, the distributions are quite “close” to each
other, and increasing the value of xc would not make these measures get larger,
the effect on statistical inference about, say, the mean of the distribution could
be quite large.

8.7 Robust Inference

Robust inference is concerned with methods that are not greatly affected by
perturbations in the assumed family of distributions.

Functionals of the CDF and Estimators Based on Statistical
Functions

While the cumulative distribution function is the most basic function for de-
scribing a probability distribution or a family of distributions, there are a
number of other, simpler descriptors of probability distributions that are use-
ful. Many of these are expressed as functionals of the CDF. For example, the
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Figure 8.4. CDFs of a Standard Normal and Associated ε-Mixture Distribution
and the Kolmogorov and Lévy Distances between Them

mean of a distribution, if it exists, may be written as the functional M of the
CDF P :

M(P ) =

∫
y dP (y). (8.83)

A natural way of estimating a distributional measure that is defined in
terms of a statistical function of the CDF is to use the same statistical func-
tion on the ECDF. This leads us to plug-in estimators, as we discussed in
Section 3.2.2 beginning on page 246.

Estimators based on statistical functions play major roles throughout non-
parametric and semiparametric inference. They are also important in robust
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statistics. In robustness studies, we first consider the sensitivity of the statis-
tical function to perturbations in distribution functions. Statistical functions
that are relatively insensitive to perturbations in distribution functions when
applied to a ECDF should yield robust estimators.

These kinds of plug-in estimators should generally have good asymptotic
properties relative to the corresponding population measures because of the
global asymptotic properties of the ECDF.

Although the statistical functions we have considered have intuitive inter-
pretations, the question remains as to what are the most useful distributional
measures by which to describe a given distribution. In a simple case such as
a normal distribution, the choices are obvious. For skewed distributions, or
distributions that arise from mixtures of simpler distributions, the choices of
useful distributional measures are not so obvious. A central concern in robust
statistics is how a functional of a CDF behaves as the distribution is per-
turbed. If a functional is rather sensitive to small changes in the distribution,
then one has more to worry about if the observations from the process of
interest are contaminated with observations from some other process.

8.7.1 Sensitivity of Statistical Functions

******
One of the most interesting things about a function (or a functional) is

how its value varies as the argument is perturbed. Two key properties are
continuity and differentiability.

For the case in which the arguments are functions, the cardinality of the
possible perturbations is greater than that of the continuum. We can be precise
in discussions of continuity and differentiability of a functional Υ at a point
(function) F in a domain F by defining another set D consisting of difference
functions over F ; that is the set the functions D = F1 − F2 for F1, F2 ∈ F .

Three kinds of functional differentials are defined on page 760.
Given a reference distribution P and an ε-mixture distribution Px,ε, a

statistical function evaluated at Px,ε compared to the function evaluated at P
allows us to determine the effect of the perturbation on the statistical function.
For example, we can determine the mean of the distribution with CDF Px,ε

in terms of the mean µ of the reference distribution to be (1− ε)µ+ εx. This
is easily seen by thinking of the distribution as a mixture. Formally, using the
M in equation (8.83), we can write

M(Px,ε) =

∫
y d((1− ε)P (y) + εI[x,∞[(y))

= (1− ε)
∫
y dP (y) + ε

∫
yδ(y − x) dy

= (1− ε)µ+ εx. (8.84)

Theory of Statistics c©2000–2025 James E. Gentle



8.7 Robust Inference 605

For a discrete distribution we would follow the same steps using summations
(instead of an integral of y times a Dirac delta function, we just have a point
mass of 1 at x), and would get the same result.

The π quantile of the mixture distribution, Ξπ(Px,ε) = P−1
x,ε (π), is some-

what more difficult to work out. This quantile, which we will call q, is shown
relative to the π quantile of the continuous reference distribution, yπ , for two
cases in Figure 8.5. (In Figure 8.5, although the specifics are not important,
the reference distribution is a standard normal, π = 0.7, so yπ = 0.52, and
ε = 0.1. In the left-hand graph, x1 = −1.25, and in the right-hand graph,
x2 = 1.25.)

p(y)

(1-ε)p(y)

yπ

ε

x1 q

p(y)

(1-ε)p(y)

yπ

ε

x2q

Figure 8.5. Quantile of the ε-Mixture Distribution

We see that in the case of a continuous reference distribution (implying P
is strictly increasing),

P−1
x,ε (π) =





P−1
(

π−ε
1−ε

)
, for (1− ε)P (x) + ε < π,

x, for (1− ε)P (x) ≤ π ≤ (1 − ε)P (x) + ε,

P−1
(

π
1−ε

)
, for π < (1− ε)P (x).

(8.85)

The conditions in equation (8.85) can also be expressed in terms of x and quan-
tiles of the reference distribution. For example, the first condition is equivalent
to x < yπ−ε

1−ε
.
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The Influence Function

The extent of the perturbation depends on ε, and so we are interested in the
relative effect; in particular, the relative effect as ε approaches zero.

The influence function for the functional Υ and the CDF P , defined at x
as

φΥ,P (x) = lim
ε↓0

Υ (Px,ε) − Υ (P )

ε
(8.86)

if the limit exists, is a measure of the sensitivity of the distributional measure
defined by Υ to a perturbation of the distribution at the point x. The influence
function is also called the influence curve, and denoted by IC.

The limit in equation (8.86) is the right-hand Gâteaux derivative of the
functional Υ at P and x.

The influence function can also be expressed as the limit of the derivative
of Υ (Px,ε) with respect to ε:

φΥ,P (x) = lim
ε↓0

∂

∂ε
Υ (Px,ε). (8.87)

This form is often more convenient for evaluating the influence function.
Some influence functions are easy to work out, for example, the influence

function for the functional M in equation (8.83) that defines the mean of a
distribution, which we denote by µ. The influence function for this functional
operating on the CDF P at x is

φµ,P (x) = lim
ε↓0

M(Px,ε)−M(P )

ε

= lim
ε↓0

(1− ε)µ + εx− µ
ε

= x− µ. (8.88)

We note that the influence function of a functional is a type of derivative of
the functional, ∂M(Px,ε)/∂ε. The influence function for other moments can
be computed in the same way as the steps in equation (8.88).

Note that the influence function for the mean is unbounded in x; that is,
it increases or decreases without bound as x increases or decreases without
bound. Note also that this result is the same for multivariate or univariate
distributions.

The influence function for a quantile is more difficult to work out. The
problem arises from the difficulty in evaluating the quantile. As I informally
described the distribution with CDF Px,ε, it is a mixture of some given dis-
tribution and a degenerate discrete distribution. Even if the reference distri-
bution is continuous, the CDF of the mixture, Px,ε, does not have an inverse
over the full support (although for quantiles we will write P−1

x,ε ).
Let us consider a simple instance: a univariate continuous reference distri-

bution, and assume p(yπ) > 0. We approach the problem by considering the
PDF, or the probability mass function.
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In the left-hand graph of Figure 8.5, the total probability mass up to the
point yπ is (1 − ε) times the area under the curve, that is, (1 − ε)π, plus
the mass at x1, that is, ε. Assuming ε is small enough, the π quantile of the
ε-mixture distribution is the π − ε quantile of the reference distribution, or
P−1(π − ε). It is also the π quantile of the scaled reference distribution; that
is, it is the value of the function (1−ε)p(x) that corresponds to the proportion
π of the total probability (1 − ε) of that component. Use of equation (8.85)
directly in equation (8.86) is somewhat messy. It is more straightforward to
differentiate P−1

x1,ε and take the limit as in equation (8.87). For fixed x < yπ ,
we have

∂

∂ε
P−1

(
π − ε
1 − ε

)
=

1

p
(
P−1

(
π−ε
1−ε

)) (π − 1)(1− ε)
(1− ε)2 .

Likewise, we take the derivatives for the other cases in equation (8.85), and
then take limits. We get

φΞπ,P (x) =





π − 1

p(yπ)
, for x < yπ ,

0, for x = yπ ,

π

p(yπ)
, for x > yπ .

(8.89)

Notice that the actual value of x is not in the influence function; only whether
x is less than, equal to, or greater than the quantile. Notice also that, un-
like influence function for the mean, the influence function for a quantile is
bounded; hence, a quantile is less sensitive than the mean to perturbations
of the distribution. Likewise, quantile-based measures of scale and skewness,
as in equations (1.116) and (1.117), are less sensitive than the moment-based
measures to perturbations of the distribution.

The functionals LJ and Mρ defined in equations (1.119) and (1.120), de-
pending on J or ρ, can also be very insensitive to perturbations of the distri-
bution.

The mean and variance of the influence function at a random point are of
interest; in particular, we may wish to restrict the functional so that

E(φΥ,P (X)) = 0

and
E
(
(φΥ,P (X))2

)
<∞.
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8.7.2 Robust Estimators

If a distributional measure of interest is defined on the CDF as Υ (P ), we
are interested in the performance of the plug-in estimator Υ (Pn); specifically,
we are interested in Υ (Pn) − Υ (P ). This turns out to depend crucially on
the differentiability of Υ . If we assume Gâteaux differentiability, from equa-
tion (0.1.118), we can write

√
n (Υ (Pn)− Υ (P )) = ΛP (

√
n(Pn − P )) +Rn

=
1√
n

∑

i

φΥ,P (Yi) +Rn

where the remainder Rn → 0.
We are interested in the stochastic convergence. First, we assume

E(φΥ,P (X)) = 0

and
E
(
(φΥ,P (X))2

)
<∞.

Then the question is the stochastic convergence of Rn. Gâteaux differentiabil-
ity does not guarantee that Rn converges fast enough. However, ρ-Hadamard
differentiability, does imply that that Rn is in oP (1), because it implies that
norms of functionals (with or without random arguments) go to 0. We can
also get that Rn is in oP (1) by assuming Υ is ρ-Fréchet differentiable and that√
nρ(Pn, P ) is in OP (1). In either case, that is, given the moment properties

of φΥ,P (X) and Rn is in oP (1), we have by Slutsky’s theorem (page 92),

√
n (Υ (Pn)− Υ (P ))

d→ N(0, σ2
Υ,P ),

where σ2
Υ,P = E

(
(φΥ,P (X))2

)
.

For a given plug-in estimator based on the statistical function Υ , knowing
E
(
(φΥ,P (X))2

)
(and assuming E(φΥ,P (X)) = 0) provides us an estimator of

the asymptotic variance of the estimator.
The influence function is also very important in leading us to estimators

that are robust; that is, to estimators that are relatively insensitive to depar-
tures from the underlying assumptions about the distribution. As mentioned
above, the functionals LJ and Mρ, depending on J or ρ, can be very insensi-
tive to perturbations of the distribution; therefore estimators based on them,
called L-estimators and M-estimators, can be robust.

M-Estimators

L-Estimators

A class of L-estimators that are particularly useful are linear combinations of
the order statistics. Because of the sufficiency and completeness of the order
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statistics in many cases of interest, such estimators can be expected to exhibit
good statistical properties.

Another class of estimators similar to the L-estimators are those based on
ranks, which are simpler than order statistics. These are not sufficient – the
data values have been converted to their ranks – nevertheless they preserve a
lot of the information. The fact that they lose some information can actually
work in their favor; they can be robust to extreme values of the data.

A functional to define even a simple linear combination of ranks is rather
complicated. As with the LJ functional, we begin with a function J , which
in this case we require to be strictly increasing, and also, in order to ensure
uniqueness, we require that the CDF P be strictly increasing. The RJ func-
tional is defined as the solution to the equation

∫
J

(
P (y) + 1− P (2RJ(P )− y)

2

)
dP (y) = 0. (8.90)

A functional defined as the solution to this optimization problem is called an
RJ functional, and an estimator based on applying it to a ECDF is called an
RJ estimator or just an R-estimator.

Notes and Further Reading

Much of the material in this chapter is covered in MS2 Sections 5.1, 5.2, 5.3.

Nonparametric Statistics

There are a number of books on nonparametric methods of statistical infer-
ence. Most of the underlying theory for these methods is developed in the
context of order statistics and ranks.

Failure Time Data and Survival Analysis

The analysis of failure time data has application in engineering reliability
studies as well as in medical statistics. Many of the models used are parametric
or semiparametric, but my brief discussion of it is included in this chapter on
nonparametric methods. An indepth discussion of the theory and methods is
given by Kalbfleisch and Prentice (2002).

Expansions of Functionals and Their Sensitivity to Perturbations

Small (2010)
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Robust Statistics

The books by Staudte and Sheather (1990) and Huber and Ronchetti (2009)
and the article by Davies and Gather (2012) provide a more complete coverage
of the general topic of robust statistics.

The Influence Function

Davies and Gather (2012) discuss and give several examples of this kind of
perturbation to study the sensitivity of a functional to perturbations of the
CDF at a given point x.

Adaptive Procedures

Although the idea of adapting the statistical methods to the apparent charac-
teristics of the data is appealing, there are many practical problems to contend
with. Hogg (1974) and Hogg and Lenth (1984) review many of the issues and
discuss several adaptive procedures for statistical inference.

Exercises

8.1. Consider the problem of estimating the function f(x) = θ−1e−x/θIIR+(x)
based on a random sample of size n from a population with PDF f(x).

Let f̂ be an estimator of f that is the given functional form of f with the
sample mean in place of λ.

a) What is the bias and the variance of f̂ at the point x?

b) What is the asymptotic mean squared error, AMSE, of f̂ at the point
x?

8.2. Integrated measures in a parametric problem.
Consider the U(0, θ) distribution, with θ unknown. The true probability
density is p(x) = 1/θ over (0, θ) and 0 elsewhere. Suppose we have a sample
of size n and we estimate the density as p̂(x) = 1/x(n) over (0, x(n)) and
0 elsewhere, where x(n) is the maximum order statistic.

a) Determine the integrated squared error, ISE, of p̂(x).
b) Determine (that is, write an explicit expression for) the integrated

squared bias, ISB, of p̂(x).
c) Determine the mean integrated squared error, MISE, of p̂(x).
d) Determine the asymptotic mean integrated squared error, AMISE, of

p̂(x).

8.3. Determine the hazard function for
(a) the Weibull(α, β) family;
(b) the log-normal(µ, σ2) family;
(c) the gamma(α, β) family.

Theory of Statistics c©2000–2025 James E. Gentle



Exercises 611

In each case, suggest a reparametrization that directly incorporates the
hazard function, as in the example in the text when the θ parameter of
the exponential family is replaced by 1/λ.

8.4. Show that equations (8.30) and (8.32) are correct.
8.5. Prove Theorem 8.1.
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Statistical Mathematics

Statistics is grounded in mathematics. Most of mathematics is important and
it is difficult to identify the particular areas of mathematics, and at what
levels, that must be mastered by statisticians.

The purpose of this chapter is to provide some general mathematical back-
ground for the theory of probability and statistics. It is assumed that most
readers can go through this chapter very quickly.

I define a very large number of terms, but in most cases, the definitions are
just stated in ordinary text format. For some of the more important terms the
term is highlighted in a “Definition”, and given a number for later reference.

In Section 0.0, I start with some very basic material. This includes standard
objects such as sets and various structures built onto sets. There are many
standard methods we use in mathematical statistics. It may seem that many
methods are ad hoc, but it is useful to identify common techniques and have a
ready tool kit of methods with general applicability. There are many standard
mathematical techniques that every statistician should have in a toolkit, and
this section surveys several of them.

Beyond the general basics covered in Section 0.0, the statistician needs
grounding in measure theory to the extent covered in Section 0.1, beginning on
page 692, in stochastic calculus to the extent covered in Section 0.2, beginning
on page 765, in linear algebra to the extent covered in Section 0.3, beginning on
page 781, and in methods of optimization to the extent covered in Section 0.4
beginning on page 822.

The general development in this chapter is in the usual form of a mathe-
matical development, moving from primitives to definitions to theorems, how-
ever, occasionally it is assumed that the reader already is somewhat familiar
with such concepts as differentiation, integration, and mathematical expec-
tation before we give their formal definitions. References within the chapter,
therefore, may be either forward or backward. Although generally this chap-
ter is meant to provide background for the other chapters, occasionally some
material in this chapter depends on concepts from other chapters; in particu-
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lar, Section 0.2 on stochastic processes depends on material in Chapter 1 on
probability.

The attitudes and methods of mathematics pervade mathematical statis-
tics. We study objects. These objects may be structures, such as groups and
fields, or functionals, such as integrals, estimators, or tests. We want to under-
stand the properties of these objects. We identify, describe, and name these
properties in fixed statements, with labels, such as the “Neyman-Pearson
Lemma”, or the “Dominated Convergence Theorem”. We identify limits to
the properties of an object or boundary points on the characteristics of the
object by means of “counterexamples”.

Our understanding and appreciation of a particular object is enhanced by
comparing the properties of the given object with similar objects. The prop-
erties of objects of the same class as the given object are stated in theorems
(or “lemmas”, or “corollaries”, or “propositions” — unless you understand
the difference, just call them all “theorems”; clearly, many otherwise compe-
tent mathematical statisticians have no idea what these English words mean).
The hypotheses of the theorems define various classes of objects to which the
conclusions of the theorems apply. Objects that do not satisfy all of the hy-
potheses of a given theorem provide us insight into these hypotheses. These
kinds of objects are called counterexamples for the conclusions of the theorem.
For example, the Lebesgue integral and the Riemann integral are similar ob-
jects. How are they different? First, we should look at the big picture: in the
Lebesgue integral, we begin with a partitioning of the range of the function;
in the Riemann integral, we begin with a partitioning of the domain of the
function. What about some specific properties? Some important properties
of the Lebesgue integral are codified in the Big Four Theorems: the bounded
convergence theorem, Fatou’s lemma, the (Lebesgue) monotone convergence
theorem, and the dominated convergence theorem. None of these hold for the
Riemann integral; that is, the Riemann integral provides counterexamples for
the conclusions of these theorems. To understand these two types of inte-
grals, we need to be able to prove the four theorems (they’re related) for the
Lebesgue integral, and to construct counterexamples to show that they do not
hold for the Riemann integral. The specifics here are not as important as the
understanding of the attitude of mathematics.

Notation

I must first of all point out a departure from the usual notation and terminol-
ogy in regard to the real numbers. I use IR to denote the scalar real number
system in which the elements of the underlying set are singleton numbers.
Much of the underlying theory is based on IR, but my main interest is usually
IRd, for some fixed positive integer d. The elements of the underlying set for
IRd are d-tuples, or vectors. I sometimes emphasize the difference by the word
“scalar” or “vector”. I do not, however, distinguish in the notation for these
elements from the notation for the singleton elements of IR; thus, the symbol
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x may represent a scalar or a vector, and a “random variable” X may be a
scalar random variable or a vector random variable.

This unified approach requires a generalized interpretation for certain func-
tions and relational operators. Many of these functions and operators are in-
terpreted as applying to the individual elements of a vector; for example, |x|,
|x|p, ex, and x < y. If x = (x1, . . . , xd) and y = (y1, . . . , yd), then

|x| def
= (|x1|, . . . , |xd|) (0.1)

|x|p def
= (|x1|p, . . . , |xd|p) (0.2)

ex def
= (ex1 , . . . , exd) (0.3)

and
x < y ⇐⇒ x1 < y1, . . . , xd < yd, (0.4)

that is, these functions and relations are applied elementwise. For more com-
plicated objects, such as matrices, the indicated operations may have different
meanings.

There are, of course, other functions and operators that apply to combi-
nations of the elements of a vector; for example,

‖x‖p def
=

(
d∑

i=1

|xi|p
)1/p

. (0.5)

This approach, however, results in some awkwardness in some contexts,
such as for multiplication. If a and b are scalars, ab has a very simple mean-
ing. Likewise, if a is a scalar and x is a vector, ax has a very simple meaning
consistent with the elementwise operations defined above. Definition of mul-
tiplication of two vectors, however, is somewhat more complicated. First of
all, the two operands must be vectors of the same length. There are three
possibilities: the product of vectors x and y may be a scalar, a vector, or a
matrix.

The scalar product is an inner product, also called the dot product, and
is denoted as 〈x, y〉 or xTy. It is the sum of the elementwise products.

The vector product is the vector of elementwise products. (If we have the
luxury of working only in 3-space, there is another useful vector product, often
called the cross product, useful in physics.) We will rarely have occasion to
use vector products of either type.

The matrix product is the outer product, denoted as xyT, and defined as
the matrix whose (i, j) element is xiyj .

In the following, and in all of my writing, I try to be very consistent in
use of notation. Occasionally, I will mention alternative notation in common
usage. A more complete coverage of the notation I use can be found beginning
on page 857.
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0.0 Some Basic Mathematical Concepts

We first need to develop some basic definitions and properties of sets. Given
simple operations on sets, we expand the concepts to include various functions
and structures over sets. The most important set and the one for which we
define many functions is the set of reals, which I denote as IR or IRd. First,
however, we begin with abstract sets, that is, sets whose elements are not
restricted to lie in special mathematical structures.

In this section, I will often refer to objects or operations that are not
defined in this section, for example derivatives and integrals and the associated
operations. These will be defined and discussed rather carefully in Section 0.1.

In addition to understanding standard objects and their properties, we
need to become familiar with the methods of mathematical statistics. There
are many standard methods that we use in mathematical statistics. It may
seem that many methods are ad hoc, but it is useful to identify common
techniques and to have a ready tool kit of methods with general applicability.
Monte Carlo methods play important roles in statistics, both for inference in
applications and in the development of statistical theory. We discuss Monte
Carlo methods in Section 0.0.7. Finally, in Section 0.0.9, I discuss some exam-
ples that have general relevance, and I describe some standard mathematical
techniques that every statistician should have in a toolkit.

0.0.1 Sets

We use the term set, without a formal definition, to denote a collection of
things, called elements or points. If every element of a set A2 is also in a set
A1, we say A2 is a subset of A1, and write A2 ⊆ A1. If A2 is a subset of A1,
but A1 is not a subset of A2, we say A2 is a proper subset of A1and write
A2 ⊂ A1.

Given sets A1 and A2, their union, written A1 ∪ A2, is the set consisting
of all elements that are in A1 or A2; and their intersection, written A1 ∩A2,
is the set consisting of all elements that are in both A1 and A2. Obviously,
both union and intersection operations are commutative: A1 ∪A2 = A2 ∪A1

and A1 ∩A2 = A2 ∩A1.
In working with sets, it is useful to define an empty set. This is the set

that contains no elements. We often denote it as ∅.
There are some important sets of specific types of numbers, integers, pos-

itive integers, real numbers, and so on. We will discuss specific properties of
sets of numbers later, but for now, we will assume a general familiarity with
then. One set, in particular, that we will mention from time to time is IR, the
set of real numbers. (In Section 0.0.5, beginning on page 640, we will discuss
IR extensively.)

The cardinality of a set is an indicator of how many elements the set
contains. If the number of elements in a set is a finite integer, that number is
the cardinality of the set. If the elements of a set can be put into a one-to-one
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correspondence with a set of positive integers, the set is said to be countable.
If a set is countable but its cardinality is not a finite integer, then the set
is said to be countably infinite. Any interval of IR is uncountably infinite. Its
cardinality is said to be the cardinality of the continuum.

In any particular application, we can conceive of a set of “everything”, or a
“universe of discourse”. In general, we call this the universal set. (Sometimes,
especially in applications of probability, we will call it the sample space.) If A
is the universal set, then when we speak of the set A1, we imply A1 ⊆ A.

The concept of a universal set also leads naturally to the concept of the
complement of a set. The complement of A1, written Ac

1, is the set of all
elements in the universal set A that are not in A1, which we can also write as
A − A1. More generally, given the sets A1 and A2, we write A1 − A2 (some
people write A1\A2 instead) to represent difference of A1 and A2; that is,
the complement of A2 in A1, A1 − A2 = A1 ∩Ac

2. If A2 ⊆ A1, the difference
A1 − A2 is called the proper difference.

The symmetric difference of A1 and A2, written A1∆A2, is the union of
their differences:

A1∆A2
def
= (A1 − A2) ∪ (A2 −A1). (0.0.1)

Obviously, the symmetric difference operation is commutative:

A1∆A2 = A2∆A1.

Two useful relationships, known as De Morgan’s laws, are

(A1 ∪A2)
c = Ac

1 ∩Ac
2 (0.0.2)

and
(A1 ∩A2)

c = Ac
1 ∪Ac

2. (0.0.3)

These two equations can be extended to countable unions and intersections:

(∪∞i=1Ai)
c = ∩∞i=1A

c
i (0.0.4)

and
(∩∞i=1Ai)

c = ∪∞i=1A
c
i . (0.0.5)

We often are interested in the “smallest” subset of the universal set A that
has a given property. By the smallest subset we mean the intersection of all
subsets of A with the given property.

Product Sets

The cartesian product (or direct product or cross product) of two sets A and B,
written A×B, is the set of all doubletons, (ai, bj), where ai ∈ A and bj ∈ B.
The set A× B is called a product set.

Obviously, A× B 6= B ×A unless B = A.
By convention, we have ∅ ×A = A× ∅ = ∅ = ∅ × ∅.
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The concept of product sets can be extended to more than two sets in a
natural way.

One statement of the Axiom of Choice is that the cartesian product of any
non-empty collection of non-empty sets is non-empty.

Relations and Functions

A relation is a set of doubletons, or pairs of elements; that is, a relation is
a subset of a cartesian product of two sets. A relation may also be called a
mapping.

A function is a relation in which no two different pairs have the same first
element. A function may also be called a transform or an operator.

To say that f is a function from Ω to Λ, written

f : Ω 7→ Λ,

means that for every ω ∈ Ω there is a pair in f whose first member is ω. We
use the notation f(ω) to represent the second member of the pair in f whose
first member is ω, and we call ω the argument of the function. We call Ω the
domain of the function and we call {λ|λ = f(ω) for some ω ∈ Ω} the range
of the function.

Variations include functions that are onto, meaning that for every λ ∈ Λ
there is a pair in f whose second member is λ; and functions that are one-to-
one, often written as 1 : 1, meaning that no two pairs have the same second
member. A function that is one-to-one and onto is called a bijection.

A function f that is one-to-one has an inverse, written f−1, that is a
function from Λ to Ω, such that if f(ω0) = λ0, then f−1(λ0) = ω0.

If (a, b) ∈ f , we may write a = f−1(b), although sometimes this notation is
restricted to the cases in which f is one-to-one. If f is not one-to-one and if the
members of the pairs in f are reversed, the resulting relation is not a function.
We say f−1 does not exist; yet for convenience we may write a = f−1(b), with
the meaning above.

If A ⊆ Ω, the image of A, denoted by f [A], or just by f(A), is the set of all
λ ∈ Λ for which λ = f(ω) for some ω ∈ Ω. (The notation f [A] is preferable,
but we will often just use f(A).) Similarly, if C is a collection of sets (see
below), the notation f [C] denotes the collection of sets {f [C] : C ∈ C}.

For the function f that maps from Ω to Λ, Ω is called the domain of the
function and and f [Ω] is called the range of the function.

For a subset B of Λ, the inverse image or the preimage of B, denoted by
f−1[B], or just by f−1(B), is the set of all ω ∈ Ω such that f(ω) ∈ B. The
notation f−1 used in this sense must not be confused with the inverse function
f−1 (if the latter exists). We use this notation for the inverse image whether
or not the inverse of the function exists.

We also write f [f−1 [B]] as f ◦ f−1[B]. The set f [f−1[B]] may be a proper
subset of B; that is, there may be an element λ in B for which there is no
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ω ∈ Ω such that f(ω) = λ. In this case the inverse image of a set may not
generate the set. If f is bijective, then f [f−1 [B]] = B.

We will discuss functions, images, and preimages further in Section 0.1.2,
beginning on page 701.

Collections of Sets

Collections of sets are usually called “collections”, rather than “sets”. (Both
“set” and “collection” are taken as primitive, undefined terms.)

We usually denote collections of sets with upper-case calligraphic letters,
e.g., B, F , etc. We also use the standard notation with “{” and “}” to denote a
collection of sets; thus, if A1, A2, and A3 are sets, we may denote the collection
of the three sets as {A1, A2, A3}.

The usual set operators and set relations are used with collections of sets,
and generally have the same meaning. Thus if F1 is a collection of sets that
contains the set A, we write A ∈ F1, and if F2 is also a collection of sets, we
denote the collection of all sets that are in either F1, or F2 as F1 ∪ F2.

The collection of all subsets of a given set is called the power set of the
given set. An axiom of naive set theory postulates the existence of the power
set for any given set. We denote the power set for a set S as 2S .

Partitions; Disjoint Sets

A partition of a set S is a collection of disjoint subsets of S whose union is S.
Partitions of sets play an important role.

A simple example is a partition of a set S that is the union two sets;
S = A1 ∪ A2. One partition of the union is just {A1, A2 − A1}. Given any
union of sets ∪i=1Ai, we can obtain similar partitions. For a sequence of sets
{An} the following theorem gives a sequence of disjoint sets {Dn} whose union
is the same as that of {An}.
Theorem 0.0.1 Let A1, A2, . . . be a sequence of subsets of the universal set
A. Let the sequence of {Dn} be defined as

D1 = A1

Dn = An − ∪n−1
i=1 Ai for n = 2, 3, . . .

(0.0.6)

Then the sets in the sequence {Dn} are disjoint, and

∪∞i=1Di = ∪∞i=1Ai.

Proof.
Let {Dn} be as given; then Dn = An ∩

(
∩n−1

i=1 A
c
i

)
and Dn ⊆ An. Now let n

and m be distinct integers. Without loss, suppose n < m. Then
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Dn ∩Dm ⊆ An ∩Dm

= An ∩Am ∩ · · · ∩Ac
n ∩ · · ·

= An ∩Ac
n ∩ · · ·

= ∅.

Also, because Di ⊆ Ai,
∪∞i=1Di ⊆ ∪∞i=1Ai.

Now, let x ∈ ∪∞i=1Ai. Then x must belong to a least one Ai. Let n be the
smallest integer such that x ∈ An. Then x ∈ Dn (by the definition of Dn),
and so x ∈ ∪∞i=1Di. Hence,

∪∞i=1Ai ⊆ ∪∞i=1Di.

Because each is a subset of the other,

∪∞i=1Di = ∪∞i=1Ai.

A partition of the full universal set S is formed by {Dn} and D0 = S −
∪∞i=1Di.

Sequences of nested intervals are important. The following corollary, which
follows immediately from Theorem 0.0.1, applies to such sequences.

Corollary 0.0.1.1
Let {An} be a sequence of sets such that A1 ⊆ A2 ⊆ . . .. Let the sequence of
{Dn} be defined as

Dn = An+1 −An for n = 1, 2, . . . (0.0.7)

Then the sets in the sequence {Dn} are disjoint, and

∪∞i=1Di = ∪∞i=1Ai.

Notice that ∪i
j=1Dj = Ai. (Notice also that there is an offset in the indices of

the sequence (0.0.7) from those of the sequence (0.0.6).)
These ideas of partitioning a union of a sequence of sets may also be

applied to an intersection of a sequence by using De Morgan’s laws. For the
intersection, instead of an increasing sequence, A1 ⊆ A2 ⊆ . . ., our interest is
usually in a decreasing sequence A1 ⊃ A2 ⊃ . . ..

Another useful partition of the union S = A1 ∪A2 uses three sets:

{A1 − (A1 ∩A2), A2 − (A1 ∩A2), (A1 ∩A2)}. (0.0.8)

We call this partitioning “disjointification”, and expression (0.0.8) is called
the “inclusion-exclusion formula”.
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'$

A1 A2

Disjointification

Disjointification leads to the inclusion-exclusion formula for measures of
sets that has common applications in deriving properties of measures (see, for
example, equation (0.1.11) on page 707).

Covering Sets

A collection of sets A is said to cover a set S if S ⊆ ∪Ai∈AAi.
Given a collection A = {A1, A2, . . .} that covers a set S, a partition of S

can be formed by removing some of the intersections of sets inA. For example,
if S ⊆ A1 ∪A2, then {A1 ∩ S, (A2 ∩ S) − (A1 ∩A2)} is a partition of S.

It is often of interest to determine the “smallest” partition of the universal
set formed by sets in a given collection that does not necessarily cover the
universal set. (If the number of sets is finite, the smallest partition has the
smallest number of sets; otherwise, we may be able to give meaning to “small-
est” in terms of intersections of collections of sets. In some cases, there is no
reasonable interpretation of “smallest”.) For example, consider the collection
A = {A1, A2}. If neither A1 nor A2 is a subset of the other, then the partition

{A1 ∩A2, A1 − A2, A2 − A1, (A1 ∪A2)
c}

consists of the “smallest” collection of subsets that can be identified with
operations on A1 and A2, and whose union is the universal set.

If A1 ⊆ A2, then A1 − A2 = ∅, and so the smallest partition is

{A1, A2 − A1, A
c
2}.

Ordered Sets

A set A is said to be partially ordered if there exists a relation ≤ on A × A
such that:

• ∀a ∈ A, a ≤ a (it is reflexive)
• for a, b, c ∈ A, a ≤ b, b ≤ c⇒ a ≤ c (it is transitive)
• for a, b ∈ A, a ≤ b, b ≤ a⇒ a = b (it is antisymmetric)

The relation is called an ordering. A set together with a partial ordering is
called a poset.

A set A is called linearly ordered (or totally ordered) if it is partially ordered
and every pair of elements a, b ∈ A can be compared with each other by the
partial ordering relation. In that case, the relation is called a linear ordering
or total ordering.
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The real numbers IR are linearly ordered using the common inequality
relation. This relation can be used elementwise to define a partial ordering in
a set S ∈ IR2. Such an ordering, however, is not a linear ordering because, for
example, a = (1, 2) and b = (2, 1) cannot be compared by that ordering.

A set A is called well-ordered if it is an ordered set for which every non-
empty subset contains a smallest element. By the Axiom of Choice, every set
(even IRd) can be well-ordered. The positive integers are well-ordered by the
usual inequality relation, but neither the set of all integers or the reals are
well-ordered by the usual inequality relation.

For structures built on sets, such as a field (Definition 0.0.3), we may define
different kinds of orderings that preserve the structure, as in Definition 0.0.4,
for example.

0.0.2 Sets and Spaces

In Section 0.0.9 beginning on page 676, we discussed some basics of sets and
operations on sets. Now we consider mathematical structures that are built on
sets together with other objects or methods such as an operation on the given
set or on subsets of the set. We often refer to these structures as “spaces”.

Spaces

In any application it is generally useful to define some “universe of discourse”
that is the set of all elements that will be considered in a given problem. Given
a universe or universal set, which we often denote by the special symbol Ω
(note the font), we then define various mathematical structures on Ω. These
structures, or “spaces”, are formed by specifying certain types of collections
of subsets of Ω and/or by defining operations on the elements of Ω or on the
subsets in the special collection of subsets. In probability and statistics, we
will call the universal set the sample space.

Some of the general structures that we will find useful are topological
spaces, which are defined in terms of the type of collection of subsets of the
universal set, and metric spaces and linear spaces, which are defined in terms
of operations on elements of the universal set. We will discuss these below,
and then in Section 0.0.5, we will discuss some properties of the special spaces
in which the universal set is the set of real numbers. In Section 0.1, we will
discuss various types of collections of subsets of the universal set, and then
for a particular type of collection, called a σ-field, we will discuss a special
type of space, called a measurable space, and then, with the addition of a
real-valued set function, we will define a measure space. A particular type of
measure space is a probability space.
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Topologies

One of the simplest structures based on the nonempty universal set Ω is a
topological space or a topology, which is formed by any collection T of subsets
of Ω with the following properties:

(t1) ∅,Ω ∈ T , and
(t2) A,B ∈ T ⇒ A ∩B ∈ T , and
(t3) A ⊆ T ⇒ ∪{A : A ∈ A} ∈ T .

We denote a topological space by a double of the form (Ω, T ).
We may use the term “topology” to denote either the space or the collec-

tion of subsets that defines it.
Properties of Ω that can be expressed in terms of a topology are called its

topological properties. Without imposing any additional structure on a topo-
logical space, we can define several useful concepts, but because the collection
of subsets that define a topology is arbitrary, many terms that relate to a
topology are too general for our use in developing a theory of probability for
real-valued random variables.

Given a topological space (Ω, T ), we can define a subspace topology as any
set S ⊆ Ω together with the collection of subsets

TS = {S ∩ U |U ∈ T }.

Open and Closed Sets in a Topology

Let (Ω, T ) be a topological space. Members of T are called open sets. A set
A ⊆ Ω is said to be closed iff Ω ∩Ac ∈ T . Notice that this definition means
that some sets, for example, ∅ and Ω, are both open and closed. Such sets are
sometimes said to be clopen. Also, notice that some subsets of Ω are neither
open nor closed.

For the set A ⊆ Ω, the closure of A is the set

A = ∩{B : B is closed, andA ⊆ B ⊆ Ω}.

(Notice that every y ∈ A is a point of closure of A, and that A is closed iff
A = A.) For the set A ⊆ Ω, the interior of A is the set

A◦ = ∪{U : U is open, andU ⊆ A}.

The boundary of the set A ⊆ Ω is the set

∂A = A ∩ Ac.

A set A ⊆ Ω such that A = Ω is said to be dense in Ω.
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A set is said to be separable if it contains a countable dense subset. Obvi-
ously, any countable set is itself separable. (This term is usually applied only
to the universal set.)

Any subcollection A1, A2, . . . of T such that ∪iAi = Ω is called an open
cover of Ω. A topological space for which each open cover contains a finite open
cover is said to be compact. A set A in a topological space is said to be compact
if each collection of open sets that covers A contains a finite subcollection of
open sets that covers A.

The following properties of unions and intersections of open and closed
sets are easy to show from the definitions:

• The intersection of a finite collection of open sets is open.
• The union of a countable collection of open sets is open.
• The union of a finite collection of closed sets is closed.
• The intersection of a countable collection of closed sets is closed.

Point Sequences in a Topology

A sequence {xn} in the topological space (Ω, T ) is said to converge to the
point x, or to have a limit x, if given any open set T containing x, there is an
integer N such that xn ∈ T ∀n ≥ N .

A point x is said to be an accumulation point or cluster point of the se-
quence {xn} if given any open set T containing x and any integer N , there is
an integer n ≥ N 3 xn ∈ T . This means that x is an accumulation point if
{xn} has a subsequence that converges to x. In an arbitrary topological space,
however, it is not necessarily the case that if x is an accumulation point of
{xn} that there is a subsequence of {xn} that converges to x.

Neighborhoods Defined by Open Sets

Given a topological space (Ω, T ), a neighborhood of a point ω ∈ Ω is any set
U ∈ T such that x ∈ U . Notice that Ω is a neighborhood of each point.

The space (Ω, T ) is called a Hausdorff space iff each pair of distinct points
of Ω have disjoint neighborhoods. For x ∈ Ω and A ⊆ Ω, we say that x is a
limit point of A iff for each neighborhood U of x, U ∩ {x}c ∩A 6= ∅.

The topological space (Ω, T ) is said to be connected iff there do not exist
two disjoint open sets A and B such that A ∪B = Ω. We can also speak of a
subset of Ω as being connected, using this same condition.

In a space endowed with a metric, which we define below, open sets can be
defined by use of the metric. The corresponding topology can then be defined
as the collection of all open sets according to the definition of openness in that
context, and the topological properties follow in the usual way. In a metric
topological space, we can also define the topological properties in terms of the
metric. These alternate definitions based on a metric are the ones we will use
for sets of real numbers.
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Metrics

A useful structure can be formed by introduction of a function that maps the
product set Ω×Ω into the nonnegative reals. The function is called a metric.

Definition 0.0.1 (metric)
Given a space Ω, a metric over Ω is a function ρ such that for x, y, z ∈ Ω

• ρ(x, y) ≥ 0
• ρ(x, y) = 0 if and only if x = y
• ρ(x, y) = ρ(y, x)
• ρ(x, y) ≤ ρ(x, z) + ρ(z, x).

A metric is also called a distance.
The structure (Ω, ρ) is called a metric space.
A common example of a metric space is the set IR together with ρ(x, y) =

|x− y|, where | · | denotes the ordinary absolute value.
The concept of a metric allows us to redefine the topological properties

introduced above in terms of the metric. The definitions in terms of a metric
are generally more useful, and also a metric allows us to define additional
important properties, such as continuity. Rather than define special sets for
general metric spaces here, we will discuss these sets and their properties in
the context of IR in Section 0.0.5.

Neighborhoods Defined by Metrics

We have defined neighborhoods in general topological spaces, but the concept
of a metric allows us to give a more useful definition of a neighborhood of a
point in a set. For a point x ∈ Ω, a metric ρ on Ω, and any positive number ε,
an ε-neighborhood of x, denoted by Nρ(x, ε), is the set of y ∈ Ω whose distance
from x is less than ε; that is,

Nρ(x, ε)
def
= {y : ρ(x, y) < ε}. (0.0.9)

Notice that the meaning of a neighborhood depends on the metric, but in
any case it is an open set, in the sense made more precise below. Usually, we
assume that a metric is given and just denote the neighborhood as N (x, ε)
or, with the size in place of the metric, as Nε(x). We also often refer to some
(unspecified) ε-neighborhood of x just as a “neighborhood” and denote it as
N (x).

The concept of a neighborhood allows us to give a more meaningful defini-
tion of open sets and to define such things as continuity. These definitions are
consistent with the definitions of the same concepts in a general topological
space, as discussed above.
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Theorem 0.0.2 Every metric space is a Hausdorff space.

Proof. Exercise.

Open and Closed Sets in a Metric Space

The specification of a topology defines the open sets of the structure and
consequently neighborhoods of points. It is often a more useful approach,
however, first to define a metric, then to define neighborhoods as above, and
finally to define open sets in terms of neighborhoods. In this approach, a
subset G of Ω is said to be open if each member of G has a neighborhood that
is contained in G.

Note that with each metric space (Ω, ρ), we can associate a topological
space (Ω, T ), where T is the collection of open sets in (Ω, ρ) that are defined
in terms of the metric. The topology provides the definition of a closed set, as
above; that is, a set A ⊆ Ω is said to be closed iff Ω∩Ac ∈ T , where T is the
collection of open sets defined in terms of the metric. As with the definitions
above for general topological spaces, some sets are both open and closed, and
such sets are said to be clopen.

We note that (IR, ρ) is a Hausdorff space because, given x, y ∈ IR and
x 6= y we have ρ(x, y) > 0 and so N (x, ρ(x, y)/2) and N (y, ρ(x, y)/2) are
disjoint open sets.

We also note that IR is connected, as is any interval in IR. (Connectedness
is a topological property that is defined on page 624.)

We will defer further discussion of openness and related concepts to
page 645 in Section 0.0.5 where we discuss the real number system.

Continuous Functions

A function f from the metric space Ω with metric ρ to the metric space Λ
with metric τ is said to be continuous at the point ω0 ∈ Ω if for any ε > 0
there is a δ > 0 such that f maps Nρ(ω0, ε) into Nτ (f(ω0), δ). Usually, we
assume that the metrics are given and, although they may be different, we
denote the neighborhood without explicit reference to the metrics. Thus, we
write f [N (ω0, ε)] ⊆ N (f(ω0), δ).

We will discuss various types of continuity of real-valued functions over
real domains in Section 0.1.5 beginning on page 720.

Sequences of Sets; lim sup and lim inf

De Morgan’s laws (0.0.2) and (0.0.3) express important relationships between
unions, intersections, and complements.

Two important types of unions and intersections of sequences of sets are
called the lim sup and the lim inf and are defined as
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lim sup
n

An
def
= ∩∞n=1 ∪∞i=n Ai (0.0.10)

and
lim inf

n
An

def
= ∪∞n=1 ∩∞i=n Ai. (0.0.11)

We sometimes use the alternative notation A∗ or limn for lim sup:

A∗ def
= limnAn

def
= lim sup

n
An, (0.0.12)

and A∗ or limn for lim inf:

A∗
def
= limnAn

def
= lim inf

n
An. (0.0.13)

We define convergence of a sequence of sets in terms of lim sup and lim
inf.

The sequence of sets {An} is said to converge if

lim sup
n

An = lim inf
n

An, (0.0.14)

and this set is said to be the limit of the sequence, written simply as limnAn.

A sequence of sets {An} is said to be increasing if

An ⊆ An+1 ∀n, (0.0.15)

and is said to be decreasing if

An+1 ⊆ An ∀n. (0.0.16)

In either case, the sequence is said to be monotone.
An increasing sequence {An} converges to ∪∞n=1An.
A decreasing sequence {An} converges to ∩∞n=1An.

Some Basic Facts about lim sup and lim inf

Two simple relationships that follow immediately from the definitions:

lim sup
n

An ⊆ ∪∞i=kAi ∀k ≥ 1 (0.0.17)

and
∩∞i=k Ai ⊆ lim inf

n
An ∀k ≥ 1, (0.0.18)

which of course leads to

lim inf
n

An ⊆ lim sup
n

An. (0.0.19)
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To see the latter fact directly, consider any ω ∈ lim infn An:

ω ∈ ∪∞n=1 ∩∞i=n Ai ⇐⇒ ∃n such that ∀i ≥ n, ω ∈ Ai,

so ω ∈ lim supnAn.
By De Morgan’s laws, we have the useful relationships between lim sup

and lim inf and sequences of complementary sets:

(
lim inf

n
An

)c

= lim sup
n

Ac
n (0.0.20)

and (
lim sup

n
An

)c

= lim inf
n

Ac
n. (0.0.21)

We can interpret lim sup and lim inf in intuitive terms. From the definition
lim supnAn = ∩∞n=1 ∪∞i=n Ai, we have immediately

lim sup
n

An = {ω |ω ∈ Ai for infinitely many i}, (0.0.22)

and
ω ∈ lim sup

n
An ⇐⇒ ∀n ∃i ≥ n 3 ω ∈ Ai. (0.0.23)

From the definition lim infnAn = ∪∞n=1 ∩∞i=n Ai, similarly we have

lim inf
n

An = {ω |ω ∈ Ai for all but a finite number of i}, (0.0.24)

and
ω ∈ lim inf

n
An ⇐⇒ ∃n 3 ∀i ≥ n, ω ∈ Ai. (0.0.25)

While at first glance, equations (0.0.22) and (0.0.24) may seem to say the
same thing, they are very different, and in fact characterize lim sup and lim
inf respectively. They could therefore be used as definitions of lim sup and lim
inf. Exercise 0.0.3 asks you to prove these two equations.

Examples

Example 0.0.1 (Alternating-constant series)
Consider the alternating-constant series of abstract sets:

A2n = B and A2n+1 = C.

Then
lim sup

n
An = B ∪ C

and
lim inf

n
An = B ∩ C.

Theory of Statistics c©2000–2025 James E. Gentle



0.0 Some Basic Mathematical Concepts 629

Example 0.0.2 (Alternating series of increasing and decreasing intervals)

Now let the sample space be IR, and consider the intervals

A2n =] − n, n[ and A2n+1 =]0, 1/n[.

Then
lim sup

n
An = IR

and
lim inf

n
An = ∅.

Example 0.0.3
Now, again in IR, consider the sequence of intervals

An =





]
1
n ,

3
4 − 1

n

[
for n = 1, 3, 5, . . .

]
1
4 − 1

n , 1 + 1
n

[
for n = 2, 4, 6, . . .

In this case,
lim sup

n
An =]0, 1],

and

lim inf
n

An =

[
1

4
,
3

4

[
.

0.0.3 Binary Operations and Algebraic Structures

In a given set S we may find it useful to define a binary operation; that is, a
way of combining two elements of the set to form a single entity. If x, y ∈ S,
we may denote the binary operation as ◦ and we denote the result of the
combination of x and y under ◦ as x ◦ y.

Given a set S and a binary operation ◦ defined on it, various properties of
the operation may be of interest:

closure We say S is closed wrt ◦ iff

x, y ∈ S =⇒ x ◦ y ∈ S.

commutativity We say ◦ defined in S is commutative iff

x, y ∈ S =⇒ x ◦ y = y ◦ x.

associativity We say ◦ defined in S is associative iff

x, y, z ∈ S =⇒ x ◦ (y ◦ z) = (x ◦ y) ◦ z.
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Groups

One of the most useful algebraic structures is a group, which is a set and an
operation (S, ◦) with special properties.

Definition 0.0.2 (group)
Let S be a nonempty set and let ◦ be a binary operation. The structure (S, ◦)
is called a group if the following conditions hold.

• x1, x2 ∈ S ⇒ x1 ◦ x2 ∈ S (closure);
• ∃ e ∈ S 3 ∀x ∈ S, e ◦ x = x (identity);
• ∀x ∈ S ∃x−1 ∈ S 3 x−1 ◦ x = e (inverse);
• x1, x2, x3 ∈ S ⇒ x1 ◦ (x2 ◦ x3) = (x1 ◦ x2) ◦ x3 (associativity).

If a group contains only one element, it is called a trivial group, and obvi-
ously is not of much interest.

Notice that the binary operation need not be commutative, but some spe-
cific pairs commute under the operation. In particular, we can easily see that
x ◦ e = e◦x and x ◦x−1 = x−1 ◦x (exercise). We can also see that e is unique,
and for a given x, x−1 is unique (exercise).

If the binary operation in the group (S, ◦) is commutative, then the group
is called a commutative group or an Abelian group.

A simple example of an Abelian group is the set of all real numbers together
with the binary operation of ordinary addition.

We often denote a group by a single symbol, say G, for example, and we
use the phrase x ∈ G to refer to an element in the set that is part of the
structure G; that is, if G = (S, ◦), then x ∈ G ⇔ x ∈ S.

A very important group is formed on a set of transformations.

Example 0.0.4 Group of bijections
Let X be a set and let G be a set of bijective functions g on X. For g1, g2 ∈ G,
let g1 ◦ g2 represent function composition; that is, for x ∈ X, g1 ◦ g2(x) =
g1(g2(x)). We see that

• g1 ◦ g2 is a bijection on X, so G is closed with respect to ◦;
• the function ge(x) = x is a bijection, and ∀ g ∈ G, ge ◦ g = g (identity);
• ∀ g ∈ G ∃ g−1 ∈ G 3 g−1 ◦ g = ge (inverse);
• g1, g2, g3 ∈ G ⇒ g1◦(g2◦g3) = (g1◦g2)◦g3 (associativity); that is, ∀x ∈ X,

either grouping of the operations is g1(g2(g3(x))).

Therefore, (G, ◦) is a group. The group of bijections in general is not Abelian.

In this Example 0.0.4, we began with bijective functions and showed that
they formed a group. We could have begun with a group of functions (and
obviously they must be onto functions), and showed that they must be 1:1
(Exercise 0.0.5).
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Subgroups and Generating Sets

Any subset of the set on which the group is defined that is closed and contains
the identity and all inverses forms a group with the same operation as the
original group. This subset together with the operation is called a subgroup.
We use the standard terminology of set operations for operations on groups.

A set G1 together with an operation ◦ defined on G1 generates a group G
that is the smallest group (G, ◦) such that G1 ⊆ G. If G1 and G2 are groups
over G1 and G2 with a common operation ◦, the group generated by G1 and
G2 is (G, ◦), where G is the smallest set containing G1 and G2 so that (G, ◦)
is a group. Notice that the G may contain elements that are in neither G1 nor
G2.

Homomorphisms

It is often of interest to consider relationships between two groups. The sim-
plest and most useful is a morphism, or homomorphism. (The two words are
synonymous; I will generally use the latter.) Given two groups G = (G, ◦) and
G∗ = (G∗, �), a homomorphism from G to G∗ is a function f from G to G∗

such that for g1, g2 ∈ G,

f(g1 ◦ g2) = f(g1) � f(g2).

Often in applications, G and G∗ are sets of the same kind of objects, say
functions for example, and the operations ◦ and � are the same, say function
composition.

If the homomorphism from G to G∗ is a bijection, then the homomorphism
is called an isomorphism, and since it has an inverse, we say the two groups
are isomorphic. Isomorphic groups of transformations are the basic objects
underlying the concept of equivariant and invariant statistical procedures.

Structures with Two Binary Operators

Often it is useful to define two different binary operators, say + and ◦ over
the same set. An important type of relationship between the two operators is
called distributivity:

distributivity We say ◦ is distributive over + in S iff

x, y, z ∈ S =⇒ x ◦ (y + z) = (x ◦ y) + (x ◦ z) ∈ S.

Another very useful algebraic structure is a field, which is a set and two
binary operations (S,+, ◦) with special properties.

Definition 0.0.3 (field)
Let S be a set with two distinct elements and let + and ◦ be binary operations.
The structure (S,+, ◦) is called a field if the following conditions hold.
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(f1) x1, x2 ∈ S ⇒ x1 + x2 ∈ S (closure of +);
(f2) ∃ 0 ∈ S 3 ∀x ∈ S, 0 + x = x (identity for +);
(f3) ∀x ∈ S ∃ − x ∈ S 3 −x ◦ x = e (inverse wrt +);
(f4) x1, x2 ∈ S ⇒ x1 + x2 = x2 + x1 (commutativity of +);
(f5) x1, x2, x3 ∈ S ⇒ x1 ◦ (x2 ◦ x3) = (x1 ◦ x2) ◦ x3 (associativity of +).
(f6) x1, x2 ∈ S ⇒ x1 ◦ x2 ∈ S (closure of ◦);
(f7) ∃ 1 ∈ S 3 ∀x ∈ S, 1 ◦ x = x (identity for ◦);
(f8) ∀x 6= 0 ∈ S ∃x−1 ∈ S 3 x−1 ◦ x = 1 (inverse wrt ◦);
(f9) x1, x2 ∈ S ⇒ x1 ◦ x2 = x2 ◦ x1 (commutativity of ◦);
(f10) x1, x2, x3 ∈ S ⇒ x1 ◦ (x2 ◦ x3) = (x1 ◦ x2) ◦ x3 (associativity of ◦).
(f11) x1, x2, x3 ∈ S ⇒ x1 ◦ (x2 + x3) = (x1 ◦ x2) + (x1 ◦ x3) (distributivity of
◦ over +).

Although a field is a structure consisting of a set and two binary operations,
(S,+, ◦), we often refer to the field by the name of the set, S, in this case.

Notice that the word “field” is also used in a slightly different sense to refer
to a structure consisting of a collection of sets and the unary operation of set
complementation and the binary operation of set union (see Definition 0.1.3
on page 693).

For x1, x2 in the field (S,+, ◦), we will adopt the notation x1−x2 to mean
the element d ∈ S, such that d + x2 = x1, and if x2 6= 0, we will adopt the
notation x1/x2 to mean the element q ∈ S, such that qx2 = x1.

If x is an element in a field (S,+, ◦), and n is an integer (not necessarily
an element of the field), then by the expression nx we mean “x+ · · ·+ x” n
times if n is positive, we mean “0” if n is zero, and we mean “−x− · · ·−x” n
times if n is negative. Thus, we have a multiplication-type operation between
an integer and any element of a field, and the operation is closed within the
field. Also, by the expression xn we mean “x ◦ · · · ◦ x” n times if n is positive,
we mean “1” if n is zero, and we mean “(1/x) ◦ · · · ◦ (1/x)” n times if n is
negative.

A ring is a structure having all properties of a field except, possibly, no
inverses wrt the second operation, that is, lacking property (f8), and possibly
having only one element (that is, a ring can be trivial). Sometimes a ring in
which the second operation is commutative (as we have required and as is
always required for a field) is called a commutative ring, and a structure that
may possibly lack that commutativity is called a ring.

The concept of homomorphisms between fields or between rings follows
similar development as that of homomorphisms between groups.

Examples

The set of integers together with the operations of ordinary addition and
multiplication form a ring, but do not form a field.
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The set of rational numbers (which are numbers that can be represented
in the form a/b, where a and b are integers) is a field. Other common examples
of fields are the sets of all real numbers, of all complex numbers, and of all
p-adic numbers, each together with the binary operations of ordinary addition
and multiplication.

For our purposes, the most important of these is the field of real numbers.
We denote this field as IR; that is, IR = (S,+, ◦), where S is the set of all real
numbers, + is ordinary addition, and ◦ is ordinary multiplication. (Of course,
we also use the symbol IR to denote just the set of all real numbers.)

While I generally attempt to give due attention to IRd for d = 1, 2, . . .,
because for d > 1, there is only one useful operation that takes IRd × IRd into
IRd (that is, addition), there is no useful field defined on IRd for d > 1.

Note that the extended reals IR together with the extensions of the defi-
nitions of + and ◦ for −∞ and ∞ (see page 640) is not a field. (Operations
for some pairs are not defined, and additional elements fail to have inverses.)

In at least two areas of statistics (design of experiments and random num-
ber generation), fields with a finite number of elements are useful. A finite
field is sometimes called a Galois field. We often denote a Galois field with m
elements as IG(m).

A field can be defined by means of an addition table and a multiplication
table. For example a IG(5) over the set {0, 1, 2, 3, 4} together with the “addi-
tion” operation + with identity 0 and the “multiplication” operation ◦ with
identity 1 can be defined by giving the tables below.

Table 0.1. Operation Tables for IG(5)

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

◦ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Because the tables are symmetric, we know that the operations are com-
mutative. We see that each row in the addition table contains the additive
identity; hence, each element has an additive inverse. We see that each row
in the multiplication table, except for the row corresponding to additive iden-
tity contains the multiplicative identity; hence, each element except for the
additive identity has a multiplicative inverse.

Also we see, for example, that the additive inverse of 3, that is, −3, is 1,
and the multiplicative inverse of 3, that is, 3−1, is 2.

In fields whose elements are integers, the smallest positive integer k such
that k ◦ 1 = 0 is called the characteristic of the field. It is clear that no such
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integer exists for an infinite field, so we define the characteristic of an infinite
field to be 0.

The number of elements of any finite field, called its order, is of the form
pn, where p is a prime number and n is a positive integer; conversely, for
every prime number p and positive integer n, there exists a finite field with
pn elements. (See Hewitt and Stromberg (1965) for a proof.) In the case of
a field of order pn, p is the characteristic of the field. The term “order” has
other meanings in regard to fields, as we see below.

Ordered Fields

We have defined ordered sets in Section 0.0.1 in terms of the existence of a
binary relation. We now define ordered fields in terms of the field operations.

Definition 0.0.4 (ordered field)
A field S is said to be ordered if there is a subset P of S such that

• P ∩ (−P ) = ∅;
• P ∪ {0} ∪ (−P ) = S;
• x, y ∈ P ⇒ x+ y, x ◦ y ∈ P .

Notice that this is only a partial ordering; it is neither a linear ordering nor
a well-ordering. Applying this definition to the real numbers, we can think of
P as the positive reals, and the elements of −P as the negative reals. Notice
that 1 must be in P (because a ∈ P ⇒ a2 ∈ P and b ∈ −P ⇒ b2 ∈ P ) and so
an ordered field must have characteristic 0; in particular, a finite field cannot
be ordered.

We define the binary relations “≤”, “<”,“≥”, and “>” in the ordered field
S in a way that is consistent with our previous use of those symbols. For
example, for x, y ∈ S, x < y or y > x implies y − x ∈ P .

We now define a stronger ordering.

Definition 0.0.5 (Archimedean ordered field)
An ordered field S defined by the subset P is said to be Archimedean ordered
if for all x ∈ S and all y ∈ P , there exists a positive integer n such that
ny > x.

An Archimedean ordered field must be dense, in the sense that we can find
an element between any two given elements.

Theorem 0.0.3
Let S be an Archimedean ordered field, and let x, y ∈ S such that x < y. Then
there exists integers m and n such that m/n ∈ S and

x <
m

n
< y.
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Proof.
Exercise.

The practical application of Theorem 0.0.3 derives from its implication
that there exists a rational number between any two real numbers.

0.0.4 Linear Spaces

An interesting class of spaces are those that have a closed commutative and
associative addition operation for all elements, an additive identity, and each
element has an additive inverse (that is, the spaces are Abelian groups under
that addition operation), and for which we define a multiplication of real
numbers and elements of the space. Such spaces are called linear spaces, and
we will formally define them below. Linear spaces are also called vector spaces,
especially if the elements are n-tuples of real numbers, called real vectors.

We denote the addition operation by “+”, the additive identity by “0”,
and the multiplication of a real number and an element of the space by juxta-
position. (Note that the symbol “+” also denotes the addition in IR and “0”
also denotes the additive identity in IR.)

Definition 0.0.6 (linear space)
A structure (Ω,+) in which the operator + is commutative and associative,
and for which the the multiplication of a real number a and an element of Ω
x is defined as a closed operation in Ω (whose value is denoted as ax) is called
a linear space if for any x, y ∈ Ω and any a, b ∈ IR,

• a(x+ y) = ax+ ay,
• (a+ b)x = ax+ bx,
• (ab)x = a(bx),
• 1x = x, where 1 is the multiplicative identity in IR.

The “axpy operation”, ax+y, is the fundamental operation in linear spaces.
The two most common linear spaces that we will encounter are those whose

elements are real vectors and those whose elements are real-valued functions.
The space IRd for any integer d ≥ 1 is a linear space. Linear spaces consisting
of real vectors are subspaces of IRd, for some integer d ≥ 1.

Linear spaces, however, may be formed from various types of elements.
The elements may be sets, for example. In this case, x ∈ Ω would mean
that x = {xi | i ∈ I}, “+” may represent set union, and “0” may be ∅.
The multiplication between real numbers and elements of the space could
be defined in various ways; if the sets in Ω are sets of real numbers, then
“ax” above could be interpreted as ordinary multiplication of each element:
ax = {axi | i ∈ I}.

Two synonyms for “linear spaces” are “vector spaces” and “linear mani-
folds”, although “vector space” is often often restricted to linear spaces over
IRd, and “linear manifold” is used differently by different authors.
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Linear Combinations, Linear Independence, and Basis Sets

Given x1, x2, . . . ∈ Ω and c1, c2, . . . ∈ IR,
∑

i cixi is called a linear combination.
A set of elements x1, x2, . . . ∈ Ω are said to be linearly independent if∑

i cixi = 0 for c1, c2, . . . ∈ IR implies that c1 = c2 = · · · = 0.
Given a linear space Ω and a set B = {bi} of linearly independent elements

of Ω if for any element x ∈ Ω, there exist c1, c2, . . . ∈ IR such that x =
∑

i cibi,
then B is called a basis set of Ω.

Subsets of Linear Spaces

Interesting subsets of a given linear space Ω are formed as {x ; x ∈ Ω, g(x) =
0}, for example, the plane in IR3 defined by c1x1 + c2x2 + c3x3 = c0 for some
constants c0, c1, c2, c3 ∈ IR and where (x1, x2, x3) ∈ IR3.

Many subsets of IRd are of interest because of their correspondence to
familiar geometric objects, such as lines, planes, and structures of finite extent
such as cubes, and spheres. An object in higher dimensions that is analogous
to a common object in IR3 is often called by the name of the three-dimensional
object preceded by “hyper-”; for example, hypersphere.

A subset of a linear space may or may not be a linear space. For example,
a hyperplane is a linear space only if it goes through the origin. Other subsets
of a linear space may have very little in common with a linear space, for
example, a hypersphere.

A hyperplane in IRd is often of interest in statistics because of its use
as a model for how a random variable is affected by covariates. Such a linear
manifold in IRd is determined by d points that have the property of affine inde-
pendence. A set of elements x1, . . . , xd ∈ Ω are said to be affinely independent
if x2 − x1, . . . , xd − x1 are linearly independent. Affine independence in this
case insures that the points do not lie in a set of less than d− 1 dimensions.

Inner Products

We now define a useful real-valued binary function on linear spaces.

Definition 0.0.7 (inner product)
If Ω is a linear space, an inner product on Ω is a real-valued function, denoted
by 〈x, y〉 for all x and y in Ω, that satisfies the following three conditions for
all x, y, and z in Ω.

1. Nonnegativity and mapping of the identity:
if x 6= 0, then 〈x, x〉 > 0 and 〈0, x〉 = 〈x, 0〉 = 〈0, 0〉 = 0.

2. Commutativity:
〈x, y〉 = 〈y, x〉.

3. Factoring of scalar multiplication in inner products:
〈ax, y〉 = a〈x, y〉 for real a.
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4. Relation of vector addition to addition of inner products:
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

Inner products are often called dot products, although “dot product” is
often used to mean a specific inner product.

A linear space together with an inner product, (Ω, 〈·, ·〉), is called an inner
product space.

A useful property of inner products is the Cauchy-Schwarz inequality:

〈x, y〉 ≤ 〈x, x〉 12 〈y, y〉 12 . (0.0.26)

The proof of this is a classic:
first form the nonnegative polynomial in t,

0 ≤ 〈tx+ y, tx+ y〉 = 〈x, x〉t2 + 2〈x, y〉t+ 〈y, y〉,

and then, because there can be at most one real root in t, require that the
discriminant

(2〈x, y〉)2 − 4〈x, x〉〈y, y〉
be nonpositive. Finally, rearrange to get inequality (0.0.26).

Inner product spaces give rise to the very useful concept of orthogonality.
If (Ω, 〈·, ·〉) is an inner product space, the elements x, y ∈ Ω if 〈x, y〉 = 0 we
write x ⊥ y and say that x and y are orthogonal. There are many instances in
which we mention orthogonality, but we defer more discussion to Section 0.3.

Norms

We now define a useful function from a linear space to the nonnegative reals.

Definition 0.0.8 (norm)
If Ω is a linear space, a norm on Ω is a function, denoted by ‖ · ‖, from Ω to
ĪR+ that satisfies the following three conditions for all x and y in Ω.

1. Nonnegativity and mapping of the identity:
if x 6= 0, then ‖x‖ > 0, and ‖0‖ = 0

2. Relation of scalar multiplication to real multiplication:
‖ax‖ = |a| ‖x‖ for real a

3. Triangle inequality:
‖x + y‖ ≤ ‖x‖+ ‖y‖

A linear space together with a norm, (Ω, ‖ · ‖), is called a normed linear
space.

Normed linear spaces give rise to the very useful concept of projections.
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Definition 0.0.9 (projection)
Let (Ω, ‖ · ‖) be a normed linear space and let (Λ, ‖ · ‖) be a normed linear
subspace; that is, (Λ, ‖ · ‖) is a normed linear space and Λ ⊆ Ω. For x ∈ Ω,
the projection of x onto Λ is xp such that

‖x− xp‖ = inf
y∈Λ
‖x− y‖.

We can show that such a xp exists and that it is unique. (See, for example,
Bachman and Narici (2000), Section 10.4.) There are many instances in which
we mention projections. They arise commonly in linear algebra and we will
discuss them in more detail in Section 0.3. Projections are also important in
probability and statistics. We discuss them in this context in Section 1.5.3 on
page 116.

Pseudonorms

If, in the first condition in Definition 0.0.8, the requirement if x 6= 0, then
‖x‖ > 0 is replaced by

1. if x 6= 0, then ‖x‖ ≥ 0 and ‖0‖ = 0,

the resulting function is called a pseudonorm, or a seminorm. (Here, I am
considering these two terms to be synonyms. Some people use one or the
other of these terms as I have defined it and use the other term for some
different functional.)

In some linear spaces whose elements are sets, we define a real nonnega-
tive “measure” function on subsets of the space (see Section 0.1). A set whose
measure is 0 is negligible for most purposes of interest In some cases, however,
∅ is not the only set with measure 0. In such contexts, the requirement on
a norm that ‖x‖ = 0 ⇒ x = ∅ is generally too restrictive to be useful. One
alternative is just to use a pseudonorm in such a context, but the pseudonorm
is not restrictive enough to be very useful. The best way out of this dilemma
is to define equivalence classes of sets such that two sets whose difference has
measure zero are equivalent. In such equivalence classes the sets are said to
be the same “almost everywhere”. (See page 710 for a more careful develop-
ment of these ideas.) Following this approach, we may qualify the implication
implicit in the first condition in the list above by “almost everywhere”; that
is, ‖x‖ = 0 implies that the measure of x is 0.

Norms and Metrics Induced by an Inner Product

A norm can be defined simply in terms of an inner product.

Theorem 0.0.4
Let 〈·, ·〉 be an inner product on Ω. Then

√
〈x, x〉, for x in Ω, is a norm on

Ω.
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Proof.
Exercise. (Using the properties of 〈x, x〉 given in Definition 0.0.7, show that√
〈x, x〉 satisfies the properties of Definition 0.0.8. The only one that is non-

trivial is the triangle inequality; Exercise 0.0.10.)
Given the inner product, 〈·, ·〉, ‖x‖ =

√
〈x, x〉, is called the norm induced

by that inner product.
A metric can be defined simply in terms of a norm.

Theorem 0.0.5
Let ‖ · ‖ be a norm on Ω. Then ‖x− y‖, for x, y ∈ Ω, is a metric on Ω.

Proof.
Exercise 0.0.11. (This is easily seen from the definition of metric, Defini-
tion 0.0.1, on page 625.)

This metric is said to be induced by the norm ‖ · ‖. A pseudonorm induces
a pseudometric in the same way.

Notice also that we have a sort of converse to Theorem 0.0.5: that is, a
metric induces a norm. Given the metric ρ(x, y), ‖x‖ = ρ(x, 0) is a norm.
(Here, in general, 0 is the additive identity of the linear space.)

The terms “normed linear space” and “linear metric space” are therefore
equivalent, and we will use them interchangeably.

Countable Sequences and Complete Spaces

Countable sequences of elements of a linear metric space, {xi}, for i = 1, 2, . . .,
are often of interest. The limit of the sequence, that is, limi→∞ xi, is of interest.
The first question, of course, is whether it exists. An oscillating sequence such
as −1,+1,−1,+1, . . . does not have a limit. Likewise, a divergent sequence
such as 1, 2, 3, . . . does not have a limit. If the sequence has a finite limit, we
say the sequence converges, but the next question is whether it converges to
a point in the given linear space.

Let A = {xi} be a countable sequence of elements of a linear metric space
with metric ρ(·, ·). If for every ε > 0, there exists a constant nε such that

ρ(xn, xm) < ε ∀m, n > nε, (0.0.27)

then A is called a Cauchy sequence. Notice that the definition of a Cauchy
sequence depends on the metric.

A sequence of elements of a linear metric space converges only if it is a
Cauchy sequence.

A normed linear space is said to be complete if every Cauchy sequence in
the space converges to a point in the space.

A complete normed linear space is called a Banach space.
A Banach space whose metric arises from an inner product is called a

Hilbert space. Equivalently, a Hilbert space is the same as a complete inner
product space.
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Given a metric space (Ω, ρ), the space (Ωc, ρc) is called the completion of
(Ω, ρ) if

• Ω is dense in Ωc

• ρc(x, y) = ρ(x, y) ∀x, y ∈ Ω.

For any given metric space, the completion exists. We show this by first
defining an equivalence class of sequences to consist of all sequences {xn} and
{ym} such that ρ(xn, ym)→ 0, and then defining ρc over pairs of equivalence
classes.

In the foregoing we have assumed very little about the nature of the point
sets that we have discussed. Lurking in the background, however, was the very
special set of real numbers. Real numbers are involved in the definition of a
linear space no matter the nature of the elements of the space. Real numbers
are also required in the definitions of inner products, norms, and metrics over
linear spaces no matter the nature of the elements of the spaces.

We now turn to the special linear space, the real number system, and
provide specific instantiations of some the concepts discussed previously. We
also introduce additional concepts, which could be discussed in the abstract,
but whose relevance depends so strongly on the real number system that
abstraction would be a distraction.

0.0.5 The Real Number System

The most important sets we will work with are sets of real numbers or product
sets of real numbers. The set of real numbers together with ordinary addition
and multiplication is a field (page 631); it is a Hausdorff space (page 624);
it is a complete metric space (page 639); it is a connected topological space
(page 624); it is a Banach space (page 639); it is a Hilbert space (with the
Euclidean norm) (page 639); et cetera, et cetera.

We denote the full set of real numbers, that is, the “reals”, by IR, the set
of positive real numbers by IR+, and the set of negative real numbers by IR−.

For a positive integer d, we denote the product set
∏d

i=1 IR as IRd. The reals
themselves and these three sets formed from them are all clopen.

The Extended Reals

The reals do not include the two special elements ∞ and −∞, but we some-
times speak of the “extended reals”, which we denote and define by

IR
def
= IR ∪ {−∞,∞}. (0.0.28)

This notation may seem to imply that IR is the closure of IR, and to some
extent, that is the case; however, we should recall that
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IR =]−∞,∞[

is itself a closed set. (It is also open; that is, it is clopen.)
We define operations with the two elements ∞ and −∞ as follows (where

“×” means multiplication):

• ∀x ∈ IR, −∞ < x <∞
• ∀x ∈ IR, x±∞ = ±∞+ x = ±∞
• ∀x ∈ IR ∪ {∞}, x× ±∞ = ±∞× x = ±∞
• ∀x ∈ IR ∪ {−∞}, x× ±∞ = ±∞× x = ∓∞
• ∀x ∈ IR, x/±∞ = 0
• ∀x ∈ IR+, ±∞/x = ±∞
• ∀x ∈ IR−, ±∞/x = ∓∞.

Other operations may or may not be defined, depending on the context.
For example, often in probability theory or measure theory, we may use the
definition

• 0×±∞ = ±∞× 0 = 0.

In numerical mathematics, we may use the definition

• ∀x ∈ IR, x/0 = sign(x)∞.

The other cases,
∞−∞, ±∞/±∞, ±∞/∓∞

are almost aways undefined; that is, they are considered indeterminate forms.
Notice that the extended reals is not a field, but in general, all of the laws

of the field IR hold so long as the operations are defined.
The finite reals without ∞ and −∞, are generally more useful. By not

including the infinities in the reals, that is, by working with the field of reals,
we often make the discussions simpler.

Important Subsets of the Reals

We denote the full set of integers by ZZ, and the set of positive integers by
ZZ+. The positive integers are also called the natural numbers. Integers are
reals and so ZZ ⊆ IR and ZZ+ ⊆ IR+. We often seem implicitly to include∞ as
an integer in expressions such as

∑∞
i=1. Such an expression, however, should

be interpreted as limn→∞
∑n

i=1.
The set of numbers that can be represented in the form a/b, where a, b ∈ ZZ,

are the rational numbers. The rationals can be mapped to the integers; hence
the set of rationals is countable.

The closure (page 623) of the set of rational numbers is IR; hence, the
rationals are dense in IR (page 623). Because the rationals are countable and
are dense in IR, IR is separable (page 624).
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Norms and Metrics on the Reals

The simplest and most commonly used norms on IRd are the Lp norms, which

for p ≥ 1 and x ∈ IRd are defined by

‖x‖p =

(
d∑

i=1

|xi|p
)1/p

. (0.0.29)

For this to be a norm, for any x, y ∈ IRd and 1 ≤ p, we must have

(
d∑

i=1

|xi + yi|p
)1/p

≤
(

d∑

i=1

|xi|p
)1/p

+

(
d∑

i=1

|yi|p
)1/p

. (0.0.30)

This inequality is called Minkowski’s inequality, and hence the norm itself is
sometimes called the Minkowski norm.

A straightforward proof of Minkowski’s inequality is based on Hölder’s
inequality. Hölder’s inequality, using the same notation as above, except with
the requirement 1 < p, is

d∑

i=1

|xiyi| ≤
(

d∑

i=1

|xi|p
)1/p

+

(
d∑

i=1

|yi|p/(p−1)

)(p−1)/p

. (0.0.31)

To prove Hölder’s inequality, we use the concavity property of the log
function. For 0 < a1, a2 and 1 < p, because 1/p+(p−1)/p = 1, the concavity
of the log function yields

log(a1)/p+ log(a2)(p− 1)/p ≤ log(a1/p+ a2(p− 1)/p),

or
a
1/p
1 a

(p−1)/p
2 ≤ a1/p+ a2(p− 1)/p. (0.0.32)

Now, if |xi| > 0 and |yi| > 0, let

a1 =
|xi|p∑d
i=1 |xi|p

, a2 =
|yi|p/(p−1)

∑d
i=1 |yi|p/(p−1)

.

Substituting these in equation (0.0.32) and then summing over i, we have

d∑

i=1

(
|xi|p∑d
i=1 |xi|p

)1/p(
|yi|p/(p−1)

∑d
i=1 |yi|p/(p−1)

)(p−1)/p

≤

d∑

i=1

(
1

p

|xi|p∑d
i=1 |xi|p

+
p− 1

p

|yi|p/(p−1)

∑d
i=1 |yi|p/(p−1)

)

= 1.
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Writing the summands in the numerators as |xi| and |yi| and simplifying the
resulting expression, we have Hölder’s inequality for the case where all xi and
yi are nonzero. We next consider the case where some are zero, and see that
the same proof holds; we just omit the zero terms. For the case that all xi

and/or yi are zero, the inequality holds trivially.
For Minkowski’s inequality, we first observe that it holds if p = 1, and it

holds trivially if either
∑d

i=1 |xi| = 0 or
∑d

i=1 |yi| = 0. For p > 1, we first
obtain from the left side of inequality (0.0.30)

d∑

i=1

|xi + yi|p =

d∑

i=1

|xi + yi||xi + yi|p−1

≤
d∑

i=1

|xi||xi + yi|p−1 +

d∑

i=1

|yi||xi + yi|p−1.

We next apply Hölder’s inequality, and simplify under the assumption that
neither

∑d
i=1 |xi| = 0 nor

∑d
i=1 |yi| = 0.

Because Hölder’s inequality implies Minkowski’s inequality, the Lp norm is
also called the Hölder norm. (As with many things in mathematics, the impli-
cations of eponyms are ambiguous. Otto Hölder stated what we call Hölder’s
inequality in an open publication before Hermann Minkowski published what
we call Minkowski’s inequality. But who knows?)

We see from the definition that ‖x‖p is a nonincreasing function in p, that
is,

1 ≤ p1 < p2 ⇒ ‖x‖p1 ≥ ‖x‖p2 . (0.0.33)

(Exercise.)
In the case of d = 1, the Lp is just the absolute value for any p; that is,

for x ∈ IR, ‖x‖ = |x|.
Because

lim
p→∞

‖x‖p = max({|xi|}), (0.0.34)

we formally define the L∞ norm of the vector x = (x1, . . . , xd) as max({|xi|}).
It is clear that it satisfies the properties of a norm.

Metrics are often defined in terms of norms of differences (Theorem 0.0.5).
Because the Lp norm is a common norm on IRd, a common metric on IRd is
the Lp metric, ρp(x, y) = ‖x− y‖p.

The Lp metric is also called the Minkowski metric or the Minkowski dis-
tance.

The most common value of p is 2, in which case we have the Euclidean
metric (or Euclidean distance):

‖x− y‖2 =

(
d∑

i=1

(xi − yi)
2

)1/2

. (0.0.35)

We often write the Euclidean distance between x and y as ‖x− y‖.
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Any of these metrics allows us to define neighborhoods and open sets, and
to define convergence of sequences.

These norms, inequalities, and metrics over the reals have analogues over
random variables; see Appendix B, page 845.

Ordering the Reals

The field of real numbers IR is complete and Archimedean ordered; in fact,
the reals can be defined as a (any) complete Archimedean ordered field. The
ordering properties correspond to our intuitive understanding of ordering.

The more useful ordering of the reals is the linear ordering that results
from the usual inequality relation. On the other hand, IRd cannot be linearly
ordered in an intuitive or universally useful way. An ordering of x, y ∈ IRd

based on notions of x < y or x ≤ y are rarely useful in statistical applications
(see Section 0.0.1 on page 621). Most useful orderings are based on relations
between ‖x‖ and ‖y‖, but their usefulness depends on the application. (See
Gentle (2009), pages 538 to 549, for some discussion of this.)

In order to simplify the following discussion, we will focus on subsets of
IR. Because the reals are not a well-ordered set using the usual inequality
relation, we find it convenient to define limiting maxima and minima based
on that relation.

For X ⊆ IR, the supremum of X or least upper bound of X, is the number

x∗ = sup(X), (0.0.36)

defined by
∀x ∈ X, x ≤ x∗

and
∀ε > 0, ∃x ∈ X 3 x > x∗ − ε.

The infimum of X, that is, the greatest lower bound of X, is written as

x∗ = inf(X) (0.0.37)

and is defined similarly, with the inequalities reversed.
Examples:

• Let A = {x}. Then sup(A) = inf(A) = x.
• Let A = {x | x = 1/i, i ∈ ZZ+}. Then sup(A) = 1 and inf(A) = 0. Notice

that inf(A) /∈ A.
• Let A = {x | i, i ∈ ZZ+}. Then sup(A) =∞ and inf(A) = 1. Alternatively,

we may say that sup(A) does not exist. In any event, sup(A) /∈ A.

An important fundamental property of the reals is that every bounded
set of reals has a supremum that is a real number. This property is often
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called Dedekind completeness. In the usual axiomatic development of the reals,
Dedekind completeness is an axiom.

The maximum of a well-ordered set is the largest element of the set, if it
exists; likewise, the minimum of a well-ordered set is the smallest element of
the set, if it exists. The maximum and/or the minimum may not exist if the
set has an infinite number of elements. This can happen in two ways: one, the
set may have no bound; and another, the bound may not be in the set.

Sets of Reals; Open, Closed, Compact

For sets of reals we can redefine various topological properties in a way that
is simpler but yet consistent with our discussion of general topologies on
page 623. These concepts yield important kinds of sets, such as open, closed,
compact, and convex sets (see page 658).

A set A of reals is called open if for each x ∈ A, there exists a δ > 0 such
that for each y with ‖x− y‖ < δ belongs to A.

If A is a set of reals and if for a given x ∈ A, there exists a δ > 0 such that
for each y with ‖x− y‖ < δ belongs to A, then x is called an interior point of
A.

We denote the set of all interior points of A as

A◦

and call it the interior of A. Clearly A◦ is open, and, in fact, it is the union
of all open subsets of A.

A real number (vector) x is called a point of closure of a set A of real
numbers (vectors) if for every δ > 0 there exists a y in A such that ‖x−y‖ < δ.
(Notice that every y ∈ A is a point of closure of A.)

We denote the set of points of closure of A by

A,

and a set A is called closed if A = A. (This is the same definition and notation
as for any topology.)

The boundary of the set A, denoted ∂A, is the set of points of closure of
A that are not interior points of A; that is,

∂A = A−A◦. (0.0.38)

As we have mentioned above, in any topological space, a set A is said
to be compact if each collection of open sets that covers A contains a finite
subcollection of open sets that covers A. Compactness of subsets of the reals
can be characterized simply, as in the following theorem.

Theorem 0.0.6 (Heine-Borel theorem)
A set of real numbers is compact iff it is closed and bounded.
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For a proof of this theorem, see a text on real analysis, such as Hewitt and Stromberg
(1965). Because of the Heine-Borel theorem, we often take closed and bounded
as the definition of a compact set of reals.

Intervals in IR

A very important type of set is an interval in IR, which is a connected subset
of IR. Intervals are the basis for building important structures on IR.

We denote an open interval with open square brackets; for example ]a, b[
is the set of all real x such that a < x < b. We denote a closed interval with
closed square brackets; for example [a, b] is the set of all real x such that
a ≤ x ≤ b. We also have “half-open” or “half-closed” intervals, with obvious
meanings.

The main kinds of intervals have forms such as
]−∞, a[, ]−∞, a], ]a, b[, [a, b], ]a, b], [a, b[, ]b,∞[, and [b,∞[.
Of these,

• ]−∞, a[, ]a, b[, and ]b,∞[ are open;

• [a, b] is closed and ]a, b[ = [a, b];
• ]a, b] and [a, b[ are neither (they are “half-open”);
• ]−∞, a] and [b,∞[ are closed, although in a special way that sometimes

requires special treatment.

A finite closed interval is compact (by the Heine-Borel theorem); but an
open or half-open interval is not, as we see below.

The following facts for real intervals are special cases of the properties of
unions and intersections of open and closed sets we listed above, which can
be shown from the definitions:

• ∩n
i=1]ai, bi[=]a, b[ (that is, some open interval)

• ∪∞i=1]ai, bi[ is an open set

• ∪n
i=1[ai, bi] is a closed set

• ∩∞i=1[ai, bi] = [a, b] (that is, some closed interval).

Two types of interesting intervals are

]
a− 1

i
, b+

1

i

[
(0.0.39)

and [
a+

1

i
, b− 1

i

]
. (0.0.40)

Sequences of intervals of these two forms are worth remembering because
they illustrate interesting properties of intersections and unions of infinite
sequences. Infinite intersections and unions behave differently with regard to
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collections of open and closed sets. For finite intersections and unions we know
that ∩n

i=1]ai, bi[ is an open interval, and ∪n
i=1[ai, bi] is a closed set.

First, observe that

lim
i→∞

]
a− 1

i
, b+

1

i

[
= [a, b] (0.0.41)

and

lim
i→∞

[
a +

1

i
, b− 1

i

]
= [a, b]. (0.0.42)

Now for finite intersections of the open intervals and finite unions of the
closed intervals, that is, for finite k, we have

k⋂

i=1

]
a− 1

i
, b+

1

i

[
is open

and
k⋃

i=1

[
a+

1

i
, b− 1

i

]
is closed.

Infinite intersections and unions behave differently with regard to collec-
tions of open and closed sets. With the open and closed intervals of the special
forms, for infinite intersections and unions, we have the important facts:

∞⋂

i=1

]
a− 1

i
, b+

1

i

[
= [a, b] (0.0.43)

and ∞⋃

i=1

[
a+

1

i
, b− 1

i

]
=]a, b[. (0.0.44)

These equations follow from the definitions of intersections and unions. To see
equation (0.0.44), for example, we note that a ∈ ∪Ai iff a ∈ Ai for some i;
hence, if a 6∈ Ai for any i, then a 6∈ ∪Ai.

Likewise, we have

∞⋃

i=1

[
a+

1

i
, b

]
=

∞⋂

i=1

]
a, b+

1

i

[

= ]a, b]. (0.0.45)

From this we see that

lim
n→∞

n⋃

i=1

[
a+

1

i
, b− 1

i

]
6=
⋃

lim
i→∞

[
a+

1

i
, b− 1

i

]
. (0.0.46)

Equations (0.0.44) and (0.0.45) for ]a, b[ and ]a, b] above show that open
intervals and half-open intervals are not compact, because no finite collection
of sets in the unions cover the intervals.
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Intervals in IRd

“Intervals” in IRd are merely product sets of intervals in IR; that is, they are
hyperrectangles. Because of the possibilities of the types of endpoints of the
intervals in IR, the intervals in IRd cannot always be specified using “[, ]” “], [”,
and so on. In more restrictive cases in which all of the intervals in IR are of
the same types, we use the same notation as above to indicate the product
sets. For example, given the vectors a = (a1, . . . , ad) and b = (b1, . . . , bd), we
could write ]a, b] with the meaning

]a, b] =]a1, b1]× · · ·×]ad, bd].

Sequences of Reals, Limit Points, and Accumulation Points

Because of the Heine-Borel theorem, bounded sequence in IRd are of interest.
(A sequence {xn} is bounded if there exists an M ∈ IRd 3 xn ≤ M ∀n.) We
let {xn} = x1, x2, . . . be a sequence in IRd. The Bolzano-Weierstrass theorem
(see below) states that every bounded sequence has a convergent subsequence;
that is, there is a subsequence that has a limit point. A point x ∈ IRd is called
an accumulation point, or a cluster point, of {xn} if there is a subsequence
{xni} that converges to x.

An important property of the reals is that a sequence of reals converges if
and only if it is a Cauchy sequence. (The “if” part means that the reals are
complete.) This is sometimes called the “Cauchy criterion”. See Exercise 0.0.6
for an outline of a proof or see Hewitt and Stromberg (1965).

Notice that the field of rationals is not complete for we can form a Cauchy
sequence in the rationals that does not converge to a rational number. For
example consider the rational sequence

x1 = 1

xn = xn−1/2 + 1/xn−1, n = 2, 3, . . .

which is a Cauchy sequence (in the Euclidean metric). The sequence, however,
converges to

√
2, which is not in the rationals. The field of the reals can, in

fact, be considered to be a completion of the rationals in the Euclidean norm.
A linear space formed on IRd with the usual addition operation for vectors

together with any metric is a Banach space. If the metric is taken to be the
L2 metric then that linear space is a Hilbert space.

Monotone Sequences in IR

We will now limit the discussion to subsets and sequences in IR. This allows
us to use a simple definition of monotonicity, based on the linear ordering of
the reals.

A useful theorem tells us that if a bounded sequence is monotone, then
the sequence must converge:
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Theorem 0.0.7 (monotone convergence of sequence in IR)
Let x1 ≤ x2 ≤ · · · be a sequence in IR. This sequence has a finite limit iff the
sequence is bounded.

Proof.
First, obviously if limn→∞ xn = x <∞, then every xn ≤ x, and the sequence
is bounded.

Now we assume x1 ≤ x2 ≤ · · ·x < ∞. By Dedekind completeness of the
reals, x∗ = sup({xn}) exists and is finite. For every ε > 0, there exists xN

such that xN > x∗− ε because otherwise x∗− ε would be an upper bound less
than sup({xn}). So now, because {xn} is increasing, ∀n > N we have

|x∗ − xn| = x∗ − xn ≤ x∗ − xN < ε;

therefore, the limit of {xn} is sup({xn}).

Theorem 0.0.8 (Bolzano-Weierstrass)
Every bounded sequence in IR has a convergent subsequence.

Proof.
This theorem is an immediate result of the following lemma.

Lemma 0.0.8.1
Every sequence in IR has a monotone subsequence.

Proof.
Define a dominant term (or a peak) as a term xj in a sequence {xn} such that
xj > xj+1, xj+2, . . .. The number of dominant terms must either be finite or
infinite.

Suppose the number is infinite. In that case, we can form a subsequence
that contains only those dominant terms {xni}. This sequence is (strictly)
monotonic decreasing, xni > xni+1 > · · · .

On the other hand, suppose the number of dominant terms is finite. If
there is a dominant term, consider the next term after the last dominant
term. Call it xn1 . If there are no dominant terms, n1 = 1. Now, since xn1 is
not a dominant term, there must be another term, say xn2 , that is no greater
than xn1, and since that term is not dominant, there must be a term xn3 that
is no greater than xn2, and so on. The sequence {xni} formed in this way is
monotonic nondecreasing.

The Bolzano-Weierstrass theorem is closely related to the Heine-Borel the-
orem. Either can be used in the proof of the other. A system for which the
Bolzano-Weierstrass theorem holds is said to have the Bolzano-Weierstrass
property.

Some properties of sequences or subsequences in IR that we discuss that
depend on xi ≤ xj can often be extended easily to sequences in IRd using
the partial ordering imposed by applying the IR ordering element by element.
For example, if {xn} is a sequence in IRd, then Lemma 0.0.8.1 could first be
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applied to the first element in each vector xn to form a subsequence based
on the first element, and then applied to the second element in each vector
in this subsequence to form a subsubsequence, and then applied to the third
element of each vector in the subsubsequence, and so on. The definition of
the order in IRd may require some redefinition of the order that arises from
applying the IR order directly (see Exercise 0.0.7).

Theorem 0.0.9 is an alternate statement of the Bolzano-Weierstrass theo-
rem.

Theorem 0.0.9 (Bolzano-Weierstrass (alternate))
Every bounded sequence in IR has an accumulation point.

We will prove this statement of the theorem directly, because in doing so we
are led to the concept of a largest accumulation point, which has more general
uses.
Proof.
For the bounded sequence {xn}, define the set of real numbers

S = {x | there are infinitely many xn > x}.

Let x∗ = sup(S). Because the sequence is bounded, x∗ is finite. By definition
of S and sup(S), for any ε > 0, only there are only finitely many xn such that
xn ≥ x∗ + ε, but there are infinitely many xn such that xn ≥ x∗ − ε, so there
are infinitely many xn in the interval [x∗ − ε, x∗ + ε].

Now for i = 1, 2, . . ., consider the intervals Ii = [x∗− 1/i, x∗ +1/i] each of
which contains infinitely many xn, and form a monotone increasing sequence
{ni} such that xni ∈ Ii. (Such a sequence is not unique.) Now use the sequence
{ni} to form a subsequence of {xn}, {xni}. The sequence {xni} converges to
x∗; which is therefore an accumulation point of {xn}.

lim sup and lim inf

Because of the way S was defined in the proof of Theorem 0.0.9, the accu-
mulation point x∗ = sup(S) is the largest accumulation point of {xn}. The
largest accumulation point of a sequence is an important property of that se-
quence. We call the largest accumulation point of the sequence {xn} the limit
superior of the sequence and denote it as lim supn xn. If the sequence is not
bounded from above, we define lim supn xn as ∞. We have

lim sup
n

xn = lim
n

sup
k≥n

xk. (0.0.47)

We see that

lim sup
n

xn = sup{x | there are infinitely many xn > x}, (0.0.48)

which is a characterization of lim sup for any nonincreasing real point sequence
{xn}. (Compare this with equation (0.0.22) on page 628.)
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Likewise, for a bounded sequence, we define the smallest accumulation
point of the sequence {xn} the limit inferior of the sequence and denote it as
lim infn xn. If the sequence is not bounded from below, we define lim infn xn

as −∞. We have
lim inf

n
xn = lim

n
inf
k≥n

xk. (0.0.49)

We have

lim inf
n

xn = inf{x | there are infinitely many xn < x}. (0.0.50)

The properties of lim sup and lim inf of sequences of sets discussed on
page 627 have analogues for lim sup and lim inf of sequences of points.

For a bounded sequence {xn}, it is clear that

lim inf
n

xn ≤ lim sup
n

xn, (0.0.51)

and {xn} converges iff lim infn xn = lim supn xn, and in that case we write
the quantity simply as limn xn.

We also have
lim sup

n
xn = inf

n
sup
k≥n

xk (0.0.52)

and
lim inf

n
xn = sup

n
inf
k≥n

xk. (0.0.53)

The triangle inequalities also hold:

lim sup
n

(xn + yn) ≤ lim sup
n

xn + lim sup
n

yn. (0.0.54)

lim inf
n

(xn + yn) ≥ lim inf
n

xn + lim inf
n

yn. (0.0.55)

Common Sequences of Reals

There are some forms of sequences that arise often in applications; for ex-
ample, xn = 1/n or xn = 1 + c/n. Having lists of convergent sequences or
convergent series (see Sections 0.0.5 and 0.0.9) can be a useful aid in work in
mathematics.

A useful limit of sequences of reals that we will encounter from time to
time is

lim
n→∞

(
1 +

c

n

)n

= ec. (0.0.56)

We can prove this easily using some simple properties of the logarithm func-
tion, which we define as L(t) =

∫ t

1 (1/x)dx for t > 0. We first observe that
L is continuous and increasing, L(1) = 0, that L′ exists at 1, L′(1) = 1, and
nL(x) = L(xn). For a fixed constant c 6= 0 we can write the derivative at 1 as
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lim
n→∞

L(1 + c/n)− L(1)

c/n
= 1,

which, because L(1) = 0, we can rewrite as limn→∞ L((1 + c/n)n) = c. Since
L is continuous and increasing limn→∞(1 + c/n)n exists and is the value of x
such that L(x) = c; that is, it is ec.

A related limit for a function g(n) that has the limit limn→∞ = b is

lim
n→∞

(
1 +

cg(n)

n

)n

= ebc, (0.0.57)

which can be shown easily by use of the limit above, and the bounds

(
1 +

c(b− ε)
n

)n

≤
(

1 +
cg(n)

n

)n

≤
(

1 +
c(b+ ε)

n

)n

,

for c > 0 and any ε > 0, which arise from the bounds b− ε < g(n) < b+ ε for
n sufficiently large. Taking limits, we get

ec(b−ε) ≤ lim
n→∞

(
1 +

cg(n)

n

)n

≤ ec(b+ε),

and since ε was arbitrary, we have the desired conclusion under the assumption
that c > 0. We get the same result (with bounds reversed) for c < 0.

Another related limit is for a function g(n) that has the limit limn→∞ g(n) =
0, and constants b and c with c 6= 0 is

lim
n→∞

(
1 +

c

n
+
g(n)

n

)b

n = ebc. (0.0.58)

The Rate of Convergence; Big O and Little o Notation

We are often interested in how quickly one sequence of real numbers or of real-
valued functions converges to another sequence. We will distinguish two types
limiting behavior, and the rate of convergence is measured by asymptotic
ratios of the sequences.

We consider a class determined by the rate of a given sequence {an} ∈ IRd.
We identify another sequence {bn} ∈ IRd as belonging to the order class if its
rate of convergence is similar. If these are sequences of functions, we assume
a common domain for all functions in the sequences and our comparisons of
an(x) and bn(x) are for all points x in the domain. We refer to one type of
limiting behavior as “big O” and to another type as “little o”.

Big O, written O(an).
{bn} ∈ O(an) means there exists some fixed finite c such that ‖bn‖ ≤
c‖an‖ ∀n.
In particular, bn ∈ O(1) means bn is bounded.
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Little o, written o(an).
{bn} ∈ o(an) means ‖bn‖/‖an‖ → 0 as n→∞.
In particular, bn ∈ o(1) means bn → 0.

Instead of “{bn} ∈ O(an)” or “{bn} ∈ o(an)”, most people write “{bn} =
O(an)” or “{bn} = o(an)”. (From this, we could deduce such nonsense as
n = n2, since it is clear, in this notation that n = O(n2) and n2 = O(n2).)
I do not like this level of imprecision in notation. I so sometimes abuse this
notation slightly, for example, by referring to a sequence as “being O(f(n))”
rather than as “being in the order class O(f(n))”. In one very common case, I
abuse the notation in this way. As most people, I may use O(f(n)) to represent
some unspecified scalar or vector x ∈ O(f(n)) in the case of a convergent
series, for example,

s = f1(n) + · · ·+ fk(n) + O(f(n)),

where f1(n), . . . , fk(n) are constants. I also use o(f(n)) to represent some
unspecified scalar or vector x ∈ o(f(n)) in special case of a convergent series,
as above:

s = f1(n) + · · ·+ fd(n) + o(f(n)).

We often write bn ∈ O(an) or bn ∈ O(an) instead of {bn} ∈ O(an) or
{bn} ∈ O(an).

We sometimes omit the arguments of functions; for example, we may write
f ∈ O(g), with the understanding that the limits are taken with respect to
the arguments.

The defining sequence an is often a simple expression in n; for examples,
an = n−2, an = n−1, an = n−1/2, and so on, or an = n, an = n log(n),
an = n2, and so on. We have

O(1) ⊆ O(n−2) ⊆ O(n−1) ⊆ O(n) ⊆ O(n log(n)) ⊆ O(n2) etc. (0.0.59)

Our interests in these orders are generally different for decreasing functions of
n than for increasing sequences in n. The former are often used to measure how
quickly an error rate goes to zero, and the latter are often used to evaluate the
speed of an algorithm as the problem size grows. In either case, it is important
to recognize that the order expressed in big O (or little o) is a lower bound, as
indicated in expression (0.0.59). (There are variations on the big O concept
referred to as “big Ω” and “big Θ” that specify upper bounds and two-sided
bounds.)

Some additional properties of big O classes are the following.

bn ∈ O(an), dn ∈ O(cn) =⇒ bndn ∈ O(ancn), (0.0.60)

bn ∈ O(an), dn ∈ O(cn) =⇒ bn + dn ∈ O(‖an‖‖cn‖), (0.0.61)

O(can) = O(an) for constant c. (0.0.62)

Theory of Statistics c©2000–2025 James E. Gentle



654 0 Statistical Mathematics

The proofs of these are left as exercises. Similar results hold for little o classes.
In probability and statistics, the sequences may involve random variables,

in which case we may need to distinguish the type of convergence. If the con-
vergence is almost sure, there is little difference whether or not the sequence
involves random variables. Weak convergence, however, results in different
types of measures for the rate of convergence, and we find the related con-
cepts of big O in probability, OP, and little o in probability, oP, useful; see
page 84.

Sums of Sequences of Reals

Sums of countable sequences of real numbers {xi}, for i = 1, 2, . . ., are often
of interest. A sum of a countable sequence of real numbers is called a (real)
series. The usual question is what is limn→∞

∑n
i=1 xi. If this limit is finite,

the series is called convergent, or the series is said to converge; otherwise, the
series is called divergent, or the series is said to diverge. If limn→∞

∑n
i=1 |xi| is

finite, the series is called absolutely convergent, or the series is said to converge
absolutely.

We often simply write
∑
xi to mean limn→∞

∑n
i=1 xi, and often we restrict

the meaning of “series” to refer to this limit; however, I may occasionally use
the word “series” to refer to a sum of a finite number of elements.

A useful way to investigate sums of sequences of reals is by use of partial
sums. When we are interested in

∑
xi, we form the partial sum,

Sk =

k∑

i=1

xi,

where k is some integer. Clearly, assuming the xis are finite, Sk is finite. The
use of partial sums can be illustrated by considering the geometric series,
which is the sum of the geometric progression, a, ar, ar2, . . .. Let

Sk =

k∑

i=0

ari.

Multiplying both sides by r and subtracting the resulting equation, we have

(1− r)Sk = a(1− rk+1),

which yields for the partial sum

Sk = a
1− rk+1

1− r .

This formula is useful for finite sums, but its main use is for the series. If
|r| < 1, then
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∞∑

i=0

ari = lim
k→∞

Sk =
a

1− r .

If |r| > 1, then the series diverges.
Another important fact about series, called Kronecker’s lemma, is useful

in proofs of theorems about sums of independent random variables, such as
the strong law of large numbers (Theorem 1.52, page 104):

Theorem 0.0.10 (Kronecker’s Lemma) Let {xi | i = 1, 2, . . .} and {ai | i =
1, 2, . . .} be sequences of real numbers such that

∑∞
i=1 xi exists (and is finite),

and 0 < a1 ≤ a2 ≤ ... and an →∞. Then

lim
n→∞

1

an

n∑

i=1

aixi = 0.

Proof. Form the partial sums in xi, Sk and Sn, with k < n. We have

1

an

n∑

i=1

aixi = Sn −
1

an

n−1∑

i=1

(ai+1 − ai)Sk.

Let s =
∑∞

i=1 xi, and for any ε > 0, let N be such that for n > N , |Sn−s| < ε.
We can now write the left-hand side of the equation above as

Sn −
1

an

N−1∑

i=1

(ai+1 − ai)Sk −
1

an

n−1∑

i=N

(ai+1 − ai)Sk

= Sn −
1

an

N−1∑

i=1

(ai+1 − ai)Sk −
1

an

n−1∑

i=N

(ai+1 − ai)s−
1

an

n−1∑

i=N

(ai+1 − ai)(Sk − s)

= Sn −
1

an

N−1∑

i=1

(ai+1 − ai)Sk −
an − aN

an
s− 1

an

n−1∑

i=N

(ai+1 − ai)(Sk − s) .

Now, consider limn→∞. The first term goes to s, which cancels with the third
term. The second term goes to zero (because the sum is a fixed value). Since
the sequence {ai} is nondecreasing, the last term is bounded by an−aN

an
ε, which

is less than or equal to ε, which was any positive number.
In Section 0.0.9 beginning on page 678, we list some additional ways of

determining whether or not a series converges.

Real Functions

Real-valued functions over real domains are some of the most important math-
ematical objects. Here we will discuss some of their simpler characteristics.
In Section 0.1.5 we will consider some properties in more detail and in Sec-
tions 0.1.6 through 0.1.13 we will consider important operations on real func-
tions.
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We will often consider the domain of a function to be an interval [a, b], or
if the domain is in IRk, to be a rectangle [a1, b1] × · · · × [ak, bk], and many
concepts relating to a finite partitioning P of that domain. The partition may
be defined by the sets {Ii : i ∈ P }, or especially in the case of [a, b] in IR, by
(a = x0, x1, . . . , xn = b).

Important properties of functions include continuity, differentiability, in-
tegrability, and shape. The first three of these properties, which are defined
in terms of limits, are essentially dichotomous, but they have various levels
depending on whether they hold over certain subdomains of the function.

Taylor’s Theorem

One of the most important and useful facts in analysis is Taylor’s theorem.
We state the theorem here for scalar-valued real functions of a scalar real
variable, but similar results hold for more general functions.

Theorem 0.0.11 (Taylor’s theorem)
Let f be a function defined on D ⊆ IR, let n be a positive integer, suppose that
the (n − 1)th derivative of f is continuous on the interval [x0, x] ⊆ D, and
suppose that the nth derivative of f exists on the interval ]x0, x[. Then,

f(x) = f(x0)+(x−x0)f
′(x0)+

(x− x0)
2

2!
f ′′(x0)+· · ·+

(x − x0)
n−1

(n− 1)!
f(n−1)(x0)+Rn,

(0.0.63)

where the remainder Rn = (x−x0)
n

n! f(n)(ξ) with x0 < ξ < x.

The proof starts with the identity

f(x) = f(x0) +

∫ x

x0

f ′(t)dt,

and then proceeds iteratively by integrating by parts. This expression also
suggests another form of the remainder. It clearly can be expressed as an
integral over t of f(n)(x− t)n−1/n!.

It is not necessary to restrict x0 and x as we have in the statement of
Taylor’s theorem above. We could, for example, require that D is an interval
and x0, x ∈ D.

Notice that for n = 1, Taylor’s theorem is the mean-value theorem (The-
orem 0.0.19).

The properties of the remainder term, Rn, are important in applications
of Taylor’s theorem.

Taylor Series and Analytic Functions

As n → ∞, if the nth derivative of f continues to exist on the open interval,
and if the remainder Rn goes to zero, then we can use Taylor’s theorem to
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represent the function in terms of a Taylor series. (The common terminology
has a possessive in the name of the theorem and a simple adjective in the
name of the series.)

As indicated in the comments above about Taylor’s theorem, the points x
and x0 must be in a closed interval over which the derivatives exist and have
finite values. The Taylor series is

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · · (0.0.64)

A Taylor series in the form of equation (0.0.64) is said to be an expansion
of f about x0.

Note that equation (0.0.64) implies that the function is infinitely differ-
entiable and that the Taylor series converges to the function value. If equa-
tion (0.0.64) for all real x and x0, the function f said to be analytic. If the

Examples

The are many examples of functions for which the Taylor series expansion
does not hold. First of all, it only holds for infinitely differentiable functions.

For infinitely differentiable functions, the question is whether the remain-
der Rn goes to zero; that is, does the series converge, and if so, does it converge
to f(x) and if so is the convergence over the whole domain?

Example 0.0.5 (Convergence only at a single point)
Consider

f(x) =

∞∑

n=0

e−n cos n2x.

The function is infinitely differentiable but the Taylor series expansion about
0 converges only for x = x0. (Exercise.)

Example 0.0.6 (Convergence only over a restricted interval)
Consider

f(x) =
1

1 + x2
.

The function is infinitely differentiable but the Taylor series expansion about
0 converges only for |x| < 1. (Exercise.)

Example 0.0.7 (Convergence to the wrong value)
Consider

f(x) =

{
e−1/x2

for x 6= 0
0 for x = 0.

The function is infinitely differentiable and fn(0) = 0 for all n. A Taylor series
expansion about 0 converges to 0, but f(x) 6= 0 if x 6= 0.
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Functions of Bounded Variation

Another important class of real functions consists of those of bounded vari-
ation. The function f defined over [a, b] is said to be of bounded varia-
tion on [a, b] if there exists a number M such that for any partition (a =
x0, x1, . . . , xn = b)

n∑

i=1

|∆fi| ≤M, (0.0.65)

where ∆fi = f(xi)− f(xi−1).
A sufficient condition for a function f to be of bounded variation on [a, b]

is that it is continuous on [a, b] and its derivative exists and is bounded on
]a, b[.

Linear Functions

Linearity is one of the most useful properties of some spaces. That property
is what characterizes a vector space. As we have noted, IRd is a linear space.

Likewise, linearity is an important property of some functions.

Definition 0.0.10 (linear function)
A function f : IRd 7→ IR is linear iff for x, y ∈ IRd, ∀a ∈ IR,

f(ax+ y) = af(x) + f(y).

A function is strictly convex if the inequality above is strict.

A linear function is sometimes called a linear operator or a linear trans-
form.

Convexity

Another useful concept for real sets and for real functions of real numbers is
convexity.

Definition 0.0.11 (convex set)
A set A ⊆ IRd is convex iff for x, y ∈ A, ∀a ∈ [0, 1], ax+ (1− a)y ∈ A.

Intervals, rectangles, and hyperrectangles are convex.

Theorem 0.0.12
If A is a set of real numbers that is convex, then both A and A◦ are convex.

Proof.
Exercise; just use the definitions.
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Definition 0.0.12 (convex function)
A function f : D ⊆ IRd 7→ IR, where D is convex, is convex iff for x, y ∈ D,
∀a ∈ [0, 1],

f(ax + (1− a)y) ≤ af(x) + (1− a)f(y).
A function is strictly convex if the inequality above is strict.

Definition 0.0.13 (concave function)
A function f is (strictly) concave iff −f is (strictly) convex.

A useful theorem that characterizes convexity of twice differentiable func-
tions is the following

Theorem 0.0.13
If the function f is twice differentiable over an open convex set D, then f is
convex iff the Hessian, Hf , is nonnegative definite at all points in D. Iff it is
positive definite, f is strictly convex.

For a proof of this theorem, see a text on continuous optimization, such as
Griva et al. (2009).

Theorem 0.0.14
The composition of a convex function and a convex function is convex.

Proof.
Let f and g be any convex functions for which f ◦ g is defined. Now let a be
any real number in [0, 1]. Then f ◦g(ax+(1−a)y) ≤ f(ag(x)+(1−a)g(y)) ≤
af ◦ g(x) + (1 − a)f ◦ g(y).

Subharmonic Functions

Convexity of a function is defined in terms of the average of the function at
two points, compared to the function at the average of the two points. We can
extend that basic idea to the average of the function over a sphere compared
to the function at the sphere. (The average of the function over a sphere is
defined in terms of the ratio of a measure of the function image to a measure
of the surface of the sphere. The measures are integrals.)

Definition 0.0.14 (subharmonic function)
A function f : D ⊆ IRd 7→ IR, where D is convex, is subharmonic over D, iff
for every point x0 ∈ D and for every r > 0, the average of f over the surface
of the sphere Sr(x0) = {x : ‖x−x0‖ = r} is greater than or equal to f(x0).

Definition 0.0.15 (superharmonic function)
A function f is superharmonic if −f is subharmonic.

Definition 0.0.16 (harmonic function)
A function is harmonic if it is both superharmonic and subharmonic.
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In one dimension, a subharmonic function is convex and a superharmonic
function is concave.

A useful theorem that characterizes harmonicity of twice differentiable
functions is the following:

Theorem 0.0.15 If the function f is twice differentiable over an open convex
set D, then f is subharmonic iff the Laplacian, ∇2f, (which is just the trace
of Hf ) is nonnegative at all points in D. The function is harmonic if the
Laplacian is 0, and superharmonic if the Laplacian is nonpositive.

Proof. Exercise.
The relatively simple Laplacian operator captures curvature only in the

orthogonal directions corresponding to the principal axes; if the function is
twice differentiable everywhere, however, this is sufficient to characterize the
(sub-, super-) harmonic property. These properties are of great importance in
multidimensional loss functions.

Harmonicity is an important concept in potential theory. It arises in field
equations in physics. The basic equation ∇2f = 0, which implies f is har-
monic, is called Laplace’s equation. Another basic equation in physics is
∇2f = −cρ, where cρ is positive, which implies f is superharmonic. This
is called Poisson’s equation, and is the basic equation in a potential (electri-
cal, gravitational, etc.) field. A superharmonic function is called a potential for
this reason. These PDE’s, which are of the elliptical type, govern the diffusion
of energy or mass as the domain reaches equilibrium. Laplace’s equation repre-
sents a steady diffusion and Poisson’s equation models an unsteady diffusion,
that is, diffusion with a source or sink.

Example 0.0.8

Consider f(x) = exp
(∑k

j=1 x
2
j

)
. This function is twice differentiable, and we

have

∇2 exp




k∑

j=1

x2
j


 =

k∑

i=1

(4x2
i − 2) exp




k∑

j=1

x2
j


 .

The exponential term is positive, so the condition depends on
∑k

i=1(4x
2
i −2).

If
∑k

i=1 x
2
i < 1/2, it is superharmonic; if

∑k
i=1 x

2
i = 1/2, it is harmonic; if∑k

i=1 x
2
i > 1/2, it is subharmonic.

0.0.6 The Complex Number System

The complex number system, IC, can be developed most directly from the real
number system by first introducing an element, i, defined as

i2 = −1.
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We call i the imaginary unit, and define the field IC on the set IR × IR as
the set {x + iy ; x, y ∈ IR}, together with the operations of addition and
multiplication for x and y as in IR.

The complex number system is very important in mathematical statistics
in three areas: transformations (see Section 0.0.9); transforms, as in character-
istic functions (see Section 1.1.7) and Fourier transforms, including “discrete”
Fourier transforms; and eigenanalysis. In this section, we will just state some
of the important properties of the complex number system.

Operations and Elementary Functions

The operations of complex addition and multiplication can be defined directly
in terms of the real operations. For example, if for z1, z2 ∈ IC with z1 = x1+iy1
and z2 = x2 + iy2, then we denote and define addition by

z1 + z2 = x1 + x2 + i(y1 + y2),

and multiplication by

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Both the sum and the product are in IC.
Other operations such as powers and division can be defined in terms of

the expected results. For example, for an integer k and z ∈ IC, zk is the element
of IC that would result from the appropriate number of multiplications, and
z1/k is the element of IC such that if it is raised to the kth power would yield
z. We also note i−1 = −i.

The operation z1/k causes us to recognize another difference in the real
and the complex number systems. With the reals, if k is even the operation is
defined only over a subset of IR and while there are two real numbers that could
be considered as results of the operation, we define the operation so that it
yields a single value. In the case of the complex number system, the operation
of taking the kth root is defined over all IC. The main point, however, is that
the operation may yield multiple values and there may not be an immediately
obvious one to call the result. In complex analysis, we develop ways of dealing
with multi-valued operations and functions.

There are other operations and functions whose definitions do not arise
from simple extensions of the corresponding operation or function on the reals.
For example, we define “modulus” as an extension of the absolute value: for
z = x+ iy, we define |z| as

√
x2 + y2.

Other examples are the exponentiation operation, the functions log(·),
sin(·), and so on. The standard way of defining the elementary functions is
through analytic continuation of a Taylor series expansion into IC. For example,
for z ∈ IC, we may define exp(z) in terms of the convergent series

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · (0.0.66)
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The ratio test can be used to show that this is convergent over all IC (exercise).
The definition of ez can be used to define the exponentiation operation zz2

1

in general.

Complex Conjugates

For z = x + iy ∈ IC, we define define the complex conjugate as x − iy, and
denote it as z. We define the modulus of z as

√
zz, and denote it as |z|. It is

clear that |z| is real and nonnegative, and it corresponds to the absolute value
of x if z = x+ 0i.

We have some simple relationships for complex conjugates:

Theorem 0.0.16
For all z, z1, z2 ∈ IC, we have

• z = z,
• z1 + z2 = z1 + z2,
• z1z2 = z1z2.

Proof. Exercise.

Euler’s Formula

One of the most useful facts is given in Euler’s formula, for a real number x:

eix = cos(x) + i sin(x). (0.0.67)

This relationship can be derived in a number of ways. A straightforward
method is to expand eix in a Taylor series about 0 and then reorder the
terms:

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+ · · ·

=

(
1− x2

2!
+
x4

4!
+
x6

6!
+ · · ·

)
+ i

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)

= cos(x) + i sin(x).

We can do this because the series are absolutely convergent for x ∈ IR.
Euler’s formula has a number of applications and special cases. For exam-

ples,

cos(x) =
eix + e−ix

2
,

eiπ = −1,

and ∣∣eix
∣∣ = 1.
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Other Properties of eix

The function eix, where x ∈ IR, has a number of interesting properties that
we can derive from the Taylor expansion with integral remainder:

eix =

n∑

k=0

(ix)k

k!
+

in+1

n!

∫ x

0

(x − t)neitdt. (0.0.68)

Now, following the ideas suggested for the proof of Theorem 0.0.11 (Taylor’s
theorem), starting with n = 1, evaluation of

∫ x

0
(x− t)neitdt by integration by

parts, and then recognizing the form of the resulting integrals, we let n be a
positive integer and get

∫ x

0

(x− t)neitdt =
xn+1

n+ 1
+

i

n+ 1

∫ x

0

(x− t)n+1eitdt. (0.0.69)

This gives another form of the remainder in the Taylor series:

eix =

n∑

k=0

(ix)k

k!
+

in

(n− 1)!

∫ x

0

(x − t)n(eit − 1)dt. (0.0.70)

Now, we see that the remainder in equation (0.0.68) is bounded from above
by

|x|n+1

(n+ 1)!
,

and the remainder in equation (0.0.70) is bounded from above by

2|x|n
n!

.

Hence, we have a bound on the difference in eix and its approximation by the
truncated series:

∣∣∣∣∣e
ix −

n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

(
2|x|n
n!

,
|x|n+1

(n + 1)!

)
. (0.0.71)

Ordering the Complex Numbers

We have discussed various orderings of sets (see Section 0.0.1), and for the IR
we have seen that there is a useful linear ordering based on the usual inequality
relation. This simple linear ordering is not possible for the complex numbers.

Orderings of sets also sometimes carry over to a relation on a field (see
Section 0.0.3). While the reals constitute an Archimedean ordered field, there
can be no ordering on the complex field.

Theorem 0.0.17
The field IC cannot be ordered.
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Proof. In order to show by contradiction that this must be the case, assume
the existence in IC of a subset P as in Definition 0.0.4 on page 634. Now i 6= 0,
so i ∈ P or i ∈ −P . But i /∈ P because i ◦ i ∈ −P ; furthermore i /∈ −P because
i ◦ i ∈ P ; hence, there can be no such P as required in the definition of an
ordered field.

0.0.7 Monte Carlo Methods

Monte Carlo methods involve sampling, usually artificially, in the sense that
the samples are generated on the computer. To sample from any given dis-
tribution, we generally begin with samples from a U(0, 1) distribution (or an
approximate U(0, 1) distribution, in the sense that the samples are generated
on the computer). A raw sample of uniforms, U1, U2, . . ., is transformed into
a sequence {Xj} of (pseudo)random variables from a distribution of interest.

We often want the sequence {Xj} to be iid. As part of the transformation
process, however, we may use a sequence {Yi} that has internal dependencies.

The simplest type of transformation makes use of the inverse of the CDF
of the random variable of interest.

Inverse CDF Transformation

Assume that the CDF of the distribution of interest is FX , and further, sup-
pose that FX is continuous and strictly monotone.

In that case, if X is a random variable with CDF FX , then U = FX(X)
has a U(0, 1) distribution.

In the inverse CDF method, we transform each Ui to an Xi by

Xi = F−1
X (Ui).

If FX is not continuous or strictly monotone, we can modify this transfor-
mation slightly.

Acceptance/Rejection

Often it is not easy to invert the CDF. In the case of Bayesian inference the
posterior distribution may be known only proportionally. First, let us consider
the problem in which the CDF is known fully.

We will transform an iid sequence {Ui} of uniforms into an iid sequence
{Xj} from a distribution that has a probability density p(·).

We use an intermediate sequence {Yk} from a distribution that has a
probability density g(·). (It could also be the uniform distribution.)

Further, suppose for some constant c that h(x) = cg(x) is such that h(x) ≥
p(x).

1. Generate a variate y from the distribution having pdf g.
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2. Generate independently a variate u from the uniform(0,1) distribution.
3. If u ≤ p(y)/h(y), then accept y as the variate, otherwise, reject y and

return to step 1.

See Figure 0.1.
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Figure 0.1. Acceptance/Rejection

To see that the accepted ys have the desired distribution, first let X be
the random variable delivered. For any x, because Y (from the density g) and
U are independent, we have

Pr(X ≤ x) = Pr

(
Y ≤ x |U ≤ p(Y )

cg(Y )

)

=

∫ x

−∞
∫ p(t)/cg(t)

0
g(t) dsdt

∫∞
−∞

∫ p(t)/cg(t)

0 g(t) dsdt

=

∫ x

−∞
p(t) dt,

the distribution function corresponding to p. Differentiating this quantity with
respect to x yields p(x).

Obviously, the closer cg(x) is to p(x), the faster the acceptance/rejection
algorithm will be, if we ignore the time required to generate y from the dom-
inating density g. A good majorizing function would be such that the l is
almost as large as k.

Often, g is chosen to be a very simple density, such as a uniform or
a triangular density. When the dominating density is uniform, the accep-
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tance/rejection method is similar to the “hit-or-miss” method of Monte Carlo
quadrature.

Variations of Acceptance/Rejection

There are many variations of the basic acceptance/rejection.
One is called transformed rejection. In the transformed acceptance/rejection

method, the steps of the algorithm are combined and rearranged slightly.
There are various ways that acceptance/rejection can be used for discrete

distributions.
It is clear from the description of the algorithm that the acceptance/rejection

method also applies to multivariate distributions. (The uniform random num-
ber is still univariate, of course.)

Use of Dependent Random Variables

The methods described above use a sequence of iid variates from the majoriz-
ing density. It is also possible to use a sequence from a conditional majorizing
density.

A method using a nonindependent sequence is called a Metropolis method,
and there are variations of these, with their own names.

There are two related cases:
Suppose {Xj : j = 0, 1, 2, . . .} is such that for j = 1, 2, . . . we know the

conditional distributions of Xj |X0, . . . , Xj−1.
Alternatively, suppose we know the functional form (up to the normaliz-

ing constant) of the joint density of X1, X2, . . . , Xk, and that we know the
distribution of at least one Xi|Xj(i 6= j).

Markov Chain Monte Carlo

A Markov chain is a stochastic process X0, X1, . . . in which the conditional
distribution of Xt given X0, X1, . . . , Xt−1 is the same as the conditional dis-
tribution of Xt given only Xt−1. An aperiodic, irreducible, positive recurrent
Markov chain is associated with a stationary distribution or invariant dis-
tribution, which is the limiting distribution of the chain. See Section 1.6.3
beginning on page 127 for description of these terms.

If the density of interest, p, is the density of the stationary distribution of
a Markov chain, correlated samples from the distribution can be generated by
simulating the Markov chain.

This appears harder than it is.
A Markov chain is the basis for several schemes for generating random

samples. The interest is not in the sequence of the Markov chain itself.
The elements of the chain are accepted or rejected in such a way as to

form a different chain whose stationary distribution or limiting distribution is
the distribution of interest.
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Convergence

An algorithm based on a stationary distribution of a Markov chain is an
iterative method because a sequence of operations must be performed until
they converge; that is, until the chain has gone far enough to wash out any
transitory phase that depends on where we start.

Several schemes for assessing convergence have been proposed. For exam-
ple, we could use multiple starting points and then use an ANOVA-type test
to compare variances within and across the multiple streams.

The Metropolis Algorithm

For a distribution with density p, the Metropolis algorithm, introduced by
Metropolis et al. (1953) generates a random walk and performs an accep-
tance/rejection based on p evaluated at successive steps in the walk.

In the simplest version, the walk moves from the point yi to a candidate
point yi+1 = yi + s, where s is a realization from U(−a, a), and accepts yi+1

if
p(yi+1)

p(yi)
≥ u,

where u is an independent realization from U(0, 1).
This method is also called the “heat bath” method because of the context

in which it was introduced.
The random walk of Metropolis et al. is the basic algorithm of simulated

annealing, which is currently widely used in optimization problems.
If the range of the distribution is finite, the random walk is not allowed to

go outside of the range.

Example 0.0.9 Simulation of the von Mises Distribution with the
Metropolis Algorithm
Consider, for example, the von Mises distribution, with density,

p(x) =
1

2πI0(c)
ec cos(x), for − π ≤ x ≤ π,

where I0 is the modified Bessel function of the first kind and of order zero.
The von Mises distribution is an easy one to simulate by the Metropolis

algorithm. This distribution is often used by physicists in simulations of lattice
gauge and spin models, and the Metropolis method is widely used in these
simulations.

It is not necessary to know the normalizing constant, because it is can-
celed in the ratio. The fact that all we need is a nonnegative function that is
proportional to the density of interest is an important property of this method.

If c = 3, after a quick inspection of the amount of fluctuation in p, we may
choose a = 1. The R statements below implement the Metropolis algorithm
to generate n − 1 deviates from the von Mises distribution.
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Notice the simplicity of the algorithm in the R code. We did not need to
determine a majorizing density, nor even evaluate the Bessel function that is
the normalizing constant for the von Mises density.

n <- 1000

x <- rep(0,n)

a <-1

c <-3

yi <-3

j <-0

i <- 2

while (i < n) {

i <- i + 1

yip1 <- yi + 2*a*runif(1)- 1

if (yip1 < pi & yip1 > - pi) {

if (exp(c*(cos(yip1)-cos(yi))) > runif(1)) yi <- yip1

else yi <- x[i-1]

x[i] <- yip1

}

}

A histogram is not affected by the sequence of the output in a large sample.
The Markov chain samplers generally require a “burn-in” period; that is,

a number of iterations before the stationary distribution is achieved.
In practice, the variates generated during the burn-in period are discarded.
The number of iterations needed varies with the distribution, and can be

quite large, sometimes several hundred.
The von Mises example is unusual; no burn-in is required. In general,

convergence is much quicker for univariate distributions with finite ranges
such as this one.

It is important to remember what convergence means; it does not mean
that the sequence is independent from the point of convergence forward. The
deviates are still from a Markov chain.

The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm uses a more general chain for the accep-
tance/rejection step.

To generate deviates from a distribution with density pX it uses deviates
from a Markov chain with density gYt+1|Yt

. The conditional density gYt+1|Yt
is

chosen so that it is easy to generate deviates from it.

0. Set k = 0.
1. Choose x(k) in the range of pX . (The choice can be arbitrary.)
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2. Generate y from the density gYt+1|Yt
(y|x(k)).

3. Set r:

r = pX(y)
gYt+1|Yt

(x(k)|y)
pX(x(k))gYt+1|Yt

(y|x(k))

4. If r ≥ 1, then
4.a. set x(k+1) = y;

otherwise
4.b. generate u from uniform(0,1) and

if u < r, then
4.b.i. set x(k+1) = y,

otherwise
4.b.ii. set x(k+1) = x(k).

5. If convergence has occurred, then
5.a. deliver x = x(k+1);

otherwise
5.b. set k = k + 1, and go to step 2.

Compare the Metropolis-Hastings algorithm with the basic acceptance/rejection
method.

The majorizing function in the Metropolis-Hastings algorithm is

gYt+1|Yt
(x|y)

pX(x) gYt+1|Yt
(y|x) .

r is called the “Hastings ratio”, and step 4 is called the “Metropolis re-
jection”. The conditional density, gYt+1|Yt

(·|·) is called the “proposal density”
or the “candidate generating density”. Notice that because the majorizing
function contains pX as a factor, we only need to know pX to within a con-
stant of proportionality. As we have mentioned already, this is an important
characteristic of the Metropolis algorithms.

As with the acceptance/rejection methods with independent sequences,
the acceptance/rejection methods based on Markov chains apply immediately
to multivariate random variables.

We can see why this algorithm works by using the same method as we
used to analyze the acceptance/rejection method; that is, determine the CDF
and differentiate.

The CDF is the probability-weighted sum of the two components corre-
sponding to whether the chain moved or not. In the case in which the chain
does move, that is, in the case of acceptance, for the random variable Z whose
realization is y, we have
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Pr(Z ≤ x) = Pr

(
Y ≤ x

∣∣U ≤ p(Y )
g(xi|Y )

p(xi)g(Y |xi)

)

=

∫ x

−∞
∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0
g(t|xi) dsdt

∫∞
−∞

∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0 g(t|xi) dsdt

=

∫ x

−∞
pX(t) dt.

Gibbs Sampling

An iterative method, somewhat similar to the use of marginals and condition-
als, can also be used to generate multivariate observations. It was first used
for a a Gibbs distribution (Boltzmann distribution), and so is called the Gibbs
method.

In the Gibbs method, after choosing a starting point, the components of
the d-vector variate are generated one at a time conditionally on all others.

If pX is the density of the d-variate random variable X, we use the condi-
tional densities pX1|X2,X3,··· ,Xd

, pX2|X1,X3,··· ,Xd
, and so on.

At each stage the conditional distribution uses the most recent values of
all the other components.

As with other MCMC methods, it may require a number of iterations
before the choice of the initial starting point is washed out.

Gibbs sampling is often useful in higher dimensions. It depends on the
convergence of a Markov chain to its stationary distribution, so a burn-in
period is required.

0. Set k = 0.
1. Choose x(k) ∈ S.
2. Generate x

(k+1)
1 conditionally on x

(k)
2 , x

(k)
3 , . . . , x

(k)
d ,

Generate x
(k+1)
2 conditionally on x

(k+1)
1 , x

(k)
3 , . . . , x

(k)
d ,

. . .
Generate x

(k+1)
d−1 conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k)
d ,

Generate x
(k+1)
d conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
d−1 .

3. If convergence has occurred, then
3.a. deliver x = x(k+1);

otherwise
3.b. set k = k + 1, and go to step 2.

Example 0.0.10 Gibbs Sampling to Generate Independent Normals

Consider Xt+1 normal with a mean of Xt and a variance of σ2.
We will generate an iid sample from a standard normal distribution; that

is, a normal with a mean of 0 and a variance of 1. In this example, the target
distribution is simpler than the proposal.
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We start with a x0, chosen arbitrarily.
We take logs and cancel terms in the expression for r.
The following simple Matlab statements generate the sample.

x(1) = x0;

while i < n

i = i + 1;

yip1 = yi + sigma*randn;

lr2 = yi^2 - yip1^2;

if lr2 > 0

yi = yip1;

else

u = rand;

if lr2 > log(u)*2

yi = yip1;

else

yi = x(i-1);

end

end

x(i) = yi;

end

plot (x)

There are several variations of the basic Metropolis-Hastings algorithm.
Two common related methods are Gibbs sampling and hit-and-run sampling.
Those methods are particularly useful in multivariate simulation.

Markov chain Monte Carlo has become one of the most important tools in
statistics in recent years. Its applications pervade Bayesian analysis, as well
as many Monte Carlo procedures in the frequentist approach to statistical
analysis.

Whenever a correlated sequence such as a Markov chain is used, variance
estimation must be performed with some care. In the more common cases
of positive autocorrelation, the ordinary variance estimators are negatively
biased. The method of batch means or some other method that attempts to
account for the autocorrelation should be used.

Convergence

Some of the most important issues in MCMC concern the rate of convergence,
that is, the length of the burn-in, and the frequency with which the chain
advances.

In many applications of simulation, such as studies of waiting times in
queues, there is more interest in transient behavior than in stationary behav-
ior.

This is usually not the case in use of MCMC methods. The stationary
distribution is the only thing of interest.
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The issue of convergence is more difficult to address in multivariate distri-
butions. It is for multivariate distributions, however, that the MCMC method
is most useful.

This is because the Metropolis-Hastings algorithm does not require knowl-
edge of the normalizing constants, and the computation of a normalizing con-
stant may be more difficult for multivariate distributions.

Various diagnostics have been proposed to assess convergence. Most of
them use multiple chains in one way or another. Use of batch means from
separate streams can be used to determine when the variance has stabilized.
A cusum plot on only one chain to help to identify convergence.

Various methods have been proposed to speed up the convergence.
Methods of assessing convergence is currently an area of active research.
The question of whether convergence has practically occurred in a finite

number of iterations is similar in the Gibbs method to the same question in
the Metropolis-Hastings method.

In either case, to determine that convergence has occurred is not a simple
problem.

Once a realization is delivered in the Gibbs method, that is, once con-
vergence has been deemed to have occurred, subsequent realizations can be
generated either by starting a new iteration with k = 0 in step 0, or by
continuing at step 1 with the current value of x(k).

If the chain is continued at the current value of x(k), we must remember
that the subsequent realizations are not independent.

Effects of Dependence

This affects variance estimates (second order sample moments), but not means
(first order moments).

In order to get variance estimates we may use means of batches of subse-
quences or use just every mth (for some m > 1) deviate in step 3. (The idea
is that this separation in the sequence will yield subsequences or a systematic
subsample with correlations nearer 0.)

If we just want estimates of means, however, it is best not to subsample the
sequence; that is, the variances of the estimates of means (first order sample
moments) using the full sequence is smaller than the variances of the estimates
of the same means using a systematic (or any other) subsample (so long as
the Markov chain is stationary.)

To see this, let x̄i be the mean of a systematic subsample of size n consisting
of every mth realization beginning with the ith realization of the converged
sequence. Now, we observe that

|Cov(x̄i, x̄j)| ≤ V(x̄l)

for any positive i, j, and l less than or equal to m. Hence if x̄ is the sample
mean of a full sequence of length nm, then
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V(x̄) = V(x̄l)/m+

m∑

i 6=j;i,j=1

Cov(x̄i, x̄j)/m
2

≤ V(x̄l)/m+m(m − 1)V(x̄l)/m

= V(x̄l).

In the Gibbs method the components of the d-vector are changed system-
atically, one at a time. The method is sometimes called alternating conditional
sampling to reflect this systematic traversal of the components of the vector.

Ordinary Monte Carlo and Iterative Monte Carlo

The acceptance/rejection method can be visualized as choosing a subsequence
from a sequence of iid realizations from the distribution with density gY in
such a way the subsequence has density pX .

iid from gY yi yi+1 yi+2 yi+3 · · · yi+k · · ·
accept? no yes no yes · · · yes · · ·

iid from pX xj xj+1 · · · xj+l · · ·
A Markov chain Monte Carlo method can be visualized as choosing a

subsequence from a sequence of realizations from a random walk with density
gYi+1|Yi

in such a way that the subsequence selected has density pX .

random walk yi yi+1 = yi+3 = yi+2 =
yi + si+1 yi+1 + si+2 yi+2 + si+3 · · ·

accept? no yes no yes · · ·
iid from pX xj xj+1 · · ·

The general objective in Monte Carlo simulation is to calculate the expec-
tation of some function g of a random variable X. In ordinary Monte Carlo
simulation, the method relies on the fact that for independent, identically
distributed realizations X1, X2, . . . from the distribution P of X,

1

n

n∑

i=1

g(Xi)→ Eg(X)

almost surely as n goes to infinity. This convergence is a simple consequence
of the law of large numbers.

In Monte Carlo simulation, the sample is simulated with a random num-
ber generator. When X is multivariate or a complicated stochastic process,
however, it may be difficult or impossible to simulate independent realizations.

Monte Carlo Applications

Whether the random number generation is direct or iterative, there are gener-
ally two kinds of objectives in Monte Carlo applications. One is just to under-
stand a probability distribution better. This may involve merely simulating
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random observations from the distribution and examining the distribution of
the simulated sample.

The other main application of Monte Carlo methods is to evaluate some
constant. No matter how complicated the problem is, it can always be formu-
lated as the problem of evaluating a definite integral

∫

D

f(x)dx.

Using a PDF decomposition (0.0.95) f(x) = g(x)p(x), by equation (0.0.96),
we see that the evaluation of the integral is the same as the evaluation of the
expected value of g(X) where X is a random variable whose distribution has
PDF p with support D.

The problem now is to estimate E(g(X)). If we have a sample x1, . . . , xn,
the standard way of estimating E(g(X)) is to use

̂E(g(X)) =
1

n

n∑

i=1

g(xi). (0.0.72)

0.0.8 Mathematical Proofs

A mathematical system consists of a body of statements, which may be defini-
tions, axioms, or propositions. A proposition is a conditional statement, which
has the form “ifA then B”, or “A⇒ B”, where A andB are simple declarative
statements or conditional statements. A conditional statement may be true
or false, or neither. Our interest in mathematics is to establish the truth or
falsity of a conditional statement; that is, to prove or disprove the statement.
A proposition that has a proof is sometimes called a “lemma”, a “theorem”,
or a “corollary”. While these terms have meanings, the meanings are rather
vague or subjective, and many authors’ usage of the different terms serves
no purpose other than to annoy the reader. If a proposition has no known
proof, it is sometimes called a “conjecture”. We usually do not use the term
“proposition” to refer to a conditional statement that has been disproved.

A declarative statement has one of two mutually exclusive states: “true”
or “false”. We denote the negation or falsification of the statement A by ¬A.

With a basic proposition, such as

A⇒ B,

there are associated four related propositions:
contrapositive,

¬B ⇒ ¬A,

inverse,
¬A⇒ ¬B,
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converse,
B ⇒ A,

and contradiction,
¬(A⇒ B).

If a proposition is true, then its contraposition is also true, but its contra-
diction is not true. The inverse is the contrapositive of the converse. The
contradiction of the contradiction of a proposition is the proposition. Within
any mathematical system there are propositions which are neither true nor
false.

There are various types of proofs for propositions. Some are “better” than
others. (See Aigner and Ziegler (2010) for discussions of different types of
proof.) The “best” proof of a proposition is a direct proof, which is a sequence
of statements “if A then A1, if A1 . . . , . . . then B”, where each statement in
the sequence is an axiom or a previously proven proposition. A direct proof is
called deductive, because each of the steps after the first is deduced from the
preceding step.

Occasionally, the Axiom of Choice is used in a proof. This axiom, which
we encountered on page 618, is outside the usual axiomatic basis of much of
mathematics. The Axiom of Choice basically says that given any collection
of sets, even an infinite collection, it is possible to form a set consisting of
exactly one element from each set in the collection. The Axiom of Choice is
tautological for a finite collection.

Whenever the Axiom of Choice is used in a proof, that fact should be
stated. Also, whenever an indirect method of proof is used, the type of the
proof should be stated or described.

Two useful types of indirect proofs are contradiction and induction. Al-
though proofs of these types often appear very clever, they lack the simple
elegance of a direct proof.

In a proof of “A ⇒ B” by contradiction, we assume “A”, and suppose
“not B”. Then we ultimately arrive at a conclusion that contradicts an axiom
or a previously proven proposition. The means that the supposition “not B”
cannot be true, and hence that “B” is true. The proof that the Vitali set is
not Lebesgue-measurable uses contradiction as well as the Axiom of Choice
(see Example 0.1.5 on page 718.)

A proof by induction may be appropriate when we can index a sequence of
statements by n ∈ ZZ+, that is, Sn, and the statement we wish to prove is that
Sn is true for all n ≥ m ∈ ZZ+. We first show that Sm is true. (Here is where
a proof by induction requires some care; this statement must be nontrivial;
that is, it must be a legitimate member of the sequence of statements.) Then
we show that for n ≥ m, Sn ⇒ Sn+1, in which case we conclude that Sn is
true for all n ≥ m ∈ ZZ+.
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As an example of mathematical induction, consider the statement that for
any positive integer n,

n∑

i=1

i =
1

2
n(n+ 1).

We use induction to prove this by first showing for n = 1,

1 =
1

2
(2).

Then we assume that for some k > 1,

k∑

i=1

i =
1

2
k(k + 1),

and consider
∑k+1

i=1 i:

k+1∑

i=1

i =

k∑

i=1

i+ k + 1

=
1

2
k(k + 1) + k + 1

=
1

2
(k + 1)((k + 1) + 1).

Hence, we conclude that the statement is true for any positive integer n.
Another useful type of deductive proof for “A ⇒ B” is a contrapositive

proof; that is, a proof of “not B ⇒ not A”.
There are some standard procedures often used in proofs. If the conclusion

is that two sets A and B are equal, show that A ⊆ B and B ⊆ A. To do this
(for the first one), choose any x ∈ A and show x ∈ B. The same technique is
used to show that two collections of sets, for example, two σ-fields, are equal.

To show that a sequence converges, use partial sums and an ε bound.
To show that a series converges, show that the sequence is a Cauchy se-

quence.
The standard procedures may not always work, but try them first. In

the next section, I describe several facts that are often used in mathematical
proofs.

0.0.9 Useful Mathematical Tools and Operations

In deriving results or in proving theorems, there are a number of operations
that occur over and over. It is useful to list some of these operations so that
they will more naturally come to mind when they are needed. The following
subsections list mathematical operations that should be in fast memory. None
of these should be new to the reader. In some cases, we mention a specific
operation such as completing the square; in other cases, we mention a specific
formula such as De Morgan’s laws or the inclusion-exclusion formula.
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Working with Abstract Sets

Two of the most useful relations are De Morgan’s laws, equations (0.0.2)
and (0.0.3), and their extensions to countable unions and intersections.

The inclusion-exclusion formula, equation (0.0.8), is particularly useful in
dealing with collections of subsets of a sample space.

For a general sequence of sets {An}, the disjoint sequence (0.0.6) {Dn} on
page 619 that partitions their union is often useful.

If the sequence {An} is increasing, that is, A1 ⊆ A2 ⊆ . . ., the intersection
is trivial, but the union ∪∞n=1An may be of interest. In that case, the disjoint
sequence (0.0.7) Dn = An+1 − An may be useful. Conversely, if the sequence
{An} is decreasing, the union is trivial, but the intersection may be of interest.
In that case, De Morgan’s laws may be used to change the decreasing sequence
into an increasing one.

Working with Real Sets

There are many useful properties of real numbers that simplify operations
on them. Recognizing common sequences of reals as discussed beginning on
page 651 or sequences of real intervals discussed beginning on page 646 will
aid in solving many problems in mathematics. The sequences of intervals

Oi =

]
a− 1

i
, b+

1

i

[
(0.0.73)

and

Ci =

[
a+

1

i
, b− 1

i

]
. (0.0.74)

given in expressions (0.0.39) and (0.0.40) are worth remembering because

∩∞i=1Oi = [a, b],

that is, it is closed; and
∪∞i=1Ci =]a, b[,

that is, it is open. Note the nesting of the sequences; the sequence {Oi} is
decreasing and the sequence {Ci} is decreasing.

Other sequences of real numbers that may be useful are nested intervals
each of the form of Oi or Ci above, for example,

Iij =

]
j +

1

i
, j − 1

i

[
. (0.0.75)

These kinds of sequences may be used to form an interesting sequence of
unions or intersections; for example,

Uj = ∪∞i=1Iij.
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Two useful set of integers are the increasing sequence

Ai = {1, . . . , i} (0.0.76)

and the decreasing sequence

Bi = ZZ+ − {1, . . . , i}. (0.0.77)

Note that ∪Ai = ZZ+ and ∩Bi = ∅.

Working with Real Sequences and Series

It is helpful to be familiar with a few standard sequences and series such as
those we mentioned on page 651 and in Section 0.0.5. A question that arises
often is whether or not a given series of real numbers converges. We discussed
that issue briefly in Section 0.0.5. Here we list some additional conditions are
useful in addressing this question. In the following we write

∑
xi to mean

limn→∞
∑n

i=1 xi.

Comparison Tests

• If
∑ |yi| converges and |xi| ≤ |yi| then

∑
xi converges absolutely.

• If
∑ |yi| diverges and |xi| ≥ |yi| then

∑ |xi| diverges but
∑
xi may converge.

Ratio Test

• If limi→∞ |xi+1|/|xi| = α, then
∑
xi converges absolutely if α < 1 and

diverges if α > 1.

Root Test

• If limi→∞
n
√
|xi| = α, then

∑
xi converges absolutely if α < 1 and diverges

if α > 1.

Raabe’s Test

• If limn→∞ i (1− |xi+1|/|xi|) = α, then
∑
xi converges absolutely if α < 1

and diverges if α > 1.

Alternating Series Test

• If xi ≥ 0, xi ≤ xi+1, and limn→∞ xi = 0, then
∑

(−1)ixi converges.
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Use of Standard Inequalities

Many mathematical inequalities lead to other interesting facts. I mention sev-
eral useful inequalities in this chapter. In Appendix B I state versions of
many of these in the setting of probabilities or expectations, and I also men-
tion several additional ones in that appendix. Being familiar with these var-
ious inequalities (the more, the better!) helps one to prove or disprove other
propositions.

The proofs of some of the standard inequalities themselves are templates of
techniques that should be in the toolbox of mathematical statisticians. Two
examples are the proof of the Cauchy-Schwarz inequality and the proof of
Hölder’s inequality. In each case, the main fact used may not have an obvious
relationship with the inequality itself. For the Cauchy-Schwarz inequality, we
use a simple and wellknown fact from the theory of equations. See page 637.
For Hölder’s inequality, we identify a relevant concave function and then use
a property of such a function. See page 642 for a proof that uses a concave
function, and see page 852 for a proof of a slightly different version of Hölder’s
inequality that uses the related convex function. The remembrance of how
we get started on these two proofs can help when we are faced with a new
proposition to prove or disprove.

Working with Real-Valued Functions

When dealing with general real-valued functions, it is often useful to decom-
pose the function into its nonnegative part and its negative part. In this way,
the function f is written as

f = f+ − f−.

An example of this technique is in the definition of the Lebesgue integral,
Definition 0.1.41.

Use of Transformations

Many problems are simplified by use of transformations of the variables. Some
useful transformations are those between trigonometric and exponential func-
tions, such as Euler’s formula,

ei(nx) = cos(nx) + i sin(nx), (0.0.78)

for integer n and real x.
Euler’s formula yields de Moivre’s formula for multiples of angles,

(cos(x) + i sin(x))n = cos(nx) + i sin(nx), (0.0.79)

again for integer n and real x. (Note, in fact, that this formula does not hold
for non-integer n.) There are many other formulas among the trigonometric
functions that can be useful for transforming variables.
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Another very useful class of transformations are those that take cartesian
coordinates into circular systems. In two dimensions, the “polar coordinates”
ρ and θ in terms of the cartesian coordinates x1 and x2 are

ρ =
√
x2

1 + x2
2

θ =





0 if x1 = x2 = 0

arcsin(x2/
√
x2

1 + x2
2) if x1 ≥ 0

π − arcsin(x2/
√
x2

1 + x2
2) if x1 < 0

(0.0.80)

The extension of these kinds of transformations to higher dimensions is called
“spherical coordinates”.

Expansion in a Taylor Series

One of the most useful tools in analysis is the Taylor series expansion of a
function about a point a. For a scalar-valued function of a scalar variable, it
is

f(x) = f(a) + (x− a)f ′ +
1

2!
(x− a)2f ′′ + · · · , (0.0.81)

if the derivatives exist and the series is convergent. (The class of functions
for which this is the case in some region that contains x and a is said to be
analytic over that region; see page 657. An important area of analysis is the
study of analyticity.)

In applications, the series is usually truncated, and we call the series with
k + 1 terms, the kth order Taylor expansion.

For a function of m variables, it is a rather complicated expression:

f(x1, . . . , xm) =

∞∑

j=0


 1

j!

(
m∑

k=1

(xk − ak)
∂

∂xk

)j

f(x1 , . . . , xm)




(x1,...,xm)=(a1,...,am)

.

(0.0.82)
The second order Taylor expansion for a function of an m-vector is the

much simpler expression.

f(x) ≈ f(a) + (x− a)T∇f(a) +
1

2
(x− a)THf (a)(x− a), (0.0.83)

where ∇f(a) is the vector of first derivatives evaluated at a and Hf(a) is the
matrix of second second derivatives (the Hessian) evaluated at a. This is the
basis for Newton’s method in optimization, for example. Taylor expansions
beyond the second order for vectors becomes rather messy (see the expres-
sion on the right side of the convergence expression (1.201) on page 96, for
example).
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Mean-Value Theorem

Two other useful facts from calculus are Rolle’s theorem and the mean-value
theorem, which we state here without proof. (Proofs are available in most
texts on calculus.)

Theorem 0.0.18 (Rolle’s theorem)
Assume the function f(x) is continuous on [a, b] and differentiable on ]a, b[. If
f(a) = f(b), then there exists a point x0 with a < x0 < b such that f ′(x0) = 0.

Theorem 0.0.19 (mean-value theorem)
Assume the function f(x) is continuous on [a, b] and differentiable on ]a, b[.
Then there exists a point x0 with a < x0 < b such that

f(b) − f(a) = (b− a)f ′(x0).

Evaluation of Integrals

There are many techniques that are useful in evaluation of a definite inte-
gral. Before attempting to evaluate the integral, we should establish that the
integral is finite. For example, consider the integral

∫ ∞

−∞
exp(−t2/2)dt. (0.0.84)

A technique for evaluation of this integral is to re-express it as an iterated
integral over a product space. (See Exercise 0.0.22; this is an application
of Fubini’s theorem.) Before doing this, however, we might ask whether the
integral is finite. Because exp(−t2/2) decreases rapidly in the tails, there is
a good chance that the integral is finite. We can see it directly, however, by
observing that

0 < exp(−t2/2) < exp(−|t|+ 1) −∞ < t <∞,

and ∫ ∞

−∞
exp(−|t|+ 1)dt = 2e.

One of the simplest techniques for evaluation of an integral is to express
the integral in terms of a known integral, as we discuss in Section 0.0.9.

Use of Known Integrals and Series

The standard families of probability distributions provide a compendium of
integrals and series with known values.
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Integrals
There are three basic continuous univariate distributions that every stu-
dent of mathematical statistics should be familiar with. Each of these
distributions is associated with an integral that is important in many
areas of mathematics.
• over IR; the normal integral:

∫ ∞

−∞
e−(x−µ)2/2σ2

dx =
√

2πσ, (0.0.85)

for σ > 0, and its multivariate extension,
• over IR+; the gamma integral (called the complete gamma function):

∫ ∞

0

1

γα
xα−1e−x/γdx = Γ(α), (0.0.86)

for α, γ > 0.
• over ]0, 1[; the beta integral (called the complete beta function):

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α+ β)
, (0.0.87)

for α, β > 0.

Multivariate integrals
Both the normal distribution and the beta distribution have important
and straightforward multivariate extensions. These are associated with
important multivariate integrals.
• over IRd; Aitken’s integral:

∫

IRd

e−(x−µ)TΣ−1(x−µ)/2 dx = (2π)d/2|Σ|1/2, (0.0.88)

for positive definite Σ−1.
• over ]0, 1[d; Dirichlet integral:

∫

]0,1[d

d∏

i=1

xαi−1
i

(
1−

d∑

i=1

xi

)αd+1−1

dx =

∏d+1
i=1 Γ(αi)

Γ(
∑d+1

i=1 αi)
. (0.0.89)

Series
There are four simple series that should also be immediately recognizable:
• over 0, . . . , n; the binomial series:

n∑

x=0

Γ(n+ 1)

Γ(x+ 1)Γ(n− x+ 1)
πx(1− π)n−x = 1, (0.0.90)

for 0 < π < 1 and n ≥ 1.
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• over max(0, N − L +M), . . . ,min(N,M); the hypergeometric series:

min(N,M)∑

x=max(0,N−L+M)

(
M

x

)(
L −M
N − x

)
=

(
L

n

)
, (0.0.91)

for 1 ≤ L, 0 ≤ N ≤ L, and 0 ≤M ≤ L.
• over 0, 1, 2, . . .; the geometric series:

∞∑

x=0

(1− π)x = π−1 (0.0.92)

for 0 < π < 1.
• over 0, 1, 2, . . .; the Poisson series:

∞∑

x=0

θx

x!
= eθ, (0.0.93)

for θ > 0.

The beta integral and the binomial series have a natural connection
through the relation

Γ(n+ 1)

Γ(x+ 1)Γ(n− x+ 1)
=

(
n

x

)
. (0.0.94)

The Dirichlet integral, which is a generalization of the beta, has a similar
relation to the multinomial series, which is a generalization of the binomial.

For computing expected values or evaluating integrals or sums, the trick
often is to rearrange the integral or the sum so that it is in the form of the
original integrand or summand with different parameters.

As an example, consider the integral that is the qth raw moment of a
gamma(α, β) random variable:

∫ ∞

0

1

Γ(α)βα
xqxα−1e−x/βdx.

We use the known value of the integral of the density:
∫ ∞

0

1

Γ(α)βα
xα−1e−x/βdx = 1.

So
∫ ∞

0

1

Γ(α)βα
xqxα−1e−x/βdx =

∫ ∞

0

1

Γ(α)

Γ(q + α)βq

Γ(q + α)βq+α
x(q+α)−1e−x/βdx

=
Γ(q + α)βq

Γ(α)

∫ ∞

0

1

Γ(q + α)βq+α
x(q+α)−1e−x/βdx

=
Γ(q + α)βq

Γ(α)
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Another example is a series of the form

∞∑

x=0

xq θx e−θ

x!
.

We recognize in this the known series that corresponds to the probability
function associated with the Poisson distribution:

∞∑

x=0

θx e−θ

x!
= 1,

and realize that evaluation of the series involves a manipulation of xq and x!.
For q = 1, we have

∞∑

x=0

x θx e−θ

x!
= θ

∞∑

x=1

θ(x−1) e−θ

(x− 1)!

= θ.

For q = 2, we form two sums so that we can get expressions involving the
basic probability function:

∞∑

x=0

x2 θx e−θ

x!
=

∞∑

x=2

x(x− 1) θx e−θ

x!
+

∞∑

x=1

x θx e−θ

x!

= θ2
∞∑

x=2

θ(x−2) e−θ

(x− 2)!
+ θ

∞∑

x=1

θ(x−1) e−θ

(x− 1)!

= θ2 + θ.

The PDF Decomposition

It is often useful to decompose a given function f into a product of a PDF p
and a function g:

f(x) = g(x)p(x). (0.0.95)

An appropriate PDF depends on the domain of f , of course. For continuous
functions over a finite domain, a scaled PDF of a beta distribution is often
useful; for a domain of the form [a,∞[, a shifted gamma works well; and for
]−∞,∞[, a normal is often appropriate.

The PDF decomposition yields the relation
∫
f(x) dx = E(g(X)), (0.0.96)

where the expectation is taken wrt the distribution with PDF p.
The PDF decomposition is useful in Monte Carlo applications. When the

PDF is chosen appropriately, the technique is called “importance sampling”.
The PDF decomposition is also used often in function estimation.
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Completing the Square

Squared binomials occur frequently in statistical theory, often in a loss func-
tion or as the exponential argument in the normal density function. Sometimes
in an algebraic manipulation, we have an expression of the form ax2 +bx, and
we want an expression for this same quantity in the form (cx+ d)2 + e, where
e does not involve x. This form can be achieved by adding and subtracting
b2/(4a), so as to have

ax2 + bx =
(√
ax+ b/(2

√
a)
)2 − b2/(4a). (0.0.97)

We have a similar operation for vectors and positive definite matrices. If
A is a positive definite matrix (meaning that A− 1

2 exists) and x and b are
vectors, we can complete the square of xTAx + xTb in a similar fashion: we
add and subtract bTA−1b/4. This gives

(
A

1
2x+ A− 1

2 b/2
)T (

A
1
2 x+A− 1

2 b/2
)
− bTA−1b/4

or (
x+ A−1b/2

)T
A
(
x+ A−1b/2

)
− bTA−1b/4. (0.0.98)

This is a quadratic form in a linear function of x, together with a quadratic
form bTA−1b/4 that does not involve x.

The “Pythagorean Theorem” of Statistics

We often encounter a mean or an expectation taken over a squared binomial.
In this case, it may be useful to decompose the squared binomial into a sum
of squared binomials or an expectation of a squared binomial plus a single
squared binomial:

n∑

i=1

(xi −m)2 =

n∑

i=1

(xi − x̄)2 + n(x̄−m)2, (0.0.99)

where x̄ =
∑
xi/n, and

E((X −m)2) = E((X − µ)2) + (µ −m)2, (0.0.100)

where µ = E(X).
This of course is also true for the d-vectors X, m, and µ:

E(‖X −m‖2) = E(‖X − µ‖2) + ‖µ−m‖2, (0.0.101)

where µ = E(X).
Because the second term on the right-hand side in each of the equations

above is positive, we can conclude that x̄ and µ are the respective minimizers
of the left-hand side, wrt a variable m.
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Orthogonalizing Linearly Independent Elements of a Vector Space

Given a set of nonnull, linearly independent vectors, x1, x2, . . ., it is easy to
form orthonormal vectors, x̃1, x̃2, . . ., that span the same space. This can be
done with respect to any inner product and the norm defined by the inner
product. The most common inner product for vectors of course is 〈xi, xj〉 =

xT
i xj, and the Euclidean norm, ‖x‖ =

√
〈x, x〉, which we often write without

the subscript.

x̃1 =
x1

‖x1‖

x̃2 =
(x2 − 〈x̃1, x2〉x̃1)

‖x2 − 〈x̃1, x2〉x̃1)‖

x̃3 =
(x3 − 〈x̃1, x3〉x̃1 − 〈x̃2, x3〉x̃2)

‖x3 − 〈x̃1, x3〉x̃1 − 〈x̃2, x3〉x̃2‖
etc.

These are called Gram-Schmidt transformations. These transformations also
apply to other kinds of objects, such as functions, for which we can define
an inner product. (Note: the third expression above, and similar expressions
for subsequent vectors may be numerically unstable. See Gentle (2007), pages
27–29 and 432, for a discussion of numerical issues.)

Expansion in Basis Elements of a Vector Space

If q1, q2, . . . form an orthonormal basis for the real vector space V, then x ∈ V
can be expressed in the form

x =
∑

ciqi, (0.0.102)

where c1, c2, . . . are real numbers, called the Fourier coefficients with respect
to the basis (q1, q2, . . .). (I have left off the limits, because the vector space
may be infinite dimensional.) The Fourier coefficients satisfy

ck = 〈x, qk〉. (0.0.103)

If the inner product arises from a norm (the L2 norm!), then for any fixed j,
the approximation to x

x̃ =

j∑

i=1

ciqi,

where c1, . . . , cj are the Fourier coefficients is better than any other approxi-

mation of the form
∑j

i=1 aiqi in the sense that

∥∥∥∥∥x−
j∑

i=1

ciqi

∥∥∥∥∥ ≤
∥∥∥∥∥x−

j∑

i=1

aiqi

∥∥∥∥∥ . (0.0.104)
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Discrete Transforms

Operations on a vector can often be facilitated by first forming an inner prod-
uct with the given vector and another specific vector that has an additional
argument. This inner product is a function in the additional argument. The
function is called a transform of the given vector. Because of the linearity of
inner products, these are linear transforms.

One of the most useful transforms is the discrete Fourier transform (DFT),
which is the weighted inner product of a given n vector with the vector

f(s) = (e−2πis, e−4πis, . . . , e−2nπis);

that is, for the n-vector x,

d(s) =
1√
n
〈x, f(s)〉

=
1√
n

∞∑

t=1

xte
−2tπis

=
1√
n

( ∞∑

t=1

xt, cos(−2tπs) − i

∞∑

t=1

xt, sin(−2tπs)

)
. (0.0.105)

*** discuss uses
*** describe FFT
We will discuss continuous transforms and transforms generally in Sec-

tion 0.1.12.

Differential Equations and Difference Equations

Many processes of interest can be modeled by differential equations or by
difference equations. This is because in many cases the change in a system
may be easy to observe, it may follow some physical law, or else its behavior
can be related in a natural way to other observable events or measurable
variables.

A differential equation is an equation that involves one or more derivatives.
The variable(s) with respect to which the derivatives are taken are called “in-
dependent variable(s)”. If all of the derivatives are taken with respect to the
same variable, the equation is an ordinary differential equation or ODE; oth-
erwise, it is a partial differential equation or PDE. A solution to a differential
equation is an equation involving the variables of the differential equation
that satisfies the differential equation identically, that is, for all values of the
independent variables.

In ordinary differential equations, we generally denote a derivative by a
prime on the variable being differentiated: y′, y′′, etc. A differential equation
has an indefinite number of solutions; for example, the differential equation
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y′′ − y = 0,

in which x is the independent variable; that is, in which y′ ≡ dy/dx and
y′′ ≡ dy′/dx, has solutions

y = c1e
x + c2e

−x,

where c1 and c2 are any constants.
***Define terms general solution initial value, boundary value particular

solution order
*** types of ODEs order and degree separable
*** methods of solution
*** difference equations types, solutions

Optimization

Many statistical methods depend on maximizing something (e.g., MLE), or
minimizing something, generally a risk (e.g., UMVUE, MRE) or something
that has an intuitive appeal (e.g., squared deviations from observed values,
“least squares”).

First of all, when looking for an optimal solution, it is important to consider
the problem carefully, and not just immediately differentiate something and
set it equal to 0.

A practical optimization problem often has constraints of some kind.

min
α

f(x, α)

s.t. g(x, α) ≤ b.

If the functions are differentiable, and if the minimum occurs at an interior
point, use of the Lagrangian is usually the way to solve the problem.

With the dependence on x suppressed, the Lagrangian is

L(α, λ) = f(α) + λT(g(α) − b).

Differentiating the Lagrangian and setting to 0, we have a system of equations
that defines a stationary point, α∗.

For twice-differentiable functions, we check to insure that it is a minimum
by evaluating the Hessian,

∇∇f(α)
∣∣∣
α=α∗

.

If this is positive definite, there is a local minimum at α∗.
There are many other techniques useful in optimization problems, such

as EM methods. We discuss various methods of optimization further in Sec-
tion 0.4 beginning on page 822.
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Some Useful Limits

There are a number of general forms of expressions involving fractions, expo-
nentials, or trigonometric functions that occur frequently in limit operations.
It is helpful to be familiar with some of these standard forms, so that when
they arise in the course of a proof or derivation, we can quickly evaluate them
and move on. I list some useful limits below, in no particular order.

lim
n→∞

(
1 +

x

n

)n

= ex. (0.0.106)

lim
h→0

1− cos(hx)

h2
=

1

2
x2. (0.0.107)

Notes and References for Section 0.0

It is important that the student fully understand the concept of a mathe-
matical proof. Solow (2003) discusses the basic ideas, and Aigner and Ziegler
(2010), whose title comes from a favorite phrase of Paul Erdös, give many
well-constructed proofs of common facts.

Gelbaum and Olmsted (1990, 2003) have remarked that mathematics is
built on two types of things: theorems and counterexamples. Counterexamples
help us to understand the principles in a way that we might miss if we only
considered theorems. Counterexamples delimit the application of a theorem.
They help us understand why each part of the hypothesis of a theorem is
important.

The book by Romano and Siegel (1986) is replete with examples that il-
lustrate the “edges” of statistical properties. Other books of this general type
in various areas of mathematics are listed below.

Khuri (2003) describes the important facts and techniques in advanced
calculus and other areas of applied mathematics that should be in every statis-
tician’s toolbox.

Sometimes a step in a proof or a derivation may seem to be a “trick”,
and the student may ask “how could I have thought of that?” Often these
tricks involve thinking of an appropriate expansion or recognizing a convergent
series. Jolley (1961) provides a useful compendium of convergent series.

A book that I encountered rather late in my life in mathematics is
Graham et al. (1994). This beautiful book presents many “tricks”, and puts
them in a context in which they appear to be the natural thing to think of.

Exercises for Section 0.0

0.0.1. Prove Theorem 0.0.2.
0.0.2. Use De Morgan’s laws to prove equation (0.0.20).
0.0.3. Prove equations (0.0.22) and (0.0.24).
0.0.4. Let (S, ◦) be a group with identity e. Let x be any element of S. Prove:
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a) x ◦ e = e ◦ x.
b) x ◦ x−1 = x−1 ◦ x.
c) e is unique.
d) for given x, x−1 is unique.

0.0.5. Let (G, ◦) be a group of functions on X and ◦ is function composition.
Show that the functions must be bijections. (Compare Example 0.0.4.)

0.0.6. a) Show that a sequence {xn} ∈ IRd that converges to x ∈ IRd is a
Cauchy sequence. (In IRd convergence is usually defined in terms of
the Euclidean metric, but that is not necessary.)

b) Show that each Cauchy sequence is bounded.
c) Show that if a Cauchy sequence has a subsequence that converges to

x, then the original sequence converges to x.
d) Finally, prove the Cauchy criterion: There is a number x ∈ IRd

to which the sequence {xn} ∈ IRd converges iff {xn} is a Cauchy
sequence.

0.0.7. Consider the set D ⊆ IR2 where xi ∈ D is

xi = (i, 1/i).

Define a total order on D using the ordinary order relations in IR.
0.0.8. Prove Theorem 0.0.3.

Hint: Use the fact that the characteristic must be 0.
0.0.9. Using Definition 0.0.6, show that in the linear space S, for any x ∈ S,

0x = 0s,

where 0s is the additive identity in S.
0.0.10. Let 〈·, ·〉 be an inner product on Ω. Show that for x, y ∈ Ω,

〈x + y, x+ y〉 ≤ 〈x, x〉+ 〈y, y〉.

0.0.11. Prove Theorem 0.0.5.
0.0.12. Prove statement (0.0.33).
0.0.13. Let x ∈ IRd.

a) Prove
lim

p→∞
‖x‖p = max({|xi|}).

b) Prove that h(x) = max({|xi|}) is a norm over IRd.
0.0.14. Prove equations (0.0.51) through (0.0.55).
0.0.15. Prove statement (0.0.59).
0.0.16. Suppose ‖g(n)‖/‖f(n)‖ → c as n→∞, where c is a finite constant.

a) Show that g(n) ∈ O(f(n)).
b) Suppose also that g(n) ∈ O(h(n)). What can you say about O(f(n))

and O(h(n))?
0.0.17. a) Prove statements (0.0.60) through (0.0.62).

b) Prove statements (0.0.60) through (0.0.62) with little o in place of big
O.
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0.0.18. Why is equation (0.0.43) true?
0.0.19. Taylor series of real univariate functions.

a) Consider

f(x) =

∞∑

n=0

e−n cos(n2x).

Show that the function is infinitely differentiable but the Taylor series
expansion about 0 converges only for x = 0.

b) Consider

f(x) =
1

1 + x2
.

Show that the function is infinitely differentiable but the Taylor series
expansion about 0 converges only for |x| < 1.

c) Consider

f(x) =

{
e−1/x2

for x 6= 0
0 for x = 0.

(i) Show that the function is infinitely differentiable but that the Tay-
lor series expansion about 0 does not converge to f(x) if x 6= 0.
(ii) In the notation of equation (0.0.63), what is Rn in this case?

d) Consider
f(x) = ex.

Write out the Taylor series expansion about 0 and show that it con-
verges to f(x) ∀x ∈ IR.

0.0.20. Use the ratio test to show that the series in equation (0.0.66) is convergent.
0.0.21. Prove Theorem 0.0.16.
0.0.22. Evaluation of definite integrals.

a) Evaluate the integral (0.0.84):

I =

∫ ∞

−∞
exp(−x2/2)dx.

Hint: Write I2 as the iterated integral in x and y with integrand
exp(−(x2 + y2)/2) and then change to polar coordinates.

b) Evaluate the integral ∫ ∞

0

sin(x)

x
dx,

interpreted in the Lebesgue sense as

lim
t→∞

∫ t

0

sin(x)/x dx.

Hint: Write this as an integral in a product space and show that
Fubini’s theorem applies. See Billingsley (1995), page 235.
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0.1 Measure, Integration, and Functional Analysis

Measure and integration and the probability theory built on those topics are
major fields in mathematics. The objective of this section is just to get enough
measure theory to support the probability theory necessary for a solid foun-
dation in statistical inference.

Most of the early development in this section is for abstract objects; for
each of these, however, there is a concrete instance that is relevant in proba-
bility theory. Althought the original development of these concepts generally
involved real numbers and the ideas were later generalized, nowadays it is more
satisfying to develop general ideas in the abstract, and then to specialize them
to real numbers or to whatever structure is of interest.

We begin with abstract measurable spaces in Section 0.1.1 and then mea-
sures over general spaces in Section 0.1.3. A measurable space together with
a measure is a measure space.

In Section 0.1.4, we discuss an important measure space, namely the re-
als, the Borel σ-field on the reals, and Lebesgue measure. In Section 0.1.5
we discuss real-valued functions over the reals. We then discuss integration
and differentiation. In the ordinary calculus, differentiation is usually intro-
duced before integration, and then the two are associated by means of the
“Fundamental Theorem”. In analysis, the order is usually reversed, and so in
Section 0.1.6 we discuss integration of real functions, and then in Section 0.1.7
we define derivatives.

Sections 0.1.8 through 0.1.13 cover some basics of real functional analysis,
including a calculus over functionals.

0.1.1 Basic Concepts of Measure Theory

Analysis depends heavily on a primitive concept of a set, or a collection of
“elements”. We also use “space” as a primitives, but it is usually just a set
that may have some special properties. We generally avoid nesting “set”; that
is, rather than a “set of sets”, we speak of a collections of sets.

The Sample Space and Subsets of It

A sample space is a nonempty set. It is the “universe of discourse” in a given
problem. It is often denoted by Ω. Interesting structures are built on a given
set Ω by defining some important types of collections of subsets of Ω.

Special properties of collections of subsets of the sample space define π-
systems, rings, fields or algebras, and Dynkin systems, or Sierpinski systems,
λ-systems. The collection of subsets that constitute a general field is closed
with respect to finite unions. A very important field is one in which the collec-
tion of subsets is also closed with respect to countable unions. This is called
a σ-field.

We will now define these systems.
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Definition 0.1.1 (π-system)
A nonempty collection of subsets, P, is called a π-system iff

(π1) A,B ∈ P ⇒ A ∩B ∈ P.

The name π-system comes from the condition that the collection includes
products or intersections.

Definition 0.1.2 (ring)
A nonempty collection of subsets, R, is called a ring iff

(r1) A,B ∈ R ⇒ A ∪B ∈ R.
(r2) A,B ∈ R ⇒ A−B ∈ R.

Definition 0.1.3 (field)
A collection of subsets, F is called a field iff

(a1) Ω ∈ F , and
(a2) A ∈ F ⇒ Ac ∈ F , and
(a3) A,B ∈ F ⇒ A ∪B ∈ F .

A field of sets is also called an algebra of sets. (Compare the definition above
with the definition of the algebraic structure given in Definition 0.0.3 on
page 631.)

Notice that property (a3) is equivalent to

(a′3) A1, A2, . . .An ∈ F ⇒ ∪n
i=1Ai ∈ F ;

that is, F is closed under finite unions. The next systems we describe are
closed under countable unions.

Notice that a field is nonempty by definition, although “nonempty” is not
specified explicitly, as it is for a ring. A field contains at least one set, Ω, and
because Ω is nonempty, it contains two sets, Ω and ∅.

Definition 0.1.4 (λ-system)
A collection of subsets, L, is called a λ-system iff

(λ1) Ω ∈ L, and
(λ2) A ∈ L ⇒ Ac ∈ L, and
(λ3) A1, A2, . . . ∈ L and Ai ∩Aj = ∅ for i 6= j ⇒ ∪iAi ∈ L.
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The definitions of π-systems, rings, and fields have involved only finite num-
bers of sets. The name λ-system comes from its property that involves an
operation on an infinite number of sets, that is, a limiting operation. A λ-
system is also called a Dynkin system or a Sierpinski system.

We can see that the first and third properties of a λ-system imply that
the second property is equivalent to

(λ′2) A,B ∈ L and A ⊆ B ⇒ B − A ∈ L.

To see this, first assume the three properties that characterize a λ-system L,
and A,B ∈ L and A ⊆ B. We first see that this implies Bc ∈ L and so the
disjoint union A ∪ Bc ∈ L. This implies that the complement (A ∪ Bc)c ∈
L. But (A ∪ Bc)c = B − A; hence, we have the alternative property (λ′2).
Conversely, assume this alternative property together with the first property
(λ1). Hence, A ∈ L ⇒ Ω− A ∈ L, but Ω−A = Ac; that is, Ac ∈ L.

In a similar manner, we can show that the third property is equivalent to

(λ′3) A1, A2, . . . ∈ L with A1 ⊆ A2 ⊆ · · · ⇒ ∪iAi ∈ L.

Now, we define the most important type of system of collections of subsets:

Definition 0.1.5 (σ-field)
A collection of subsets, F , of a given sample space, Ω, is called a σ-field iff

(σ1) Ω ∈ F
(σ2) A ∈ F ⇒ Ac ∈ F
(σ3) A1, A2, . . . ∈ F ⇒ ∪iAi ∈ F .

A σ-field is also called a σ-algebra or a a σ-ring. (Notice, however, that it
is much more than a simple extension of a ring.)

A field with the properties (σ1) and (σ2), but with (σ3) replaced with the
property

(δ3) A1, A2, . . . ∈ F ⇒ ∩iAi ∈ F
is called a δ-field, a δ-algebra or a δ-ring. It is clear, however, that δ-field and
σ-field are equivalent concepts. We will use the latter term.

The definition of a σ-field immediately implies that the field is closed with
respect to set differences.

Theorem 0.1.1
Given the σ-field F , if A1, A2, . . . ∈ F , then lim supn An ∈ F and lim infn An ∈
F .

Proof. The conclusion follows because for any n, ∪∞i=nAi ∈ F and ∩∞i=nAi ∈
F .
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Notice that the definitions of a π-system and of a ring must specify that
the collections are nonempty; the definitions of the other systems ensure that
the collections are nonempty without saying so explicitly.

The exact definitions of these systems can be modified in various simple
ways. For example, in the definitions of a field, a λ-system, and a σ-field the
requirement that Ω be in the system could be replaced by the requirement
that ∅ be in the system, because closure with respect to complementation
guarantees the inclusion of Ω. (The requirement that Ω be in a λ-system,
however, could not be replaced by the requirement that ∅ be in the system.)
The closure property for unions in a field or a σ-field could be replaced by
the requirement that the system be closed for intersections of the same kind
as the unions.

Before concluding this subsection, we will define another type of collection
of subsets that is often useful in statistics.

Definition 0.1.6 (σ-lattice)
A nonempty collection of subsets, L, of a given sample space, Ω, is called a
σ-lattice iff

(σl1) A1, A2, . . . ∈ L ⇒ ∪iAi ∈ L
(σl2) A1, A2, . . . ∈ L ⇒ ∩iAi ∈ L.

The most useful of the systems we have defined is a σ-field, and in the
following sections, we will focus our attention on σ-fields.

σ-Field Generated by a Collection of Sets

Given a sample space Ω and any collection C of subsets of Ω, the intersection
of all σ-fields over Ω that contain C is called the σ-field generated by C, and
is denoted by

σ(C).
It is the minimal σ-field that contains C; that is, the “smallest” σ-field over
Ω of which C is a subset.

Given A1, A2, . . . ⊆ Ω, we may use a similar notation to that above to
refer to generated σ-fields. We use σ(A1) and σ(A1 , A2) to refer respectively
to σ({A1}) and σ({A1, A2}). That is, the argument in the operator σ(·) may
be either a set or a collection of sets.

A σ-field can contain a very large number of subsets. If k is the maximum
number of sets that partition Ω that can be formed by operations on the sets
in C, then the number of sets in the σ-field is 2k. (What is the “largest” σ-field
over Ω?)

Other special collections of subsets can also be generated by a given col-
lection. For example, given a collection C of subsets of a sample space Ω, we
can form a π-system by adding (only) enough subsets to make the collection
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closed with respect to intersections. This system generated by C is the minimal
π-system that contains C. This π-system, denoted by π(C), is the intersection
of all π-systems that contain C. Likewise, we define the λ-system generated
by C as the minimal λ-system that contains C, and we denote it by λ(C).

Example 0.1.1 (σ-fields)

1. The “trivial σ-field” is {∅,Ω}.
2. For the sample space Ω, σ({Ω}) is the trivial σ-field, {∅,Ω}.
3. If A = {A} with respect to the sample space Ω, σ(A) = {∅, A, Ac,Ω}.

If A = ∅ or A = Ω, this is the trivial σ-field; otherwise, it is the second
simplest σ-field.

4. If A = {A1, A2} and neither A1 nor A2 is a subset of the other, with
respect to the sample space Ω, there are 4 “smallest” sets that partition
A. These are called atoms. They are

{A1 ∩A2, A1 −A2, A2 −A1, (A1 ∪A2)
c}.

Hence, there are 24 = 16 sets in σ(A). These can be written simply as the
binary combinations of all above: (0000), (0001), (0010), ... Following this
order, using the partition above, the sets are (after simplification):

σ(A) = {∅, (A1 ∪A2)
c, A2 − A1, A

c
1,

A1 − A2, A
c
2, A1∆A2, (A1 ∩A2)

c,

A1 ∩A2, (A1∆A2)
c, A2, (A1 −A2)

c,

A1, (A2 − A1)
c, A1 ∪A2, Ω}.

Notice that σ({A1}) ⊆ σ({A1, A2}).
5. If A = {A1, A2} and A1 ⊆ A2, with respect to the sample space Ω, there

are 8 sets in σ(A).
6. For the sample space Ω, the power set 2Ω is a σ-field. It is the “largest”
σ-field over Ω.

Notice the notation in the example above. Why do we have the braces
in σ({Ω})? We do often abuse the notation, however; if the argument of σ()̇
is a singleton, we sometimes omit the braces. For example, the second most
trivial σ-field is that generated by a single set, say A: σ(A) = {∅, A, Ac,Ω}.
We may also abuse the notation even further by writing a collection of subsets
without putting them in braces. So, for example, σ(A,B) may be used instead
of σ({A.B}).

Example 0.1.2 (A field that is not a σ-field)
Let Ω be a countably infinite set, and let F consist of all finite subsets of Ω
along with all subsets of Ω whose complements are finite. We see immediately
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that F is a field. To see that it is not a σ-field, all we must do is choose a set
A that is countably infinite and has infinite complement. One such set can be
constructed from a sequence ω1, ω2, . . ., and let A = {ω1, ω3, . . .}. Therefore
for fixed i, the singleton {ω2i−1} ∈ F , but A /∈ F even though A = ∪i{ω2i−1}.

The sets in Example 0.1.2 are not specified exactly. How can we just give
some property, such as finiteness, and then specify all sets with this property?
While it may seem obvious that we can do this, in order to do it, we are relying
on the Axiom of Choice (see pages 618 and 675, although even that fact is not
obvious. Other interesting collections of sets similar to those in Example 0.1.2
can be formed. Instead of finiteness, we may focus on countability. We first
define a related term: A set A is said to be cocountable iff Ac is countable.

Example 0.1.3 (A σ-field that does not contain certain sets)
Let Ω be the universal set, and let F consist of all countable and cocountable
subsets of Ω. Then F is a σ-field on Ω (exercise).

If Ω is uncountable, then is contains a set A such that both A and Ac are
countable. Such a set A (or, equivalently, Ac) is not in F .

Borel σ-Fields

There is a particularly interesting type of σ-field, called a Borel σ-field, that
can be defined in topological spaces.

Definition 0.1.7 (Borel σ-field) (general)
Let (Ω, T ) be a topological space. The σ-field generated by T is the Borel
σ-field on (Ω, T ).

We often denote this Borel σ-field as B(Ω, T ) or as B(Ω).
The most interesting topological space is the set of reals together with the

class of open intervals, (IR, C). We denote the Borel σ-field on this space as
B(IR) or just as B.

Relations of σ-Fields to Other Structures

A σ-field is a π-system, a field, and a λ-system.

Theorem 0.1.2
A class that is both a π-system and a λ-system is a σ-field.

Proof. Because it is a λ-system, the class contains ∅ and is closed under
formation of complements, and because it is a π-system, it is closed under
finite intersections. It is therefore a field. Now, suppose that it contains sets
Ai, for i = 1, 2, . . .. The class then contains the sets Bi = Ai∩Ac

1∩ · · ·∩Ac
i−1,

which are necessarily disjoint. Because it is a λ-system, it contains ∪iBi. But
∪iBi = ∪iAi, and since it contains ∪iAi it is a σ-field.

A useful fact is known as the π-λ theorem.
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Theorem 0.1.3 (the π-λ theorem)
If P is a π-system and L is a λ-system, and if P ⊆ L, then

σ(P) ⊆ L.

The π-λ theorem is also called Dynkin’s π-λ theorem or Sierpinski’s π-λ the-
orem.
Proof. We use the given notation and assume the hypothesis. Let LP be the
λ-system generated by P; that is,

LP = λ(P).

LP is the intersection of every λ-system that contains P, and it is contained
in every λ-system that contains P. Thus, we have

P ⊆ LP ⊆ L.

It will now suffice to show that LP is also a π-system, because from the result
above, if it is both a π-system and a λ-system it is a σ-field, and it contains
P so it must be the case that σ(P) ⊆ LP because σ(P) is the minimal σ-field
that contains P.

Now define a collection of sets whose intersection with a given set is a
member of LP . For any set A, let

LA = {B : A ∩B ∈ LP}.

Later in the proof, for some given set B, we use the symbol “LB” to denote
the collection of sets whose intersection with B is a member of LP .

If A ∈ LP , then LA is a λ-system, as we see by checking the conditions:

(λ1) A ∩ Ω = A ∈ LP so Ω ∈ LA

(λ′2) If B1 , B2 ∈ LA and B1 ⊆ B2, then LP contains A ∩B1 and A ∩B2 , and
hence contains the difference (A ∩B2) − (A ∩B1) = A ∩ (B2 −B1); that
is, B2 −B1 ∈ LA.

(λ3) If B1, B2, . . . ∈ LA and Bi ∩ Bj = ∅ for i 6= j, then LP contains the
disjoint sets (A ∩ B1), (A ∩ B2), . . . and hence their union A ∩ (∪iBi),
which in turn implies ∪iBi ∈ LA.

Now because P is a π-system,

A,B ∈ P ⇒ A ∩B ∈ P
⇒ B ∈ LA

⇒ P ⊆ LA

⇒ LP ⊆ LA.

(The last implication follows from the minimality of LP and because LA is a
λ-system containing P.)
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Using a similar argument as above, we have A ∈ P and B ∩B ∈ LP also
imply A ∈ LB (here LB is in the role of LA above) and we have

A ∈ LB ⇐⇒ B ∈ LA.

Continuing as above, we also have P ⊆ LB and LP ⊆ LB.
Now, to complete the proof, let B,C ∈ LP . This means that C ∈ LB,

which from the above means that B ∩ C ∈ LP ; that is, LP is a π-system,
which, as we noted above is sufficient to imply the desired conclusion: σ(P) ⊆
LP ⊆ L.

The π-λ theorem immediately implies that if P is a π-system then

σ(P) = λ(P). (0.1.1)

Operations on σ-Fields

The usual set operators and set relations are used with collections of sets,
and generally have the same meaning. If the collections of sets are σ-fields,
the operation on the collections may not yield a collection that is a σ-field,
however.

Theorem 0.1.4
Given σ-fields F1 and F2 defined with respect to a common sample space, the
intersection, F1 ∩ F2, is a σ-field.

Proof. Exercise.
The union, F1 ∪ F2, however, may not be a σ-field. A simple counterex-

ample with Ω = {a, b, c} is

F1 = {∅, {a}, {b, c},Ω} and F2 = {∅, {b}, {a, c},Ω}. (0.1.2)

The notation σ(F1 ∪ F2) refers to the smallest σ-field that contains all of
the sets in either F1 or F2. For F1 and F2 as given above, we have

σ(F1 ∪ F2) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},Ω}.

Sub-σ-Fields

A subset of a σ-field that is itself a σ-field is called a sub-σ-field.
Increasing sequences of σ-fields, F1 ⊆ F2 ⊆ · · · , are often of interest,

especially in stochastic processes.
Given a σ-field F , an interesting sub-σ-field can be formed by taking a

specific set B in F , and forming its intersection with all of the other sets in
F . We often denote this sub-σ-field as FB :

FB = {B ∩A : A ∈ F}. (0.1.3)

It is an exercise to verify the three defining properties of a σ-field for FB.
By the definition of σ(C) for a given collection C of subsets of Ω as the

intersection of all σ-fields over Ω that contain C, we have the trivial result

σ(C1) ⊆ σ(C2) if C1 ⊆ C2. (0.1.4)
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Measurable Space: The Structure (Ω, F)

If Ω is a sample space, and F is a σ-field over Ω, the double (Ω,F) is called
a measurable space.

Measurable spaces are fundamental objects in our development of a theory
of measure and its extension to probability theory.

Partitions of the sample space by sets in the σ-field are often useful. Notice
that this is always possible, and, in fact, a finite partition always exists for if
A ∈ F , then Ac ∈ F , and A ∩ Ac = ∅ and A ∪ Ac = Ω. This partitioning of
the sample space, which is often called a decomposition of the sample space,
is useful, especially in working with simple functions, as we will see later.

Notice that no measure is required for a measurable space. (We will define
“measure” below, Definition 0.1.10. It is a scalar extended-real-valued non-
negative set function whose domain is a σ-field with the properties that the
measure of the null set is 0 and the measure of the union of any collection
of disjoint sets is the sum of the measures of the sets. A measurable space
together with a measure forms a structure called a measure space.) We will
consider measures and measure spaces in Section 0.1.3. For now, we continue
discussions of measurability without reference to a specific measure.

Subspaces

Given a measurable space (Ω,F), and a set B ∈ F , we have seen how to form
a sub-σ-field FB. This immediately yields a sub measurable space (B,FB), if
we take the sample space to be Ω ∩B = B.

Cartesian Products

The cartesian product of two sets A and B, written A × B, is the set of
all doubletons, (ai, bj), where ai ∈ A and bj ∈ B. The cartesian product of
two collections of sets is usually interpreted as the collection consisting of all
possible cartesian products of the elements of each, e.g., if A = {A1, A2} and
B = {B1, B2}

A × B = {A1 ×B1, A1 × B2, A2 ×B1 , A2 ×B2},

that is,

{{(a1i, b1j) | a1i ∈ A1, b1j ∈ B1}, {(a1i, b2j) | a1i ∈ A1, b2j ∈ B2},

{(a2i, b1j) | a2i ∈ A2, b1j ∈ B1}, {(a2i, b2j) | a2i ∈ A2, b2j ∈ B2}}.
The cartesian product of two collections of sets is not a very useful object,

because, as we see below, important characteristics of the collections, such as
being σ-fields do not carry over to the product.

Two measurable spaces (Ω1,F1) and (Ω2,F2) can be used to form a carte-
sian product measurable space with sample space Ω1×Ω2. The product of the
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σ-fields is not necessarily a σ-field. A simple counterexample is the same as
we have used before with Ω = {a, b, c}. Let

F1 = {{a}, {b, c}, ∅,Ω} and F2 = {{b}, {a, c}, ∅,Ω}.

The product F1 ×F2 contains 8 sets of doubletons, two of which are {(a, b)}
and {(b, b), (c, b)}; however, we see that their union {(a, b), (b, b), (c, b)} is not
a member of F1 × F2; hence, F1 × F2 is not a σ-field.

As another example, let Ω = IR, let F = σ(IR+) = {∅, IR+, IR− IR+, IR},
let G1 = σ(IR+ × IR+), and let G2 = σ({Fi × Fj : Fi, Fj ∈ F}). We see that
G1 6= G2, because, for example, IR+ × IR is in G2 but it is not in G1.

Definition 0.1.8 (cartesian product measurable space)
Given the measurable spaces (Ω1,F1) and (Ω2,F2), we define the cartesian
product measurable space as

(Ω1 × Ω2, σ(F1 ×F2)).

As noted above, the collection σ(F1 ×F2) is not the same as F1 × F2.
Product measure spaces provide us the basis for developing a probability

theory for vectors and multivariate distributions.

0.1.2 Functions and Images

A function is a set of ordered pairs such that no two pairs have the same
first element. If (a, b) is an ordered pair in f , then a is called an argument of
the function, b is called the corresponding value of the function, and we write
b = f(a). The set of all arguments of the function is called the domain of the
function, and the set of all values of the function is called the range of the
function. If the arguments of the function are sets, the function is called a set
function.

We will be interested in a function, say f , that maps one measurable space
(Ω,F) to another measurable space (Λ, G). We may write f : (Ω,F) 7→ (Λ, G),
or just f : Ω 7→ Λ because the argument of the function is an element of Ω
(in fact, any element of Ω) and the value of the function is an element of Λ.
It may not be the case that all elements of Λ are values of f . If it is the case
that for every element λ ∈ Λ, there is an element ω ∈ Ω such that f(ω) = λ,
then the function is said to be “onto” Λ. Such a function is called surjective.
(Any function is surjective with respect to its range.)

Note the convention that we are adopting here: the domain of the function
is the sample space. If we wish to restrict the domain of definition of a function,
we do so by redefining the sample space.

If f : Ω 7→ Λ and ∀x, y ∈ Ω, f(x) = f(y) ⇒ x = y, then the function is
said to be one-to-one. If a function from Ω to Λ is one-to-one and surjective,
it is said to be bijective and the function itself is called a bijection.
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If (a, b) ∈ f , we may write a = f−1(b), although sometimes this notation
is restricted to the cases in which f is one-to-one. (There are some subtleties
here if f is not one-to-one. In that case, if the members of the pairs in f are
reversed, the resulting set is not a function. We may then say f−1 does not
exist; yet we may write a = f−1(b), with the meaning above. It is perhaps
more appropriate to take f−1(b) to be an equivalence class, are if f(a) = b to
say that a ∈ f−1(b). We will not attempt to accommodate these subtleties,
however.)

If A ⊆ Ω, the image of A, denoted by f [A], is the set of all λ ∈ Λ for which
λ = f(ω) for some ω ∈ A. Likewise, if C is a collection of subsets of Ω, the
image of C, denoted by f [C], or just by f(C), is the collection of all subsets
of Λ that are images of the subsets of C. (While I prefer the notation “[·]”
when the argument of the function is a set or a collection of sets — unless
the function is a set function — in some cases I will do like most other people
and just use the “(·)”, which actually applies more properly to an element.)

For a subset B of Λ, the inverse image or the preimage of B, denoted by
f−1[B], is the set of all ω ∈ Ω such that f(ω) ∈ B. We also write f [f−1 [B]]
as f ◦ f−1[B]. The set f [f−1[B]] may be a proper subset of B; that is, there
may be an element λ in B for which there is no ω ∈ Ω such that f(ω) = λ. If
there is no element ω ∈ Ω such that f(ω) ∈ B, then f−1[B] = ∅.

We see from the foregoing that f−1 [Λ] = Ω, although it may be the case
that f [Ω] 6= Λ. Because f is defined at points in Ω (and only there), we see
that f [∅] = ∅ and f−1[∅] = ∅.

The following theorems state useful facts about preimages.

Theorem 0.1.5
Let f : Ω 7→ Λ. For B ⊆ Λ,

f−1 [Bc] = (f−1[B])c.

(Here, Bc = Λ− B, and (f−1 [B])c = Ω− f−1 [B]).)

Proof.
We see this in the standard way by showing that each is a subset of the other.

Let ω be an arbitrary element of Ω.
Suppose ω ∈ f−1[Bc]. Then f(ω) ∈ Bc, so f(ω) /∈ B, hence ω /∈ f−1[B],

and so ω ∈ (f−1 [B])c. We have f−1[Bc] ⊆ (f−1 [B])c.
Now suppose ω ∈ (f−1[B])c. Then ω /∈ f−1 [B], so f(ω) /∈ B, hence f(ω) ∈

Bc, and so ω ∈ f−1[Bc]. We have (f−1 [B])c ⊆ f−1[Bc].

Theorem 0.1.6
Let f : Ω 7→ Λ, and let A1, A2 ⊆ Λ with A1 ∩A2 = ∅. Then

f−1[A1] ∩ f−1 [A2] = ∅.
Proof. Exercise.

Notice that the theorem does not hold in the other direction, unless f
is bijective. That is, B1, B2 ⊆ Ω with B1 ∩ B2 = ∅ does not imply that
f [B1] ∩ f [B2] = ∅.
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Theorem 0.1.7
Let f : Ω 7→ Λ, and let A1, A2, . . . ⊆ Λ. Suppose (∪∞i=1Ai) ⊆ Λ, then

f−1[∪∞i=1Ai] = ∪∞i=1f
−1(Ai).

Proof.
We see this as above; again, let λ be an arbitrary element of Λ.

Suppose λ ∈ f−1 [∪∞i=1Ai]. Then f(λ) ∈ ∪∞i=1Ai, so for some j, f(λ) ∈
Aj and λ ∈ f−1[Aj]; hence λ ∈ ∪∞i=1f

−1 [Ai]. We have f−1 [∪∞i=1Ai] ⊆
∪∞i=1f

−1[Ai].
Now suppose λ ∈ ∪∞i=1f

−1 [Ai]. Then for some j, λ ∈ f−1[Aj], so f(λ) ∈
Aj and f(λ) ∈ ∪∞i=1Ai; hence λ ∈ f−1[∪∞i=1Ai]. We have ∪∞i=1f

−1[Ai] ⊆
f−1[∪∞i=1Ai], and so the two sets are the same.

It is worth noting a finite-union version of this result:

f−1 [A1 ∪A2] = f−1[A1] ∪ f−1[A2].

For bijective functions, we have similar relationships for intersections and
set differences, but in general, f−1 [A1 ∩A2] 6= f−1[A1] ∩ f−1[A2].

If f : (Ω,F) 7→ (Λ, G), the σ-fields in the measurable spaces determine cer-
tain properties of the function, the most important of which is measurability.

Measurable Functions

We have been discussing measurability without discussing a measure. We
continue in this vein for one more concept; that of a measurable function. The
importance of the concept of a measurable function from the measurable space
(Ω,F) to the measurable space (Λ, G) is that it allows a measure defined on
F to be used immediately in G. We discuss measure formally in Section 0.1.3.

Definition 0.1.9 (measurable function)
If (Ω,F) and (Λ, G) are measurable spaces, and f is a mapping from Ω to Λ,
with the property that ∀A ∈ G, f−1[A] ∈ F , then f is a measurable function
with respect to F and G. It is also said to be measurable F/G.

For a real-valued function, that is, a mapping from Ω to IR with σ-field
B(IR), or in other cases where there is an “obvious” σ-field, we often just say
that the function is measurable with respect to F . In any event, the role of F
is somewhat more important. We use the notation f ∈ F to denote the fact
that f is measurable with respect to F . (Note that this is an abuse of the
notation, because f is not one of the sets in the collection F .)

Given the measurable spaces (Ω,F) and (Λ, G) and a mapping f from Ω
to Λ, we also call call f a mapping from (Ω,F) to (Λ, G).

Note that a measurable function f(·) does not depend on a measure. The
domain of f(·) has no relationship to F , except through the range of f(·) that
happens to be in the subsets in G.
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σ-Field Generated by a Measurable Function

If f is a measurable function from (Ω,F) to (Λ, G), then we can see that
f−1[G] is a sub-σ-field of F (Exercise 0.1.5). We call this the σ-field generated
by f , and write it as σ(f). Now we have a third type that the argument in
the operator σ(·) may be. It can be either a set, a collection of sets, or a
measurable function.

For measurable functions f and g from the same measurable space (Ω,F)
to the same measurable space (Λ, G) we may write σ(f, g), with the meaning

σ(f, g) = σ
(
f−1 [G] ∪ g−1[G]

)
. (0.1.5)

As with σ-fields generated by collections of sets in equation (0.1.4), it is clear
that

σ(f) ⊆ σ(f, g). (0.1.6)

For measurable functions f and g from (Ω,F) to (Ω,F), it is clear (exer-
cise) that

σ(g ◦ f) ⊆ σ(f). (0.1.7)

0.1.3 Measure

A measure is a scalar extended-real-valued nonnegative set function whose
domain is a σ-field, with some useful properties, as stated next.

Definition 0.1.10 (measure)
Given a measurable space (Ω,F), a function ν defined on F is a measure if

1. ν(∅) = 0,
2. ∀A ∈ F , ν(A) ∈ [0,∞],
3. if A1, A2, . . . ∈ F are disjoint, then

ν(∪∞i=1Ai) =

∞∑

i=1

ν(Ai). (0.1.8)

An immediate generalization is a vector measure, which is a similar func-
tion whose range R is a Banach space and the series on the right of equa-
tion (0.1.8) is convergent in the of the Banach space.

Two generalizations of measure are signed measure and outer measure.

Definition 0.1.11 (signed measure)
Given a measurable space (Ω,F), a function σ defined onF is a signed measure
if

1. σ(∅) = 0,
2. ∀A ∈ F , σ(A) ∈ [−∞,∞],
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3. if A1, A2, . . . ∈ F are disjoint, then

σ(∪∞i=1Ai) =
∞∑

i=1

σ(Ai). (0.1.9)

Definition 0.1.12 (outer measure)
An outer measure is an extended-real-valued function ν on the power set of a
given sample space Ω with the properties

1. ν(∅) = 0,
2. ∀A ⊆ Ω, ν(A) ∈ [0,∞],
3. ∀A,B ⊆ Ω, A ⊆ B ⇒ ν(A) ≤ ν(B),
4. if A1, A2, . . . ⊆ Ω, then

ν(∪∞i=1Ai) ≤
∞∑

i=1

ν(Ai). (0.1.10)

An outer measure is useful when it is inconvenient to work with disjoint
sets as required in the definition of a measure.

Properties of Measures

Several properties of a measure are derived immediately from Definition 0.1.10.

Theorem 0.1.8 (monotonicity)
Let ν be a measure with domain F . If A1 ⊆ A2 ∈ F , then ν(A1) ≤ ν(A2)

Proof. Exercise.

Theorem 0.1.9 (subadditivity)
Let ν be a measure with domain F . If A1, A2, . . . ∈ F , then ν(∪iAi) ≤∑

i ν(Ai).

Proof. Exercise. (Hint: Use the sequence (0.0.6) in Theorem 0.0.1. Notice
that you must show that each Di of that theorem is in F .)

Theorem 0.1.10 (continuity from below)
Let ν be a measure with domain F . If A1 ⊆ A2 ⊆ . . . ∈ F , then ν(∪∞i=1Ai) =
limi→∞ ν(Ai).
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Proof.
Let {Dn} be the sequence of disjoint sets defined in equation (0.0.7); that is,
Dj = Aj+1 −Aj and

∪∞i=1Di = ∪∞i=1Ai.

By the closure property for set differences in a σ-field, each Dj is in F . We
have

ν (∪∞i=1Ai) = ν (∪∞i=1Di)

=

∞∑

i=1

ν(Di)

= lim
i→∞

i∑

j=1

ν(Dj)

= lim
i→∞

ν
(
∪i

j=1Dj

)

= lim
i→∞

ν(Ai).

Sequences of nested intervals are important. We denote a sequence A1 ⊆
A2 ⊆ . . . with A = ∪∞i=1Ai, as Ai ↗ A. (This same notation is used for a
sequence of real numbers xi such that x1 ≤ x2 · · · and limxi = x, where we
write xi ↗ x.)

Continuity from below is actually a little stronger than what is stated
above, because the sequence of values of the measure is also monotonic: for
Ai ∈ F , Ai ↗ A⇒ ν(Ai)↗ ν(A).

Although we defined the continuity from below, we could likewise define
continuity from above for a sequence A1 ⊃ A2 ⊃ . . . ∈ F in which ν(A1) <∞.
We let A = ∩∞i=1Ai, and we denote this as Ai ↘ A. Continuity from above
is the fact that for such a sequence ν(Ai) ↘ ν(A). The proof uses methods
similar to those of the proof of Theorem 0.1.10 along with De Morgan’s laws
with complementation being taken with respect to A1. The condition that
ν(A1) < ∞ is crucial, that is, certain measures may not be continuous from
above (exercise). A probability measure, in which ν(Ω) = 1 (Definition 0.1.14),
is continuous from above.

Without qualifying the property as “from below” or “from above”, because
both obtain, we can say the measure is continuous.

Notice that the definition of a measure does not preclude the possibility
that the measure is identically 0. This often requires us to specify “nonzero
measure” in order to discuss nontrivial properties. Another possibility, of
course, would be just to specify ν(Ω) > 0 (remember Ω 6= ∅ in a measur-
able space).

To evaluate ν(∪iAi) we form disjoint sets by intersections. For example,
we have ν(A1 ∪A2) = ν(A1) + ν(A2) − ν(A1 ∩A2). This is an application of
the simplest form of the inclusion-exclusion formula (see page 620). If there
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are three sets, we take out all pairwise intersections and then add back in the
triple intersection. We can easily extend this (the proof is by induction) so
that, in general for n ≥ 4, we have

ν(∪n
i Ai) =

∑
1≤i≤n ν(Ai) −

∑
1≤i<j≤n ν(Ai ∩Aj)

+
∑

1≤i<j<k≤n ν(Ai ∩Aj ∩Ak) − · · ·

+(−1)n+1ν(A1 ∩ · · · ∩An).

(0.1.11)

Some General Types of Measures

There are some types of measures that deserve special attention. Some of
these are general classes of measures such as finite measures and Radon mea-
sures, and others are specific measures, such as the counting measure and the
Lebesgue measure (see page 717). Some types are defined for any measur-
able space, and other types are defined only for measurable spaces with some
additional structure, such as a topology.

Recall that measures take values in the extended nonnegative reals, [0,∞].

Definition 0.1.13 (finite measure)
A measure ν such that ν(Ω) <∞ is called a finite measure.

An important finite measure is a probability measure.

Definition 0.1.14 (probability measure)
A measure whose domain is a σ-field defined on the sample space Ω with the
property that ν(Ω) = 1 is called a probability measure. We often use P to
denote such a measure.

Probability measures and their applications are discussed in Chapter 1.

Definition 0.1.15 (σ-finite measure)
A measure ν is σ-finite on (Ω,F) iff there exists a sequence A1, A2, . . . in F
such that ∪iAi = Ω and ν(Ai) <∞ for all i.

A finite measure is obviously σ-finite. In integration theory, many impor-
tant results (for example Fubini’s theorem and the Radon-Nikodym theorem)
depend on the measures being σ-finite.

Definition 0.1.16 (complete measure)
A measure ν defined on the σ-field F is said to be complete if A1 ⊆ A ∈ F
and ν(A) = 0 implies A1 ∈ F .

Completeness of a measure means that all subsets of measurable sets with
measure 0 and also measurable, and have measure 0. (For an A1 in the defi-
nition above, clearly, ν(A1) = 0.)
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Definition 0.1.17 (Radon measure)
In a topological measurable space (Ω,F), a measure µ such that for every
compact set B ∈ F , µ(B) <∞ is called a Radon measure.

A Radon measure is σ-finite, although it is not necessarily finite.

Definition 0.1.18 (Haar invariant measures)
Let Ω be a group, and let (Ω,F) be a topological measurable space. For B ∈ F
and x ∈ Ω, let Bx = {yx : y ∈ B} (where “xy” represents the element of Ω
formed by the group operation on x and y), and let xBx = {xy : y ∈ B}.
a) Let µr be a measure such that for any B ∈ F and x ∈ Ω, if Bx ∈ F then

µr(Bx) = µr(B). Then µr is said to be a right invariant Haar measure.
b) Let µl be a measure such that for any B ∈ F and x ∈ Ω, if xB ∈ F then

µl(Bx) = µl(B). Then µl is said to be a left invariant Haar measure.
c) If µ is a right invariant Haar measure and a left invariant Haar measure,

then µ is an invariant Haar measure.

If Ω is Abelian, then both right and left invariant Haar measures are
invariant Haar measures.

Definition 0.1.19 (Dirac measure)
Let (Ω,F) be a measurable space, let A,B ∈ F , and let ω ∈ B. The Dirac
measure of A concentrated at ω, usually denoted by δω , is defined as

δω(A) =

{
1 if ω ∈ A
0 otherwise.

(0.1.12)

It is clear from Definition 0.1.10 that δω is a measure, and further, it is a
Radon measure (exercise).

Definition 0.1.20 (counting measure)
Let (Ω,F) be a measurable space, and assume that every A ∈ F is countable.
The counting measure is defined as

γ(A) = #(A), (0.1.13)

where #(A) =∞ if A is countably infinite.

The counting measure is σ-finite. (Notice that the counting measure is only
defined for the case that Ω is countable.) If Ω is finite, the counting measure
is finite.

If the sets of F are all countable the most common measure in applications
is the counting measure. The counting measure is the most useful measure over
the ring of integers ZZ with the σ-field 2ZZ.

Other specific measures for metric spaces (in particular IR) are the Borel
measure and the Lebesgue measure, which we will discuss on page 717.
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Measure Space: The Structure (Ω, F , ν)

If Ω is a sample space, F is a σ-field over Ω, and ν is a measure with domain
F , the triple (Ω,F , ν) is called a measure space (compare measurable space,
above).

The elements in the measure space can be any kind of objects. They do
not need to be numbers.

Definition 0.1.21 (complete measure space)
If the measure ν in the measure space (Ω,F , ν) is complete, then we say that
the measure space is a complete measure space.

A complete measure space is a Banach space if the norm in the Banach
space is defined in terms of the measure of the measure space.

Definition 0.1.22 (probability space; event)
If P in the measure space (Ω,F , P ) is a probability measure, the triple
(Ω,F , P ) is called a probability space. A set A ∈ F is called an “event”.

Restricted Measures and Sub-Measure Spaces

If (Ω,F) is a measurable space with measure ν , and A ⊆ F is a sub-σ-field,
then the function νA that is the same as ν on FB and undefined elsewhere is
a measure. We say that νA is the “measure ν restricted to A”.

Because νA is a measure on A, (Ω,A, νA) is a measure space. It is a sub
measure space of (Ω,F , ν), and it corresponds in a natural way to all the usual
subsetting operations.

If (Ω,F , ν) is a measure space, and for some set B ∈ F , (B,FB) is a
sub measurable space as described above, then the function νB, which is the
same as ν on FB and undefined elsewhere, is a measure (Exercise 0.1.17), and
(B,FB, νB) is a measure space.

We say that νB is the “measure ν restricted to FB”.

Measurable Set

If ν is a measure with domainF then every set in F is said to be ν-measurable,
or just measurable.

Note that unlike other terms above that involve “measurable”, this term
is defined in terms of a given measure.

As usual, we can get a better feel for a concept if we consider situations
in which the concept does not apply; hence, we look for some set that is not
measurable. We will consider a simple example of a nonmeasurable set, called
a Vitali set, in Section 0.1.4.
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Almost Everywhere (a.e.) and Negligible Sets

Given a measure space, (Ω,F , ν), a property that holds for all elements of F
the σ-field with positive measure is said to hold ν-almost everywhere, or ν-a.e.
This is also sometimes written as a.e.[ν ]. Also, when the measure is obvious,
we often use the phrase almost everywhere or a.e. without explicit reference
to the measure.

A set A ∈ F such that ν(A) = 0 is said to be a ν-negligible set, or just a
negligible set when the measure is obvious.

As we have defined it, “for all” or “everywhere” implies “almost every-
where”. Almost everywhere is sometimes defined in such a way that it requires
there to be a set in F with zero measure over which the property does not
hold. Although it is only in such cases that the distinction between “for all”
and “almost everywhere” is needed, it does not seem necessary to require the
existence of a measurable set over which the property does not hold in order
to define almost everywhere.

A property that holds a.e. with respect to a probability measure is said to
hold almost surely, or a.s. (There is no essential difference in the two phrases.)

Support of a Measure

For a general measure space (Ω,F , ν), a “support” of the measure may be
defined as any A ∈ F such that ν(Ac) = 0. If the measure is finite, A ∈ F
is a support iff ν(A) = ν(Ω). This definition, which is used by some authors
(Billingsley (1995), for example), is not very useful in practice; in particular,
it does not lead to a practical concept in probability distributions. A more
useful definition of support of a measure requires restrictions on the measure
space. If the measure space (Ω,F , ν) is a topological space or a space with a
metric (that is, if points in the space have neighborhoods) and if ν is defined
for some ε-neighborhood of every ω ∈ Ω, then we define the topological support
of ν as

S(ν) = {ω ∈ Ω | ν(N (ω)) > 0}. (0.1.14)

We say ν is concentrated on S(ν). The topological support is also called just
the support or the spectrum.

The support of a measure, when it is defined, has some interesting prop-
erties, such as closure, but we will not pursue this topic here. We will define
support of a probability distribution of a random variable later.

Relations of One Measure to Another

From the definition of measure, we see that the class of measures on a given
measurable space (Ω,F) form a linear space; that is, if µ and ν are measures
on (Ω,F) and a ∈ IR, then aµ+ ν is a measure on (Ω,F).
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The are several kinds of relationships between measures on a given mea-
surable space or related measurable spaces that are interesting. Some of these
relationships are equivalence relations, but some are not symmetric. The in-
teresting relationship are generally transitive, however, and so an ordering on
the space of measures could be constructed.

Definition 0.1.23 (dominating measure; absolute continuity; equivalence)

Given measures ν and µ on the same measurable space, (Ω,F), if ∀A ∈ F

ν(A) = 0 ⇒ µ(A) = 0,

then µ is said to be dominated by ν and we denote this by

µ� ν.

In this case we also say that µ is absolutely continuous with respect to ν .
If µ� ν and ν � µ, then µ and ν are equivalent, and we write

µ ≡ ν.

The definition says that µ � ν iff every ν-negligible set is a µ-negligible
set.

If µ is finite (that is, if µ(A) < ∞∀A ∈ F), the absolute continuity of µ
with respect to ν can be characterized by an ε-δ relationship as used in the
definition of absolute continuity of functions (Definition 0.1.32): Given that
µ is finite, µ is absolutely continuous with respect to ν iff for any A ∈ F and
for any ε > 0, there exists a δ such that

ν(A) < δ ⇒ µ(A) < ε.

Absolute continuity is a linear relationship; that is, if λ, µ, and ν are
measures on (Ω,F) and a ∈ IR then

λ� ν and µ� ν =⇒ (aλ+ µ)� ν. (0.1.15)

(Exercise.)

Definition 0.1.24 (singular measure)
Given measures ν and µ on the same measurable space, (Ω,F), if there exists
two disjoint sets A and B in F such that A ∪B = Ω and for any measurable
set A1 ⊆ A, ν(A1) = 0, while for any measurable set B1 ⊆ B, µ(B1) = 0 then
the pair of measures ν and µ is said to be singular . We denote this property
as

ν ⊥ µ.
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If ν ⊥ µ, it follows immediately from the definitions of singularity and of
absolute continuity that neither ν nor µ can dominate the other.

Singular measures rely on, or equivalently, define, a partition of the sample
space.

Singularity is a linear relationship; that is, if λ, µ, and ν are measures on
(Ω,F) and a ∈ IR then

λ ⊥ ν and µ ⊥ ν =⇒ (aλ + µ) ⊥ ν. (0.1.16)

(Exercise.)

Induced Measure

If (Ω,F , ν) is a measure space, (Λ, G) is a measurable space, and f is a function
from Ω to Λ that is measurable with respect to F , then the domain and range
of the function ν ◦ f−1 is G and it is a measure (Exercise 0.1.19).

The measure ν ◦f−1 is called an induced measure on G. (It is induced from
the measure space (Ω,F , ν).) An induced measure is also called a pushforward
measure.

Completion of a Measure Space

Given the measure space (Ω,F , ν) and A ∈ F with ν(A) = 0, if A1 ⊆ A, it
would seem reasonable to say that ν(A1) = 0. If A1 /∈ F , however, ν(A1) is
not 0; it is not defined. We can form a measure space (Ω,Fc, νc) that is related
to (Ω,F , ν), but which allows us to say that the measure of any subset of a
zero-measure set in F has zero measure. We form Fc as the σ-field generated
by F and Z, where Z is the collection of all sets in F with ν-measure 0. Now
define

νc(A1) = inf{ν(A) |A1 ⊆ A ∈ F}. (0.1.17)

The measure space (Ω,Fc, νc) is complete. (Exercise.) It is called the com-
pletion of the measure space (Ω,F , ν). The construction above proves the
existence of the completion of a measure space.

Notice that the completion of a measure space does not require addition of
points to Ω; compare the completion of a metric space discussed on page 640.

Every A ∈ Fc constructed as above is of the form B ∪C where B ∈ F and
C ∈ Z, and

νc(B ∪ C) = ν(B). (0.1.18)

(Exercise.)

Extensions of Measures

In applications we may have a measure space (Ω,F1, ν) and wish to consider
a different σ-field F2 over the same sample space and extend the measure to
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σ(F1,F2) while preserving its properties over F1. More generally we may have
a measure defined on any collection of subsets A of Ω and wish to extend it
to some σ-field of which σ(A) is a subset while preserving the properties of
the measure over A. The Carathéodory extension theorem tells us not only
that we can do this, but that the extension is unique so long as the measure
on A is σ-finite.

Theorem 0.1.11 (Carathéodory extension theorem)
Given a collection A of subsets of a sample space Ω and a σ-finite measure
ν0 on A. Then there exists a unique σ-finite measure ν on σ(A) such that for
any A ∈ A, ν(A) = ν0(A).

This theorem is proved in Billingsley (1995) for probability measures on page
36, and for general σ-finite measures on page 166.

Product Measures

Given measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2), we define the cartesian
product measure space as (Ω1 × Ω2, σ(F1 × F2), ν1 × ν2), where the product
measure ν1 × ν2 is defined on the product σ-field σ(F1 × F2) to have the
property for A1 ∈ F1 and A2 ∈ F2

ν1 × ν2(A1 ×A2) = ν1(A1)ν2(A2). (0.1.19)

It can be shown that the measure with this property is unique, see Billingsley
(1995), for example.

0.1.4 Sets in IR and IRd

First, recall some important definitions:

• A set A of real numbers is called open if for each x ∈ A, there exists a
δ > 0 such that for each y with |x− y| < δ belongs to A.

• A real number x is called a point of closure of a set A of real numbers if
for every δ > 0 there exists a y in A such that |x − y| < δ. (Notice that
every y ∈ A is a point of closure of A.)
We denote the set of points of closure of A by A.

• A set A is called closed if A = A.

Some simple facts follow:

• The intersection of a finite collection of open sets is open.
• The union of a countable collection of open sets is open.
• The union of a finite collection of closed sets is closed.
• The intersection of a countable collection of closed sets is closed.
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Notice what is not said above (where we use the word “finite”).
A very important type of set is an interval in IR. Intervals are the basis for

building important structures on IR. All intervals are Borel sets. We discussed
properties of real intervals and, in particular, sequences on real intervals be-
ginning on page 646.

The Borel σ-Field on the Reals

On page 697, we have defined a Borel σ-field for a topological space as the
σ-field generated by the topology, that is, by the collection of open sets that
define the topology. In a metric space, such as IR, we define open sets in terms
of the metric, and then we define a Borel σ-field as before in terms of those
open sets. The most interesting topological space is the set of reals together
with the class of open intervals, (IR, C).
Definition 0.1.25 (Borel σ-field)
Let C be the collection of all open intervals in IR. The σ-field σ(C) is called
the Borel σ-field over IR, and is denoted by B(IR).

We often call this Borel σ-field over IR just the Borel field, and denote it
just by B.

Borel Sets

Any set in B is called a Borel set. Such sets are said to be “Borel measurable”,
from the fact that they are λ-measurable, for the Lebesgue measure λ in
equation (0.1.20).

Example 0.1.4 (Borel-measurable sets)
The following are all Borel-measurable sets.

1. IR
2. ∅
3. any countable set; in particular, any finite set, ZZ, ZZ+ (the natural num-

bers), and the set of all rational numbers
4. hence, from the foregoing, the set of all irrational numbers (which is un-

countable)
5. any interval, open, closed, or neither
6. the Cantor set

The Cantor set is ∩∞i=1Ci, where

C1 = [0, 1/3]∪[2/3, 1], C2 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1], . . . ,

We see that each of these is Borel, and hence, so is the intersection. A
Cantor set has interesting properties; for example, its cardinality is the
same as that of the interval [0, 1], yet it is nowhere dense in [0, 1]. (The
particular set described here is the Cantor ternary set; other similar sets
are also called Cantor sets.)
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7. the Smith-Volterra-Cantor set
Instead of removing a fixed percentage of the subintervals at each stage,
as in the case of a Cantor set, we can form a “fat” Cantor set by removing
at each stage a decreasing percentage. The Smith-Volterra-Cantor set is
formed by first removing the middle 1/4 open subinterval from [0, 1] (that
is, leaving the set [0, 3/8] ∪ [5/8, 1]), then at the kth stage, removing the
middle 2−2k open subintervals from each of the 2k−1 subintervals. The
Smith-Volterra-Cantor set, as the Cantor set, has cardinality the same as
that of the interval [0, 1] and yet is nowhere dense.

8. any union of any of the above

So, are all subsets of IR Borel sets?
No. Interestingly enough, the cardinality of B can be shown to be the same

as that of IR, and the cardinality of the collection of all subsets of IR, that is,
the cardinality of the power set, 2IR, is much larger – which means there are
many subsets of IR that are not Borel sets.

Equivalent Definitions of the Borel σ-Field

The facts that unions of closed sets may be open and that intersections of
open intervals may be closed allow us to characterize the Borel σ-field B(IR)
in various ways. The canonical definition is that B = σ(C), where C is the
collection of all finite open intervals. This is a simple version of the general
definition of a Borel σ-field for a topological space. (In that definition, the
generator is the collection of all open sets.) The following theorem list three
other useful collections of subsets of IR that generate the Borel σ-field.

Theorem 0.1.12
The Borel σ-field B(IR) is generated by any of the following collections of
subsets of IR:
(i) the collection of all finite closed intervals [a, b] of IR,
(ii) the collection of all semi-infinite half-open intervals ]−∞, b] of IR, and
(iii) the collection of all semi-infinite open intervals ]a,−∞[ of IR.

Proof.
To show that the σ-fields generated by two collections C and D are the same,
we use the fact that a σ-field is closed with respect to countable intersec-
tions (remember the usual definition requires that it be closed with respect
to countable unions) and then we show that
(1) C ∈ C ⇒ C ∈ σ(D) and
(2) D ∈ D ⇒ D ∈ σ(C).

Hence, to prove part (i), let D the collection of all finite closed intervals of
IR.
(1) assume D =[a,b]∈ D. Now, consider the sequence of sets Bi =]a−1/i, b+
1/i[. These open intervals are in B, and hence,
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∞⋂

i=1

]a− 1/i, b+ 1/i[= [a, b] ∈ B.

Next,
(2) let ]a, b[ be any set in the generator collection of B, and consider the
sequence of sets Di = [a+1/i, b−1/i], which are in D. By definition, we have⋃∞

i=1[a+ 1/i, b− 1/i] =]a, b[∈ σ(D)
Proofs of parts (ii) and (iii) are left as exercises.
Likewise, the collections of semi-infinite intervals of the form ]∞, b[ or

[a,∞[ generate B(IR).
We also get the same Borel field B(IR) by using the collection all open sets

of IR, as in the general definition of a Borel σ-field for a topological space.
(Exercise.)

The σ-Field B[0,1]

We are often interested in some subspace of IRd, for example an interval (or
rectangle). One of the most commonly-used intervals in IR is [0, 1].

For the sample space Ω = [0, 1], the most useful σ-field consists of the
collection of all sets of the form [0, 1]∩B, where B ∈ B(IR). We often denote
this σ-field as B[0,1].

The σ-field formed in this way is the same as the σ-field generated by
all open intervals on [0, 1]; that is, B([0, 1]). (The reader should show this, of
course.)

Product Borel σ-Fields

For the d-product measurable space generated by (IR,B), the σ-field is σ(Bd),
as stated in Definition 0.1.8, and so the measurable space of interest is
(IRd, σ(Bd)).

As pointed out on page 701, the σ-field generated by the product of a
number of σ-fields is not necessarily the same as the product of the σ-fields.
It can be shown, however, that the σ-field σ(Bd) is Bd. Furthermore, this is
the σ-field that would result from definition 0.1.25 by extending the collection
C of all open intervals in IR to the collection Cd of all open intervals (or
“hyperrectangles”) in IRd.

The product measurable space of interest, therefore, is (IRd,Bd).

Measures on (IR, B(IR))

The various types of measures we discussed beginning on page 707 may all be
defined on (IR,B(IR)), but for this measurable space, the most common mea-
sure is the Lebesgue measure. Lebesgue measure is the extension (see page 712)
of Borel measure, which we now define.
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Definition 0.1.26 (Borel measure on (IR,B))
The Borel measure is defined on (IR,B) by the relation

λ(]a, b[) = b− a, (0.1.20)

for given real numbers a ≤ b.

Lebesgue Measure on IR

Although for most purposes, (IR,B) is the basic structure that we work with,
as it turns out, (IR,B) is not complete wrt the measure λ defined in equa-
tion (0.1.20).

*** describe extension *** add stuff on Carathéodory
*** Lebesgue σ-field
*** use λ to denote Lebesgue measure
It is clear from the definition of a measure (Definition 0.1.10) that λ is a

measure, and because λ is a measure, we see that

λ([a, b]) = λ(]a, b[). (0.1.21)

Although it is not finite, the Lebesgue measure is σ-finite, as can be seen
from the sequence of open intervals ]− i, i[.

The measurable space (IR,B) is a topological space, and the Lebesgue
measure is a Radon measure (exercise). Furthermore, along with addition, IR
is a group, and the Lebesgue measure is a Haar invariant measure wrt that
group. (Note that the property of Haar invariance depends on the operation
within a group). This latter fact is expressed by saying that Lebesgue measure
is translation invariant.

It can be shown that any σ-finite translation invariant measure µ on (IR,B)
is equivalent to Lebesgue measure in the sense that there is a positive constant
c, such that for any A ∈ B, λ(A) = cµ(A).

The space over which the Lebesgue measure is defined is a linear space.
The Lebesgue measure is translation invariant, as noted above, and it is also
scale equivariant. Let A ∈ B, and for b, x ∈ IR with b > 0, let bA + x =
{by+ x | y ∈ A}. We have

λ(bA+ x) = bλ(A). (0.1.22)

A set A ⊆ IRd such that λ(A) = 0 is called a null set (whether or not
A ∈ Bd). It is clear that all countable sets are null sets. For example, the set
of rational numbers has measure 0. An example of an uncountable set that is
a null set is the Cantor set, as we see by computing the measure of what is
taken out of the interval [0, 1]:

∞∑

k=1

2k−13−k =
1

3
+

2

32
+

22

33
+ · · · = 1.
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This implies that the measure of what is left, that is, the nowhere dense
(ternary) Cantor set is 0.

Another set that is uncountable but nowhere dense, is the Smith-Volterra-
Cantor set. Its measure, however, is 1/2, as we see by summing the measures
of what is taken out. ∞∑

k=1

2k−12−2k =
1

2
.

Singular Measures on (IR, B(IR))

Two other measures that are often useful in (IR,B) are the Dirac measure
(equation (0.1.12)) and the counting measure (equation (0.1.13)).

It is easy to see from the definitions that both the Dirac measure δ and
the counting measure γ are singular with respect to the Lebesgue measure:

δ ⊥ λ (0.1.23)

and
γ ⊥ λ. (0.1.24)

Hence, neither of these measures is absolutely continuous with respect to the
Lebesgue measure, and the Lebesgue measure is not absolutely continuous
with respect to either of them.

Note, for example, δ0({0}) = 1 but λ({0}) = 0, while δ0([1, 2]) = 0 but
λ([1, 2]) = 1.

A measure on (IR,B) that is singular with respect to the Lebesgue measure
is called simply a singular measure.

Example 0.1.5 (A non-Borel-measurable set)
A simple example of a non-Borel-measurable set, called a Vitali set, can be
constructed using the Axiom of Choice. We begin by defining equivalence
classes within IR by making x, y ∈ IR equivalent, written x ∼ y, iff x−y is ra-
tional. For each x ∈ IR, we identify the equivalence class Ex as {y | y ∼ x}. The
collection of these equivalence classes is a countable partition of IR. (Recall
that the set of rationals is countable.) Now we form the Vitali set V by choos-
ing exactly one member of each equivalence class in the interval [0, 1]. Next
we show that the Vitali set is nonmeasurable by contradiction. Let q1, q2, . . .
represent the distinct (countable) rationals in [−1, 1], and form the disjoint
countable sequence of sets Vk = {v+ qk | v ∈ V }. (Why are the sets disjoint?)
Now, assume V is Lebesgue measurable (that is, “Borel measurable”). Be-
cause Lebesgue measure is translation invariant (equation (0.1.22)), if V is
Lebesgue measurable, so is each Vk, and in fact, λ(Vk) = λ(V ). Note that

[0, 1]⊆
⋃

k

Vk ⊆ [−1, 2] (0.1.25)
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(why?), and so

1 ≤ λ
(⋃

k

Vk

)
≤ 3.

We also have

λ

(⋃

k

Vk

)
=
∑

k

λ(Vk) =
∑

k

λ(V ),

which must be either 0 or infinite, in either case contradicting

1 ≤
∑

k

λ(V ) ≤ 3,

which follows only from the properties of measures and the assumption that
V is Lebesgue measurable. We therefore conclude that V is not measurable.

Borel Measurable Functions

We will now consider real-valued functions; that is, mappings into IRd. The
domains are not necessarily real-valued. We first identify two useful types of
real-valued functions.

Definition 0.1.27 (indicator function)
The indicator function, denoted IS(x) for a given set S, is defined by IS(x) = 1
if x ∈ S and IS(x) = 0 otherwise.

Notice that I−1
S [A] = ∅ if 0 /∈ A and 1 /∈ A; I−1

S [A] = S if 0 /∈ A and 1 ∈ A;
I−1
S [A] = Sc if 0 ∈ A and 1 /∈ A; and I−1

S [A] = Ω if 0 ∈ A and 1 ∈ A.
Hence, σ(IS) is the second most trivial σ-field we referred to earlier; i.e.,
σ(S) = {∅, S, Sc,Ω}.

Definition 0.1.28 (simple function)
If A1, . . . , Ak are measurable subsets of Ω and a1, . . . , ak are constant real
numbers, a function ϕ is a simple function if for ω ∈ Ω,

ϕ(ω) =

k∑

i=1

aiIAi(ω), (0.1.26)

where IS(x) is the indicator function.

Recall the convention for functions that we have adopted: the domain of the
function is the sample space; hence, the subsets corresponding to constant
values of the function form a finite partition of the sample space.

Definition 0.1.29 (Borel measurable function)
A measurable function from (Ω,F) to (IRd,Bd) is said to be Borel measurable
with respect to F .
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A function that is Borel measurable is called a Borel function.
Simple functions are Borel measurable. (Exercise.)
The following theorem is useful because it allows us to build up any mea-

surable real-valued function from a sequence of simple functions.

Theorem 0.1.13
Every measurable real-valued function can be represented at any point as the
limit of a sequence of simple functions.

Proof. Let f be real and measurable. Now, if f(ω) ≥ 0, there exists a sequence
{fn} of simple functions such that

0 ≤ fn(ω) ↗ f(ω) a.e.,

and if f(ω) ≤ 0, there exists a sequence {fn} of simple functions such that

0 ≥ fn(ω)↘ f(ω) a.e.

The sequence is

fn(ω) =





−n if f(ω) ≤ −n,
−(k − 1)2−n if − k2−n < f(ω) ≤ −(k − 1)2−n, for 1 ≤ k ≤ n2−n,
(k − 1)2−n if (k − 1)2−n < f(ω) < k2−n, for 1 ≤ k ≤ n2−n,
n if n ≤ f(ω).

As a corollary of Theorem 0.1.13, we have that for a nonnegative random
variable X, there exists a sequence of simple (degenerate) random variables
{Xn} such that

0 ≤ Xn ↗ X a.s. (0.1.27)

0.1.5 Real-Valued Functions over Real Domains

In the foregoing we have given special consideration to real-valued functions
over arbitrary domains. In the following we consider real-valued functions
over real domains. For such functions, we identify some additional properties,
and then we define integrals and derivatives of real-valued functions over real
domains.

In most practical purposes, two functions are “equal” if they are equal
almost everywhere. For real-valued functions over real domains, almost ev-
erywhere usually means wrt Lebesgue measure, and when we use the phrase
“almost everywhere” or “a.e.” without qualification, that is what we mean.

Continuous Real Functions

Continuity is an important property of some functions. On page 626 we defined
continuous functions in general topological spaces. For real functions on a real
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domain, we equivalently define continuity in terms of the Euclidean distance
between two points in the domain and the Euclidean distance between the
corresponding function values.

Definition 0.1.30 (continuous function)
Let f be a real-valued function whose domain is a set D ⊆ IRd. We say that
f is continuous at the point x ∈ D if f is defined in an open neighborhood of
x, and given ε > 0, ∃δ 3 ∀y ∈ D 3 ‖x− y‖ < δ, ‖f(x) − f(y)‖ < ε.

Here, the norms are the Euclidean norms. Notice that the order of f(x)
may be different from the order of x.

The δ in the definition may depend on x as well as on ε.
If f is continuous at each point in a subset of its domain, we say it is

continuous on that subset. If f is continuous at each point in its domain, we
say that f is continuous.

We have an immediate useful fact about continuous functions:

Theorem 0.1.14
If f is a continuous function, the inverse image f−1 of an open set is open.

Proof. Follows immediately from the definition.
There are various types of continuity, and some examples will help to

illustrate the differences.

Example 0.1.6 (the Dirichlet function;) nowhere continuous function
The indicator function of the rational numbers, called the Dirichlet function,
is everywhere discontinuous.

Example 0.1.7 (the Thomae function;) continuous on irrationals, dis-
continuous on rationals
Let f(x) be defined as

f(x) =





1 if x = 0
1

q
if x =

p

q
is rational,

where q is a positive integer and p is relatively prime to q
0 if x is irrational

Then f(x), called the Thomae function, is continuous at x if x is irrational
and discontinuous at x if x is rational.

We now consider three successively stronger types of continuity, and one
modification of the strong type.

Definition 0.1.31 (uniformly continuous function)
Let f be a real-valued function whose domain includes a set D ⊆ IRd. We say
that f is uniformly continuous over D if, given ε > 0, ∃δ 3 ∀x, y ∈ D with
‖x− y‖ < δ,

‖f(x) − f(y)‖ < ε. (0.1.28)
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Continuity is a point-wise property, while uniform continuity is a property
for all points in some given set.

Example 0.1.8 continuous but not uniformly continuous
The function f(x) = 1/x is continuous on ]0,∞[, but is not uniformly con-
tinuous over that interval. This function is, however, uniformly continuous
over any closed and bounded subinterval of ]0,∞[. The Heine-Cantor theo-
rem, in fact, states that any function that is continuous over a compact set is
uniformly continuous over that set.

If {xn} is a Cauchy sequence in the domain of a a uniformly continuous
function f , then {f(xn)} is also a Cauchy sequence.

If a function f is uniformly continuous over a finite interval ]a, b[, then f
is bounded over ]a, b[.

Definition 0.1.32 (absolutely continuous function)
Let f be a real-valued function defined on [a, b] (its domain may be larger).
We say that f is absolutely continuous on [a, b] if, given ε > 0, there exists
a δ such that for every finite collection of nonoverlapping open rectangles
]xi, yi[⊆ [a, b] with

∑n
i=1 ‖xi − yi‖ < δ,

n∑

i=1

‖f(xi)− f(yi)‖ < ε. (0.1.29)

(We defined absolute continuity of a measure with respect to another measure
in Definition 0.1.23. Absolute continuity of a function f is a similar concept
with respect to the Lebesgue measure over the domain and range of f .)

We also speak of local absolute continuity of functions in the obvious way.

If f is absolutely continuous over D, it is uniformly continuous on D, but
the converse is not true.

Example 0.1.9 (the Cantor function) uniformly continuous but not ab-
solutely continuous
The Cantor function, defined over the interval [0, 1], is an example of a func-
tion that is continuous everywhere, and hence, uniformly continuous on that
compact set, but not absolutely continuous. The Cantor function takes differ-
ent values over the different intervals used in the construction of the Cantor
set (see page 714). Let f0(x) = x, and then for n = 0, 1, . . ., let

fn+1(x) = 0.5fn(3x) for 0 ≤ x < 1/3

fn+1(x) = 0.5 for 1/3 ≤ x < 2/3

fn+1(x) = 0.5 + 0.5fn(3(x− 2/3)) for 2/3 ≤ x ≤ 1.

The Cantor function is
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f(x) = lim
n→∞

fn(x). (0.1.30)

The Cantor function has a derivative of 0 almost everywhere, but has no
derivative at any member of the Cantor set. (We define derivatives below,
and in a more general way on page 739.) The properties of this function
are discussed very carefully on pages 131–135 of Boas Jr. (1960), who uses a
tertiary representation of the points in the set and a binary representation of
the values of the function to demonstrate continuity and the derivatives or
lack thereof.

An absolutely continuous function is of bounded variation; it has a deriva-
tive almost everywhere; and if the derivative is 0 a.e., the function is constant.

A slightly stronger form of continuity is Lipschitz-continuity. It places an
explicit bound on the amount by which the function can change.

Definition 0.1.33 (Lipschitz-continuous function)
Let f be a real-valued function whose domain is an interval D ⊆ IRd. We say
that f is Lipschitz-continuous if for any y1, y2 ∈ D and y1 6= y2, there exists
γ such that

‖f(y1)− f(y2)‖ ≤ γ‖y1 − y2‖. (0.1.31)

The smallest γ for which the inequality holds is called the Lipschitz constant.

We also speak of local Lipschitz continuity in the obvious way.
Every Lipschitz-continuous function is absolutely continuous. Lipschitz

continuity plays an important role in nonparametric function estimation.
The graph of a scalar-valued Lipschitz-continuous function f over D ⊆

IR has the interesting geometric property that the entire graph of f(x) lies
between the lines y = f(c) ± γ(x − c) for any c ∈ D.

Example 0.1.10 absolutely continuous but not Lipschitz continuous
The function f(x) =

√
x for x ∈ [0, 1] is an example of a absolutely continuous

everywhere on [0, 1], but is not Lipschitz continuous on that set. (The problem
with Lipschitz continuity occurs at x = 0.)

Finally, a slight modification of Lipschitz-continuity yields another form of
continuity called uniform Lipschitz-continuity of order α, or Hölder continuity
of order α.

Definition 0.1.34 (Hölder-continuous function)
Let f be a real-valued function whose domain is an interval D ⊆ IRd. We say
that f is Hölder-continuous of order α where α > 0, if for any y1, y2 ∈ D and
y1 6= y2, there exists γ such that

‖f(y1)− f(y2)‖ ≤ γ‖y1 − y2‖α. (0.1.32)
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We also speak of local Hölder continuity in the obvious way.
Depending on α, Hölder continuity may be stronger or weaker than Lip-

schitz continuity. For α < 1, Hölder continuity does not guarantee differen-
tiability, whereas uniform continuity, and a fortiori, Lipschitz continuity, does
guarantee it, except on set of measure 0. (See Example 0.1.11.)

Differentiability; Derivatives of Functions

Continuity has to do with how function values change as the function argu-
ment changes. A continuous function does not have abrupt changes. Differen-
tiability is a related concept that has to do with the rate of change. Here we
define a very useful type of differentiation. We define derivatives in a more
general way on page 739. Unlike continuity, here we will define differentiabil-
ity only for functions defined on IR. The definition generalizes, but in IRd for
d > 1 there are some additional important issues involving directions.

Definition 0.1.35 (differentiable function)
Let x be a point in IR and let f be a real-valued function defined in an open
neighborhood of x. We say that f is differentiable at the point x if the limit

lim
h→0

f(x + h) − f(x)
h

(0.1.33)

exists.
If the limit (0.1.33) exists, it is called the derivative of f at the point x

and is denoted as f ′. Wherever it exists, the derivative is a function, and we
often denote it as f ′(x).

Differentiability obviously depends on continuity, but does continuity guar-
antee differentiability?

Example 0.1.11 (the Weierstrass function) continuous everywhere but
differentiable nowhere
The Weierstrass function, defined over the interval [−2, 2], is an example of a
function that is continuous everywhere but differentiable nowhere. The Weier-
strass function is

f(x) =

∞∑

n=0

an cos(bnxπ), (0.1.34)

where 0 < a < 1 and b is a positive odd integer such that ab > 1 + 3π/2.
This example shows that Hölder continuity may not be sufficient to guar-

antee differentiability. The Weierstrass function is Hölder continuous for all
orders α < 1 (Exercise ??).

***Function that is continuous but not differentiable Weierstrass, Wiener
Uniform continuity is the weakest form that guarantees differentiability.

A uniformly continuous function is differentiable almost everywhere. Even
Lipschitz-continuity does not guarantee differentiability. For example f(x) =
|x| is Lipschitz continuous over [−a, a], but it is not differentiable at x = 0.
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Sequences of Functions; lim sup and lim inf

We now consider some properties of sequences of functions, {fn}. We will
limit our attention to Borel functions. Important properties of a sequence
of functions are its lim sup and lim inf, which we define analogously to the
meaning of lim sup and lim inf of a sequence of sets given in equations (0.0.10)
and (0.0.11):

lim sup
n

fn
def
= inf

n
sup
i≥n

fi (0.1.35)

and
lim inf

n
fn

def
= sup

n
inf
i≥n

fi. (0.1.36)

We first consider the σ-fields generated by a sequence of functions. An
important result is the following.

Theorem 0.1.15
Let {fn} be a sequence of Borel functions on a measurable space (Ω,F). Then
(i)

σ(f1 , f2, . . .) = σ(∪∞n=1σ(fn)) (0.1.37)

= σ(∪∞j=1σ(f1, . . . , fj)) (0.1.38)

(ii)
σ(lim supfn) = σ(∩∞n=1σ(fn , fn+1, . . .)). (0.1.39)

Proof. ***
We identify two types of convergence of functions, pointwise convergence

and uniform convergence, with a distinction reminiscent of that between con-
tinuity and uniform continuity. We will then consider a stronger type of point-
wise convergence, and show a relationship between strong pointwise conver-
gence and uniform convergence.

Definition 0.1.36 (pointwise convergence)
Let {fn} be a sequence of real-valued function over a real domain D, and
likewise let f be a real-valued function over D. We say {fn} converges to f
at the point x ∈ D iff for

∀ε > 0, ∃N 3 n ≥ N ⇒ ‖fn(x)− f(x)‖ < ε.

We write fn(x)→ f(x).

The “N” in the definition may depend on x. In uniform convergence it does
not.

Definition 0.1.37 (uniform convergence)
Let {fn} be a sequence of real-valued function over a real domainD, and like-
wise let f be a real-valued function over D. We say {fn} converges uniformly
to f iff for
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∀ε > 0, ∃N 3 n ≥ N ⇒ ‖fn(x) − f(x)‖ < ε ∀x ∈ D.

We write fn → f or fn(x)
uniformly→ f(x).

Uniform convergence can also be limited to a subset of the domain, in which
case we may call a function locally uniformly convergent.

Definition 0.1.38 (almost everywhere (pointwise) convergence)

*** We write fn(x)
a.e.→ f(x).

Next, we consider a relationship between types convergence of functions.
The most important and basic result is stated in the Severini-Egorov theorem,
also called Egorov’s or Egoroff’s theorem.

Theorem 0.1.16 (Severini-Egorov theorem)
Let {fn} be a sequence of Borel functions on a measure space (Ω,F , ν). For
any A ∈ F such that ν(A) <∞, suppose that fn(ω)→ f(ω)∀ω ∈ A. Then

∀ε > 0, ∃B ⊆ A with ν(B) < ε 3 fn(ω)→ f(ω) on A ∩Bc.

Proof. ***
The Severini-Egorov theorem basically states that pointwise convergence

almost everywhere on A implies the stronger uniform convergence everywhere
except on some subset B of arbitrarily small measure. This type of convergence
is also called almost uniform convergence.

This theorem is Littlewood’s principle of real analysis that states that
every convergent sequence of functions is “nearly” uniformly convergent (see
Littlewood (1944)). We will encounter this principle again in connection with
the monotone convergence theorem on page 733.

0.1.6 Integration

Integrals are some of the most important functionals of real-valued functions.
Integrals and the action of integration are defined using measures. Although
much of integration theory could be developed over abstract sets, we will
generally assume that the domains of the functions are real and the functions
are real-valued.

Integrals of nonnegative functions are themselves measures. There are var-
ious types of integrals, Lebesgue, Riemann, Riemann-Stieltjes, Ito, and so on.
The most important in probability theory is the Lebesgue, and when we use
the term “integral” without qualification that will be the integral meant. We
begin with the definition and properties of the Lebesgue integral. We briefly
discuss the Riemann integral in Section 0.1.6 on page 735, the Riemann-
Stieltjes integral in Section 0.1.6 on page 736, and the Ito integral in Sec-
tion 0.2.2 on page 775.
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The Lebesgue Integral of a Function with Respect to a Given
Measure: The Definition

An integral of a function f with respect to a given measure ν , if it exists, is a
functional whose value is an average of the function weighted by the measure.
It is denoted by

∫
f dν . The function f is called the integrand.

The integral is defined over the sample space of a given measure space, say
(Ω,F , ν). This is called the domain of the integral. We often may consider in-
tegrals over different domains formed from a sub measure space, (D,FD, ν) for
some set D ∈ F , as described above. We often indicate the domain explicitly
by notation such as

∫
D
f dν .

If the domain is a real interval [a, b], we often write the restricted interval

as
∫ b

a
f dν . If ν is the Lebesgue measure, this integral is the same as the

integral over the open interval ]a, b[.
We also write an integral in various equivalent ways. For example if the

integrand is a function of real numbers and our measure is the Lebesgue

measure, we may write the integral over the interval ]a, b[ as
∫ b

a
f(x) dx.

We build the definition of an integral of a function in three steps: first
for nonnegative simple functions, then for nonnegative Borel functions, and
finally for general Borel functions.

Definition 0.1.39 (integral of a nonnegative simple function)

If f is a simple function defined as f(ω) =
∑k

i=1 aiIAi(ω), where the Ais are
measurable with respect to ν , then

∫
f dν =

k∑

i=1

aiν(Ai). (0.1.40)

Note that a simple function over measurable Ais is necessarily measurable.
What about the case in which ν(Ai) =∞, as for example when the domain

of f is the real line and ν is the Lebesgue measure? We adopt the convention
that

∞+∞ =∞,
∞ · 0 = 0 · ∞ = 0,

and for c > 0,
c · ∞ = c+∞ =∞,

and so the integral (0.1.40) is always defined, although it may be infinite.
We define the integral of a nonnegative Borel function in terms of the

supremum of a collection of simple functions.

Definition 0.1.40 (integral of a nonnegative Borel function)
Let f be a nonnegative Borel function with respect to ν on Ω, and let Sf be
the collection of all nonnegative simple functions such that
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ϕ ∈ Sf ⇒ ϕ(ω) ≤ f(ω) ∀ω ∈ Ω

The integral of f with respect to ν is

∫
f dν = sup

{∫
ϕdν

∣∣∣∣ ϕ ∈ Sf

}
. (0.1.41)

Another way of stating this definition in the measure space (Ω,F , ν) is to
consider various finite partitions of Ω using sets in F . (See the discussion on
page 700.) If {Ai} is such a partition, we form the sum

∑

i

inf
ω∈Ai

f(ω)ν(Ai), (0.1.42)

in which we adopt the conventions above so that if, in any addend in ex-
pression (0.1.42), either factor is 0, then the addend is 0. The definition in
equation (0.1.41) is therefore equivalent to

∫
f dν = sup

all partitions

∑

i

inf
ω∈Ai

f(ω)ν(Ai) (0.1.43)

and so again the integral (0.1.41) is always defined, although it may be infinite.
Now consider general Borel functions. For a general Borel function f , we

form two nonnegative Borel functions f+ and f− such that f = f+ − f−:

f+(ω) = max{f(ω), 0}

f−(ω) = max{−f(ω), 0}.

Definition 0.1.41 (integral of a general Borel function)
The integral of f with respect to ν is the difference of the integrals of the two
nonnegative functions:

∫
f dν =

∫
f+ dν −

∫
f− dν, (0.1.44)

so long as either
∫
f+ dν or

∫
f− dν is finite (because ∞−∞ is not defined).

We can rewrite the definition in equation (0.1.44) in a manner similar to
how we rewrote equation (0.1.42) above:

∫
f dν = sup

all partitions

∑

i

∣∣∣∣ inf
ω∈Ai

f(ω)

∣∣∣∣ ν(Ai). (0.1.45)
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Note that, just as with the definitions for nonnegative functions above, the
integral of a general Borel function may be infinite; in fact, it may be ∞ or
−∞.

For what kind of function would the Lebesgue integral not be defined?
The Lebesgue integral is not defined for functions for which both the positive
part and the negative of the negative part in equation (0.1.44) are ∞. The
function f(x) = sin(x)/x over the positive real line is an example of such a
function (but see the section beginning on page 738).

Although the definition allows the integral to be infinite, we use a special
term for the case in which the integral is finite. If both

∫
f+ dν and

∫
f− dν are

finite, the integral itself is finite, and in that case we say that f is integrable.
Note that being Borel does not imply that a function is integrable.

We define the integral over a domain A as

∫

A

f dν =

∫
IAf dν. (0.1.46)

Although we may not explicitly identify the underlying measure space, tech-
nically there is one, say (Ω,F , ν), and A ∈ F and so A ⊆ Ω.

Measures Defined by Integrals

The integral over a domain together with a nonnegative Borel function leads
to an induced measure: If a given measure space (Ω,F , ν) and a given non-
negative Borel function f , let λ(A) for A ⊆ Ω be defined as

λ(A) =

∫

A

f dν. (0.1.47)

Then λ(A) is a measure over (Ω,F) (exercise). Furthermore, because

ν(A) = 0 ⇒ λ(A) = 0,

λ is absolutely continuous with respect to ν .
If f ≡ 1 the integral with respect to a given measure defines the same

measure. This leads to the representation of the probability of an event as an
integral. Given a probability space (Ω,F , P ),

∫
A

dP is the probability of A,
written P (A) or Pr(A).

The properties of a measure defined by an integral depend on the prop-
erties of the underlying measure space and the function. For example, in IR
with Lebesgue measure ν , the measure for Borel sets of positive reals defined
by

λ(A) =

∫

A

1

x
dν(x) (0.1.48)

is a Haar measure (see Definition 0.1.18). More interesting Haar measures are
those defined over nonsingular n× n real matrices,
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µ(D) =

∫

D

1

|det(X)|n dX,

or over matrices in the orthogonal group. (See Gentle (2007), pages 169–171.)

Properties of the Lebesgue Integral

Lebesgue integrals have several useful and important properties. In this sec-
tion, we will consider integrals of a finite number of functions (often just one)
over a single measure space. (A finite number greater than one is essentially
equivalent to two.)

In Section 0.1.6 we will consider countable integrals and integrals of a
countable number of functions over a single measure space.

In Section 0.1.6 we will consider integrals over more than one measure
space.

The following theorems state several properties of integrals.

Theorem 0.1.17
Let f be a Borel function. Then

ν({ω | f(ω) > 0}) > 0 =⇒
∫
fdν > 0.

Proof. Exercise.

Theorem 0.1.18
Let f be a Borel function. Then

∫
fdν <∞ =⇒ f <∞ a.e.

Proof. Exercise.

Theorem 0.1.19
Let f and g be Borel functions. Then
(i). f = 0 a.e. =⇒

∫
fdν = 0;

(ii). f ≤ g a.e. =⇒
∫
fdν ≤

∫
gdν;

(iii). f = g a.e. =⇒
∫
fdν =

∫
gdν.

Proof. Exercise.
One of the most important properties of the integral is the fact that it is

a linear operator.

Theorem 0.1.20 (linearity)
For real a and Borel f and g,

∫
(af + g) dν = a

∫
f dν +

∫
g dν.

Proof. To see this, we first show it for nonnegative functions f+ and g+,
using the definition in equation (0.1.41). Then we use the definition in equa-
tion (0.1.44) for general Borel functions.
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Theorem 0.1.21
(i).

∫
|f | dν ≥ 0

(ii).
∫
|f | dν = 0⇒ f = 0 a.e.

Proof. Follows immediately from the definition.
This fact together with the linearity means that

∫
|f | dν is a pseudonorm

for functions. A more general pseudonorm based on the integral is (
∫
|f |p dν)1/p

for 1 ≤ p. (Deviating slightly from the usual definition of a norm, it may seem
reasonable to allow the implication of

∫
|f | dν = 0 to be only almost every-

where. Strictly speaking, however, without this weakened form of equality to
0,
∫
|f | dν is only a pseudonorm. See the discussion on page 638.)

Another important property of the integral is its monotonicity. First, we
state this for a finite number of functions and integrals (in fact, for just two be-
cause in this case, two is effectively any finite number). Later, in Section 0.1.6,
we will consider analogous properties for an infinitely countable number of
functions.

Theorem 0.1.22 (finite monotonicity)
For integrable f and g, f ≤ g a.e.⇒

∫
f dν ≤

∫
g dν.

Proof. Follows immediately from the definition.

Limits of Functions and Limits of Integrals

There are some conditions for interchange of an integration operation and a
limit operation that are not so obvious. The following theorems address this
issue and are closely related to each other. The fundamental theorems are the
monotone convergence theorem, Fatou’s lemma, and Lebesgue’s dominated
convergence theorem. These same three theorems provide important relation-
ships between sequences of expectations and expectations of sequences, as we
see on pages 90 and 114.

We begin with a lemma to prove the monotone convergence theorem.

Lemma 0.1.23.1
Assume a measure space (Ω,F , ν), and Borel measurable functions fn and f.

0 ≤ fn(ω)↗ f(ω) ∀ω =⇒ 0 ≤
∫
fndν ↗

∫
fdν.

Proof.
First, we observe that

∫
fndν is nondecreasing and is bounded above by

∫
fdν .

(This is Theorem 0.1.190.1.19.) So all we need to show is that limn

∫
fndν ≥∫

fdν . That is, writing the latter integral in the form of equation (0.1.43), we
need to show that

lim
n

∫
fndν ≥ sup

∑

i

inf
ω∈Ai

f(ω)ν(Ai), (0.1.49)
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where the sup is taken over all finite partitions of Ω.
We consider separately the two cases determined by whether the right-

hand side is finite.
First, suppose the right side is finite, and further, that each term in the

sum is finite and positive; that is, each infω∈Ai f(ω) and each ν(Ai) are finite
and positive. (Recall the convention on page 728 for the terms in this sum
that ∞ · 0 = 0 · ∞ = 0.) In this case there exists an ε such that for each i,
0 < ε < yi, where yi = infω∈Ai f(ω). Now, define the subset of Ai,

Ain = {ω |ω ∈ Ai, fn(ω) > yi − ε}.

We now have a finite partition of Ω (as required in the definition of the
integral) consisting of the Ain and the complement of their union, and so
taking only some of the terms that represent the integral as a sum over that
partition, we have ∫

fndν ≥
∑

i

(yi − ε)ν(Ain). (0.1.50)

Because fn ↗ f , we have for each i, Ain ↗ Ai and the complement of their
union goes to ∅. Because of ν is continuous from below, we have for the term
on the right above,

∑

i

(yi − ε)ν(Ain)→
∑

i

(yi − ε)ν(Ai).

Hence, from inequality (0.1.50),

∫
fndν ≥

∫
fdν − ε

∑

i

ν(Ai),

and because all ν(Ai) are finite and ε can be arbitrarily close to 0, we have
what we wanted to show, that is, inequality (0.1.49).

Now, still assuming that the right side of (0.1.49) is finite, that is, that∫
fdν is finite, we allow some terms to be zero. (They all must still be finite

as above, however.) Let us relabel the terms in the finite partition so that
for i ≤ m0, yiν(Ai) > 0 and for m0 < i ≤ m, yiν(Ai) = 0. If m0 < 1, then
all yiν(Ai) = 0, and we have inequality (0.1.49) immediately; otherwise for
i ≤ m0, both yi and ν(Ai) are positive and finite. In this case we proceed
as before, but only for the positive terms; that is, for i ≤ m0, we define
Ain as above, form the inequality (0.1.50), and by the same steps establish
inequality (0.1.49).

Finally, suppose
∫
fdν is infinite. In this case, for some i0, both yi0 and

ν(Ai0) are positive and at least one is infinite. Choose positive constants δy
and δA and bound them away from 0:

0 < δy < yi0 ≤ ∞ and 0 < δA < ν(Ai0) ≤ ∞.
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Now, similarly as before, define a subset of Ai0 :

Ai0n = {ω |ω ∈ Ai0 , fn(ω) > δy}.

As before, fn ↗ f =⇒ Ai0n ↗ Ai0 , and so for some n0, for all n > n0,
µ(Ai0n) > δA. Now, with the partition of Ω consisting of Ai0n and its com-
plement, we have ∫

fndν ≥ δyδA, for n > n0,

hence, limn

∫
fndν ≥ δyδA. Now, if yi0 = ∞, let δy → ∞ and if ν(Ai0) =

∞, let δA → ∞. Either way, we have limn

∫
fndν = ∞ and so we have

inequality (0.1.49).
Notice that this lemma applies in the case of pointwise convergence. If

convergence is uniform, it would immediately apply in the case of convergence
a.e. The next theorem provides the desired generalization.

Theorem 0.1.23 (monotone convergence)
Let 0 ≤ f1 ≤ f2 ≤ · · · , and f be Borel functions, and let limn→∞ fn = f a.e.,
then ∫

fn dν ↗
∫
f dν. (0.1.51)

Proof.
Assume the hypothesis: that is, fn ↗ f for all ω ∈ A where ν(Ac) =
0. Now restrict each function to A, and observe that fnIA ↗ fIA and∫
fnIA dν =

∫
fn dν and

∫
fIA dν =

∫
f dν . Lemma 0.1.23.1 immediately

implies
∫
fn dν ↗

∫
f dν .

That Theorem 0.1.23 follows so readily from Lemma 0.1.23.1 is another
illustration of a principle of real analysis stated by Littlewood that every con-
vergent sequence of functions is “nearly” uniformly convergent (see page 761).
In the hypotheses of the lemma, we have only pointwise convergence. Without
needing uniform convergence, however, we extend the conclusion to the case
of convergence a.e.

Theorem 0.1.24 (Fatou’s lemma)
For nonnegative integrable Borel fn,

∫
lim
n

inf fn dν ≤ lim
n

inf

∫
fn dν. (0.1.52)

Proof.
Let gn = infk≥n fk and g =

∫
limn inf fn. As in the monotone convergence

theorem, gn is nonnegative and gn ↗ g, so
∫
gn dν ↗

∫
g dν . Also, for each

n,
∫
fn dν ≥

∫
gn dν ; hence, we have the desired conclusion.

The next theorem is the most powerful of the convergence theorems for
integrals.
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Theorem 0.1.25 (Lebesgue’s dominated convergence)
If limn→∞ fn = f a.e. and there exists an integrable function g such that
|fn| ≤ g a.e., then

lim
n→∞

∫
fn dν =

∫
f dν. (0.1.53)

Proof.
***

Corollary 0.1.25.1 (bounded convergence)
Let {fn} be a sequence of measurable functions defined on a set A, where
ν(A) < ∞. If for some real number M , |fn(ω)| ≤ M , and limn→∞ fn(ω) =
f(ω) for each ω ∈ A then

lim
n→∞

∫

A

fn dν =

∫

A

f dν. (0.1.54)

Integrals over More than One Measure Space

So far the integrals we have discussed have been for functions over a single
measure space. We now consider integrals over more than one measure space.

We first consider a space (Ω,F , ν) and a space (Λ, G, µ) together with a
function f : (Ω,F) 7→ (Λ, G) that defines the measure µ, that is, µ = ν ◦ f−1 .
This is change of variables.

We next consider the relation between integration in a product measure
space to integration in each of the component measure spaces. Fubini’s theo-
rem tells us that the integral over the product space is the same as the iterated
integral.

We use Fubini’s theorem in a somewhat surprising way to derive a useful
formula for integration of products of functions called integration by parts.

Later, in Section 0.1.7, we consider two different measures on the same
space and find that if one measure dominates the other, there is a unique
function whose integral wrt to the dominating measure defines a measure as
in equation (0.1.47) that is the same as the dominated measure. This is the
Radon-Nikodym theorem, and leads to a useful function, the Radon-Nikodym
derivative.

Change of Variables

Consider two measurable spaces (Ω,F) and (Λ, G), let f be a measurable
function from (Ω,F) to (Λ, G), and let ν be a measure on F . As we have seen,
ν ◦ f−1 is an induced measure on G. Now let g be a Borel function on (Λ, G).
Then the integral of g ◦ f over Ω with respect to ν is the same as the integral
of g over Λ with respect to ν ◦ f−1 :

∫

Ω

g ◦ f dν =

∫

Λ

g d(ν ◦ f−1) (0.1.55)

Theory of Statistics c©2000–2025 James E. Gentle



0.1 Measure, Integration, and Functional Analysis 735

Integration in a Product Space; Fubini’s Theorem

Given two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) with σ-finite measures
and a Borel function f on Ω1 × Ω2, the integral over Ω1, if it exists, is a
function of ω2 ∈ Ω2 a.e., and likewise, the integral over Ω2, if it exists, is a
function of ω2 ∈ Ω1 a.e. Fubini’s theorem shows that if one of these marginal
integrals, exists a.e., then the natural extension of an integral to a product
space, resulting in the double integral, is the same as the iterated integral.

Theorem 0.1.26 (Fubini’s theorem)
Let (Ω1,F1, ν1) and (Ω2,F2, ν2) be measure spaces where the measures ν1 and
ν2 are σ-finite. Let f be a Borel function on Ω1 ×Ω2, such that the marginal
integral

g(ω2) =

∫

Ω1

f(ω1, ω2) dν1

exists a.e. Then
∫

Ω1×Ω2

f(ω1, ω2) dν1 × dν2 =

∫

Ω2

(∫

Ω1

f(ω1, ω2) dν1

)
dν2. (0.1.56)

Proof. A proof is given in Billingsley (1995), page 233.

Integration by Parts

*** corollary *** If f and g are bounded on the interval [a, b] and have no
common points of discontinuity in that interval, then

∫

[a,b]

f(x)dg(x) = f(b)g(b) − f(a)g(a) −
∫

[a,b]

g(x)df(x). (0.1.57)

This is proved using Fubini’s theorem.

The Riemann Integral

The Riemann integral is one of the simplest integrals. The Riemann inte-
gral is defined over intervals of IR (or over rectangles in IRk). The Rie-
mann integral over the interval [a, b] is defined in terms of a partitioning
{[x1, x0[, [x2, x1[, . . . , [xn − xn−1]}. We can define the Riemann integral of a
real function f over the interval [a, b] in terms of the Lebesgue measure λ as
the real number r such that for any ε > 0, there exists a δ such that

∣∣∣∣∣r −
∑

i∈P

f(xi)λ(Ii)

∣∣∣∣∣ < ε (0.1.58)

where {Ii : i ∈ P } is any finite partition of ]a, b[ such that for each i,
λ(Ii) < δ and xi ∈ Ii. If the Riemann integral exists, it is the same as the
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Lebesgue integral. We use the same notation for the Riemann integral as for
the Lebesgue integral, that is, we write r as

r =

∫ b

a

f(x)dx. (0.1.59)

Because of the use of Lebesgue measure in the definition, the integral over
[a, b] is the same as over ]a, b[.

A classic example for which the Lebesgue integral exists, but the Riemann
integral does not, is the Dirichlet function (Example 0.1.6) restricted to ]0, 1];
that is, the function g defined over ]0, 1] as g(x) = 1 if x is rational, and

g(x) = 0 otherwise. The Lebesgue integral
∫ 1

0
g(x) dx exists and equals 0,

because g(x) = 0 a.e. The Riemann integral, on the other had does not exist
because for an arbitrary partition {Ii}, the integral is 1 if xi ∈ Ii is taken as
a rational, and the integral is 0 if xi ∈ Ii is taken as an irrational number.

The Riemann integral lacks the three convergence properties of the Lebesgue
integral given on page 733.

We will not develop the properties of the Riemann integral here. When the
Riemann integral exists, it has the same properties as the Lebesgue integral,
such as linearity. Hence, the separately important questions involve the exis-
tence of the Riemann integral. We list some sufficient conditions for existence
below. Proofs of these and other properties of the Riemann integral can be
found in texts on advanced calculus, such as Khuri (2003).

• If f(x) is continuous on [a, b], then it is Riemann integrable over [a, b].
• If f(x) is monotone (increasing or decreasing) on [a, b], then it is Riemann

integrable over [a, b]. (Notice that the function may not be continuous.)
• If f(x) is of bounded variation on [a, b], then it is Riemann integrable over

[a, b].

The Riemann-Stieltjes Integral

The Riemann-Stieltjes integral is a generalization of the Riemann integral in
which dx is replaced by dg(x) and the interval lengths are replaced by changes
in g(x). We write it as

rs =

∫ b

a

f(x)dg(x). (0.1.60)

To define the Riemann-Stieltjes integral we will handle the partitions
slightly differently from how they were used in equation (0.1.58) for the
Riemann integral. (Either way could be used for either integral, however.
This is different from integrals with respect to stochastic differentials, where
the endpoints matter; see Section 0.2.2.) Form a partition of [a, b], call it
P = (a = x0 < x1 < · · · < xn = b), and let ∆gi = g(xi) − g(xi−1). We now
consider the sup and inf of f within each interval of the partition and the inf
and sup of sums of over all partitions:
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inf
P

n∑

i=1

sup
x∈[xi,xi−1 ]

f(x)∆gi

and

sup
P

n∑

i=1

inf
x∈[xi,xi−1]

f(x)∆gi.

If these are equal, then the Riemann-Stieltjes integral is defined as their com-
mon value:
∫ b

a

f(x)dg(x) = inf
P

n∑

i=1

sup
x∈[xi,xi−1]

f(x)∆gi = sup
P

n∑

i=1

inf
x∈[xi,xi−1]

f(x)∆gi.

(0.1.61)
There is a simple connection with Riemann-Stieltjes integral and the Rie-

mann integral whenever g′(x) exists and is continuous.

Theorem 0.1.27
Suppose that Riemann-Stieltjes integral

∫ b

a
f(x)dg(x) exists and suppose the

derivative of g, g′(x) exists and is continuous on [a, b]; then
∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx.

Proof. Exercise. (Hint: use the mean-value theorem together with the respec-
tive definitions.)

The existence of the Riemann-Stieltjes integral depends on f .

Theorem 0.1.28
If f(x) is continuous on [a, b], then Riemann-Stieltjes integrable on [a, b].

Proof. Exercise. (Hint: just determine an appropriate g(x).)
The Riemann-Stieltjes integral can exist for discontinuous f (under the

same conditions as the Riemann integral), but may fail to exist when f and
g are discontinuous at the same point.

The Riemann-Stieltjes integral is often useful when g(x) is a step func-
tion. We usually define step functions to be continuous from the right. This
allows easy development and interpretation of impulse functions and transfer
functions.

Theorem 0.1.29
Let g(x) be a step function on [a, b] such that for the partition

P = (a = x0 < x1 < · · · < xn = b),

g(x) is constant over each subinterval in the partition. For i = 1, . . . , n, let
gi = g(xi−1) (this means g(x) = gi on [xi−1, xi[), and let gn+1 = g(b). Let
∆gi = gi+1 − gi. If f(x) is bounded on [a, b] and is continuous at x1, · · · , xn,
then ∫ b

a

f(x)dg(x) =

n∑

i=1

∆gif(xi). (0.1.62)
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Proof. Exercise.
In a special case of this theorem, g is the Heaviside function H, and we

have ∫ b

a

f(x)dH(x) =

∫ b

a

f(x)δ(x)dx = f(0),

where δ(x) is the Dirac delta function.

Improper Integrals

Because of the restriction on the Lebesgue measure of the subintervals in
the definitions of the Riemann and Riemann-Stieltjes integrals, if a = ∞ or
b =∞, the integral is not defined. We define an “improper” Riemann integral,
however, as, for example,

∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx. (0.1.63)

Notice that an analogous definition for such a special case is not necessary
for a Lebesgue integral.

Adding the improper Riemann integral to the definition of the integral
itself yields an instance where the Riemann integral that exists even though
the Lebesgue integral does not. Recall (page 729) that the Lebesgue integral

∫ ∞

0

sin(x)/x dx (0.1.64)

does not exist because both the positive part and the negative of the negative
part are ∞.

Whether the integral is interpreted in the Riemann sense or in the
Lebesgue sense, we may be interested in

lim
t→∞

∫ t

0

sin(x)/x dx.

(In the Riemann sense, we would just write that as
∫∞
0

sin(x)/x dν(x), but it
is not standard to use such notation for Lebesgue integrals unless they exist
by Definition 0.1.41.) With some effort (see Billingsley (1995), for example,
in which Fubini’s theorem is used), we have

lim
t→∞

∫ t

0

sin(x)

x
dx =

π

2
. (0.1.65)

This is the same value as the Riemann improper integral
∫∞
0 sin(x)/x dx, but

we do not write it that way when “
∫

” represents the Lebesgue integral.
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0.1.7 The Radon-Nikodym Derivative

Given a measure ν on (Ω,F) and an integrable function f , we have seen that

λ(A) =

∫

A

fdν ∀A ∈ F

is also a measure on (Ω,F) and that λ � ν . The Radon-Nikodym theorem
says that given two such measures, λ� ν , then a function f exists.

Theorem 0.1.30 (Radon-Nikodym theorem)
Given two measures ν and λ on the same measurable space, (Ω,F), such that
λ � ν and ν is σ-finite. Then there exists a unique a.e. nonnegative Borel
function f on Ω such that λ(A) =

∫
A
fdν ∀A ∈ F .

Proof. A proof is given in Billingsley (1995), page 422.
Uniqueness a.e. means that if also, for some g, λ(A) =

∫
A
gdν ∀A ∈ F

then f = g a.e.

Definition 0.1.42 (Radon-Nikodym derivative)
Let ν and λ be σ-finite measures on the same measurable space and λ � ν .
Let f be the function such that

λ(A) =

∫

A

fdν ∀A ∈ F .

Then f is called the Radon-Nikodym derivative of λ with respect to ν , and we
write f = dλ/dν .

Notice an important property of the derivative: If dλ/dν > 0 over A, but
λ(A) = 0, then ν(A) = 0.

With this definition of a derivative, we have the familiar properties for
measures λ, λ1, λ2, µ, and ν on the same measurable space, (Ω,F):

1. If λ� ν , with ν σ-finite, and f ≥ 0, then
∫
fdλ =

∫
f

dλ

dν
dν. (0.1.66)

2. If λ1 � ν and λ1 + λ2 � ν , with ν σ-finite, then

d(λ1 + λ2)

dν
=

dλ1

dν
+

dλ2

dν
a.e. ν. (0.1.67)

3. If λ� µ� ν , with µ and ν σ-finite, then

dλ

dν
=

dλ

dµ

dµ

dν
a.e. ν. (0.1.68)

If λ ≡ ν , then

dλ

dν
=

(
dν

dλ

)−1

a.e. ν and µ. (0.1.69)

Theory of Statistics c©2000–2025 James E. Gentle



740 0 Statistical Mathematics

4. If (Ω1,F1) and (Ω2,F2) are measurable spaces, λ1 and ν1, with λ1 � ν1,
are measures on (Ω1,F1), λ2 and ν2, with λ2 � ν2, are measures on
(Ω2,F2), and ν1 and ν2 are σ-finite, then for ω1 ∈ Ω1 and ω2 ∈ Ω2

d(λ1 + λ2)

d(ν1 + ν2)
(ω1, ω2) =

dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1 × ν2. (0.1.70)

The proofs of all of these are exercises.
An absolutely continuous function has a derivative almost everywhere; and

if the derivative is 0 a.e., the function is constant.

0.1.8 Function Spaces

Real-valued linear function spaces are sets of real-valued functions over a
common domain that are closed with respect to the standard operations of
pointwise addition and scalar multiplication of function values.

In addition to the operations of pointwise addition and scalar multiplica-
tion that are basic to a function space, there are other interesting operations
on functions. One of the most common is function composition, often denoted
by “◦”. For the functions f and g, the composition f ◦ g is defined by

f ◦ g(x) = f(g(x)). (0.1.71)

Notice that the operation is not commutative and that the range of g must
be a subset of the domain of f for the composition to exist.

Two useful types of real function spaces are those that contain smooth
functions and those that contain integrable functions. We first describe spaces
of smooth functions of various degrees, and then in Section 0.1.9 discuss spaces
of integrable functions of various types and the kinds of operations that can
be defined on those spaces.

Other useful operations on functions are correlation, convolution, inner
product, and other transforms. Whether or not a given type of operation can
be defined on a function space may depend on the properties of functions, in
particular, the integrability of the functions. We therefore defer discussion of
these other operations to Section 0.1.9.

Spaces of Smooth Real Functions

Differentiability is a smoothness property.

Definition 0.1.43 (Ck space)
For an integer k ≥ 0, a function f such that all derivatives up to the kth

derivative exist and are continuous is said to belong to the class Ck.

The notation Ck does not specify the domain of the functions. Generally,
without any further notation, for d-variate functions, the domain is taken to
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be IRd. A domain D can be specified by the notation Ck(D). For example,
C0([0, 1]) refers to the class of all continuous functions over the unit interval
[0, 1].

The class C0 includes all continuous functions.
If f ∈ Ck then f ∈ Cj for j ≤ k.
A Ck class of functions over the same domain is a linear space (exercise).
The term “smooth” is used in connection with the Ck classes. In a relative

sense, for j < k, a function in Ck is smoother than one in Cj and not in Ck.
In an absolute sense, a function is said to be “smooth” if it is in C∞.

Analytic Functions

Not all functions in C∞ have a convergent Taylor series at any point (see
page 657). The special ones that do are said to be analytic over the region in
which the Taylor series at the point x0 converges to the value of the function
at x0. (The Taylor series may not converge, and more remarkably, it may
not converge to the value of the function.) We sometimes denote the class
of analytic functions as Cω. Analytic functions are of course smooth, and
Cω ⊆ C∞.

**************domain *** real line versus complex plane ******************
refer to proof of Theorem 1.17) on page 50 as an example of analytic contin-
uation.

The property of being analytic is quite different for real and complex
functions. In the case of a complex function of a complex variable f(z), if the
first derivative of f exists at all points within a region D, then the derivatives
of all orders exist. Furthermore, the Taylor series converges to the function
value within the region over which the function is analytic. (These facts can
be shown using the Cauchy integral formula; see Churchill, 1960, Chapters 5
and 6, for example.) The definition of an analytic complex function is usually
different from that of a real function. An analytic complex function is defined
as one whose (first) derivative exists over a region.

0.1.9 Lp Real Function Spaces

Definition 0.1.44 (Lp space)
Given the measure space (Ω,F , ν) and the real number p ≥ 1. The space of
all measurable functions f on Ω for which

∫
|f |pdν < ∞ is called the Lp(ν)

space, or just the Lp space.

Although the measure ν is needed to define the integral, we often drop the
ν in Lp(ν). If the integral is taken only over some D ∈ F , we may denote the
space as Lp(D), and a more complete notation may be Lp(ν,D).

An Lp space is a linear space (exercise).
An important fact about the Lp spaces is that they are Banach spaces

(that is, among other things, they are complete). This fact is called the Riesz-
Fischer theorem and is proved in most texts on real analysis.
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There are several types of useful operations on functions in a given function
space F . Most binary operations require that the domains of the two func-
tions be the same. Function composition, equation (0.1.71), is a very common
operation that only requires that the range of one function be in the domain of
the other. Many interesting binary operations on functions involve integration
of the functions, and so require that the functions be in some Lp space.

We now describe some of these operations. Each operation is a mapping.
Some binary operations map Lp × Lp to Lq or map Lp × Lp to IR, often for
p = 2. Some useful unary operations map Lp to IR, to [−1, 1], or to ĪR+. The
transforms described in Section 0.1.12 map L1 to L1.

Convolutions and Covariances and Correlations

The convolution of the functions f and g is

(f ? g)(t) =

∫

D

f(x)g(t − x) dx. (0.1.72)

The range of integration is usually either [0, t] or IR. The convolution is a
function; often we write the convolution without the dummy argument: f ? g.

The convolution is a measure of the amount of overlap of one function as
it is shifted over another function. The convolution can be thought of as a
blending of one function with another.

Several properties follow immediately from the definition:

• commutativity:
f ? g = g ? f

• associativity:
f ? (g ? h) = (f ? g) ? h

• distribution over addition:

f ? (g + h) = (f ? g) + (f ? h)

• distribution of scalar multiplication over convolution:

a(f ? g) = (af) ? g.

Although because the convolution is commutative the two functions are
essentially the same in a convolution, the second function (g in the definition
above) is sometimes called the kernel.

The convolution of the n-vectors u and v is

(u ? v)t =
∑

1≤i,t−i≤n

uivt−i. (0.1.73)

The indices of vectors in applications involving convolutions are often defined
to begin at 0 instead of 1, and in that case, the lower limit above would be 0.
The limits for the sum are simpler for infinite-dimensional vectors.
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For functions f and g that integrate to zero, that is, if
∫

D

f(x) dx =

∫

D

g(x) dx = 0,

the covariance of f and g at lag t is

Cov(f, g)(t) =

∫

D

f(x)g(t + x) dx. (0.1.74)

The argument of the covariance, t, is called the lag. The covariance of a func-
tion with itself is called its autocovariance. The autocovariance of a function
at zero lag, Cov(f, f)(0), is called its variance.

For functions f and g that integrate to zero, the correlation of f and g at
lag t is

Cor(f, g)(t) =

∫
D f(x) g(t + x) dx√

Cov(f, f)(0) Cov(g, g)(0)
. (0.1.75)

The argument of the correlation, t, is often called the lag, and the correlation
of a function with itself is called its autocorrelation.

The correlation between two functions is a measure of their similarity. If
f near the point x has similar values to those of g near the point x+ t, then
Cor(f, g)(t) will be relatively large (close to 1). In this case, if t is positive,
then f leads g; if t is negative, then f lags g. These terms are symmetric,
because

Cor(f, g)(−t) = Cor(g, f)(t).

Inner Products of Functions

Inner products over linear spaces are useful operators; they can be used to
define norms and metrics. Definition 0.0.7 on page 636 characterizes a general
inner product in a linear space.

A specfic inner product within a given linear space is sometimes called a
dot product. As we saw in Section 0.0.4, .

Definition 0.1.45 (dot product of functions)
The dot product of the real functions f and g over the domain D, denoted by
〈f, g〉D or usually just by 〈f, g〉, is defined as

〈f, g〉D =

∫

D

f(x)g(x) dx (0.1.76)

if the (Lebesgue) integral exists.

Of course, often D = IR or D = IRd, and we just drop the subscript and write
〈f, g〉. (For complex functions, we define the inner product as

∫
D f(x)ḡ(x) dx,

where ḡ is the complex conjugate of g. Our primary interest will be in real-
valued functions of real arguments.)
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We often refer to the dot product as “the” inner product, although other
inner products of functions could be defined. (Compare the inner product of
vectors in a finite-dimensional vector space on page 781.)

To avoid questions about integrability, we generally restrict attention to
functions whose dot products with themselves exist; that is, to functions that
are square Lebesgue integrable over the region of interest. These functions are
members of the space L2(D).

The standard properties, such as linearity and the Cauchy-Schwarz in-
equality, obviously hold for the inner products of functions.

We sometimes introduce a weight function, w(x), in the definition of the
inner product of two functions. For the functions f and g, we denote this either
as 〈f, g〉(µ;D) or as 〈f, g〉(w;D), where µ is the measure given by dµ = w(x)dx.
In any event, the inner product of with respect to f and g with respect to a
weight function, w(x), or with respect to the measure µ, where dµ = w(x)dx
is defined as

〈f, g〉(µ;D) =

∫

D

f(x)g(x)w(x) dx, (0.1.77)

if the integral exists. Often, both the weight and the range are assumed to be
fixed, and the simpler notation 〈f, g〉 is used.

Norms of Functions

The norm of a function f , denoted generically as ‖f‖, is a mapping into the
nonnegative reals that satisfies the properties of the definition of a norm given
on page 637. A norm of a function ‖f‖ is often defined as some nonnegative,
strictly increasing function of the inner product of f with itself, 〈f, f〉. Not
all norms are defined in terms of inner products, however.

The property of a norm of an object x that ‖x‖ = 0 ⇒ x = 0 is an
awkward property for a function to satisfy. For a function, it is much more
convenient to say that if its norm is zero, it must be zero almost everywhere.
Modifying the definition of a norm in this slight way yields what is often called
a pseudonorm.

The most common type of norm or pseudonorm for a real scalar-valued
function is the Lp norm. It is defined similarly to the Lp vector norm
(page 642).

Definition 0.1.46 (Lp (pseudo)norm of functions)
For p ≥ 1, the Lp norm or Lp pseudonorm of the function f , denoted as ‖f‖p,
is defined as

‖f‖p =

(∫

D

|f(x)|pw(x) dx

)1/p

, (0.1.78)

if the integral exists.
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The triangle inequality in this case is another version of Minkowski’s inequal-
ity (0.0.30) (which, as before, we can prove using a version of Hölder’s inequal-
ity (0.0.31)). For this reason, Lp (pseudo)norm for functions is also called the
Minkowski (pseudo)norm or the Hölder (pseudo)norm.

To emphasize the measure of the weighting function, the notation ‖f‖w
or ‖f‖µ is sometimes used. (The ambiguity of the possible subscripts on ‖ · ‖
is usually resolved by the context.) For functions over finite domains, w(x) is
often taken as w(x) ≡ 1. This is a uniform weighting.

The space of functions for which the integrals in (0.1.78) exist is Lp(w,D).
It is clear that ‖f‖p satisfies the properties that define a norm except for

the requirement that ‖f‖p = 0 ⇒ f = 0. For this latter condition, we must
either substitute f = 0 a.e. (and perhaps introduce the concept of equivalence
classes of functions), or else settle for ‖f‖p being a pseudonorm. See the
discussion on pages 638 and 730.

A common Lp function pseudonorm is the L2 norm, which is often denoted
simply by ‖f‖. This pseudonorm is related to the inner product:

‖f‖2 = 〈f, f〉1/2. (0.1.79)

The space consisting of the set of functions whose L2 pseudonorms over IR
exist together with the pseudonorm, that is, L2(IR), is a Hilbert space.

Another common pseudonorm is the limit of the Lp pseudonorm as p→∞.
Just as with countable sets, as the L∞ norm for vectors in equation (0.0.34),
this may be the supremum of the function.

A related pseudonorm is more useful, however, because it is the limit of
equation (0.1.78) as p→∞ (compare equation (0.0.34)). We define

‖f‖∞ = ess sup |f(x)w(x)|, (0.1.80)

where ess sup denotes the essential supremum of a function, defined for a
given measure µ by

ess sup g(x) = inf{a : µ({x : x ∈ D, g(x) > a}) = 0}.

The essential infimum of a function for a given measure µ is defined similarly:

ess inf g(x) = sup{a : µ({x : x ∈ D, g(x) < a}) = 0}.

The pseudonorm defined by equation (0.1.80) is called the L∞ norm, the
Chebyshev norm, or the uniform norm.

Another type of function norm, called the total variation, is an L∞-type of
measure of the amount of variability of the function. For a real-valued scalar
function f on the interval [a, b], the total variation of f on [a, b] is

Vb
a(f) = sup

π

∑

i

|f(xi+1)− f(xi)|, (0.1.81)
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where π is a partition of [a, b], (a = x0 < x1 < · · · < xn = b).
If f is continuously differentiable over [a, b], then

Vb
a(f) =

∫ b

a

|f ′(x)|dx. (0.1.82)

A normal function is a function whose pseudonorm is 1. A normal function
is also called a normal function a normalized function. Although this term
can be used with respect to any pseudonorm, it is generally reserved for the
L2 pseudonorm (that is, the pseudonorm arising from the inner product). A
function whose integral (over a relevant range, usually IR) is 1 is also called
a normal function. (Although this latter definition is similar to the standard
one, the latter is broader because it may include functions that are not square-
integrable.) Density and weight functions are often normalized (that is, scaled
to be normal).

Metrics in Function Spaces; Distances between Functions

Statistical properties such as bias and consistency are defined in terms of the
difference of the estimator and what is being estimated. For an estimator of a
function, first we must consider some ways of measuring this difference. These
are general measures for functions and are not dependent on the distribution
of a random variable. How well one function approximates another function is
usually measured by a norm of the difference in the functions over the relevant
range.

The most common measure of the difference between two functions, g(·)
and f(·), is a metric, ρ(g, f). (See Section 0.0.2 on page 625.) In normed linear
spaces, the most useful metric for two elements is the norm of the difference
of the two elements (see pages 625, and 638):

ρ(g, f) = ‖g − f‖,

if that norm exists and is finite.
The metric corresponding to the Lp norm is

ρp(g, f) = ‖g − f‖p.

As we mentioned above, the Lp “norm” is not a true norm; hence, the
metric induced is only a pseudometric.

When one function is an estimate or approximation of the other function,
we may call this difference the “error”.

If g is used to approximate f , then ρ∞(g, f), that is, ‖g − f‖∞, is likely
to be the norm of interest. This is the norm most often used in numerical
analysis when the objective is interpolation or quadrature. This norm is also
often used in comparing CDFs. If P and Q are CDFs, ‖P −Q‖∞ is called the
Kolmogorov distance. For CDFs, this metric always exists and is finite.
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In applications with noisy data, or when g may be very different from f ,
‖g− f‖2 may be the more appropriate (pseudo)norm. This is the norm most
often used in estimating probability density functions.

For comparing two functions g and f we can use a metric based on a norm
of their difference, ‖g − f‖. We often prefer to use a pseudometric, which is
the same as a metric except that ρ(g, f) = 0 if and only if g = f a.e. (We
usually just use this interpretation and call it a metric, however.)

Definition 0.1.47 (Hellinger distance)
Let P be absolutely continuous with respect to Q and p = dP and q = dq.
Then (∫

IR

(
q 1/r(x)− p1/r(x)

)r

dx

)1/r

(0.1.83)

is called the Hellinger distance between p and q.

The most common instance has r = 2, and in this case the Hellinger
distance is also called the Matusita distance.

Other Distances between Functions

***https://mathoverflow.net/questions/339233/relationship-between-alpha-divergences
Rnyi divergence Amari divergence power-divergence In information theory,
the Rnyi entropy is a quantity that generalizes various notions of entropy, in-
cluding Hartley entropy, Shannon entropy, collision entropy, and min-entropy.
The Rnyi entropy is named after Alfrd Rnyi, who looked for the most gen-
eral way to quantify information while preserving additivity for independent
events.[1][2] In the context of fractal dimension estimation, the Rnyi entropy
forms the basis of the concept of generalized dimensions.[3] ***

Sometimes the difference in two functions is defined asymmetrically. These
quantities are often called divergences or discrepancies.

A general class of divergence measures for comparing CDFs was introduced
independently by Ali and Silvey (1966) and Csiszár (1967) (see also Pardo
(2005)). The measure is based on a convex function φ of a term similar to the
“odds”.

Definition 0.1.48 (φ-divergence)
Let P be absolutely continuous with respect to Q and φ is a convex function,

d(P,Q) =

∫

IR

φ

(
dP

dQ

)
dQ, (0.1.84)

if it exists, is called the φ-divergence from Q to P .

The φ-divergence is also called the f-divergence.
The φ-divergence is in general not a metric because it is not symmetric.

One function is taken as the base from which the other function is measured.
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The expression often has a more familiar form if both P and Q are dominated
by Lebesgue measure and we write p = dP and q = dQ. The Hellinger distance
given in equation (0.1.83) is a φ-divergence that is a metric. The Matusita
distance is the square root of a φ-divergence with φ(t) = (

√
t− 1)2.

Another specific instance of φ-divergence is the Kullback-Leibler measure.

Definition 0.1.49 (Kullback-Leibler measure)
Let P be absolutely continuous with respect to Q and p = dP and q = dq.
Then ∫

IR

log

(
p(x)

q(x)

)
p(x)dx. (0.1.85)

is called the Kullback-Leibler measure of the difference of p and q.

The Kullback-Leibler measure is not a metric.
Various forms of φ-divergence are used in goodness-of-fit analyses. The

Pearson chi-squared discrepancy measure, for example, has φ(t) = (t− 1)2:

∫

IR

(q(x) − p(x))2
q(x)

dx. (0.1.86)

See the discussion beginning on page 598 for other applications in which two
probability distributions are compared.

Discrete analogues of these measures of differences in functions are often
used in data analysis. The type of analysis is often called correspondence
analysis.

Convergence of Functions

We have defined almost everywhere convergence of measurable functions in
general measure spaces (see page 726). We will now define two additional types
of convergence of measurable functions in normed linear measure spaces. Here
we will restrict our attention to real-valued functions over real domains, but
the ideas are more general.

The first is convergence in Lp.

Definition 0.1.50 (convergence in Lp)
Let f1, f2, . . . be a sequence of Borel functions in Lp and let f be another
Borel function in Lp. We say that {fn} converges in Lp to f if

‖fn − f‖p → 0.

We write

fn
Lp→ f.
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Theorem 0.1.31
Suppose f, f1, f2, . . . ∈ Lp(ν,D) and ν(D) <∞ Then

fn
Lp→ f ⇒ fn

Lr→ f for r ≤ p.

Proof. Exercise.
Convergence in Lp is different from convergence a.e.; neither implies the

other.
give examples:
The second is convergence in measure.

Definition 0.1.51 (convergence in measure)
Let f1, f2, . . . be a sequence of Borel functions on the measure space (Ω,F , ν)
and let f be another Borel function on (Ω,F , ν). We say that {fn} converges
in measure to f if *** We write

fn
ν→ f.

Convergence in measure is weaker than both Lp convergence and a.e. con-
vergence; a.e. implies it.

prove

Basis Sets in Function Spaces

If each function in a linear space can be expressed as a linear combination
of the functions in a set G, then G is said to be a generating set, a spanning
set, or a basis set for the linear space. (These three terms are synonymous.)
The basis sets for finite-dimensional vector spaces are finite; for most function
spaces of interest, the basis sets are infinite.

A set of functions {qk} is orthogonal over the domain D with respect to the
nonnegative weight function w(x) if the inner product with respect to w(x) of
qk and ql, 〈qk, ql〉, is 0 if k 6= l; that is,

∫

D

qk(x)q̄l(x)w(x)dx = 0 k 6= l. (0.1.87)

If, in addition, ∫

D

qk(x)q̄k(x)w(x)dx = 1,

the functions are called orthonormal.
In the following, we will be concerned with real functions of real arguments,

so we can take q̄k(x) = qk(x).
The weight function can also be incorporated into the individual functions

to form a different set,
q̃k(x) = qk(x)w1/2(x).
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This set of functions also spans the same function space and is orthogonal
over D with respect to a constant weight function.

Basis sets consisting of orthonormal functions are generally easier to work
with and can be formed from any basis set. Given two nonnull, linearly inde-
pendent functions, q1 and q2, two orthonormal vectors, q̃1 and q̃2, that span
the same space can be formed as

q̃1(·) =
1

‖q1‖
q1(·),

q̃2(·) =
1

‖q2 − 〈q̃1, q2〉q̃1‖
(
q2(·)− 〈q̃1, q2〉q̃1(·)

)
.

(0.1.88)

These are the Gram-Schmidt function transformations. They can easily be
extended to more than two functions to form a set of orthonormal functions
from any set of linearly independent functions.

Series Expansions in Basis Functions

Our objective is to represent a function of interest, f(x), over some domain
D ⊆ IR, as a linear combination of “simpler” functions, q0(x), q1(x), . . .:

f(x) =

∞∑

k=0

ckqk(x). (0.1.89)

There are various ways of constructing the qk functions. If they are developed
through a linear operator on a function space, they are called eigenfunctions,
and the corresponding ck are called eigenvalues.

We choose a set {qk} that spans some class of functions over the given
domainD. A set of orthogonal basis functions is often the best choice because
they have nice properties that facilitate computations and a large body of
theory about their properties is available.

If the function to be estimated, f(x), is continuous and integrable over a
domainD, the orthonormality property allows us to determine the coefficients
ck in the expansion (0.1.89):

ck = 〈f, qk〉. (0.1.90)

The coefficients {ck} are called the Fourier coefficients of f with respect to
the orthonormal functions {qk}.

In applications, we approximate the function using a truncated orthogonal
series. The error due to finite truncation at j terms of the infinite series is the
residual function f −∑j

k=1 ckfk. The mean squared error over the domain D
is the scaled, squared L2 norm of the residual,

1

d

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

, (0.1.91)
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where d is some measure of the domain D. (If the domain is the interval [a, b],
for example, one choice is d = b− a.)

A very important property of Fourier coefficients is that they yield the
minimum mean squared error for a given set of basis functions {qi}; that is,
for any other constants, {ai}, and any j,

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

≤
∥∥∥∥∥f −

j∑

k=0

akqk

∥∥∥∥∥

2

. (0.1.92)

In applications of statistical data analysis, after forming the approxima-
tion, we then estimate the coefficients from equation (0.1.90) by identifying an
appropriate probability density that is a factor of the function of interest, f .
(Note again the difference in “approximation” and “estimation”.) Expected
values can be estimated using observed or simulated values of the random
variable and the approximation of the probability density function.

The basis functions are generally chosen to be easy to use in computations.
Common examples include the Fourier trigonometric functions sin(kt) and
cos(kt) for k = 1, 2, . . ., orthogonal polynomials such as Legendre, Hermite,
and so on, splines, and wavelets.

Orthogonal Polynomials

The most useful type of basis function depends on the nature of the function
being estimated. The orthogonal polynomials are useful for a very wide range
of functions. Orthogonal polynomials of real variables are their own complex
conjugates. It is clear that for the kth polynomial in the orthogonal sequence,
we can choose an ak that does not involve x, such that

qk(x)− akxqk−1(x)

is a polynomial of degree k − 1.
Because any polynomial of degree k − 1 can be represented by a linear

combination of the first k members of any sequence of orthogonal polynomials,
we can write

qk(x)− akxqk−1(x) =

k−1∑

i=0

ciqi(x).

Because of orthogonality, all ci for i < k − 2 must be 0. Therefore, collecting
terms, we have, for some constants ak, bk, and ck, the three-term recursion
that applies to any sequence of orthogonal polynomials:

qk(x) = (akx+ bk)qk−1(x)− ckqk−2(x), for k = 2, 3, . . . . (0.1.93)

This recursion formula is often used in computing orthogonal polynomials.
The coefficients in this recursion formula depend on the specific sequence of
orthogonal polynomials, of course.
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This three-term recursion formula can also be used to develop a formula
for the sum of products of orthogonal polynomials qi(x) and qi(y):

k∑

i=0

qi(x)qi(y) =
1

ak+1

qk+1(x)qk(y) − qk(x)qk+1(y)

x− y . (0.1.94)

This expression, which is called the Christoffel-Darboux formula, is useful in
evaluating the product of arbitrary functions that have been approximated
by finite series of orthogonal polynomials.

There are several widely used complete systems of univariate orthogonal
polynomials. The different systems are characterized by the one-dimensional
intervals over which they are defined and by their weight functions. The Leg-
endre, Chebyshev, and Jacobi polynomials are defined over [−1, 1] and hence
can be scaled into any finite interval [a, b]. The weight function of the Ja-
cobi polynomials is more general, so a finite sequence of them may fit a given
function better, but the Legendre and Chebyshev polynomials are simpler
and so are often used. The Laguerre polynomials are defined over the half
line [0,∞[ and hence can be scaled into any half-finite interval [a,∞[. The
Hermite polynomials are defined over the reals, ]−∞,∞[.

Any of these systems of polynomials can be developed easily by beginning
with the basis set 1, x, x2, . . . and orthogonalizing them by use of the Gram-
Schmidt equations (0.1.88).

Table 0.2 summarizes the ranges and weight functions for these standard
orthogonal polynomials.

Table 0.2. Orthogonal Polynomials

Polynomial Weight
Series Range Function

Legendre [−1, 1] 1 (uniform)

Chebyshev [−1, 1] (1 − x2)1/2 (symmetric beta)

Jacobi [−1, 1] (1 − x)α(1 + x)β (beta)

Laguerre [0, ∞[ xα−1e−x (gamma)

Hermite ] −∞, ∞[ e−x2/2 (normal)

The Legendre polynomials have a constant weight function and are de-
fined over the interval [−1, 1]. Using the Gram-Schmidt transformations on
1, x, x2, . . ., we have
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P̃0(t) = 1/
√∫ 1

−1
12dx = 1/

√
2,

P̃1(t) = (t − 0)/
√∫ 1

−1 x
2dx =

√
3/2t,

...

(0.1.95)

Orthogonal polynomials are often expressed in the simpler, unnormalized
form. The first few unnormalized Legendre polynomials are

P0(t) = 1 P1(t) = t
P2(t) = (3t2 − 1)/2 P3(t) = (5t3 − 3t)/2
P4(t) = (35t4 − 30t2 + 3)/8 P5(t) = (63t5 − 70t3 + 15t)/8

(0.1.96)

The normalizing constant that relates the kth unnormalized Legendre poly-
nomial to the normalized form is determined by noting

∫ 1

−1

(Pk(t))2dt =
2

2k + 1
.

The recurrence formula for the Legendre polynomials is

Pk(t) =
2k− 1

k
tPk−1(t) −

k − 1

k
Pk−2(t). (0.1.97)

The Hermite polynomials are orthogonal with respect to a Gaussian, or
standard normal, weight function. We can form the normalized Hermite poly-
nomials using the Gram-Schmidt transformations on 1, x, x2, . . ., with a weight
function of ex/2 similarly to what is done in equations (0.1.95).

The first few unnormalized Hermite polynomials are

He
0(t) = 1 He

1(t) = t
He

2(t) = t2 − 1 He
3(t) = t3 − 3t

He
4(t) = t4 − 6t2 + 3 He

5(t) = t5 − 10t3 + 15t
(0.1.98)

These are not the standard Hermite polynomials, but they are the ones most
commonly used by statisticians because the weight function is proportional
to the normal density.

The recurrence formula for the Hermite polynomials is

He
k(t) = tHe

k−1(t) − (k − 1)He
k−2(t). (0.1.99)

These Hermite polynomials are useful in probability and statistics. The
Gram-Charlier series and the Edgeworth series for asymptotic approximations
are based on these polynomials. See Section 1.2, beginning on page 66.

Multivariate Orthogonal Polynomials

Multivariate orthogonal polynomials can be formed easily as tensor products
of univariate orthogonal polynomials. The tensor product of the functions
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f(x) over Dx and g(y) over Dy is a function of the arguments x and y over
Dx ×Dy:

h(x, y) = f(x)g(y).

If {q1,k(x1)} and {q2,l(x2)} are sequences of univariate orthogonal polynomi-
als, a sequence of bivariate orthogonal polynomials can be formed as

qkl(x1, x2) = q1,k(x1)q2,l(x2). (0.1.100)

These polynomials are orthogonal in the same sense as in equation (0.1.87),
where the integration is over the two-dimensional domain. Similarly as in
equation (0.1.89), a bivariate function can be expressed as

f(x1, x2) =

∞∑

k=0

∞∑

l=0

cklqkl(x1, x2), (0.1.101)

with the coefficients being determined by integrating over both dimensions.
Although obviously such product polynomials, or radial polynomials,

would emphasize features along coordinate axes, they can nevertheless be
useful for representing general multivariate functions. Often, it is useful to
apply a rotation of the coordinate axes.

The weight functions, such as those for the Jacobi polynomials, that have
various shapes controlled by parameters can also often be used in a mixture
model of the function of interest. The weight function for the Hermite poly-
nomials can be generalized by a linear transformation (resulting in a normal
weight with mean µ and variance σ2), and the function of interest may be
represented as a mixture of general normals.

0.1.10 Distribution Function Spaces

In probability and statistics, one of the most important kinds of function is a
cumulative distribution function, or CDF, defined on page 14 both in terms
of a probability distribution and in terms of four characterizing properties.

A set of CDFs cannot constitute a linear space, because of the restrictions
on the functions. Instead, we will define a distribution function space that
has similar properties. If P is a set of CDFs such that for any w ∈ [0, 1] and
P1, P2 ∈ P, (1− w)P1 + wP2 ∈ P, then P is a distribution function space.

The CDFs of the ε-mixture distributions defined on page 194 is a simple
example of a distribution function space. In that space, one of the CDFs is
degenerate.

Important distribution function spaces are those consisting of CDFs P
such that for given p ≥ 1 ∫

‖t‖pdP <∞. (0.1.102)

Such a distribution function space is denoted by Pp. (Constrast this with the
Lp space.) It is clear that Pp1 ⊆ Pp2 if p1 ≥ p2.
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Spaces of distribution functions are related to divisibility of the distribu-
tions. They are useful in robustness studies. Most of the interesting families
of probability distributions as discussed in Chapter 2 do not generate distri-
bution function spaces.

0.1.11 Transformation Groups

On page 630 we have an example of a group on a set of bijections. Such
transformation groups are important in statistics and are useful in establishing
desirable properties of statistical procedures.

Example 0.1.12 (Continuation of Example 0.0.4) Group of linear
transformations
A common instance of the group G of bijections is formed by functions of the
form

g(x) = bx− c, x, b, c ∈ IR, b 6= 0.

For given g, we see that g−1(x) = (x + c)/b ∈ G.

Invariant Functions

Definition 0.1.52 (Invariant function)
Let G be a transformation group with domain X. A function f with domain
X is said to be invariant under the transformation group G if for all x ∈ X
and g ∈ G,

f(g(x)) = f(x). (0.1.103)

We also use the phrases “invariant over ...” and “invariant with respect to
...” to denote this kind of invariance.

Example 0.1.13 Invariant function
The function

f(x) = max(d− x2)

is invariant over the group G = {g : g(x) = bx− c, x, b, c ∈ IR, b 6= 0} and
function composition.

A transformation group G may define an equivalence relation (identity,
symmetry, and transitivity) for elements in its domain, X. If x1, x2 ∈ X and
there exists a g in G such that g(x1) = x2, then we say x1 and x2 are equivalent
under G, and we write

x1 ≡ x2 modG. (0.1.104)

Sets of equivalent points are called orbits of G. (In other contexts such sets
are called “residue classes”.) It is clear that a function that is invariant under
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the transformation group G must be constant over the orbits of G. A trans-
formation group G is said to be transitive over the set X if for any x1, x2 ∈ X,
there exists a g in G such that g(x1) = x2. (This terminology is not standard.
Also note that the equivalence relation between elements is always a transi-
tive relation.) In this case the whole domain is a single orbit. The group in
Example 0.1.12 is transitive over IR.

Example 0.1.14 Orbits
Consider the group G1 = {g1(x) = 1−x, ge(x) = x : x ∈ [0, 1]} and function
composition. The group G1 is not transitive, and the orbits of G1 are the pairs
(x, 1− x).
Definition 0.1.53 (Maximal invariant function)
An invariant function m over G is called maximal invariant over G if

m(x1) = m(x2) ⇒ ∃ g ∈ G 3 g(x1) = x2. (0.1.105)

Maximal invariance can be used to characterize invariance. If m is maximal
invariant under G, then the function f is invariant under G if and only if it
depends on x only through m; that is, if and only if there exists a function h
such that for all x, f(x) = h(m(x)).

Any invariant function with respect to a transitive group is maximal in-
variant.

Equivariant Functions

Definition 0.1.54 (Equivariant function)
A function f is said to be equivariant under the transformation group G with
domain X if for all x ∈ X and g ∈ G,

f(g(x)) = g(f(x)). (0.1.106)

We also use the phrases “equivariant over ...” and “equivariant with respect
to ...” to denote this kind of equivariance.

0.1.12 Transforms

Many operations on functions can be facilitated by first forming an inner
product with the given functions and another specific function that has an
additional argument. The inner product with the function having an addi-
tional argument, being itself a function, is a transform of a given function.
Because of the linearity of integrals, these are linear transforms. Linear trans-
forms arising from inner products (that is, from integrals) include the familiar
Fourier, Laplace, and wavelet integral transforms.
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An integral linear transform of the function f is an operator T of the
general form

T f(s) =

∫

D

ψ(s, x)f(x) dx, (0.1.107)

where the integral exists. We will denote a transform of the function f by the
operator T as fT , that is,

fT = T f.
The dummy arguments of the pair of functions f and fT may range over
different domains, which may correspond to different physical entities, such
as time and frequency, for example.

The notation for functions and their transforms requires a word of clar-
ification. All three of the symbols f , T f , and fT represent functions. The
corresponding notation in which the dummy arguments appear are the sym-
bols f(x), T f(s), and fT (s). We may also write both dummy arguments, as
in T (f(x))(s), in which x is the argument of the function f to which the trans-
form is being applied, and s is the argument of the transform, the function
T f .

The linearity of the transform in equation (0.1.107) is clear:

T (af + g) = aT f + T g, (0.1.108)

where a is a constant, f and g are functions, and the transform is defined over
an appropriate domain. This relation is why it is a linear transform, and of
course is a property of any inner product.

There are several useful transforms that correspond to specific functions
ψ(s, x) and domains D in equation (0.1.107). The question of the existence
of the integral in equation (0.1.107) is of course important, and the choice of
ψ(s, x) can determine the class of functions for which the transform is defined.
Often ψ(s, x) is chosen so that the integral exists for and f ∈ L1.

In the Fourier transform, ψ(s, x) = e2πisx, and the range of integration is
the real line:

Ff(s) =

∫ ∞

−∞
e2πisxf(x) dx.

In this expression, i is the imaginary unit,
√
−1. We also write the Fourier

transform of the function f as fF (s).
A linear transform with ψ(s, x) ∝ (esx)c for some c, such as the Fourier

transform, the Laplace transform, and the characteristic function, satisfies the
“change of scale property”:

T (f(ax))(s) =
1

|a|T (f(x))
( s
a

)
, (0.1.109)

where a is a constant. This is easily shown by making a change of variables
in the definition (0.1.107). This change of variables is sometimes referred to
as “time scaling”, because the argument of f often corresponds to a measure
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of time. A similar scaling applies to the argument of the transform fT , which
is sometimes called “frequency scaling”.

Transforms in which ψ(s, x) ∝ (esx)c also have two useful translation prop-
erties:

• for a shift in the argument of f ,

T (f(x − x0))(s) = ψ(s, x0)T (f(x))(s) : (0.1.110)

• for a shift in the argument of the transform T f ,

T (f(x))(s − s0) = T (ψ(−s0 , x)f(x))(s). (0.1.111)

These scaling and translation properties are major reasons for the usefulness
of the Fourier and Laplace transforms and of the characteristic function in
probability theory.

Linear transforms apply to multivariate functions as well as to univari-
ate functions. In the definition of linear transforms (0.1.107), both s and x
may be vectors. In most cases s and x are vectors of the same order, and
specific transforms have simple extensions. In the characteristic function of
multivariate random variable, for example,

ψ(s, x) = ei〈s,x〉 .

Fourier Transforms

The Fourier transform of a function f(x) is the function

Ff(s) =

∫ ∞

−∞
e2πisxf(x) dx, (0.1.112)

if the integral exists.
The inverse Fourier transform is

f(x) =

∫ ∞

−∞
e−2πisxFf(s) ds. (0.1.113)

Instead of e2πisx as in equation (0.1.112), the Fourier transform is often
defined with the function eiωx, in which ω is called the “angular frequency”.

Fourier transforms are linear transforms, and thus enjoy the linearity prop-
erty (0.1.108). Fourier transforms are inner products with a function of the
form (esx)c, and thus enjoy the change of scale property (0.1.109), and the
translation properties (0.1.110) and (0.1.111). Fourier transforms have addi-
tional useful properties that derive from the identity

exp(iωs) = cos(ωs) + i sin(ωs),

in which the real component is an even function and the imaginary component
is an odd function. Because of this, we immediately have the following:
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• if f(x) is even, then the Fourier transform is even

Ff(−s) = Ff(s)

• if f(x) is odd, then the Fourier transform is odd

Ff(−s) = −Ff(s)

• if f(x) is real, then
Ff(−s) = Ff(s),

where the overbar represents the complex conjugate.

Fourier transforms are useful in working with convolutions and correlations
because of the following relationships, which follow immediately from the
definition of convolutions (0.1.72) and of correlations (0.1.74):

F(f ? g)(s) = Ff(s)Fg(s). (0.1.114)

F(Cor(f, g))(s) = Ff(s)Fg(s). (0.1.115)

F(Cor(f, f))(s) = |Ff(s)|2. (0.1.116)

Equation (0.1.114) is sometimes called the “convolution theorem”. Some au-
thors take this as the definition of the convolution of two functions. Equa-
tion (0.1.115) is sometimes called the “correlation theorem”, and equa-
tion (0.1.116), for the autocorrelation is sometimes called the “Wiener-
Khinchin theorem”,

These relationships are among the reasons that Fourier transforms are so
useful in communications engineering. For a signal with amplitude h(t), the
total power is the integral ∫ ∞

−∞
|h(t)|2dt.

From the relations above, we have Parseval’s theorem, for the total power:

∫ ∞

−∞
|h(t)|2dt =

∫ ∞

−∞
|Fh(s)|2ds. (0.1.117)

0.1.13 Functionals

Functionals are functions whose arguments are functions. The value of a func-
tional may be any kind of object, a real number or another function, for
example. The domain of a functional is a set of functions.

If F is a linear space of functions, that is, if F is such that f ∈ F and
g ∈ F implies (af + g) ∈ F for any real a, then the functional Υ defined on
F is said to be linear if Υ (af + g) = aΥ (f) + Υ (g).
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A similar expression defines linearity of a functional over a distribution
function space P: Υ defined on P is linear if Υ ((1 − w)P1 + wP2) = (1 −
w)Υ (P1) + wΥ (P2) for w ∈ [0, 1] and P1, P2 ∈ P.

Functionals of CDFs have important uses in statistics as measures of the
differences between two distributions or to define distributional measures of
interest. A functional applied to a ECDF is a plug-in estimator of the distri-
butional measure defined by the same functional applied to the corresponding
CDF.

Derivatives of Functionals

For the case in which the arguments are functions, the cardinality of the
possible perturbations is greater than that of the continuum. We can be precise
in discussions of continuity and differentiability of a functional Υ at a point
(function) F in a domain F by defining another set D consisting of difference
functions over F ; that is the set the functions D = F1 − F2 for F1, F2 ∈ F .

The concept of differentiability for functionals is necessarily more com-
plicated than for functions over real domains. For a functional Υ over the
domain F , we define three levels of differentiability at the function F ∈ F .
All definitions are in terms of a domain D of difference functions over F , and
a linear functional ΛF defined over D in a neighborhood of F . The first type
of derivative is very general. The other two types depend on a metric ρ on
F ×F induced by a norm ‖ · ‖ on F .

Definition 0.1.55 (Gâteaux differentiable)
Υ is Gâteaux differentiable at F iff there exists a linear functional ΛF (D) over
D such that for t ∈ IR for which F + tD ∈ F ,

lim
t→0

(
Υ (F + tD) − Υ (F )

t
− ΛF (D)

)
= 0. (0.1.118)

In this case, the linear functional ΛF is called the Gâteaux differential of
Υ at F in the direction of F +D.

Definition 0.1.56 (ρ-Hadamard differentiable)
For a metric ρ induced by a norm, Υ is ρ-Hadamard differentiable at F iff
there exists a linear functional ΛF (D) over D such that for any sequence
tj → 0 ∈ IR and sequence Dj ∈ D such that ρ(Dj , D)→ 0 and F + tjDj ∈ F ,

lim
j→∞

(
Υ (F + tjDj)− Υ (F )

tj
− ΛF (Dj)

)
= 0. (0.1.119)

In this case, the linear functional ΛF is called the ρ-Hadamard differential
of Υ at F .
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Definition 0.1.57 (ρ-Fréchet differentiable)
Υ is ρ-Fréchet differentiable at F iff there exists a linear functional Λ(D) over
D such that for any sequence Fj ∈ F for which ρ(Fj , F )→ 0,

lim
j→∞

(
Υ (Fj) − Υ (F )− ΛF (Fj − F )

ρ(Fj , F )

)
= 0. (0.1.120)

In this case, the linear functional ΛF is called the ρ-Fréchet differential of
Υ at F .

Derivative Expansions of Functionals

*********************

Notes and References for Section 0.1

After the introductory material in Section 0.0, in Section 0.1 I try to cover
the important aspects of real analysis (which means “measure theory”) for
statistical mathematics.

Measure theory is the most important element of analysis for probabil-
ity theory and mathematical statistics. In measure theory, we are concerned
with collections of subsets, and we identify particular systems of collections of
subsets. These systems are called “rings” (Definition 0.1.2) or “fields” (Def-
inition 0.1.3). (The reader should also be aware that these terms are often
used differently in algebra. The term “ring” also applies to a mathematical
structure consisting of a set and two operations on the set satisfying certain
properties. The prototypic ring is the set of integers with ordinary addition
and multiplication. The term “field” as in Definition 0.0.3 also applies to a
mathematical structure consisting of a set and two operations on the set sat-
isfying certain properties. The prototypic field is the set of real numbers with
ordinary addition and multiplication.)

“Littlewood’s three principles of real analysis” are heuristics that state that
if sets, functions, or series have certain properties, then stronger properties
“almost” hold. The third principle, which is illustrated by the results of the
Severini-Egorov theorem and the monotone convergence theorem, states that
every convergent sequence of functions is “nearly” uniformly convergent. The
first principle states that a measurable set is “almost” an open set. In IR,
this is the statement that for a measurable subset T and any ε > 0 there is
a sequence of open intervals, On such that λ(T∆(∪On)) < ε, where λ is the
Lebesgue measure.

Littlewood’s second principle states that a measurable function is almost
a continuous function. In IR, this is the statement that for a measurable real
function f and any ε > 0 there is an open subset of IR, say S, such that f is
continuous outside of S, and λ(S) < ε.
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The concept of an integral is one of the most important ones in mathe-
matics. The definition of an integral based on Jordan measure by Bernhard
Riemann in the mid-nineteenth century was rigorous and seemed to cover most
interesting cases. By 1900, however, a number of examples had been put forth
that indicated the inadequacy of the Riemann integral (see Hawkins (1979),
for an interesting discussion of the mathematical developments). Lebesgue
not only provided generalizations of basic concepts, such as what we now
call Lebesgue measure, but took a fundamentally different approach. (It is
interesting to read what Lebesgue had to say about generalizations: “It is
that a generalization made not for the vain pleasure of generalizing but in
order to solve previously existing problems is always a fruitful generalization”
(Lebesgue (1926), page 194 as translated by May, 1966,).

There are many classic and standard texts on real analysis, and it would
be difficult to select “best” ones. Many treat measure theory in the context
of probability theory, and some of those are listed in the additional references
for Chapter 1, beginning on page 146. Below I list a few more that I have
found useful. I often refer to Hewitt and Stromberg (1965), from which I first
began learning real analysis. Royden (1988) may be more readily available,
however. The little book by Boas Jr. (1960) is a delightful read.

My study of complex analysis has been more superficial, and I am not
familiar with the standard texts. The text Brown and Churchill (2008) is an
updated version of the second edition by Churchill (1960) that I used.

There are a number of useful books on “ counterexamples in [X]”, such as
Gelbaum and Olmsted (1990), Gelbaum and Olmsted (2003), Rajwade and Bhandari
(2007), Steen and Seebach Jr. (1995), Stoyanov (1987), Wise and Hall (1993),
and Romano and Siegel (1986).

Exercises for Section 0.1

0.1.1. Let Ω be the universal set, and let F consist of all countable and cocount-
able subsets of Ω. Show that F is a σ-field on Ω (Example 0.1.3).

0.1.2. Prove Theorem 0.1.4.
0.1.3. Show that F1 ∪ F2 in equation (0.1.2) is not a σ-field.
0.1.4. Show that FB in equation (0.1.3) is a σ-field.
0.1.5. Let f be a measurable function from the measurable space (Ω,F) to (Λ, G).

Show that f−1[G] is a sub-σ-field of F .
0.1.6. Show that σ(g ◦ f) ⊆ σ(f) (page 704).
0.1.7. Prove Theorem 0.1.6.
0.1.8. Prove Theorem 0.1.8.
0.1.9. Prove Theorem 0.1.9.

0.1.10. Suppose that µ1, µ2, . . . are measures on the measurable space (Ω,F). Let
{an}∞n=1 be a sequence of positive numbers. Prove that µ =

∑∞
n=1 anµn

is a measure on (Ω,F).
0.1.11. Show that the function defined in equation (0.1.12) is a Radon measure.
0.1.12. Let Ω and Λ be arbitrary sets and letX : Λ 7→ Ω be an arbitrary function.
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a) Show that if F is a σ-field on Ω then G = {X−1(A) : A ∈ F} is a
σ-field on Λ

b) Show that if G is a σ-field on Λ then F = {A ⊆ Ω : X−1(A) ∈ G} is
a σ-field on Ω.

0.1.13. Let λ, µ, and ν be measures on (Ω,F) and a ∈ IR. Show

λ� ν and µ� ν =⇒ (aλ + µ)� ν

and
λ ⊥ ν and µ ⊥ ν =⇒ (aλ + µ) ⊥ ν.

0.1.14. Prove parts (ii) and (iii) of Theorem 0.1.12.
0.1.15. Show that the same Borel field B(IR) is generated by the collection of all

open sets of IR.
0.1.16. Show that the inverse image of a Borel set under a continuous function

f : IR 7→ IR is Borel.
0.1.17. Let (Ω,F , ν) be a measure space, and let B ∈ F . Now let νB be a set

function that is the same as ν on FB and undefined elsewhere. Show that
νB is a measure.

0.1.18. Given the measure space (Ω,F , ν) and Fc and νc constructed as on
page 712.
a) Show that (Ω,Fc, νc) is a complete measure space.
b) Show that for every A ∈ Fc there is some B,C ∈ F with ν(C) = 0

such that A = B ∪C, and

νc(A) = ν(B).

0.1.19. Given the measure space (Ω,F , ν) and the measurable space (Λ, G). Let
f be a function from Ω to Λ that is measurable with respect to F . Show
that ν ◦ f−1 is a measure and that its domain and range are G. This is
the induced measure or the “pushforward” measure.

0.1.20. Let X be a measurable function from the measurable space (Ω,F) to
(IR,B). Prove that σ(X−1 [IR]) ⊆ F .

0.1.21. Show that (IR,B) is a topological space. What are the open sets of the
topology?

0.1.22. Show that Lebesgue measure on (IR,B) is a Radon measure.
Show that Lebesgue measure on (IR,B) is a Haar invariant measure wrt

to the group (IR,+).
0.1.23. Show that equation (0.1.22) holds for Lebesgue measure.
0.1.24. Let C[0,1] be the collection of all open intervals within [0, 1]. Show that

B[0,1] = σ(C[0,1]).
0.1.25. Under what conditions is the indicator function IS measurable?
0.1.26. Show that a simple function is Borel measurable.
0.1.27. ****continuity questions
0.1.28. Show that the Weierstrass function is Hölder continuous of order α for

any α < 1.
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0.1.29. Let (Ω,F , ν) be a measure space and f be a nonnegative Borel function.
For A ⊆ Ω, show that λ(A) =

∫
A
f dν is a measure over (Ω,F).

0.1.30. Show that the measure defined in equation (0.1.48) is Haar invariant.
0.1.31. Prove Theorem 0.1.19.
0.1.32. In the text, we say that the proofs of Theorems 0.1.20 through 0.1.22

“follow immediately from the definition” of the Lebesgue integral. “Im-
mediately” means that there are one or two reasons that are direct results
of the definition. For each of these theorems, state the reason(s).

0.1.33. Prove each of the equations (0.1.66) through (0.1.70) under the conditions
given.

0.1.34. Assume f2 and g2 are integrable. Show that

(∫
fgdν

)2

≤
∫
f2dν

∫
g2dν.

This is an instance of a famous inequality. What is its name?
0.1.35. Show that the class Ck of functions over the same domain is a linear space.
0.1.36. Show that Lp is a linear space.
0.1.37. Show that if f, f1, f2, . . . ∈ Lp(ν,D) and ν(D) <∞, then

fn
Lp→ f ⇒ fn

Lr→ f for r ≤ p.

0.1.38. Prove Theorem 0.1.27.
0.1.39. Prove Theorem 0.1.28.
0.1.40. Prove Theorem 0.1.29.

Hint: First prove this for the case that g is the Heaviside function.

Theory of Statistics c©2000–2025 James E. Gentle



0.2 Stochastic Processes and the Stochastic Calculus 765

0.2 Stochastic Processes and the Stochastic Calculus

Most sections in this chapter generally cover prerequisite material for the rest
of the book. This section, on the other hand, depends on some of the material
in Chapter 1, and is closely interrelated with the material in Section 1.6.

0.2.1 Stochastic Differential Equations

We consider a stochastic process {Bt} in which we generally associate the
index t with time. We often write {B(t)} in place of {Bt}, but for all prac-
tical purposes, the notation is equivalent. If time is considered continuous,
there are two possibilities that we will consider. One, called a jump process,
is discontinuous in time, and the other, called a diffusion process, is not only
continuous in time, but it is also differential with respect to time.

We will first briefly discuss a particular kind of jump process and then
turn our attention to various kinds of diffusion processes.

The most obvious way of developing a diffusion process is to begin with
a differential equation in which some of the terms are random variables. We
call such a differential equation a stochastic differential equation or SDE.

In a very important class of stochastic processes, the differences between
the values at two time points have normal distributions and the difference
between two points is independent of the difference between two nonoverlap-
ping points. The simplest such process is called a Bachelier-Wiener process.
We will discuss it first, and then consider some other related processes.

Poisson Jump Process

A jump process is one that is discontinuous in time. The most important jump
processes are Poisson processes.

A Poisson process is a sequence of events in which the probability of k
events (where k = 0, 1, . . .) in an interval of length ∆t, denoted by g(k,∆t)
satisfies the following conditions:

• g(1,∆t) = λ∆t + o(∆t), where λ is a positive constant and (∆t) > 0.
• ∑∞

k=2 g(k,∆t) ∈ o(∆t).
• The numbers of changes in nonoverlapping intervals are stochastically in-

dependent.

This axiomatic characterization of a Poisson process leads to a differential
equation whose solution (using mathematical induction) is

g(k,∆t) =
(λ∆t)ke−λ∆t

k!
, for k = 1, 2, . . . (0.2.1)

which, in turn leads to the familiar probability function for a Poisson distri-
bution

pK(k) =
(θ)ke−θ

k!
, for k = 0, 1, 2, . . . (0.2.2)
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Bachelier-Wiener Processes

Suppose in the sequence B0, B1, . . ., the distribution of Bt+1 − Bt is nor-
mal with mean 0 and standard deviation 1. In this case, the distribution of
Bt+2 − Bt is normal with mean 0 and standard deviation

√
2, and the distri-

bution of Bt+0.5 − Bt is normal with mean 0 and standard deviation
√

0.5.
More generally, the distribution of the change ∆B in time ∆t has a standard
deviation of

√
∆t

This kind of process with the Markovian property and with a normal
distribution of the changes leads to a Brownian motion or a Bachelier-Wiener
process.

Consider a process of changes ∆B characterized by two properties:

• The change ∆B during a small period of time ∆t is given by

∆B = Z
√

∆t, (0.2.3)

where Z is a random variable with a N(0, 1) distribution.
• The values of ∆B for any two short intervals of time ∆t are independent

(with an appropriate definition of “short”).

Now, consider N time periods, and let T = N∆t. We have

B(T ) − B(0) =

N∑

i=1

Zi

√
∆t. (0.2.4)

The fact that we have
√

∆t in this equation has important implications.
As in ordinary calculus, we consider ∆B/∆t and take the limit as ∆t→ 0,

which we call dB/dt, and we have the stochastic differential equation

dB = Zdt. (0.2.5)

A random variable formed as dB above is called a stochastic differential.
A stochastic differential arising from a process of changes ∆B with the two

properties above is called a Bachelier-Wiener process or a Brownian motion.
In the following, we will generally use the phrase “Bachelier-Wiener process”.

We can use the Bachelier-Wiener process to develop a generalized Bachelier-
Wiener process:

dS = µdt + σdB, (0.2.6)

where µ and σ are constants.

Properties of a Discrete Process Underlying the Bachelier-Wiener
Process

With ∆B = Z
√

∆t and Z ∼ N(0, 1), we immediately have
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E(∆B) = 0

E
(
(∆B)2

)
= V(∆B) + (E(∆B))

2

= ∆t

E
(
(∆B)3

)
= 0

E
(
(∆B)4

)
= V

(
(∆B)2

)
+
(
E
(
(∆B)2

))2

= 3(∆t)2

Because of independence, for ∆iB and ∆jB representing changes in two
nonoverlapping intervals of time,

E((∆iB)(∆jB)) = cov(∆iB,∆jB) = 0. (0.2.7)

The Bachelier-Wiener process is a random variable; that is, it is a real-
valued mapping from a sample space Ω. We sometimes use the notation B(ω)
to emphasize this fact.

The Bachelier-Wiener process is a function in continuous time. We some-
times use the notation B(t, ω) to emphasize the time dependency.

Most of the time we drop the “ω”. Also, sometimes we write Bt instead of
B(t).

All of these notations are equivalent.
There two additional properties of a Bachelier-Wiener process or Brownian

motion that we need in order to have a useful model. We need an initial value,
and we need it to be continuous in time.

Because the Bachelier-Wiener process is a random variable, the values it
takes are those of a function at some point in the underlying sample space,
Ω. Therefore, when we speak of B(t) at some t, we must speak in terms of
probabilities of values or ranges of values.

When we speak of a particular value of B(t), unless we specify a specific
point ω0 ∈ Ω, the most we can say is that the value occurs almost surely.

• We assume B(t) = 0 almost surely at t = 0.
• We assume B(t) is almost surely continuous in t.

These two properties together with the limiting forms of the two properties
given at the beginning define a Bachelier-Wiener process or Brownian motion.

(There is a theorem due to Kolmogorov that states that given the first
three properties, there exists a “version” that is absolutely continuous in t.)

From the definition, we can see immediately that

• the Bachelier-Wiener process is Markovian
• the Bachelier-Wiener process is a martingale.

Generalized Bachelier-Wiener Processes

A Bachelier-Wiener process or Brownian motion is a model for changes. It
models diffusion.
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If the process drifts over time (in a constant manner), we can add a term
for the drift, adt.

More generally, a model for the state of a process that has both a Brownian
diffusion and a drift is a generalized Bachelier-Wiener process:

dS = adt+ bdB, (0.2.8)

where a and b are constants. A generalized Bachelier-Wiener process is a type
of a more general “drift-diffusion process”.

While the expected value of the Bachelier-Wiener process at any time is 0,
the expected value of the state S is not necessarily 0. Likewise, the variance
is affected by b. Both the expected value and the variance of S are functions
of time.

One of the most interesting properties of a Bachelier-Wiener process is
that its first variation is infinite. It is infinitely “wiggly”. We can see this
by generating normal processes over varying length time intervals, as in Fig-
ure 0.2.
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Figure 0.2. A Bachelier-Wiener Process Observed at Varying Length Intervals
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Variation of Functionals

The variation of a functional is a measure of its rate of change. It is similar
in concept to an integral of a derivative of a function.

For studying variation, we will be interested only in functions from the
interval [0, T ] to IR.

To define the variation of a general function f : [0, T ] 7→ IR, we form N
intervals 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . The intervals are not necessarily of
equal length, so we define ∆ as the maximum length of any interval; that is,

∆ = max(ti − ti−1).

Now, we denote the pth variation of f as Vp(f) and define it as

Vp(f) = lim
∆→0

N∑

i=1

|f(ti)− f(ti−1)| p.

(Notice that ∆→ 0 implies N →∞.)
With equal intervals, ∆t, for the first variation, we can write

V1(f) = lim
∆t→0

N∑

i=1

|f(ti)− f(ti−1)|

= lim
N→∞

N−1∑

i=0

∆t
|f(ti + ∆t)− f(ti)|

∆t
,

from which we can see that for a differentiable function f : [0, T ] 7→ IR,

V1(f) =

∫ T

0

∣∣∣∣
df

dt

∣∣∣∣ dt.

The notation FV (f), or more properly, FV(f), is sometimes used instead of
V1(f).

Again, with equal intervals, ∆t, for the second variation, we can write

V2(f) = lim
∆t→0

N∑

i=1

(f(ti)− f(ti−1))
2

= lim
∆t→0

∆t lim
N→∞

N−1∑

i=0

∆t

( |f(ti + ∆t)− f(ti)|
∆t

)2

.

For a differentiable function f : [0, T ] 7→ IR, we have

V2(f) = lim
∆t→0

∆t

∫ T

0

∣∣∣∣
df

dt

∣∣∣∣
2

dt.

The integrand is bounded, therefore this limit is 0, and we conclude that
the second variation of a differentiable function is 0.

If X is a stochastic functional, then Vp(X) is also stochastic. If it converges
to a deterministic quantity, the nature of the convergence must be considered.
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First and Second Variation of a Bachelier-Wiener Process

Two important properties of a Bachelier-Wiener process on [0, T ] are

• V2(B) = T a.s., which as we have seen, implies that B(t) is not differen-
tiable.

• V1(B) =∞ a.s.

Notice that because B is a random variable we must temper our statement
with a phrase about the probability or expected value.

We now prove these for the quadratic mean instead of a.s. We start with
the first one, because it will imply the second one. Let

XN =

N−1∑

n=0

(B(tn+1)− B(tn))2

=

N−1∑

n=0

(∆nB)2 note notation

We want to show

E
(
(XN − T )2

)
→ 0 as |∆t| → 0. (0.2.9)

Now,

E
(
(XN − T )2

)
= E

(
X2

N

)
− 2TE(XN ) + T 2 = E

(
X2

N

)
− T 2.

So now we want to show

E
(
X2

N

)
= T 2. (0.2.10)

E
(
X2

N

)
= E




N−1∑

i=0

(∆iB)2
N−1∑

j=0

(∆jB)2




= E

(
N−1∑

i=0

(∆iB)4

)
+ E


∑

i 6=j

(∆iB)2(∆jB)2




=
N−1∑

i=0

(∆it)
2 +

∑

i 6=j

(∆it)(∆jt).

Because |∆t| → 0 (or, if we allow different size intervals, sup |∆it| → 0),
we have

N−1∑

i=0

(∆it)
2 → 0.
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So the first term goes to 0; now consider
∑

i 6=j(∆it)(∆jt).

∑

i 6=j

(∆it)(∆jt) =

N−1∑

i=0

(∆it)




i−1∑

j=0

(∆jt) +

N−1∑

j=i+1

(∆jt)




=

N−1∑

i=0

(∆it)(T −∆it)

= T

N−1∑

i=0

(∆it) −
N−1∑

i=0

(∆it)
2

= T 2 − 0.

So now we have E
(
(XN − T )2

)
→ 0, or XN

L2→ T as |∆t| → 0; that is,
V2(B) = T in quadratic mean, or in L2 norm.

(I just realized that I had stated a.s. convergence, and I proved L2 conver-
gence. One does not imply the other, but a.s. is also true in this case.)

Now, although we have already seen that since the second variation is
nonzero, B cannot be differentiable.

But also because of the continuity of B in t, it is easy to see that the first
variation diverges if the second variation converges to a finite value. This is
because

N−1∑

n=0

(B(tn+1)− B(tn))2 ≤ sup |B(tn+1)− B(tn)|
N−1∑

n=0

|B(tn+1) −B(tn)|

In the limit the term on the left is T > 0, and the term on the right is 0
times V1(B); therefore V1(B) =∞.

Properties of Stochastic Differentials

Although B and dB are random variables, the product dBdB is deterministic.
We can see this by considering the stochastic process (∆B)2. We have seen

that V
(
(∆B)2

)
= 2(∆t)2, so the variance of this process is 2(∆t)2; that is,

as ∆t→ 0, the variance of this process goes to 0 faster, as (∆t)2.
Also, as we have seen, E

(
(∆B)2

)
= ∆t, and so (∆B)2 goes to ∆t at the

same rate as ∆t→ 0. That is,

(∆B)(∆B)
a.s.→ ∆t as ∆t→ 0. (0.2.11)

The convergence of (∆B)(∆B) to ∆t as ∆t→ 0 yields

dBdB = dt. (0.2.12)

(This equality is almost sure.) But dt is a deterministic quantity.
This is one of the most remarkable facts about a Bachelier-Wiener process.
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Multidimensional Bachelier-Wiener Processes

If we have two Bachelier-Wiener processes B1 and B2, with V(dB1) =
V(dB2) = dt and cov(dB1, dB2) = ρdt (that is, Cor(dB1, dB2) = ρ), then
by a similar argument as before, we have dB1dB2 = ρdt, almost surely.

Again, this is deterministic.
The results of course extend to any vector of Bachelier-Wiener processes

(B1, . . . , Bd).
If (B1 , . . . , Bd) arise from

∆Bi = Xi

√
∆t,

where the vector of Xs has a multivariate normal distribution with mean
0 and variance-covariance matrix Σ, then the variance-covariance matrix of
(dB1, . . . , dBd) is Σdt, which is deterministic.

Starting with (Z1, . . . , Zd
iid∼ N(0, 1) and forming the Wiener processes

B = (B1 , . . . , Bd) beginning with

∆Bi = Zi

√
∆t,

we can form a vector of Bachelier-Wiener processes B = (B1, . . . , Bd) with
variance-covariance matrix Σdt for dB = (dB1, . . . , dBd) by the transforma-
tion

B = Σ1/2B,

or equivalently by
B = ΣCB,

where ΣC is a Cholesky factor of Σ, that is, ΣT
CΣC = Σ.

Recall, for a fixed matrix A,

V(AY ) = ATV(Y )A,

so from above, for example,

V(dB) = ΣT
CV(dB)ΣC = ΣT

Cdiag(dt)ΣC = Σdt. (0.2.13)

The stochastic differentials such as dB naturally lead us to consider inte-
gration with respect to stochastic differentials, that is, stochastic integrals.

Stochastic Integrals with Respect to Bachelier-Wiener Processes

IfB is a Bachelier-Wiener process on [0, T ], we may be interested in an integral
of the form ∫ T

0

g(Y (t), t)dB,

where Y (t) is a stochastic process (that is, Y is a random variable) and g
is some function. First, however, we must develop a definition of such an
integral. We will return to this problem in Section 0.2.2. Before doing that,
let us consider some generalizations of the Wiener process.
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Ito Processes

An Ito process is a generalized Bachelier-Wiener process dX = adt+ bdB, in
which the parameters a and b are functions of the underlying variable X and
of time t (of course, X is also a function of t).

The functions a and b must be measurable with respect to the filtration
generated by B(t) (that is, to the sequence of smallest σ-fields with respect to
which B(t) is measurable. (This is expressed more simply by saying a(X(t), t)
and b(X(t), t) are adapted to the filtration generated by B(t).)

The Ito process is of the form

dX(t) = a(X(t), t)dt+ b(X(t), t)dB. (0.2.14)

The Ito integral (or any other stochastic integral) gives us a solution to
this stochastic differential equation:

X(T ) = X(0) +

∫ T

0

a(X(t), t)dt +

∫ T

0

b(X(t), t)dB(t). (0.2.15)

(The differential in the first integral is deterministic although the integrand
is stochastic. The second integral, however, is a stochastic integral. Other
definitions of this integral would require modifications in the interpretation of
properties of the Ito process.)

We are often interested in multidimensional Ito processes. Their second-
order properties (variances and covariances) behave very similarly to those of
Bachelier-Wiener processes, which we discussed earlier.

There are many interesting forms of Ito processes.

Geometric Brownian Motion

The Ito process would be much easier to work with if µ(·) and σ(·) did not
depend on the value of the state; that is, if we we use the model

dX(t)

X(t)
= µ(t)dt+ σ(t)dB. (0.2.16)

The Ito process would be even easier to work with if µ(·) and σ(·) were
constant; that is, if we we just use the model

dX(t)

X(t)
= µdt+ σdB. (0.2.17)

This model is called a geometric Brownian motion, and is widely used in
modeling prices of various financial assets. (“Geometric” refers to series with
multiplicative changes, as opposed to “arithmetic series” that have additive
changes).
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The geometric Brownian motion model is similar to other common statis-
tical models:

dX(t)

X(t)
= µdt + σdB(t)

or

response = systematic component + random error.

Without the stochastic component, the differential equation has the simple
solution

X(t) = ceµt,

from which we get the formula for continuous compounding for a rate µ.

Ornstein-Ulenbeck Process

Also called Vasicek process

dX(t) = (θ1 − θ2X(t))dt + θ3dB. (0.2.18)

Cox-Ingersoll-Ross Process

Also called Feller process

dX(t) = (θ1 − θ2X(t))dt + θ3
√
X(t)dB. (0.2.19)

***** move this *** Feller’s condition

2θ1 > θ23

Jump-Diffusion Processes

In financial modeling, we often use a compound process that consists of some
smooth process coupled with a jump process. The parameters controlling the
frequency of jumps may also be modeled as a stochastic process. The amount
of the jump is usually modeled as a random variable.

We merely add a pure Poisson jump process djX(t) (see page 765) to the
drift-diffusion process,

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t).

After rearranging terms, this yields
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dX(t) =
(
µ(X(t), t) + (λ(X(t), t)

∫
Z z pZ(z;X(t))dz

)
dt

+σ(X(t), t)dB(t)
+djJX(t).

(0.2.20)

There are two stochastic terms, dB(t) and djJX(t).
We will assume that they are independent.
Note that I suppressed the dj on the left hand side, although, clearly, this

is a discontinuous process, both because of the compensated process and the
discontinuity in the drift.

Multivariate Processes

The multivariate Ito process has the form

dX(t) = a(X, t)dt+B(X, t)dB(t), (0.2.21)

where dX(t), a(X, t), and dB(t) are vectors and B(X, t) is a matrix.
The elements of dB(t) can come from independent Bachelier-Wiener pro-

cesses, or from correlated Bachelier-Wiener processes. I think it is easier to
work with independent Bachelier-Wiener processes and incorporate any cor-
relations into the B(X, t) matrix. Either way is just as general.

We write the individual terms in a multivariate Ito process in the form

dXi(t) = ai(X, t)dt+ bi(X, t)dBi(t), (0.2.22)

where the Bi(t) are Bachelier-Wiener processes with

Cor(dBi(t), dBj(t)) = ρij , (0.2.23)

for some constants ρij . Note that ai and bi are functions of all Xj , so the
processes are coupled not just through the ρij .

Recall that V(dBi(t)) = V(dBi(t)) = dt, and hence cov(dBi(t), dBj(t)) =
ρijdt.

Also recall that (dBi(t))
2 a.s.

= E((dBi(t))
2)

d
= t; i.e., (dBi(t))

2 is non-

stochastic. Likewise, dBi(t)dBi(t)
a.s.
= ρijdt.

0.2.2 Integration with Respect to Stochastic Differentials

The problem with developing a definition of an integral of the form
∫ T

0

g(Y (t), t)dB (0.2.24)

following the same steps as in the definition of a Riemann integral, that is, as
a limit of sequences of sums of areas of rectangles, is that because the sides
of these rectangles, Y and dB, are random variables, there are different kinds
of convergence of a limit.

Also, the convergence of products of Y (t) depend on where Y (t) is evalu-
ated.

Theory of Statistics c©2000–2025 James E. Gentle



776 0 Statistical Mathematics

The Ito Integral

We begin developing a definition of

∫ T

0

g(Y (t), t)dB,

by considering how the Riemann integral is defined in terms of the sums

In(t) =

n−1∑

i=0

g(Y (τi), τi)(B(ti+1)− B(ti)),

where 0 = t0 ≤ τ0 ≤ t1 ≤ τ1 ≤ · · · ≤ τn−1 ≤ tn = T .
As in the Riemann case we will define the integral in terms of a limit as

the mesh size goes to 0.
First, the existence depends on a finite expectation that is similar to a

variance. We assume

E

(∫ T

0

g(Y (t), t)dt

)
<∞.

The convergence must be qualified because the intervals are random variables;
furthermore, (although it is not obvious!) the convergence depends on where
τi is in the interval [ti, ti+1].

The first choice in the definition of the Ito stochastic integral is to choose
τi = ti. Other choices, such as choosing τi to be at the midpoint of the integral,
lead to different types of stochastic integrals.

Next is the definition of the type of convergence. In the Ito stochastic
integral, the convergence is in mean square, that is L2 convergence.

With the two choices me have made, we take

In(t) =

n−1∑

i=0

g(Y (ti), ti)(B(ti+1)− B(ti)),

and the Ito integral is defined as

I(t) = ms-limn→∞In(t). (0.2.25)

This integral based on a Bachelier-Wiener process is used throughout fi-
nancial analysis.

Note that this integral is a random variable; in fact, it is a stochastic
process. This is because of the fact that the differentials are from a Bachelier-
Wiener process.

Also, because the integral is defined by a Bachelier-Wiener process, it is a
martingale.
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Ito’s Lemma

We can formalize the preceding discussion using Ito’s lemma.
Suppose X follows an Ito process,

dX(t) = a(X, t)dt+ b(X, t)dB(t),

where dB is a Bachelier-Wiener process. Let G be an infinitely differentiable
function of X and t. Then G follows the process

dG(t) =

(
∂G

∂X
a(X, t) +

∂G

∂t
+

1

2

∂2G

∂X2
b2
)

dt+
∂G

∂X
b(X, t)dB(t). (0.2.26)

Thus, Ito’s lemma provides a formula that tells us that G also follows an
Ito process.

The drift rate is

∂G

∂X
a(X, t) +

∂G

∂t
+

1

2

∂2G

∂X2
b2

and the volatility is
∂G

∂X
b(X, t).

This allows us to work out expected values and standard deviations of G
over time.

First, suppose that G is infinitely of X and an unrelated variable y, and
consider a Taylor series expansion for ∆G:

∆G =
∂G

∂X
∆X+

∂G

∂y
∆y+

1

2

(
∂2G

∂X2
(∆X)2 +

∂2G

∂y2
(∆y)2 + 2

∂2G

∂X∂y
∆X∆y

)
+· · ·

(0.2.27)
In the limit as ∆X and ∆y tend to zero, this is the usual “total derivative”

dG =
∂G

∂X
dX +

∂G

∂y
dy, (0.2.28)

in which the terms in ∆X and ∆y have dominated and effectively those in
(∆X)2 and (∆y)2 and higher powers have disappeared.

Now consider an X that follows an Ito process,

dX(t) = a(X, t)dt+ b(X, t)dB(t),

or
∆X(t) = a(X, t)∆t+ b(X, t)Z

√
∆t.

Now let G be a function of both X and t, and consider the analogue to
equation (0.2.27). The factor (∆X)2, which could be ignored in moving to
equation (0.2.28), now contains a term with the factor ∆t, which cannot be
ignored. We have
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(∆X(t))2 = b(X, t)2Z2∆t+ terms of higher degree in ∆t.

Consider the Taylor series expansion

∆G =
∂G

∂X
∆X +

∂G

∂t
∆t +

1

2

„

∂2G

∂X2
(∆X)2 +

∂2G

∂t2
(∆t)2 + 2

∂2G

∂X∂t
∆X∆t

«

+ · · ·
(0.2.29)

We have seen, under the assumptions of Brownian motion, (∆X(t))2 or,
equivalently, Z2∆t, is nonstochastic; that is, we can treat Z2∆t as equal to its
expected value as ∆t tends to zero. Therefore, when we substitute for ∆X(t),
and take limits in equation (0.2.29) as ∆X and ∆t tend to zero, we get

dG(t) =
∂G

∂X
dX +

∂G

∂t
dt+

1

2

∂2G

∂X2
b2dt (0.2.30)

or, after substituting for dX and rearranging, we have Ito’s formula

dG(t) =

(
∂G

∂X
a(X, t) +

∂G

∂t
+

1

2

∂2G

∂X2
b2
)

dt+
∂G

∂X
b(X, t)dB(t).

Equation (0.2.30) is also called Ito’s formula. Compare equation (0.2.30) with
equation (0.2.28).

We can think of Ito’s formula as a stochastic version of the chain rule.
There is a multivariate version of Ito’s formula for a multivariate Ito pro-

cess. Given an infinitely differential functionG of the vector X = (X1, . . . , Xd)
and the scalar t, Ito’s formula in the form of equation (0.2.30), derived in the
same way as for the univariate case, is

dG(t) =

d∑

i=1

∂G

∂Xi
dXi(t) +

∂G

∂t
dt+

1

2

d∑

i=1

d∑

j=1

∂G2

∂Xi∂Xj
ρijbi(X, t)bj(X, t)dt.

(0.2.31)
The form of equation (0.2.26), for example, is obtained by substituting for

dXi(t).

Solution of Stochastic Differential Equations

*** existence Feller’s condition etc.
The solution of a stochastic differential equation is obtained by integrating

both sides and allowing for constant terms. Constant terms are evaluated by
satisfying known boundary conditions, or initial values.

In a stochastic differential equation, we must be careful in how the inte-
gration is performed, although different interpretations may be equally ap-
propriate.

For example, the SDE that defines an Ito process

dX(t) = a(X, t)dt+ b(X, t)dB(t), (0.2.32)
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when integrated from time t0 to T yields

X(T ) −X(t0) =

∫ T

t0

a(X, t)dt +

∫ T

t0

b(X, t)dB(t). (0.2.33)

The second integral is a stochastic integral. We will interpret it as an Ito
integral.

The nature of a(X, t) and b(X, t) determine the complexity of the solution
to the SDE.

In the Ito process

dS(t) = µ(t)S(t)dt + σ(t)S(t)dB(t),

using Ito’s formula for the log as before, we get the solution

S(T ) = S(t0) exp

(∫ T

t0

(
µ(t) − 1

2
σ(t)2

)
dt+

∫ T

t0

σ(t)dB(t)

)
. (0.2.34)

In the simpler version of a geometric Brownian motion model, in which µ and
σ are constants, we have

S(T ) = S(t0) exp

((
µ − 1

2
σ2

)
∆t+ σ∆B

)
. (0.2.35)

Given a solution of a differential equation we may determine the mean,
variance and so on by taking expectations of the random component in the
solution.

Sometimes, however, it is easier just to develop an ordinary (nonstochastic)
differential equation for the moments. We do this from an Ito process

dX(t) = a(X, t)dt+ b(X, t)dB(t), (0.2.36)

by using Ito’s formula on the powers of the variable. So we have

dXp(t) =

(
pX(t)p−1a(X, t) +

1

2
p(p − 1)X(t)p−2b(X, t)2

)
dt+

pX(t)p−1b(X, t)dB(t).

** exercise
Taking expectations of both sides, we have an ordinary differential equa-

tion in the expected values.

Ito’s Formula in Jump-Diffusion Processes

Now suppose we are interested in a process defined by a function g of S(t)
and t. This is where Ito’s formula is used.
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The simple approach is to apply Ito’s formula directly to the drift-diffusion
part and then consider djg(t) separately. (We have absorbed S(t) into t in the
notation g(t).)

As before,we consider the random variable of the magnitude of the change,
∆g and write the process as a systematic component plus a random component

djg(t) = g(t) − g(t−)

=

(
λ(S(t), t)

∫

D(∆g)

p∆g(∆g; g(t))d∆g

)
dt+ djJg(t)

where the random component djJg(t) is a compensated process as before.
Putting this all together we have

dg(t) =

(
∂g

∂t
+ µ

∂g

∂S
+

1

2
σ2 ∂

2g

∂S2

+λ(t)

∫

D(∆g)

∆g p∆g(∆g; g(t))d∆g

)
dt

+
∂g

∂S
σdB(t)

+djJg(t).

We must remember that this is a discontinuous process.

Notes and References for Section 0.2

Study of continuous stochastic processes, such as Brownian motion, requires
real analysis using random infinitesimals. This area of statistical mathemat-
ics is sometimes called stochastic calculus. Some useful texts on stochastic
processes and the stochastic calculus are Bass (2011), Karatzas and Shreve
(1991), Øksendal (1998), and Rogers and Williams (2000a), Rogers and Williams
(2000b).

Stochastic calculus is widely used in models of prices of financial assets,
and many of the developments in the general theory have come from that area
of application; see Steele (2001) for example.
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0.3 Some Basics of Linear Algebra

In the following we will assume the usual axioms for the reals, IR. We will
be concerned with two linear structures on IR. We denote one as IRn, and
call its members vectors. We denote another as IRn×m, and call its members
matrices. For both structures we have scalar multiplication (multiplication
of a member of the structure by a member of IR), an addition operation, an
additive identity, and additive inverses for all elements. The addition operation
is denoted by “+” and the additive identity by “0”, which are the same two
symbols used similarly in IR. We also have various types of multiplication
operations, all with identities, and some with inverses. In addition, we define
various real-valued functions over these structures, the most important of
which are inner products and norms.

Both IRn and IRn×m with addition and multiplication operations are linear
spaces.

In this section, we abstract some of the basic material on linear algebra
from Gentle (2007).

0.3.1 Inner Products, Norms, and Metrics

Although various inner products could be defined in IRn, “the” inner product
or dot product for vectors x and y in IRn is defined as

n∑

i=1

xiyi, (0.3.1)

and is often written as xTy. It is easy to see that this satisfies the definition
of an inner product (see page 636).

Two elements x, y ∈ IRn are said to be orthogonal if 〈x, y〉 = 0.
An element x ∈ IRn is said to be normal or normalized if 〈x, x〉 = 1. Any

x 6= 0 can be normalized, that is, mapped to a normal element, x/〈x, x〉. A set
of normalized elements that are pairwise orthogonal is called an orthonormal
set. (On page 686 we discuss a method of forming a set of orthogonal vectors.)

Various inner products could be defined in IRn×m, but “the” inner product
or dot product for matrices A and B in IRn×m is defined as

∑m
j=1 a

T
j bj , where

aj is the vector whose elements are those from the jth column of A, and
likewise for bj . Again, it is easy to see that this satisfies the definition of an
inner product.

Norms and Metrics

There are various norms that can be defined on IRn. An important class of
norms are the Lp norms, defined for p ≥ 1 by
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‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (0.3.2)

It is easy to see that this satisfies the definition of a norm (see page 642).
The norm in IRn induced by the inner product (that is, “the” inner prod-

uct) is the Euclidean norm or the L2 norm:

‖x‖2 =
√
〈x, x〉 =

√√√√
n∑

i=1

x2
i . (0.3.3)

This is the only Lp norm induced by an inner product.
The norm in IRn×m induced by the inner product exists only for n = m.

In that case it is ‖A‖ =
∑n

j=1 a
T
j aj =

∑n
j=1

∑n
i=1 a

2
ij . Note that this is not

the L2 matrix norm; it is the Frobenius norm (see below).
The most common and useful metrics in IRn and IRn×m are those induced

by the norms. For IRn the L2 norm is the most common, and a metric for
x, y ∈ IRn is defined as

ρ(x, y) = ‖x− y‖2. (0.3.4)

This metric is called the Euclidean distance.

0.3.2 Matrices and Vectors

Vectors are n-tuples and matrices are n by m rectangular arrays. We will
be interested in vectors and matrices whose elements are real numbers. We
denote the set of such vectors as IRn and the set of such matrics as IRn×m.

We generally denote a member of IRn×m by an upper case letter. A member
of IRn×m consists of nm elements, which we denote by use of two subscripts.
We often use a lower-case letter with the two subscripts. For example, for
a matrix A, we denote the elements as Aij or aij with i = 1, . . . , n and
j = 1, . . . , m.

The transpose of a matrix A in IRn×m is a matrix in IRm×n denoted by
AT such that (AT)ij = Aji. Note that this is consistent with the use of T

above for vectors.
If n = m the matrix is square.
We define (Cayley) multiplication of the matrix A ∈ IRn×m and the matrix

B ∈ IRm×p as C = AB ∈ IRn×p, where cij =
∑m

k=1 aikbkj.
If x and y are n-vectors, in most cases, we can consider them to be n× 1

matrices. Hence, xTy is a 1× 1 matrix and xyT is an n× n matrix.
We see from the definition that xTy is an inner product. This inner product

is also called the dot product. The product xyT is called the outer product.
As above, we see that

√
xTx is a norm (it is the induced norm). We some-

times denote this norm as ‖x‖2, because it is
(∑n

i=1 |xi|2
)1/2

. We call it the
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Euclidean norm and also the L2 norm. More generally, for p ≥ 1, we define

the Lp norm for the n-vector x as (
∑n

i=1 |xi|p)1/p
.

We denote the Lp norm of x as ‖x‖p. We generally denote the Euclidean
or L2 norm simply as ‖x‖.

Properties, Concepts, and Notation Associated with Matrices and
Vectors

Definition 0.3.1 (linear independence)
A set of vectors x1, . . . , xn ∈ IRn is said to be linearly independent if given
ai ∈ IR,

∑n
i=1 aixi = 0 implies ai = 0 for i = 1, . . . , n.

Definition 0.3.2 (rank of a matrix)
The rank of a matrix is the maximum number of rows or columns that are
linearly independent. (The maximum number of rows that are linearly inde-
pendent is the same as the maximum number of columns that are linearly
independent.) For the matrix A, we write rank(A). We adopt the convention
that rank(A) = 0 ⇔ A = 0 (the zero matrix). A ∈ IRn×m is said to be full
rank iff rank(A) = min(n,m).

An important fact is

rank(AB) ≤ min(rank(A), rank(B)),

and a consequence of this is that the rank of an outer product is less than or
equal to 1.

To define the determinant of a matrix, we first need to consider permua-
tions of the integers from 1 to n. Let the list of integers Πj = (j1, j2, . . . , jn) be
one of the n! permutations of the integers from 1 to n. Define a permutation to
be even or odd according to the number of times that a smaller element follows
a larger one in the permutation. (For example, 1, 3, 2 is an odd permutation,
and 3, 1, 2 is an even permutation.) Let σ(Πj) = 1 if Πj = (j1, . . . , jn) is an
even permutation, and let σ(Πj) = −1 otherwise.

Definition 0.3.3 (determinant of a square matrix)
The determinant of an n× n (square) A, denoted by |A|, is defined by

|A| =
∑

all permutations

σ(Πj)a1j1 · · ·anjn .

The determinant is a real number. We write |A| or det(A). |A| 6= 0 iff A
is square and of full rank.

Definition 0.3.4 (identity matrix)
I ∈ IRn×n and I[i, j] = 0 if i 6= j and I[i, j] = 1 if i 6= i; that is I[i, j] = δij ,
where δij is the Kronecker delta. We write the identity as In or just I.
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Definition 0.3.5 (inverse of a matrix)
For A ∈ IRn×n, if a matrix B ∈ IRn×n exists, such that AB = I, then B is
the inverse of A, and is written A−1.

A matrix has an inverse iff it is square and of full rank.

Definition 0.3.6 (generalized inverse of a matrix)
For A ∈ IRn×m, a matrix B ∈ IRm×n such that ABA = A is called a

generalized inverse of A, and is written A−.

If A is nonsingular (square and full rank), then obviously A− = A−1.

Definition 0.3.7 (pseudoinverse or Moore-Penrose inverse of a matrix)

For A ∈ IRn×m, the matrix B ∈ IRm×n such that ABA = A, BAB = B,
(AB)T = AB, and (BA)T = BA is called the pseudoinverse of A, and is
written A+.

Definition 0.3.8 (orthogonal matrix)
For A ∈ IRn×m, if ATA = Im, that is, if the columns are orthonormal and
m ≤ n, or AAT = In, that is, if the rows are orthonormal and n ≤ m, then A
is said to be orthogonal.

Definition 0.3.9 (quadratic forms)
For A ∈ IRn×n and x ∈ IRn, the scalar xTAx is called a quadratic form.

Definition 0.3.10 (nonnegative definite matrix)
For A ∈ IRn×n and any x ∈ IRn, if xTAx ≥ 0, then is said to be nonnegative
definite. We generally restrict the definition to symmetric matrices. This is
essentially without loss of generality because if a matrix is nonnegative defi-
nite, then there is a similar symmetric matrix. (Two matrices are said to be
similar if they have exactly the same eigenvalues.) We write A � 0 to denote
that A is nonnegative definite.

Definition 0.3.11 (positive definite matrix)
For A ∈ IRn×n and any x ∈ IRn, if xTAx ≥ 0 and xTAx = 0 implies x = 0,
then is said to be positive definite. As with nonnegative definite matrices,
we generally restrict the definition of positive definite matrices to symmetric
matrices. We write A � 0 to denote that A is positive definite.

Definition 0.3.12 (eigenvalues and eigenvectors) If A ∈ IRn×n, v is an
n-vector (complex), and c is a scalar (complex), and Av = cv, then c is an
eigenvalue of A and v is an eigenvector of A associated with c.
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The Trace and Some of Its Properties

Definition 0.3.13 (trace of a matrix)
The sum of the diagonal elements of a square matrix is called the trace of the
matrix.

We use the notation “tr(A)” to denote the trace of the matrix A:

tr(A) =
∑

i

aii.

Some properties of the trace that follow immediately from the definition:

tr(A) = tr(AT).

For a scalar c and an n× n matrix A,

tr(cA) = c tr(A).

If A and B are such that both AB and BA are defined,

tr(AB) = tr(BA).

If x is a vector, we have

‖x‖2 = xTx = tr(xTx) = tr(xxT).

If x is a vector and A a matrix, we have

xTAx = tr(xTAx) = tr(AxxT).

Eigenanalysis of Symmetric Matrices

The eigenvalues and eigenvectors of symmetric matrices have some interesting
properties. First of all, for a real symmetric matrix, the eigenvalues are all
real. Symmetric matrices are diagonalizable; therefore all of the properties of
diagonalizable matrices carry over to symmetric matrices.

Orthogonality of Eigenvectors

In the case of a symmetric matrix A, any eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. This is easily seen by assuming that c1 and
c2 are unequal eigenvalues with corresponding eigenvectors v1 and v2. Now
consider vT

1 v2. Multiplying this by c2, we get

c2v
T
1 v2 = vT

1 Av2 = vT
2 Av1 = c1v

T
2 v1 = c1v

T
1 v2.

Because c1 6= c2, we have vT
1 v2 = 0.

Theory of Statistics c©2000–2025 James E. Gentle



786 0 Statistical Mathematics

Now, consider two eigenvalues ci = cj , that is, an eigenvalue of multiplicity
greater than 1 and distinct associated eigenvectors vi and vj. By what we
just saw, an eigenvector associated with ck 6= ci is orthogonal to the space
spanned by vi and vj . Assume vi is normalized and apply a Gram-Schmidt
transformation to form

ṽj =
1

‖vj − 〈vi, vj〉vi‖
(vj − 〈vi, vj〉vi),

yielding a vector orthogonal to vi. Now, we have

Aṽj =
1

‖vj − 〈vi, vj〉vi‖
(Avj − 〈vi, vj〉Avi)

=
1

‖vj − 〈vi, vj〉vi‖
(cjvj − 〈vi, vj〉civi)

= cj
1

‖vj − 〈vi, vj〉vi‖
(vj − 〈vi, vj〉vi)

= cj ṽj ;

hence, ṽj is an eigenvector of A associated with cj . We conclude therefore that
the eigenvectors of a symmetric matrix can be chosen to be orthogonal.

A symmetric matrix is orthogonally diagonalizable, and because the eigen-
vectors can be chosen to be orthogonal, and can be written as

A = VCV T, (0.3.5)

where V V T = V TV = I, and so we also have

V TAV = C. (0.3.6)

Such a matrix is orthogonally similar to a diagonal matrix formed from its
eigenvalues.

Spectral Decomposition

When A is symmetric and the eigenvectors vi are chosen to be orthonormal,

I =
∑

i

viv
T
i , (0.3.7)

so

A = A
∑

i

viv
T
i

=
∑

i

Aviv
T
i

=
∑

i

civiv
T
i . (0.3.8)
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This representation is called the spectral decomposition of the symmetric ma-
trix A. It is essentially the same as equation (0.3.5), so A = VCV T is also
called the spectral decomposition.

The representation is unique except for the ordering and the choice of
eigenvectors for eigenvalues with multiplicities greater than 1. If the rank of
the matrix is r, we have |c1| ≥ · · · ≥ |cr| > 0, and if r < n, then cr+1 = · · · =
cn = 0.

Note that the matrices in the spectral decomposition are projection matri-
ces that are orthogonal to each other (but they are not orthogonal matrices)
and they sum to the identity. Let

Pi = viv
T
i . (0.3.9)

Then we have

PiPi = Pi, (0.3.10)

PiPj = 0 for i 6= j, (0.3.11)∑

i

Pi = I, (0.3.12)

and the spectral decomposition,

A =
∑

i

ciPi. (0.3.13)

The Pi are called spectral projectors.
The spectral decomposition also applies to powers of A,

Ak =
∑

i

cki viv
T
i , (0.3.14)

where k is an integer. If A is nonsingular, k can be negative in the expression
above.

The spectral decomposition is one of the most important tools in working
with symmetric matrices.

Although we will not prove it here, all diagonalizable matrices have a spec-
tral decomposition in the form of equation (0.3.13) with projection matrices
that satisfy properties (0.3.10) through (0.3.12). These projection matrices
cannot necessarily be expressed as outer products of eigenvectors, however.
The eigenvalues and eigenvectors of a nonsymmetric matrix might not be real,
the left and right eigenvectors might not be the same, and two eigenvectors
might not be mutually orthogonal. In the spectral representation A =

∑
i ciPi,

however, if cj is a simple eigenvalue with associated left and right eigenvectors
yj and xj , respectively, then the projection matrix Pj is xjy

H
j /y

H
j xj. (Note

that because the eigenvectors may not be real, we take the conjugate trans-
pose.)
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Quadratic Forms and the Rayleigh Quotient

Equation (0.3.8) yields important facts about quadratic forms in A. Because
V is of full rank, an arbitrary vector x can be written as V b for some vector
b. Therefore, for the quadratic form xTAx we have

xTAx = xT
∑

i

civiv
T
i x

=
∑

i

bTV Tviv
T
i V bci

=
∑

i

b2i ci.

This immediately gives the inequality

xTAx ≤ max{ci}bTb.

(Notice that max{ci} here is not necessarily c1; in the important case when
all of the eigenvalues are nonnegative, it is, however.) Furthermore, if x 6= 0,
bTb = xTx, and we have the important inequality

xTAx

xTx
≤ max{ci}. (0.3.15)

Equality is achieved if x is the eigenvector corresponding to max{ci}, so we
have

max
x 6=0

xTAx

xTx
= max{ci}. (0.3.16)

If c1 > 0, this is the spectral radius, ρ(A).
*** prove the following add to matrix book

max
x

xTAx

xTCx
= max(e.v.)(C−1A). (0.3.17)

or if A = aaT, then

max
x

xTAx

xTCx
= aTC−1a. (0.3.18)

The expression on the left-hand side in (0.3.15) as a function of x is called
the Rayleigh quotient of the symmetric matrix A and is denoted by RA(x):

RA(x) =
xTAx

xTx

=
〈x, Ax〉
〈x, x〉 . (0.3.19)

Because if x 6= 0, xTx > 0, it is clear that the Rayleigh quotient is nonnegative
for all x if and only if A is nonnegative definite and is positive for all x if and
only if A is positive definite.
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The Fourier Expansion

The viv
T
i matrices in equation (0.3.8) have the property that 〈viv

T
i , vjv

T
j 〉 = 0

for i 6= j and 〈viv
T
i , viv

T
i 〉 = 1, and so the spectral decomposition is a Fourier

expansion and the eigenvalues are Fourier coefficients. Because of orthogonal-
ity, the eigenvalues can be represented as the dot product

ci = 〈A, viv
T
i 〉. (0.3.20)

The eigenvalues ci have the same properties as the Fourier coefficients
in any orthonormal expansion. In particular, the best approximating matrices
within the subspace of n×n symmetric matrices spanned by {v1vT

1 , . . . , vnv
T
n }

are partial sums of the form of equation (0.3.8).

Powers of a Symmetric Matrix

If (c, v) is an eigenpair of the symmetric matrix A with vTv = 1, then for any
k = 1, 2, . . ., (

A − cvvT
)k

= Ak − ckvvT. (0.3.21)

This follows from induction on k, for it clearly is true for k = 1, and if for a
given k it is true that for k − 1

(
A − cvvT

)k−1
= Ak−1 − ck−1vvT,

then by multiplying both sides by (A − cvvT), we see it is true for k:

(
A− cvvT

)k
=
(
Ak−1 − ck−1vvT

)
(A − cvvT)

= Ak − ck−1vvTA− cAk−1vvT + ckvvT

= Ak − ckvvT − ckvvT + ckvvT

= Ak − ckvvT.

There is a similar result for nonsymmetric square matrices, where w and
v are left and right eigenvectors, respectively, associated with the same eigen-
value c that can be scaled so that wTv = 1. (Recall that an eigenvalue of A
is also an eigenvalue of AT, and if w is a left eigenvector associated with the
eigenvalue c, then ATw = cw.) The only property of symmetry used above
was that we could scale vTv to be 1; hence, we just need wTv 6= 0. This is
clearly true for a diagonalizable matrix (from the definition). It is also true if
c is simple (which is somewhat harder to prove).

If w and v are left and right eigenvectors of A associated with the same
eigenvalue c and wTv = 1, then for k = 1, 2, . . .,

(
A − cvwT

)k
= Ak − ckvwT. (0.3.22)

We can prove this by induction as above.

Theory of Statistics c©2000–2025 James E. Gentle



790 0 Statistical Mathematics

The Trace and Sums of Eigenvalues

For a general n × n matrix A with eigenvalues c1, . . . , cn, we have tr(A) =∑n
i=1 ci. This is particularly easy to see for symmetric matrices because of

equation (0.3.5), rewritten as V TAV = C, the diagonal matrix of the eigen-
values. For a symmetric matrix, however, we have a stronger result.

If A is an n× n symmetric matrix with eigenvalues c1 ≥ · · · ≥ cn, and U
is an n× k orthogonal matrix, with k ≤ n, then

tr(UTAU) ≤
k∑

i=1

ci. (0.3.23)

To see this, we represent U in terms of the columns of V , which span IRn, as
U = VX. Hence,

tr(UTAU) = tr(XTV TAVX)

= tr(XTCX)

=

n∑

i=1

xT
i xi ci, (0.3.24)

where xT
i is the ith row of X.

Now XTX = XTV TVX = UTU = Ik, so either xT
i xi = 0 or xT

i xi = 1,

and
∑n

i=1 x
T
i xi = k. Because c1 ≥ · · · ≥ cn, therefore

∑n
i=1 x

T
i xi ci ≤

∑k
i=1 ci,

and so from equation (0.3.24) we have tr(UTAU) ≤∑k
i=1 ci.

0.3.2.1 Positive Definite and Nonnegative Definite
Matrices

The factorization of symmetric matrices in equation (0.3.5) yields some useful
properties of positive definite and nonnegative definite matrices.

Eigenvalues of Positive and Nonnegative Definite Matrices

In this book, we use the terms “nonnegative definite” and “positive definite”
only for real symmetric matrices, so the eigenvalues of nonnegative definite or
positive definite matrices are real.

Any real symmetric matrix is positive (nonnegative) definite if and only
if all of its eigenvalues are positive (nonnegative). We can see this using the
factorization (0.3.5) of a symmetric matrix. One factor is the diagonal matrix
C of the eigenvalues, and the other factors are orthogonal. Hence, for any x,
we have xTAx = xTVCV Tx = yTCy, where y = V Tx, and so

xTAx > (≥) 0

if and only if
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yTCy > (≥) 0.

This implies that if P is a nonsingular matrix and D is a diagonal matrix,
PTDP is positive (nonnegative) if and only if the elements of D are positive
(nonnegative).

A matrix (whether symmetric or not and whether real or not) all of whose
eigenvalues have positive real parts is said to be positive stable. Positive stabil-
ity is an important property in some applications, such as numerical solution
of systems of nonlinear differential equations. Clearly, a positive definite ma-
trix is positive stable.

Inverse of Positive Definite Matrices

If A is positive definite and A = VCV T as in equation (0.3.5), then A−1 =
VC−1V T and A−1 is positive definite because the elements of C−1 are positive.

Diagonalization of Positive Definite Matrices

If A is positive definite, the elements of the diagonal matrix C in equa-
tion (0.3.5) are positive, and so their square roots can be absorbed into V
to form a nonsingular matrix P . The diagonalization in equation (0.3.6),
V TAV = C, can therefore be reexpressed as

PTAP = I. (0.3.25)

Square Roots of Positive and Nonnegative Definite Matrices

The factorization (0.3.5) together with the nonnegativity of the eigenvalues
of positive and nonnegative definite matrices allows us to define a square root
of such a matrix.

Let A be a nonnegative definite matrix and let V and C be as in equa-
tion (0.3.5): A = VCV T. Now, let S be a diagonal matrix whose elements
are the square roots of the corresponding elements of C. Then (VSV T)2 = A;
hence, we write

A
1
2 = VSV T (0.3.26)

and call this matrix the square root of A. We also can similarly define A
1
r for

r > 0.
We see immediately that A

1
2 is symmetric because A is symmetric.

If A is positive definite, A−1 exists and is positive definite. It therefore has
a square root, which we denote as A− 1

2 .
The square roots are nonnegative, and so A

1
2 is nonnegative definite. Fur-

thermore, A
1
2 and A− 1

2 are positive definite if A is positive definite.
This A

1
2 is unique, so our reference to it as the square root is appropriate.

(There is occasionally some ambiguity in the terms “square root” and “second
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root” and the symbols used to denote them. If x is a nonnegative scalar, the
usual meaning of its square root, denoted by

√
x, is a nonnegative number,

while its second roots, which may be denoted by x
1
2 , are usually considered to

be either of the numbers ±√x. In our notation A
1
2 , we mean the square root;

that is, the nonnegative matrix, if it exists. Otherwise, we say the square root

of the matrix does not exist. For example, I
1
2
2 = I2, and while if J =

[
0 1
1 0

]
,

J2 = I2, we do not consider J to be a square root of I2.)

Forming a Vector from the Elements of a Matrix: vec(·), vecsy(·),
and vech(·)

It is sometimes useful to consider the elements of a matrix to be elements of
a single vector. The most common way this is done is to string the columns
of the matrix end-to-end into a vector. The vec(·) function does this:

vec(A) = (aT
1 , a

T
2 , . . . , a

T
m), (0.3.27)

where a1, a2, . . . , am are the column vectors of the matrix A. The vec function
is also sometimes called the “pack” function. The vec function is a mapping
IRn×m 7→ IRnm.

For a symmetric matrix A with elements aij, the “vecsy” function stacks
the unique elements into a vector:

vecsy(A) = (a11, a21, a22, a31, a32, a33, . . . , an1, an2, . . . , ann). (0.3.28)

The vecsy function is called the V 2 function by Kollo and von Rosen (2005). It
is the “symmetric storage mode” used by numerical analysts since the 1950s.

There are other ways that the unique elements could be stacked. The
“vech” function is

vech(A) = (a11, a21, . . . , an1, a22, . . . , an2, . . . , ann). (0.3.29)

The vecsy and vech functions are mappings IRn×n 7→ IRn(n+1)/2.

The Kronecker Product

Kronecker multiplication, denoted by ⊗, is defined for any two matrices An×m

and Bp×q as

A⊗B =



a11B . . . a1mB

... . . .
...

an1B . . . anmB


 .

The Kronecker product of A and B is np × mq; that is, Kronecker matrix
multiplication is a mapping
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IRn×m × IRp×q 7→ IRnp×mq.

The Kronecker product is also called the “right direct product” or just
direct product. (A left direct product is a Kronecker product with the factors
reversed.)

Kronecker multiplication is not commutative, but it is associative and it
is distributive over addition, as we will see below.

The identity for Kronecker multiplication is the 1 × 1 matrix with the
element 1; that is, it is the same as the scalar 1.

The determinant of the Kronecker product of two square matrices An×n

and Bm×m has a simple relationship to the determinants of the individual
matrices:

|A⊗B| = |A|m|B|n. (0.3.30)

The proof of this, like many facts about determinants, is straightforward but
involves tedious manipulation of cofactors. The manipulations in this case can
be facilitated by using the vec-permutation matrix.

We can understand the properties of the Kronecker product by expressing
the (i, j) element of A⊗ B in terms of the elements of A and B,

(A⊗ B)i,j = A[i/p]+1, [j/q]+1Bi−p[i/p], j−q[i/q], (0.3.31)

where [·] is the greatest integer function.
Some additional properties of Kronecker products that are immediate re-

sults of the definition are, assuming the matrices are conformable for the
indicated operations,

(aA) ⊗ (bB) = ab(A ⊗B)

= (abA) ⊗B
= A ⊗ (abB), for scalars a, b, (0.3.32)

(A+ B) ⊗ (C) = A ⊗C + B ⊗ C, (0.3.33)

(A⊗ B) ⊗C = A ⊗ (B ⊗ C), (0.3.34)

(A⊗ B)T = AT ⊗ BT, (0.3.35)

(A ⊗B)(C ⊗D) = AC ⊗ BD. (0.3.36)

These properties are all easy to see by using equation (0.3.31) to express
the (i, j) element of the matrix on either side of the equation, taking into
account the size of the matrices involved. For example, in the first equation,
if A is n×m and B is p× q, the (i, j) element on the left-hand side is

aA[i/p]+1, [j/q]+1bBi−p[i/p], j−q[i/q]
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and that on the right-hand side is

abA[i/p]+1, [j/q]+1Bi−p[i/p], j−q[i/q].

Another property of the Kronecker product of square matrices is

tr(A⊗ B) = tr(A)tr(B). (0.3.37)

This is true because the trace of the product is merely the sum of all possible
products of the diagonal elements of the individual matrices.

The Kronecker product and the vec function often find uses in the same
application. For example, an n×m normal random matrixX with parameters
M , Σ, and Ψ can be expressed in terms of an ordinary np-variate normal
random variable Y = vec(X) with parameters vec(M) and Σ ⊗ Ψ .

A relationship between the vec function and Kronecker multiplication is

vec(ABC) = (CT ⊗A)vec(B) (0.3.38)

for matrices A, B, and C that are conformable for the multiplication indicated.

Matrix Factorizations

There are a number of useful ways of factorizing a matrix.

• the LU (and LR and LDU) factorization of a general matrix:
• the QR factorization of a general matrix,
• the similar canonical factorization or “diagonal factorization” of a diago-

nalizable matrix (which is necessarily square):

A = VCV −1,

where V is a matrix whose columns correspond to the eigenvectors of
A and is nonsingular, and C is a diagonal matrix whose entries are the
eigenvalues corresponding to the columns of V .

• the singular value factorization of a general n×m matrix A:

A = UDV T,

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix,
and D is an n ×m diagonal matrix with nonnegative entries. (An n ×m
diagonal matrix has min(n,m) elements on the diagonal, and all other
entries are zero.)

• the square root of a nonnegative definite matrix A (which is necessarily
symmetric):

A = A1/2A1/2

• the Cholesky factorization of a nonnegative definite matrix:

A = AT
c Ac,

where Ac is an upper triangular matrix with nonnegative diagonal ele-
ments.
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Spectral Decomposition

For a symmetric matrix A, we can always write A = VCV T, as above. This is
called the spectral decomposition, and is unique except for the ordering and
the choice of eigenvectors for eigenvalues with multiplicities greater than 1.
We can also write

A =
∑

i

ciPi,

where the Pi are the outer products of the eigenvectors,

Pi = viv
T
i ,

and are called spectral projectors.

Matrix Norms

A matrix norm is generally required to satisfy one more property in addition to
those listed above for the definition of a norm. It is the consistency property:
‖AB‖ ≤ ‖A‖ ‖B‖. The Lp matrix norm for the n×m matrix A is defined as

‖A‖p = max
‖x‖p=1

‖Ax‖p.

The L2 matrix norm has the interesting relationship

‖A‖2 =
√
ρ(ATA),

where ρ(·) is the spectral radius (the modulus of the eigenvalue with the
maximum modulus).

The “usual” matrix norm is the Frobenius norm:

‖A‖F =

√∑

i,j

a2
ij .

Idempotent and Projection Matrices

A matrix A such that AA = A is called an idempotent matrix. An idempotent
matrix is square, and it is either singular or it is the identity matrix. (It must
be square in order to be conformable for the indicated multiplication. If it
is not singular, we have A = (A−1A)A = A−1(AA) = A−1A = I; hence, an
idempotent matrix is either singular or it is the identity matrix.)

If A is idempotent and n × n, then (I − A) is also idempotent, as we see
by multiplication.

In this case, we also have
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rank(I −A) = n− rank(A).

Because the eigenvalues of A2 are the squares of the eigenvalues of A, all
eigenvalues of an idempotent matrix must be either 0 or 1. The number of
eigenvalues that are 1 is the rank of the matrix. We therefore have for an
idempotent matrix A,

tr(A) = rank(A).

Because AA = A, any vector in the column space of A is an eigenvector of A.
For a given vector space V, a symmetric idempotent matrix A whose

columns span V is said to be a projection matrix onto V; in other words,
a matrix A is a projection matrix onto span(A) if and only if A is symmetric
and idempotent.

It is easy to see that for any vector x, if A is a projection matrix onto
V, the vector Ax is in V, and the vector x − Ax is in V⊥ (the vectors Ax
and x−Ax are orthogonal). For this reason, a projection matrix is sometimes
called an “orthogonal projection matrix”. Note that an orthogonal projection
matrix is not an orthogonal matrix, however, unless it is the identity matrix.
Stating this in alternate notation, if A is a projection matrix and A ∈ IRn×n,
then A maps IRn onto V(A), and I −A is also a projection matrix (called the
complementary projection matrix of A), and it maps IRn onto the orthogonal
complement, N (A). These spaces are such that V(A) ⊕N (A) = IRn.

Useful projection matrices often encountered in statistical linear models
are A+A and AA+.

If x is a general vector in IRn, that is, if x has order n and belongs to an
n-dimensional space, and A is a projection matrix of rank r ≤ n, then Ax has
order n and belongs to span(A), which is an r-dimensional space.

Because a projection matrix is idempotent, the matrix projects any of
its columns onto itself, and of course it projects the full matrix onto itself:
AA = A. More generally, if x and y are vectors in span(A) and a is a scalar,
then

A(ax+ y) = ax+ y.

(To see this, we merely represent x and y as linear combinations of columns
(or rows) of A and substitute in the equation.)

The projection of a vector y onto a vector x is

xTy

xTx
x.

The projection matrix to accomplish this is the “outer/inner products ma-
trix”,

1

xTx
xxT.

The outer/inner products matrix has rank 1. It is useful in a variety of matrix
transformations. If x is normalized, the projection matrix for projecting a
vector on x is just xxT. The projection matrix for projecting a vector onto a
unit vector ei is eie

T
i , and eie

T
i y = (0, . . . , yi, . . . , 0).
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Inverses of Matrices

Often in applications we need inverses of various sums of matrices. A simple
general result, which we can verify by multiplication, is that if A is a full-rank
n× n matrix, B is a full-rank m×m matrix, C is any n×m matrix, and D
is any m× n matrix such that A +CBD is full rank, then

(A +CBD)−1 = A−1 − A−1C(B−1 +DA−1C)−1DA−1.

From this it follows that if A is a full-rank n × n matrix and b and c are
n-vectors such that (A+ bcT) is full rank, then

(A+ bcT)−1 = A−1 − A−1bcTA−1

1 + cTA−1b
.

If A and B are full rank matrices of the same size, the following relation-
ships are easy to show directly.

(I + A−1)−1 = A(A + I)−1

(A+ BBT)−1B = A−1B(I + BTA−1B)−1

(A−1 +B−1)−1 = A(A +B)−1B

A−A(A + B)−1A = B − B(A +B)−1B

A−1 + B−1 = A−1(A+ B)B−1

(I + AB)−1 = I −A(I + BA)−1B

(I +AB)−1A = A(I + BA)−1

From the relationship det(AB) = det(A) det(B) for square matrices men-
tioned earlier, it is easy to see that for nonsingular A,

det(A) = 1/det(A−1).

For a square matrix A, det(A) = 0 if and only if A is singular.

Partitioned Matrices

We often find it useful to partition a matrix into submatrices, and we usually
denote those submatrices with capital letters with subscripts indicating the
relative positions of the submatrices. Hence, we may write

A =

[
A11 A12

A21 A22

]
,

where the matrices A11 and A12 have the same number of rows, A21 and
A22 have the same number of rows, A11 and A21 have the same number of
columns, and A12 and A22 have the same number of columns.
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The term “submatrix” is also sometimes used to refer to a matrix formed
from another one by deleting various rows and columns of the given matrix.
In this terminology, B is a submatrix of A if for each element bij there is an
akl with k ≥ i and l ≥ j, such that bij = akl; that is, the rows and/or columns
of the submatrix are not contiguous in the original matrix.

A submatrix whose principal diagonal elements are elements of the prin-
cipal diagonal of the given matrix is called a principal submatrix; A11 is a
principal submatrix in the example above, and if A22 is square it is also a
principal submatrix. Sometimes the term “principal submatrix” is restricted
to square submatrices.

A principal submatrix that contains the (1, 1) and whose rows and columns
are contiguous in the original matrix is called a leading principal submatrix.
A11 is a principal submatrix in the example above.

Multiplication and other operations with matrices, such as transposition,
are carried out with their submatrices in the obvious way. Thus,

[
A11 A12 A13

A21 A22 A23

]T
=



AT

11 A
T
21

AT
12 A

T
22

AT
13 A

T
23


 ,

and, assuming the submatrices are conformable for multiplication,

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Sometimes a matrix may be partitioned such that one partition is just a
single column or row, that is, a vector or the transpose of a vector. In that
case, we may use a notation such as

[X y]

or
[X | y],

where X is a matrix and y is a vector. We develop the notation in the obvious
fashion; for example,

[X y]T [X y] =

[
XTX XTy
yTX yTy

]
.

Partitioned matrices may also have useful patterns. A “block diagonal”
matrix is one of the form 



X 0 · · · 0
0 X · · · 0

. . .

0 0 · · · X


 ,
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where 0 represents a submatrix with all zeros, and X represents a general
submatrix, with at least some nonzeros. The diag(·) function previously in-
troduced for a vector is also defined for a list of matrices:

diag(A1, A2, . . . , Ak)

denotes the block diagonal matrix with submatrices A1, A2, . . . , Ak along the
diagonal and zeros elsewhere.

Inverses of Partitioned Matrices

If A is nonsingular, and can be partitioned as

A =

[
A11 A12

A21 A22

]
,

where both A11 and A22 are nonsingular, it is easy to see that the inverse of
A is given by

A−1 =



A−1

11 +A−1
11 A12Z

−1A21A
−1
11 −A−1

11 A12Z
−1

−Z−1A21A
−1
11 Z−1


 ,

where Z = A22 −A21A
−1
11 A12. In this partitioning Z is called the Schur com-

plement of A11 in A.
If

A = [Xy]T [Xy]

and is partitioned as into XTX and yTy on the diagonal, and X is of full
column rank, then the Schur complement of XTX in [Xy]T [Xy] is

yTy − yTX(XTX)−1XTy.

This particular partitioning is useful in linear regression analysis, where this
Schur complement is the residual sum of squares.

Gramian Matrices and Generalized Inverses

A matrix of the form ZTZ is called a Gramian matrix. Such matrices arise
often in statistical applications.

Some interesting properties of a Gramian matrix ZTZ are

• ZTZ is symmetric;
• ZTZ is of full rank if and only ifZ is of full column rank, or, more generally,

rank(ZTZ) = rank(Z);
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• ZTZ is nonnegative definite, and positive definite if and only if Z is of full
column rank;

• ZTZ = 0 =⇒ Z = 0.

The generalized inverses of ZTZ have useful properties. First, we see from
the definition, for any generalized inverse, (ZTZ)− that ((ZTZ)−)T is also a
generalized inverse of ZTZ. (Note that (ZTZ)− is not necessarily symmetric.)

Another useful property of a Gramian matrix is that for any matrices B
and C (that are conformable for the operations indicated),

BZTZ = CZTZ ⇐⇒ BZT = CZT.

The implication from right to left is obvious, and we can see the left to right
implication by writing

(BZTZ − CZTZ)(BT −CT) = (BZT −CZT)(BZT − CZT)T,

and then observing that if the left side is null, then so is the right side, and if
the right side is null, then BZT − CZT = 0. Similarly, we have

ZTZB = ZTZC ⇐⇒ ZTB = ZTC.

Also,
Z(ZTZ)−ZTZ = Z.

This means that (ZTZ)−ZT is a generalized inverse of Z
An important property of Z(ZTZ)−ZT is its invariance to the choice of

the generalized inverse of ZTZ. Suppose G is any generalized inverse of ZTZ.
Then we have

ZGZT = Z(ZTZ)−ZT;

that is, Z(ZTZ)−ZT is invariant to choice of generalized inverse.
The squared norm of the residual vector obtained from any generalized

inverse of ZTZ has some interesting properties. First, just by direct multi-
plication, we get the “Pythagorean property” of the norm of the predicted
values and the residuals:

‖X − Zβ‖2 = ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2

where β̂ = (ZTZ)−ZTX for any generalized inverse. We also have

E(Zβ̂) = Zβ,

and
E((Zβ̂ − Zβ)T(Zβ̂ − Zβ)) = V(Zβ̂).

Because for any vector y, we have

‖y‖2 = yTy = tr(yTy),
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we can derive an interesting expression for E(‖X − Zβ‖2):

E(‖X − Zβ̂‖2) = tr(E(‖X − Zβ̂‖2))
= tr(E((X − Zβ)T(X − Zβ)) − E((Zβ̂ − Zβ)T(Zβ̂ − Zβ)))

= tr(V(X) −V(Zβ̂)

= nσ2 − tr((Z(ZTZ)−ZT)σ2I(Z(ZTZ)−ZT))

= σ2(n− tr((ZTZ)−ZTZ)).

The trace in the latter expression is the “regression degrees of freedom”.

The Moore-Penrose Inverse

The Moore-Penrose inverse, or the pseudoinverse, of Z has an interesting
relationship with a generalized inverse of ZTZ:

ZZ+ = Z(ZTZ)−ZT.

This can be established directly from the definition of the Moore-Penrose
inverse.

0.3.3 Vector/Matrix Derivatives and Integrals

The operations of differentiation and integration of vectors and matrices are
logical extensions of the corresponding operations on scalars. There are three
objects involved in this operation:

• the variable of the operation;
• the operand (the function being differentiated or integrated); and
• the result of the operation.

In the simplest case, all three of these objects are of the same type, and
they are scalars. If either the variable or the operand is a vector or a matrix,
however, the structure of the result may be more complicated. This statement
will become clearer as we proceed to consider specific cases.

In this section, we state or show the form that the derivative takes in
terms of simpler derivatives. We state high-level rules for the nature of the
differentiation in terms of simple partial differentiation of a scalar with respect
to a scalar. We do not consider whether or not the derivatives exist. In general,
if the simpler derivatives we write that comprise the more complicated object
exist, then the derivative of that more complicated object exists. Once a shape
of the derivative is determined, definitions or derivations in ε-δ terms could
be given, but we will refrain from that kind of formal exercise. The purpose
of this section is not to develop a calculus for vectors and matrices but rather
to consider some cases that find wide applications in statistics. For a more
careful treatment of differentiation of vectors and matrices see Gentle (2007).
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Basics of Differentiation

It is useful to recall the heuristic interpretation of a derivative. A derivative
of a function is the infinitesimal rate of change of the function with respect
to the variable with which the differentiation is taken. If both the function
and the variable are scalars, this interpretation is unambiguous. If, however,
the operand of the differentiation, Φ, is a more complicated function, say a
vector or a matrix, and/or the variable of the differentiation, Ξ, is a more
complicated object, the changes are more difficult to measure. Change in the
value both of the function,

δΦ = Φnew − Φold,

and of the variable,
δΞ = Ξnew − Ξold,

could be measured in various ways, by using various norms, for example. (Note
that the subtraction is not necessarily ordinary scalar subtraction.)

Furthermore, we cannot just divide the function values by δΞ. We do not
have a definition for division by that kind of object. We need a mapping,
possibly a norm, that assigns a positive real number to δΞ. We can define
the change in the function value as just the simple difference of the function
evaluated at the two points. This yields

lim
‖δΞ‖→0

Φ(Ξ + δΞ) − Φ(Ξ)

‖δΞ‖ . (0.3.39)

So long as we remember the complexity of δΞ, however, we can adopt a
simpler approach. Since for both vectors and matrices, we have definitions of
multiplication by a scalar and of addition, we can simplify the limit in the
usual definition of a derivative, δΞ → 0. Instead of using δΞ as the element
of change, we will use tΥ , where t is a scalar and Υ is an element to be added
to Ξ. The limit then will be taken in terms of t→ 0. This leads to

lim
t→0

Φ(Ξ + tΥ ) − Φ(Ξ)

t
(0.3.40)

as a formula for the derivative of Φ with respect to Ξ.
The expression (0.3.40) may be a useful formula for evaluating a derivative,

but we must remember that it is not the derivative. The type of object of this
formula is the same as the type of object of the function, Φ; it does not
accommodate the type of object of the argument, Ξ, unless Ξ is a scalar. As
we will see below, for example, if Ξ is a vector and Φ is a scalar, the derivative
must be a vector, yet in that case the expression (0.3.40) is a scalar.

The expression (0.3.39) is rarely directly useful in evaluating a derivative,
but it serves to remind us of both the generality and the complexity of the con-
cept. Both Φ and its arguments could be functions, for example. In functional
analysis, various kinds of functional derivatives are defined, such as a Gâteaux
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derivative. These derivatives find applications in developing robust statistical
methods. Here we are just interested in the combinations of three possibilities
for Φ, namely scalar, vector, and matrix, and the same three possibilities for
Ξ and Υ .

Continuity

It is clear from the definition of continuity that for the derivative of a function
to exist at a point, the function must be continuous at that point. A function
of a vector or a matrix is continuous if it is continuous for each element
of the vector or matrix. Just as scalar sums and products are continuous,
vector/matrix sums and all of the types of vector/matrix products we have
discussed are continuous. A continuous function of a continuous function is
continuous.

Many of the vector/matrix functions we have discussed are clearly contin-
uous. For example, the Lp vector norms are continuous over the nonnegative
reals but not over the reals unless p is an even (positive) integer. The determi-
nant of a matrix is continuous, as we see from the definition of the determinant
and the fact that sums and scalar products are continuous. The fact that the
determinant is a continuous function immediately yields the result that co-
factors and hence the adjugate are continuous. From the relationship between
an inverse and the adjugate, we see that the inverse is a continuous function.

Notation and Properties

We write the differential operator with respect to the dummy variable x as
∂/∂x or ∂/∂xT. We usually denote differentiation using the symbol for “par-
tial” differentiation, ∂, whether the operator is written ∂xi for differentiation
with respect to a specific scalar variable or ∂x for differentiation with respect
to the array x that contains all of the individual elements. Sometimes, how-
ever, if the differentiation is being taken with respect to the whole array (the
vector or the matrix), we use the notation d/dx.

The operand of the differential operator ∂/∂x is a function of x. (If it
is not a function of x—that is, if it is a constant function with respect to
x— then the operator evaluates to 0.) The result of the operation, written
∂f/∂x, is also a function of x, with the same domain as f , and we sometimes
write ∂f(x)/∂x to emphasize this fact. The value of this function at the fixed
point x0 is written as ∂f(x0)/∂x. (The derivative of the constant f(x0) is
identically 0, but it is not necessary to write ∂f(x)/∂x|x0 because ∂f(x0)/∂x
is interpreted as the value of the function ∂f(x)/∂x at the fixed point x0.)

If ∂/∂x operates on f , and f : S → T , then ∂/∂x : S → U . The nature
of S, or more directly the nature of x, whether it is a scalar, a vector, or
a matrix, and the nature of T determine the structure of the result U . For
example, if x is an n-vector and f(x) = xTx, then
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f : IRn → IR

and
∂f/∂x : IRn → IRn,

as we will see. The outer product, h(x) = xxT, is a mapping to a higher rank
array, but the derivative of the outer product is a mapping to an array of the
same rank; that is,

h : IRn → IRn×n

and
∂h/∂x : IRn → IRn.

(Note that “rank” here means the number of dimensions. This term is often
used in this way in numerical software. See Gentle (2007), page 5.)

As another example, consider g(·) = det(·), so

g : IRn×n 7→ IR.

In this case,
∂g/∂X : IRn×n 7→ IRn×n;

that is, the derivative of the determinant of a square matrix is a square matrix,
as we will see later.

Higher-order differentiation is a composition of the ∂/∂x operator with
itself or of the ∂/∂x operator and the ∂/∂xT operator. For example, consider
the familiar function in linear least squares

f(b) = (y −Xb)T(y −Xb).

This is a mapping from IRm to IR. The first derivative with respect to the m-
vector b is a mapping from IRm to IRm, namely 2XTXb− 2XTy. The second
derivative with respect to bT is a mapping from IRm to IRm×m, namely, 2XTX.

We see from expression (0.3.39) that differentiation is a linear operator;
that is, ifD(Φ) represents the operation defined in expression (0.3.39), Ψ is an-
other function in the class of functions over which D is defined, and a is a scalar
that does not depend on the variable Ξ, then D(aΦ + Ψ) = aD(Φ) + D(Ψ).
This yields the familiar rules of differential calculus for derivatives of sums or
constant scalar products. Other usual rules of differential calculus apply, such
as for differentiation of products and composition (the chain rule). We can
use expression (0.3.40) to work these out. For example, for the derivative of
the product ΦΨ , after some rewriting of terms, we have the numerator

Φ(Ξ)
(
Ψ(Ξ + tΥ ) − Ψ(Ξ)

)

+Ψ(Ξ)
(
Φ(Ξ + tΥ )− Φ(Ξ)

)

+
(
Φ(Ξ + tΥ )− Φ(Ξ)

)(
Ψ(Ξ + tΥ ) − Ψ(Ξ)

)
.

Now, dividing by t and taking the limit, assuming that as
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t→ 0,

(Φ(Ξ + tΥ )− Φ(Ξ))→ 0,

we have
D(ΦΨ) = D(Φ)Ψ + ΦD(Ψ), (0.3.41)

where again D represents the differentiation operation.

Differentials

For a differentiable scalar function of a scalar variable, f(x), the differential
of f at c with increment u is udf/dx|c. This is the linear term in a truncated
Taylor series expansion:

f(c + u) = f(c) + u
d

dx
f(c) + r(c, u). (0.3.42)

Technically, the differential is a function of both x and u, but the notation
df is used in a generic sense to mean the differential of f . For vector/matrix
functions of vector/matrix variables, the differential is defined in a similar
way. The structure of the differential is the same as that of the function; that
is, for example, the differential of a matrix-valued function is a matrix.

Types of Differentiation

In the following sections we consider differentiation with respect to different
types of objects first, and we consider differentiation of different types of
objects.

Differentiation with Respect to a Scalar

Differentiation of a structure (vector or matrix, for example) with respect to
a scalar is quite simple; it just yields the ordinary derivative of each element
of the structure in the same structure. Thus, the derivative of a vector or a
matrix with respect to a scalar variable is a vector or a matrix, respectively,
of the derivatives of the individual elements.

Differentiation with respect to a vector or matrix, which we will consider
below, is often best approached by considering differentiation with respect to
the individual elements of the vector or matrix, that is, with respect to scalars.

Derivatives of Vectors with Respect to Scalars

The derivative of the vector y(x) = (y1, . . . , yn) with respect to the scalar x
is the vector

∂y/∂x = (∂y1/∂x, . . . , ∂yn/∂x). (0.3.43)

The second or higher derivative of a vector with respect to a scalar is
likewise a vector of the derivatives of the individual elements; that is, it is an
array of higher rank.
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Derivatives of Matrices with Respect to Scalars

The derivative of the matrix Y (x) = (yij) with respect to the scalar x is the
matrix

∂Y (x)/∂x = (∂yij/∂x). (0.3.44)

The second or higher derivative of a matrix with respect to a scalar is
likewise a matrix of the derivatives of the individual elements.

Derivatives of Functions with Respect to Scalars

Differentiation of a function of a vector or matrix that is linear in the elements
of the vector or matrix involves just the differentiation of the elements, fol-
lowed by application of the function. For example, the derivative of a trace of
a matrix is just the trace of the derivative of the matrix. On the other hand,
the derivative of the determinant of a matrix is not the determinant of the
derivative of the matrix (see below).

Higher-Order Derivatives with Respect to Scalars

Because differentiation with respect to a scalar does not change the rank
of the object (“rank” here means rank of an array or “shape”), higher-order
derivatives ∂k/∂xk with respect to scalars are merely objects of the same rank
whose elements are the higher-order derivatives of the individual elements.

Differentiation with Respect to a Vector

Differentiation of a given object with respect to an n-vector yields a vector
for each element of the given object. The basic expression for the derivative,
from formula (0.3.40), is

lim
t→0

Φ(x+ ty) − Φ(x)

t
(0.3.45)

for an arbitrary conformable vector y. The arbitrary y indicates that the
derivative is omnidirectional; it is the rate of change of a function of the
vector in any direction.

Derivatives of Scalars with Respect to Vectors; The Gradient

The derivative of a scalar-valued function with respect to a vector is a vector
of the partial derivatives of the function with respect to the elements of the
vector. If f(x) is a scalar function of the vector x = (x1, . . . , xn),

∂f

∂x
=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
, (0.3.46)
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if those derivatives exist. This vector is called the gradient of the scalar-valued
function, and is sometimes denoted by gf(x) or ∇f(x), or sometimes just gf

or ∇f :
gf = ∇f =

∂f

∂x
. (0.3.47)

The notation gf or ∇f implies differentiation with respect to “all” arguments
of f , hence, if f is a scalar-valued function of a vector argument, they represent
a vector.

This derivative is useful in finding the maximum or minimum of a function.
Such applications arise throughout statistical and numerical analysis.

Inner products, bilinear forms, norms, and variances are interesting scalar-
valued functions of vectors. In these cases, the function Φ in equation (0.3.45)
is scalar-valued and the numerator is merely Φ(x + ty) − Φ(x). Consider,
for example, the quadratic form xTAx. Using equation (0.3.45) to evaluate
∂xTAx/∂x, we have

lim
t→0

(x+ ty)TA(x+ ty) − xTAx

t

= lim
t→0

xTAx+ tyTAx+ tyTATx+ t2yTAy − xTAx

t

= yT(A+ AT)x,

(0.3.48)

for an arbitrary y (that is, “in any direction”), and so ∂xTAx/∂x = (A+AT)x.
This immediately yields the derivative of the square of the Euclidean norm

of a vector, ‖x‖22, and the derivative of the Euclidean norm itself by using
the chain rule. Other Lp vector norms may not be differentiable everywhere
because of the presence of the absolute value in their definitions. The fact that
the Euclidean norm is differentiable everywhere is one of its most important
properties.

The derivative of the quadratic form also immediately yields the derivative
of the variance. The derivative of the correlation, however, is slightly more
difficult because it is a ratio.

The operator ∂/∂xT applied to the scalar function f results in gT
f .

The second derivative of a scalar-valued function with respect to a vector
is a derivative of the first derivative, which is a vector. We will now consider
derivatives of vectors with respect to vectors.

Derivatives of Vectors with Respect to Vectors; The Jacobian

The derivative of an m-vector-valued function of an n-vector argument con-
sists of nm scalar derivatives. These derivatives could be put into various
structures. Two obvious structures are an n×m matrix and an m×n matrix.
For a function f : S ⊆ IRn → IRm, we define ∂fT/∂x to be the n ×m ma-
trix, which is the natural extension of ∂/∂x applied to a scalar function, and
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∂f/∂xT to be its transpose, the m×n matrix. Although the notation ∂fT/∂x
is more precise because it indicates that the elements of f correspond to the
columns of the result, we often drop the transpose in the notation. We have

∂f

∂x
=
∂fT

∂x
by convention

=

[
∂f1
∂x

. . .
∂fm

∂x

]

=




∂f1

∂x1

∂f2

∂x1
· · · ∂fm

∂x1

∂f1

∂x2

∂f2

∂x2
· · · ∂fm

∂x2

· · ·
∂f1

∂xn

∂f2

∂xn
· · · ∂fm

∂xn




(0.3.49)

if those derivatives exist. This derivative is called the matrix gradient and
is denoted by Gf or ∇f for the vector-valued function f . (Note that the ∇
symbol can denote either a vector or a matrix, depending on whether the
function being differentiated is scalar-valued or vector-valued.)

The m × n matrix ∂f/∂xT = (∇f)T is called the Jacobian of f and is
denoted by Jf :

Jf = GT
f = (∇f)T. (0.3.50)

The absolute value of the determinant of the Jacobian appears in integrals
involving a change of variables. (Occasionally, the term “Jacobian” is used
to refer to the absolute value of the determinant rather than to the matrix
itself.)

To emphasize that the quantities are functions of x, we sometimes write
∂f(x)/∂x, Jf (x), Gf(x), or ∇f(x).

Derivatives of Matrices with Respect to Vectors

The derivative of a matrix with respect to a vector is a three-dimensional
object that results from applying equation (0.3.46) to each of the elements of
the matrix. For this reason, it is simpler to consider only the partial derivatives
of the matrix Y with respect to the individual elements of the vector x; that
is, ∂Y/∂xi. The expressions involving the partial derivatives can be thought
of as defining one two-dimensional layer of a three-dimensional object.

Using the rules for differentiation of powers that result directly from the
definitions, we can write the partial derivatives of the inverse of the matrix Y
as

∂

∂x
Y −1 = −Y −1

(
∂

∂x
Y

)
Y −1. (0.3.51)

Beyond the basics of differentiation of constant multiples or powers of a
variable, the two most important properties of derivatives of expressions are
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the linearity of the operation and the chaining of the operation. These yield
rules that correspond to the familiar rules of the differential calculus. A simple
result of the linearity of the operation is the rule for differentiation of the trace:

∂

∂x
tr(Y ) = tr

(
∂

∂x
Y

)
.

Higher-Order Derivatives with Respect to Vectors; The Hessian

Higher-order derivatives are derivatives of lower-order derivatives. As we have
seen, a derivative of a given function with respect to a vector is a more compli-
cated object than the original function. The simplest higher-order derivative
with respect to a vector is the second-order derivative of a scalar-valued func-
tion. Higher-order derivatives may become uselessly complicated.

In accordance with the meaning of derivatives of vectors with respect to
vectors, the second derivative of a scalar-valued function with respect to a
vector is a matrix of the partial derivatives of the function with respect to the
elements of the vector. This matrix is called the Hessian, and is denoted by
Hf or sometimes by ∇∇f or ∇2f :

Hf =
∂2f

∂x∂xT
=




∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xm

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xm

· · ·
∂2f

∂xm∂x1

∂2f
∂xm∂x2

· · · ∂2f
∂x2

m



. (0.3.52)

The Hessian is a function of x. We write Hf(x) or ∇∇f(x) or ∇2f(x) for
the value of the Hessian at x.

Summary of Derivatives with Respect to Vectors

As we have seen, the derivatives of functions are complicated by the problem
of measuring the change in the function, but often the derivatives of functions
with respect to a vector can be determined by using familiar scalar differen-
tiation. In general, we see that

• the derivative of a scalar (a quadratic form) with respect to a vector is a
vector and

• the derivative of a vector with respect to a vector is a matrix.

Table 0.3 lists formulas for the vector derivatives of some common expres-
sions. The derivative ∂f/∂xT is the transpose of ∂f/∂x.
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Table 0.3. Formulas for Some Vector Derivatives

f(x) ∂f/∂x

ax a

bTx b

xTb bT

xTx 2x

xxT 2xT

bTAx ATb

xTAb bTA

xTAx (A + AT)x
2Ax, if A is symmetric

exp(− 1
2 xTAx) − exp(− 1

2xTAx)Ax, if A is symmetric
‖x‖2

2 2x
V(x) 2x/(n − 1)

In this table, x is an n-vector, a is a constant scalar, b is a
constant conformable vector, and A is a constant conformable
matrix.

Differentiation with Respect to a Matrix

The derivative of a function with respect to a matrix is a matrix with the same
shape consisting of the partial derivatives of the function with respect to the
elements of the matrix. This rule defines what we mean by differentiation with
respect to a matrix.

By the definition of differentiation with respect to a matrixX, we see that
the derivative ∂f/∂XT is the transpose of ∂f/∂X. For scalar-valued functions,
this rule is fairly simple. For example, consider the trace. If X is a square ma-
trix and we apply this rule to evaluate ∂ tr(X)/∂X, we get the identity ma-
trix, where the nonzero elements arise only when j = i in ∂(

∑
xii)/∂xij.

If AX is a square matrix, we have for the (i, j) term in ∂ tr(AX)/∂X,
∂
∑

i

∑
k aikxki/∂xij = aji, and so ∂ tr(AX)/∂X = AT, and likewise, in-

specting ∂
∑

i

∑
k xikxki/∂xij, we get ∂ tr(XTX)/∂X = 2XT. Likewise for

the scalar-valued aTXb, where a and b are conformable constant vectors, for
∂
∑

m(
∑

k akxkm)bm/∂xij = aibj, so ∂aTXb/∂X = abT.
Now consider ∂|X|/∂X. Using an expansion in cofactors, the only term

in |X| that involves xij is xij(−1)i+j |X−(i)(j)|, and the cofactor (x(ij)) =
(−1)i+j |X−(i)(j)| does not involve xij. Hence, ∂|X|/∂xij = (x(ij)), and so
∂|X|/∂X = (adj(X))T. We can write this as ∂|X|/∂X = |X|X−T.

The chain rule can be used to evaluate ∂ log |X|/∂X.
Applying the rule stated at the beginning of this section, we see that the

derivative of a matrix Y with respect to the matrix X is

dY

dX
= Y ⊗ d

dX
. (0.3.53)
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Table 0.4 lists some formulas for the matrix derivatives of some common
expressions. The derivatives shown in Table 0.4 can be obtained by evaluating
expression (0.3.53), possibly also using the chain rule.

Table 0.4. Formulas for Some Matrix Derivatives

General X

f(X) ∂f/∂X

aTXb abT

tr(AX) AT

tr(XTX) 2XT

BX In ⊗ B
XC CT ⊗ Im

BXC CT ⊗ B

Square and Possibly Invertible X

f(X) ∂f/∂X

tr(X) In

tr(Xk) kXk−1

tr(BX−1C) −(X−1CBX−1)T

|X | |X |X−T

log |X | X−T

|X |k k|X |kX−T

BX−1C −(X−1C)T ⊗ BX−1

In this table, X is an n × m matrix, a is a
constant n-vector, b is a constant m-vector,
A is a constant m×n matrix, B is a constant
p×n matrix, and C is a constant m×q matrix.

There are some interesting applications of differentiation with respect to
a matrix in maximum likelihood estimation. Depending on the structure of
the parameters in the distribution, derivatives of various types of objects may
be required. For example, the determinant of a variance-covariance matrix, in
the sense that it is a measure of a volume, often occurs as a normalizing factor
in a probability density function; therefore, we often encounter the need to
differentiate a determinant with respect to a matrix.

0.3.4 Optimization of Functions

*** move this to Appendix on Optimization ***
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Because a derivative measures the rate of change of a function, a point
at which the derivative is equal to 0 is a stationary point, which may be a
maximum or a minimum of the function. Differentiation is therefore a very
useful tool for finding the optima of functions, and so, for a given function
f(x), the gradient vector function, gf(x), and the Hessian matrix function,
Hf(x), play important roles in optimization methods.

We may seek either a maximum or a minimum of a function. Since max-
imizing the scalar function f(x) is equivalent to minimizing −f(x), we can
always consider optimization of a function to be minimization of a function.
Thus, we generally use terminology for the problem of finding a minimum of
a function. Because the function may have many ups and downs, we often use
the phrase local minimum (or local maximum or local optimum).

Except in the very simplest of cases, the optimization method must be
iterative, moving through a sequence of points, x(0), x(1), x(2), . . ., that ap-
proaches the optimum point arbitrarily closely. At the point x(k), the direc-
tion of steepest descent is clearly −gf (x(k)), but because this direction may
be continuously changing, the steepest descent direction may not be the best
direction in which to seek the next point, x(k+1).

In the following subsection we describe some specific methods of optimiza-
tion in the context of vector/matrix differentiation. We will discuss optimiza-
tion in somewhat more detail in Section 0.4.

Stationary Points of Functions

The first derivative helps only in finding a stationary point. The matrix of
second derivatives, the Hessian, provides information about the nature of the
stationary point, which may be a local minimum or maximum, a saddlepoint,
or only an inflection point.

The so-called second-order optimality conditions are the following (see a
general text on optimization for their proofs).

• If (but not only if) the stationary point is a local minimum, then the
Hessian is nonnegative definite.

• If the Hessian is positive definite, then the stationary point is a local
minimum.

• Likewise, if the stationary point is a local maximum, then the Hessian
is nonpositive definite, and if the Hessian is negative definite, then the
stationary point is a local maximum.

• If the Hessian has both positive and negative eigenvalues, then the sta-
tionary point is a saddlepoint.

Newton’s Method

We consider a differentiable scalar-valued function of a vector argument, f(x).
By a Taylor series about a stationary point x∗, truncated after the second-
order term
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f(x) ≈ f(x∗) + (x− x∗)Tgf

(
x∗
)

+
1

2
(x− x∗)THf

(
x∗
)
(x− x∗), (0.3.54)

because gf

(
x∗
)

= 0, we have a general method of finding a stationary point
for the function f(·), called Newton’s method. If x is an m-vector, gf(x) is an
m-vector and Hf (x) is an m×m matrix.

Newton’s method is to choose a starting point x(0), then, for k = 0, 1, . . .,
to solve the linear systems

Hf

(
x(k)

)
p(k+1) = −gf

(
x(k)

)
(0.3.55)

for p(k+1), and then to update the point in the domain of f(·) by

x(k+1) = x(k) + p(k+1). (0.3.56)

The two steps are repeated until there is essentially no change from one iter-
ation to the next. If f(·) is a quadratic function, the solution is obtained in
one iteration because equation (0.3.54) is exact. These two steps have a very
simple form for a function of one variable.

Linear Least Squares

In a least squares fit of a linear model

y = Xβ + ε, (0.3.57)

where y is an n-vector, X is an n×m matrix, and β is an m-vector, we replace
β by a variable b, define the residual vector

r = y −Xb, (0.3.58)

and minimize its Euclidean norm,

f(b) = rTr, (0.3.59)

with respect to the variable b. We can solve this optimization problem by
taking the derivative of this sum of squares and equating it to zero. Doing
this, we get

d(y −Xb)T(y −Xb)
db

=
d(yTy − 2bTXTy + bTXTXb)

db

= −2XTy + 2XTXb

= 0,

which yields the normal equations

XTXb = XTy. (0.3.60)
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The solution to the normal equations is a stationary point of the func-
tion (0.3.59). The Hessian of (y −Xb)T(y −Xb) with respect to b is 2XTX
and

XTX � 0.

Because the matrix of second derivatives is nonnegative definite, the value of
b that solves the system of equations arising from the first derivatives is a
local minimum of equation (0.3.59).

Quasi-Newton Methods

All gradient-descent methods determine the path p(k) to take in the kth step
by a system of equations of the form

R(k)p(k) = −gf

(
x(k−1)

)
.

In the steepest-descent method, R(k) is the identity, I, in these equations.
For functions with eccentric contours, the steepest-descent method traverses
a zigzag path to the minimum. In Newton’s method, R(k) is the Hessian
evaluated at the previous point, Hf

(
x(k−1)

)
, which results in a more direct

path to the minimum. Aside from the issues of consistency of the resulting
equation and the general problems of reliability, a major disadvantage of New-
ton’s method is the computational burden of computing the Hessian, which
requires O(m2) function evaluations, and solving the system, which requires
O(m3) arithmetic operations, at each iteration.

Instead of using the Hessian at each iteration, we may use an approxima-
tion, B(k). We may choose approximations that are simpler to update and/or
that allow the equations for the step to be solved more easily. Methods us-
ing such approximations are called quasi-Newton methods or variable metric
methods.

Because

Hf

(
x(k)

)(
x(k) − x(k−1)

)
≈ gf

(
x(k)

)
− gf

(
x(k−1)

)
,

we choose B(k) so that

B(k)
(
x(k) − x(k−1)

)
= gf

(
x(k)

)
− gf

(
x(k−1)

)
. (0.3.61)

This is called the secant condition.
We express the secant condition as

B(k)s(k) = y(k), (0.3.62)

where
s(k) = x(k) − x(k−1)

and
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y(k) = gf(x(k)) − gf(x(k−1)),

as above.
The system of equations in (0.3.62) does not fully determine B(k) of course.

Because B(k) should approximate the Hessian, we may require that it be
symmetric and positive definite.

The most common approach in quasi-Newton methods is first to choose
a reasonable starting matrix B(0) and then to choose subsequent matrices by
additive updates,

B(k+1) = B(k) +B(k)
a , (0.3.63)

subject to preservation of symmetry and positive definiteness. An approximate
Hessian B(k) may be used for several iterations before it is updated; that is,

B
(k)
a may be taken as 0 for several successive iterations.

Multiparameter Likelihood Functions

For a sample y = (y1 , . . . , yn) from a probability distribution with probability
density function p(·; θ), the likelihood function is

L(θ; y) =

n∏

i=1

p(yi; θ), (0.3.64)

and the log-likelihood function is l(θ; y) = log(L(θ; y)). It is often easier to
work with the log-likelihood function.

The log-likelihood is an important quantity in information theory and
in unbiased estimation. If Y is a random variable with the given probability
density function with the r-vector parameter θ, the Fisher information matrix
that Y contains about θ is the r × r matrix

I(θ) = Covθ

(
∂l(t, Y )

∂ti
,
∂l(t, Y )

∂tj

)
, (0.3.65)

where Covθ represents the variance-covariance matrix of the functions of Y
formed by taking expectations for the given θ. (I use different symbols here
because the derivatives are taken with respect to a variable, but the θ in Covθ

cannot be the variable of the differentiation. This distinction is somewhat
pedantic, and sometimes I follow the more common practice of using the
same symbol in an expression that involves both Covθ and ∂l(θ, Y )/∂θi.)

For example, if the distribution is the d-variate normal distribution with
mean d-vector µ and d×d positive definite variance-covariance matrix Σ, the
likelihood, equation (0.3.64), is

L(µ,Σ; y) =
1(

(2π)d/2|Σ|1/2
)n exp

(
−1

2

n∑

i=1

(yi − µ)TΣ−1(yi − µ)

)
.
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(Note that |Σ|1/2 = |Σ 1
2 |. The square root matrix Σ

1
2 is often useful in

transformations of variables.)
Anytime we have a quadratic form that we need to simplify, we should

recall the useful fact: xTAx = tr(AxxT). Using this, and because, as is often
the case, the log-likelihood is easier to work with, we write

l(µ,Σ; y) = c− n

2
log |Σ| − 1

2
tr

(
Σ−1

n∑

i=1

(yi − µ)(yi − µ)T

)
, (0.3.66)

where we have used c to represent the constant portion. Next, we use the
“Pythagorean equation” on the outer product to get

l(µ,Σ; y) = c − n

2
log |Σ| − 1

2
tr

(
Σ−1

n∑

i=1

(yi − ȳ)(yi − ȳ)T
)

−n
2

tr
(
Σ−1(ȳ − µ)(ȳ − µ)T

)
. (0.3.67)

In maximum likelihood estimation, we seek the maximum of the likelihood
function (0.3.64) with respect to θ while we consider y to be fixed. If the
maximum occurs within an open set and if the likelihood is differentiable, we
might be able to find the maximum likelihood estimates by differentiation.
In the log-likelihood for the d-variate normal distribution, we consider the
parameters µ and Σ to be variables. To emphasize that perspective, we replace
the parameters µ and Σ by the variables µ̂ and Σ̂. Now, to determine the
maximum, we could take derivatives with respect to µ̂ and Σ̂, set them equal
to 0, and solve for the maximum likelihood estimates. Some subtle problems
arise that depend on the fact that for any constant vector a and scalar b,
Pr(aTX = b) = 0, but we do not interpret the likelihood as a probability.

Often in working out maximum likelihood estimates, students immediately
think of differentiating, setting to 0, and solving. As noted above, this requires
that the likelihood function be differentiable, that it be concave, and that the
maximum occur at an interior point of the parameter space. Keeping in mind
exactly what the problem is—one of finding a maximum— often leads to the
correct solution more quickly.

0.3.5 Vector Random Variables

The simplest kind of vector random variable is one whose elements are in-
dependent. Such random vectors are easy to work with because the elements
can be dealt with individually, but they have limited applications. More in-
teresting random vectors have a multivariate structure that depends on the
relationships of the distributions of the individual elements. The simplest non-
degenerate multivariate structure is of second degree; that is, a covariance or
correlation structure. The probability density of a random vector with a mul-
tivariate structure generally is best represented by using matrices. In the case
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of the multivariate normal distribution, the variances and covariances together
with the means completely characterize the distribution. For example, the fun-
damental integral that is associated with the d-variate normal distribution,
sometimes called Aitken’s integral, equation (0.0.88) on page 682, provides
that constant. The rank of the integral is the same as the rank of the inte-
grand. (“Rank” is used here in the sense of “number of dimensions”.) In this
case, the integrand and the integral are scalars.

Equation (0.0.88) is a simple result that follows from the evaluation of the
individual single integrals after making the change of variables yi = xi − µi.
If Σ−1 is positive definite, Aitken’s integral can also be evaluated by writ-
ing PTΣ−1P = I for some nonsingular matrix P . Now, after the transla-
tion y = x − µ, which leaves the integral unchanged, we make the linear
change of variables z = P−1y, with the associated Jacobian |det(P )|. From
PTΣ−1P = I, we have |det(P )| = (det(Σ))1/2 = |Σ|1/2 because the determi-
nant is positive. Aitken’s integral therefore is

∫

IRd

e−yTΣ−1y/2 dy =

∫

IRd

e−(Pz)TΣ−1Pz/2 (det(Σ))1/2dz

=

∫

IRd

e−zTz/2 dz (det(Σ))1/2

= (2π)d/2(det(Σ))1/2 .

The expected value of a function f of the vector-valued random variable
X is

E(f(X)) =

∫

D(X)

f(x)pX(x) dx, (0.3.68)

where D(X) is the support of the distribution, pX(x) is the probability den-
sity function evaluated at x, and x dx are dummy vectors whose elements
correspond to those of X. Interpreting

∫
D(X) dx as a nest of univariate inte-

grals, the result of the integration of the vector f(x)pX(x) is clearly of the
same type as f(x). For example, if f(x) = x, the expectation is the mean,
which is a vector. For the normal distribution, we have

E(X) = (2π)−d/2|Σ|−1/2

∫

IRd

xe−(x−µ)TΣ−1(x−µ)/2 dx

= µ.

For the variance of the vector-valued random variable X,

V(X),

the function f in expression (0.3.68) above is the matrix (X − E(X))(X −
E(X))T, and the result is a matrix. An example is the normal variance:

V(X) = E
(
(X − E(X))(X − E(X))T

)

= (2π)−d/2|Σ|−1/2

∫

IRd

(
(x− µ)(x− µ)T

)
e−(x−µ)TΣ−1(x−µ)/2 dx

= Σ.
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0.3.6 Transition Matrices

An important use of matrices in statistics is in models of transitions of a
stochastic process from one state to another. In a discrete-state Markov chain,
for example, the probability of going from state j to state imay be represented
as elements of a transition matrix, which can any square matrix with nonneg-
ative elements and such that the sum of the elements in any column is 1.
Any square matrix with nonnegative elements whose columns each sum to 1
is called a right stochastic matrix.

(Note that many people who work with Markov chains define the transition
matrix as the transpose of K above. This is not a good idea, because in ap-
plications with state vectors, the state vectors would naturally have to be row
vectors. Until about the middle of the twentieth century, many mathematicians
thought of vectors as row vectors; that is, a system of linear equations would be
written as xA = b. Nowadays, almost all mathematicians think of vectors as
column vectors in matrix algebra. Even in some of my previous writings, e.g.,
Gentle (2007), I have called the transpose of K the transition matrix, and I
defined a stochastic matrix in terms of the transpose. I think that it is time to
adopt a notation that is more consistent with current matrix/vector notation.
This is merely a change in notation; no concepts require any change.)

There are various properties of transition matrices that are important for
studying Markov chains.

Irreducible Matrices

Any nonnegative square matrix that can be permuted into the form

[
B11 B12

0 B22

]

with square diagonal submatrices is said to be reducible; a matrix that can-
not be put into that form is irreducible. An alternate term for reducible is
decomposable, with the associated term indecomposable.

We see from the definition that a positive matrix is irreducible.
We now consider irreducible square nonnegative matrices. This class in-

cludes positive matrices.
Irreducible matrices have several interesting properties. An n× n nonneg-

ative matrix A is irreducible if and only if (I + A)n−1 is a positive matrix;
that is,

A is irreducible⇐⇒ (I + A)n−1 > 0. (0.3.69)

To see this, first assume (I+A)n−1 > 0; thus, (I+A)n−1 clearly is irreducible.
If A is reducible, then there exists a permutation matrix Eπ such that

ET
πAEπ =

[
B11 B12

0 B22

]
,
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and so

ET
π (I +A)n−1Eπ =

(
ET

π (I +A)Eπ

)n−1

=
(
I +ET

πAEπ

)n−1

=

[
In1 + B11 B12

0 In2 + B22

]
.

This decomposition of (I+A)n−1 cannot exist because it is irreducible; hence
we conclude A is irreducible if (I+A)n−1 > 0. We can see that (I+A)n−1 must
be a positive matrix by first observing that the (i, j)th element of (I +A)n−1

can be expressed as

(
(I + A)n−1

)
ij

=

(
n−1∑

k=0

(
n− 1

k

)
Ak

)

ij

. (0.3.70)

Hence, for k = 1, . . . , n − 1, we consider the (i, j)th entry of Ak. Let a
(k)
ij

represent this quantity.
Given any pair (i, j), for some l1, l2, . . . , lk−1, we have

a
(k)
ij =

∑

l1,l2,...,lk−1

a1l1al1l2 · · ·alk−1j.

Now a
(k)
ij > 0 if and only if a1l1 , al1l2 , . . . , alk−1j are all positive; that is, if

there is a path v1, vl1 , . . . , vlk−1 , vj in G(A). If A is irreducible, then G(A) is
strongly connected, and hence the path exists. So, for any pair (i, j), we have
from equation (0.3.70)

(
(I + A)n−1

)
ij
> 0; that is, (I +A)n−1 > 0.

The positivity of (I + A)n−1 for an irreducible nonnegative matrix A is a
very useful property because it allows us to extend some conclusions of the
Perron theorem to irreducible nonnegative matrices.

Properties of Square Irreducible Nonnegative Matrices; the
Perron-Frobenius Theorem

If A is a square irreducible nonnegative matrix, then we have the follow-
ing properties. These following properties are the conclusions of the Perron-
Frobenius theorem.

1. ρ(A) is an eigenvalue of A. This eigenvalue is called the Perron root, as
before.

2. The Perron root ρ(A) is simple. (That is, the algebraic multiplicity of the
Perron root is 1.)

3. The dimension of the eigenspace of the Perron root is 1. (That is, the
geometric multiplicity of ρ(A) is 1.)

4. The eigenvector associated with ρ(A) is positive. This eigenvector is called
the Perron vector, as before.
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The relationship (0.3.69) allows us to prove properties 1 and 4.
The one property of square positive matrices that does not carry over to

square irreducible nonnegative matrices is that r = ρ(A) is the only eigenvalue
on the spectral circle of A. For example, the small irreducible nonnegative
matrix

A =

[
0 1
1 0

]

has eigenvalues 1 and −1, and so both are on the spectral circle.
It turns out, however, that square irreducible nonnegative matrices that

have only one eigenvalue on the spectral circle also have other interesting
properties that are important, for example, in Markov chains. We therefore
give a name to the property:

A square irreducible nonnegative matrix is said to be primitive if it
has only one eigenvalue on the spectral circle.

In modeling with Markov chains and other applications, the limiting be-
havior of Ak is an important property.

If A is a primitive matrix, then we have the useful result

lim
k→∞

(
A

ρ(A)

)k

= vwT, (0.3.71)

where v is an eigenvector of A associated with ρ(A) and w is an eigenvector
of AT associated with ρ(A), and w and v are scaled so that wTv = 1. (Such
eigenvectors exist because ρ(A) is a simple eigenvalue. They also exist because
they are both positive. Note that A is not necessarily symmetric, and so its
eigenvectors may include imaginary components; however, the eigenvectors
associated with ρ(A) are real, and so we can write wT instead of wH.)

To see equation (0.3.71), we consider
(
A− ρ(A)vwT

)
. First, if (ci, vi) is

an eigenpair of
(
A− ρ(A)vwT

)
and ci 6= 0, then (ci, vi) is an eigenpair of A.

We can see this by multiplying both sides of the eigen-equation by vwT:

civw
Tvi = vwT

(
A − ρ(A)vwT

)
vi

=
(
vwTA− ρ(A)vwTvwT

)
vi

=
(
ρ(A)vwT − ρ(A)vwT

)
vi

= 0;

hence,

Avi =
(
A− ρ(A)vwT

)
vi

= civi.

Next, we show that

ρ
(
A− ρ(A)vwT

)
< ρ(A). (0.3.72)
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If ρ(A) were an eigenvalue of
(
A− ρ(A)vwT

)
, then its associated eigenvector,

say w, would also have to be an eigenvector of A, as we saw above. But since
as an eigenvalue of A the geometric multiplicity of ρ(A) is 1, for some scalar
s, w = sv. But this is impossible because that would yield

ρ(A)sv =
(
A− ρ(A)vwT

)
sv

= sAv − sρ(A)v

= 0,

and neither ρ(A) nor sv is zero. But as we saw above, any eigenvalue of(
A− ρ(A)vwT

)
is an eigenvalue of A and no eigenvalue of

(
A − ρ(A)vwT

)

can be as large as ρ(A) in modulus; therefore we have inequality (0.3.72).
Finally, with w and v as defined above, and with the eigenvalue ρ(A),

(
A − ρ(A)vwT

)k
= Ak − (ρ(A))kvwT, (0.3.73)

for k = 1, 2, . . ..
Dividing both sides of equation (0.3.73) by (ρ(A))k and rearranging terms,

we have (
A

ρ(A)

)k

= vwT +

(
A − ρ(A)vwT

)

ρ(A)
. (0.3.74)

Now

ρ

((
A − ρ(A)vwT

)

ρ(A)

)
=
ρ
(
A− ρ(A)vwT

)

ρ(A)
,

which is less than 1; hence, we have

lim
k→∞

((
A− ρ(A)vwT

)

ρ(A)

)k

= 0;

so, taking the limit in equation (0.3.74), we have equation (0.3.71).
Applications of the Perron-Frobenius theorem are far-ranging.

Notes and References for Section 0.3

Matrix algebra arises in many areas of statistics. The study and application
of linear models is inseparable from matrix/vector operations. In other areas
of statistics, such as stochastic processes, matrices play an important role. In
these areas, the matrices are often of a type different from the important ones
in linear models.

There are many texts on matrix algebra, some with an orientation toward
applications in statistics. I have referred often to Gentle (2007) just because I
am most familiarwith it. Harville (1997) is a large theorem-proof compendium
of facts about matrices that are especially useful in linear models. Almost half
of Kollo and von Rosen (2005) is devoted to matrix theory. The rest of the
book covers various multivariate distributions.
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0.4 Optimization

Optimization problems — maximization or minimization — arise in many
areas of statistics. Statistical estimation and modeling both are usually special
types of optimization problems. In a common method of statistical estimation,
we maximize a likelihood, which is a function proportional to a probability
density at the point of the observed data. In another method of estimation
and in standard modeling techniques, we minimize a norm of the residuals.
The best fit of a model is often defined in terms of a minimum of a norm, such
as least squares. Other uses of optimization in statistical applications occur
prior to collection of data, for example, when we design an experiment or a
survey so as to minimize experimental or sampling errors.

When a statistical method is based on the solution of an optimization
problem, to formulate that problem unambiguously helps us both to under-
stand the method and to decide whether the method is appropriate to the
purposes for which it is applied.

Some of the simpler and more common optimization problems in statistics
can be solved easily, often by solving a system of linear equations. Many other
problems, however, do not have closed-form solutions, and the solutions must
be approximated by iterative methods.

0.4.1 Overview of Optimization

Optimization means to find a maximum or a maximum of an objective
function, f : D ⊆ IRd 7→ IR.

Local optimization means optimization within a some subset of the do-
main of the objective function Global optimization results in the optimum
of all local optima.

In unconstrained optimization, we take all points in D to be feasible.

Important Properties of the Objective Function

• domain dense or not
• differentiable or not

– to what order
– easy or hard to compute

• concave (or convex) or neither
– if neither, there may be local optima

In the following, let f(x) be the objective function, and assume we want
to maximize it.
(To minimize, f(x)← −f(x) and convex ← concave.)
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Methods

• Analytic: yields closed form for all local maxima.
• Iterative: for k = 1, 2, . . ., given x(k−1) choose x(k) so that f(x(k))→local

maximum of f .
We need
– a starting point: x(0);
– a method to choose x̃ with good prospects of being x(k);
– a method to decide whether x̃ should be x(k).
How we choose and decide determines the differences between optimiza-
tion algorithms.

How to choose may be based on derivative information or on some sys-
tematic method of exploring the domain.

How to decide may be based on a deterministic criterion, such as requiring
f(x(k)) > f(x(k−1)),
or the decision may be randomized.

Metamethods: General Tools

• Transformations (for either analytic or iterative methods).
• Any trick you can think of (for either analytic or iterative methods), e.g.,

alternating conditional optimization.
• Conditional bounding functions (for iterative methods).

Convergence of Iterative Algorithms

In an iterative algorithm, we have a sequence
{(
f
(
x(k)

)
, x(k)

)}
.

The first question is whether the sequence converges to the correct solution.
If there is a unique maximum, and if x∗ is the point at which the maximum

occurs, the first question can be posed more precisely as, given ε1 does there
exist M1 such that for k > M1,

∣∣∣f(x(k))− f(x∗)
∣∣∣ < ε1;

or, alternatively, for a given ε2 does there exist M2 such that for k > M2,
∥∥∥x(k) − x∗

∥∥∥ < ε2.

Recall that f : IRd 7→ IR, so | · | above is the absolute value, while ‖ · ‖ is
some kind of vector norm.

There are complications if x∗ is not unique as the point at which the
maximum occurs.

Similarly, there are comlications if x∗ is merely a point of local maximum.
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Assessing Convergence

In practice, we must decide when convergence has occurred; that is, whether
the iterations have become close enough to the solution. Since we don’t know
the solution, we cannot base this decision on the convergence criteria above.

We put faith in our algorithm, and decide convergence has occurred if, for
some e1, e2 > 0, either

|f(x(k)) − f(x(k−1))| ≤ e1
or

‖x(k) − x(k−1)‖ ≤ e2,
or both.

Notice, that lacking any known value, we trust the algorithm to do the
right thing; both x(k) and x(k−1) are just values in the algorithmic sequence.
The fact that this particular sequence — or any sequence, even ones yielding
nonincreasing function values — converges does not really get at the question
of whether x(k) → x∗.

Note also the subtle change from “<” to “≤”.
For some special class of functions∇f(x) may exist, and we may know that

at the solution, ∇f(x∗) = 0. In these cases, we may have another criterion for
deciding convergence has occurred:

‖∇f(x∗)‖ ≤ e3.

Rate of Convergence of Iterative Algorithms

If the answer to the first question is “yes”, that is, if the algorithmic sequence
converges, the next question is how fast the sequence converges. (We address
this question assuming it converges to the correct solution. )

The rate of convergence is a measure of how fast the “error” decreases. Any
of three quantities we mentioned in discussing convergence, f(x(k)) − f(x∗),
x(k) − x∗, or ∇f(x∗), could be taken to be the error. If we take

ek = x(k) − x∗
to be the error at step k, we might define the magnitude of the error as ‖ek‖
(for some norm ‖ · ‖). If the algorithm converges to the correct solution,

lim
k→∞

‖ek‖ = 0.

Our interest is in how fast ‖ek‖ decreases.
Sometimes there is no reasonable way of quantifying the rate at which this

quantity decreases.
In the happy case (and a common case for simple algorithms), if there

exist r > 0 and c > 0 such that

lim
k→∞

‖ek‖
‖ek−1‖r

= c,

we say the rate of convergence is r and the rate constant is c.
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The Steps in Iterative Algorithms
For a Special Class of Functions

The steps in iterative algorithms are often based on some analytic relationship
between f(x) and f(x(k−1)). For a continuously differentiable function, the
most common relationship is the Taylor series expansion:

f(x) = f(x(k−1)) +

(x− x(k−1))T∇f(x(k−1)) +

1

2
(x − x(k−1))T∇2f(x(k−1))(x − x(k−1)) +

· · ·

Note this limitation: “For a continuously differentiable function,
...”.
We cannot use this method on just any old function.

In the following, we will consider only this restricted class of functions.

Steepest Ascent (Descent)

The steps are defined by truncating the Taylor series. A truncation to two
terms yields the steepest ascent direction. For a steepest ascent step, we find
x(k) along the path ∇f(x(k−1)) from x(k−1).

If∇f(x(k−1)) ≥ 0, then moving along the path∇f(x(k−1)) can increase the
function value. If f(x) is bounded above (i.e., if the maximization problem
makes sense), then at some point along this path, the function begins to
decrease.

This point is not necessarily the maximum of the function, of course. Find-
ing the maximum along the path, is a one-dimensional “line search”.

After moving to the point x(k) in the direction of∇f(x(k−1)), if∇f(x(k)) =
0, we are at a stationary point. This may not be a maximum, but it is as
good as we can do using steepest ascent from x(k−1). (In practice, we check
‖∇f(x(k))‖ ≤ ε, for some norm ‖ · ‖ and some positive ε.)

If ∇f(x(k)) < 0 (remember we’re maximizing the function), we change
directions and move in the direction of ∇f(x(k)) < 0.

Knowing that we will probably be changing direction anyway, we often
truncate the line search before we find the best x(k) in the direction of
∇f(x(k−1)).

Newton’s Method

At the maximum x∗, ∇f(x∗) = 0.
“Newton’s method” for optimization is based on this fact.

Newton’s method for optimization just solves the system of equations
∇f(x) = 0 using
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Newton’s iterative method for solving equations:
to solve the system of n equations in n unknowns, g(x) = 0, we move from
point x(k−1) to point x(k) by

x(k) = x(k−1) −
(
∇g(x(k−1))T

)−1

g(x(k−1)).

Hence, applying this to solving ∇f(x(k−1)) = 0, we have the kth step in
Newton’s method for optimization:

x(k) = x(k−1) −∇2f(x(k−1))−1∇f(x(k−1)).

The direction of the step is dk = x(k) − x(k−1).
For numerical reasons, it is best to think of this as the problem of solving

the equations
∇2f(x(k−1))dk = −∇f(x(k−1)),

and then taking x(k) = x(k−1) + dk.

The Hessian

The Hessian H(x) = ∇2f(x) clearly plays an important role in Newton’s
method; if it is singular, the Newton step based on the solution to

∇2f(x(k−1))dk = −∇f(x(k−1)),

is undetermined.
The relevance of the Hessian goes far beyond this, however. The Hessian

reveals important properties of the shape of the surface f(x) at x(k−1).
The shape is especially interesting at a stationary point; that is a point x∗

at which ∇f(x) = 0.
If the Hessian is negative definite at x∗, f(x∗) is a local maximum.
If the Hessian is positive definite at x∗, f(x∗) is a local maximum.
If the Hessian is nonsingular, but neither negative definite nor positive

definite at x∗, it is a saddlepoint.
If the Hessian is singular, the stationary point is none of the above.
In minimization problems, such as least squares, we hope the Hessian

is positive definite, in which case the function is concave. In least squares
fitting of the standard linear regression model, the Hessian is the famous
XTX matrix.

In maximization problems, such as MLE, it is particularly interesting to
know whether H(x) is negative definite everywhere (or -H(x) is positive def-
inite everywhere). In this case, the function is convex.

When H(x) (in minimization problems or -H(x) in maximization prob-
lems) is positive definite but nearly singular, it may be helpful to regularize
the problem by adding a diagonal matrix with positive elements: H(x) +D.

One kind of regularization is ridge regression, in which the Hessian is
replaced by XTX + dI.
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Modifications of Newton’s Method

In the basic Newton step, the direction dk from x(k−1) is the best direction,
but the point dk + x(k−1) may not be the best point. In fact, the algorithm
can often be speeded up by not going quite that far; that is, by “damping”
the Newton step and taking x(k) = αkdk + x(k−1). This is a line search, and
there are several ways of doing this. In the context of least squares, a common
way of damping is the Levenberg-Marquardt method.

Rather than finding ∇2f(x(k−1)), we might find an approximate Hessian

at x(k−1), H̃k, and then solve

H̃kdk = −∇f(x(k−1)).

This is called a quasi-Newton method.
In MLE, we may take the objective function to be the log likelihood, with

the variable θ. In this case, the Hessian, H(θ), is ∂2 logL(θ; x)/∂θ(∂θ)T .
Under very general regularity conditions, the expected value of H(θ) is the
negative of the expected value of (∂ logL(θ; x)/∂θ)(∂ logL(θ; x)∂θ)T, which
is the Fisher information matrix, I(θ). This quantity plays an important role
in statistical estimation. In MLE it is often possible to compute I(θ), and take
the Newton step as

I(θ(k))dk = ∇ logL(θ(k−1); x).

This quasi-Newton method is called Fisher scoring.

More Modifications of Newton’s Method

The method of solving the Newton or quasi-Newton equations may itself be
iterative, such as a conjugate gradient or Gauss-Seidel method. (These are
“inner loop iterations”.) Instead of continuing the inner loop iterations to the
solution, we may stop early. This is called a truncated Newton method.

The best gains in iterative algorithms often occur in the first steps. When
the optimization is itself part of an iterative method, we may get an acceptable
approximate solution to the optimization problem by stopping the optimiza-
tion iterations early. Sometimes we may stop the optimization after just one
iteration. If Newton’s method is used, this is called a one-step Newton
method.

0.4.2 Alternating Conditional Optimization

The computational burden in a single iteration for solving the optimization
problem can sometimes be reduced by more than a linear amount by sepa-
rating x into two subvectors. The optimum is then computed by alternating
between computations involving the two subvectors, and the iterations pro-
ceed in a zigzag path to the solution.
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Each of the individual sequences of iterations is simpler than the sequence
of iterations on the full x.

For the problem
min

x
f(x)

if x = (x1, x2) that is, x is a vector with at least two elements, and x1 and x2

may be vectors), an iterative alternating conditional optimization algorithm

may start with x
(0)
2 , and then for k = 0, 1, . . .,

1. x
(k)
1 = arg minx1

f
(
x1, x

(k−1)
2

)

2. x
(k)
2 = arg minx2

f
(
x

(k)
1 , x2

)

Use of Conditional Bounding Functions: MM Methods

In an iterative method to maximize f(x), the idea, given x(k−1) at step k, is
to try to find a function g

(
x; x(k−1)

)
with these properties:

• is easy to work with (that is, is easy to maximize)
• g

(
x; x(k−1)

)
≤ f(x) ∀x

• g
(
x(k−1); x(k−1)

)
= f

(
x(k−1)

)

If we can find x(k) 3 g
(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
, we have the

“sandwich inequality”:

f
(
x(k)

)
≥ g

(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
= f

(
x(k−1)

)
.

An equivalent (but more complicated) method for seeing this inequality
uses the fact that

f
(
x(k)

)
− g

(
x(k); x(k−1)

)
≥ f

(
x(k−1)

)
− g

(
x(k); x(k−1)

)
.

(From the properties above,

g
(
x; x(k−1)

)
− f (x)

attains its maximum at x(k−1).)
Hence,

f
(
x(k)

)
= g

(
x(k); x(k−1)

)
+ f

(
x(k)

)
− g

(
x(k); x(k−1)

)

> g
(
x(k−1); x(k−1)

)
+ f

(
x(k−1)

)
− g

(
x(k−1); x(k−1)

)

= f
(
x(k−1)

)
.

The relationship between f
(
x(k)

)
and f

(
x(k−1)

)
, that is, whether we

have “>” or “≥” in the inequalities, depends on the relationship between
g
(
x(k); x(k−1)

)
and g

(
x(k−1); x(k−1)

)
.
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We generally require g
(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
.

Clearly, the best step would be

x(k) = arg min
x

g
(
x; x(k−1)

)
,

but the overall efficiency of the method may be better if we don’t work
too hard to find the maximum, but just accept some x(k) that satisfies
g
(
x(k); x(k−1)

)
≤ g

(
x(k−1); x(k−1)

)
.

After moving to x(k), we must find a new g
(
x; x(k)

)
.

Equivalent notations:

g
(
x; x(k−1)

)
↔ g(k)(x)↔ gk(x)

Note the logical difference in k and k − 1, although both determine the same
g.

The g that we maximize is a “minorizing” function.
Thus, we Minorize then Maximize: MM.
EM methods.
Alternatively, we Majorize then Minimize: MM.
Reference: Lange et al. (2000).

Maximization in Alternating Algorithms

In alternating multiple step methods such as alternating conditional maxi-
mization methods and methods that use a conditional bounding function, at
least one of the alternating steps involves maximization of some function.

As we indicated in discussing conditional bounding functions, instead of
finding a point that actually maximizes the function, which may be a difficult
task, we may just find a point that increases the value of the function. Under
this weaker condition, the methods still work.

We may relax the requirement even further, so that for some steps we
only require that the function not be decreased. So long as we maintain the
requirement that the function actually be increased in a sufficient number of
steps, the methods still work.

The most basic requirement is that g
(
x(k); x(k)

)
≥ g

(
x(k−1); x(k−1)

)
.

(Even this requirement is relaxed in the class of optimization algorithms based
on annealing. A reason for relaxing this requirement may be to avoid getting
trapped in local optima.)

0.4.3 Simulated Annealing

Stochastic optimization ******* Spall (2012)
Simulated annealing is a method that simulates the thermodynamic pro-

cess in which a metal is heated to its melting temperature and then is allowed
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to cool slowly so that its structure is frozen at the crystal configuration of low-
est energy. In this process the atoms go through continuous rearrangements,
moving toward a lower energy level as they gradually lose mobility due to the
cooling. The rearrangements do not result in a monotonic decrease in energy,
however. The density of energy levels at a given temperature ideally is expo-
nential, the so-called Boltzmann distribution, with a mean proportional to the
absolute temperature. (The constant of proportionality is called “Boltzmann’s
constant”). This is analogous to a sequence of optimization iterations that oc-
casionally go uphill. If the function has local minima, going uphill occasionally
is desirable.

Metropolis et al. (1953) developed a stochastic relaxation technique that
simulates the behavior of a system of particles approaching thermal equilib-
rium. (This is the same paper that described the Metropolis sampling al-
gorithm.) The energy associated with a given configuration of particles is
compared to the energy of a different configuration. If the energy of the new
configuration is lower than that of the previous one, the new configuration is
immediately accepted. If the new configuration has a larger energy, it is ac-
cepted with a nonzero probability. This probability is larger for small increases
than for large increases in the energy level. One of the main advantages of
simulated annealing is that the process is allowed to move away from a local
optimum.

Although the technique is heuristically related to the cooling of a metal,
as in the application of Metropolis et al. (1953), it can be successfully applied
to a wide range of optimization problems.

The Basic Algorithm

In simulated annealing, a “temperature” parameter controls the probability of
moving uphill; when the temperature is high, the probability of acceptance of
any given point is high, and the process corresponds to a pure random walk.
When the temperature is low, however, the probability of accepting any given
point is low; and in fact, only downhill points are accepted. The behavior at
low temperatures corresponds to a gradient search.

As the iterations proceed and the points move lower on the surface (it
is hoped), the temperature is successively lowered. An “annealing schedule”
determines how the temperature is adjusted.

In the description of simulated annealing in Algorithm 0.1, recognizing the
common applications in combinatorial optimization, we refer to the argument
of the objective function as a “state”, rather than as a “point”.

Algorithm 0.1 Simulated Annealing

0. Set k = 1 and initialize state s.
1. Compute T (k).
2. Set i = 0 and j = 0.
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3. Generate state r and compute δf = f(r) − f(s).
4. Based on δf , decide whether to move from state s to state r.

If δf ≤ 0,
accept;

otherwise,
accept with a probability P (δf, T (k)).

If state r is accepted, set i = i+ 1.
5. If i is equal to the limit for the number of successes at a given temperature,

go to step 1.
6. Set j = j + 1. If j is less than the limit for the number of iterations at

given temperature, go to step 3.
7. If i = 0,

deliver s as the optimum; otherwise,
if k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
‘algorithm did not converge in kmax iterations’.

For optimization of a continuous function over a region, the state is a point
in that region. A new state or point may be selected by choosing a radius r and
point on the d dimensional sphere of radius r centered at the previous point.
For a continuous objective function, the movement in step 3 of Algorithm 0.1
may be a random direction to step in the domain of the objective function.
In combinatorial optimization, the selection of a new state in step 3 may be
a random rearrangement of a given configuration.

Parameters of the Algorithm: The Probability Function

There are a number of tuning parameters to choose in the simulated anneal-
ing algorithm. These include such relatively simple things as the number of
repetitions or when to adjust the temperature. The probability of acceptance
and the type of temperature adjustments present more complicated choices.

One approach is to assume that at a given temperature, T , the states
have a known probability density (or set of probabilities, if the set of states
is countable), pS(s, T ), and then to define an acceptance probability to move
from state sk to sk+1 in terms of the relative change in the probability density
from pS(sk, T ) to pS(sk+1 , T ). In the original application of Metropolis et
al., the objective function was the energy of a given configuration, and the
probability of an energy change of δf at temperature T is proportional to
exp(−δf/T ).

Even when there is no underlying probability model, the probability in
step 4 of Algorithm 0.1 is often taken as

P (δf, T (k)) = e−δf/T (k), (0.4.1)
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although a completely different form could be used. The exponential distri-
bution models energy changes in ensembles of molecules, but otherwise it has
no intrinsic relationship to a given optimization problem.

The probability can be tuned in the early stages of the computations so
that some reasonable proportion of uphill steps are taken.

Parameters of the Algorithm: The Cooling Schedule

There are various ways the temperature can be updated in step 1.
The probability of the method converging to the global optimum depends

on a slow decrease in the temperature. In practice, the temperature is generally
decreased by some proportion of its current value:

T (k + 1) = b(k)T (k). (0.4.2)

We would like to decrease T as rapidly as possible, yet have a high probability
of determining the global optimum. Under the assumptions that the energy
distribution is Gaussian and the acceptance probability is of the form (0.4.1),
the probability of convergence goes to 1 if the temperature decreases as the
inverse of the logarithm of the time, that is, if b(k) = (log(k))−1 in equa-
tion (0.4.2). Under the assumption that the energy distribution is Cauchy, a
similar argument allows b(k) = k−1, and a uniform distribution over bounded
regions allows b(k) = exp(−ckk1/d), where ck is some constant, and d is the
number of dimensions.

A constant temperature is often used in simulated annealing for optimiza-
tion of continuous functions and the additive and multiplicative adjustments,
c(k) and b(k) are usually taken as constants, rather than varying with k.

Notes and References for Section 0.4

There is an extensive literature on optimization, much of it concerned with
practical numerical algorithms. Software for optimization is widely available,
both in special-purpose programs and in general-purpose packages such as R
and Matlab.
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Important Probability Distributions

Development of stochastic models is facilitated by identifying a few probabil-
ity distributions that seem to correspond to a variety of data-generating pro-
cesses, and then studying the properties of these distributions. In the following
tables, I list some of the more useful distributions, both discrete distributions
and continuous ones. The names listed are the most common names, although
some distributions go by different names, especially for specific values of the
parameters. In the first column, following the name of the distribution, the
parameter space is specified.

There are two very special continuous distributions, for which I use spe-
cial symbols: the uniform over the interval [a, b], designated U(a, b), and the
normal (or Gaussian), denoted by N(µ, σ2). Notice that the second parame-
ter in the notation for the normal is the variance. Sometimes, such as in the
functions in R, the second parameter of the normal distribution is the stan-
dard deviation instead of the variance. A normal distribution with µ = 0 and
σ2 = 1 is called the standard normal. I also often use the notation φ(x) for
the PDF of a standard normal and Φ(x) for the CDF of a standard normal,
and these are generalized in the obvious way as φ(x|µ, σ2) and Φ(x|µ, σ2).

Except for the uniform and the normal, I designate distributions by a
name followed by symbols for the parameters, for example, binomial(n, π) or
gamma(α, β). Some families of distributions are subfamilies of larger families.
For example, the usual gamma family of distributions is a the two-parameter
subfamily of the three-parameter gamma.

There are other general families of probability distributions that are de-
fined in terms of a differential equation or of a form for the CDF. These include
the Pearson, Johnson, Burr, and Tukey’s lambda distributions.

Most of the common distributions fall naturally into one of two classes.
They have either a countable support with positive probability at each point
in the support, or a continuous (dense, uncountable) support with zero prob-
ability for any subset with zero Lebesgue measure. The distributions listed in
the following tables are divided into these two natural classes.
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There are situations for which these two distinct classes are not appropri-
ate. For many such situations, however, a mixture distribution provides an
appropriate model. We can express a PDF of a mixture distribution as

pM (y) =

m∑

j=1

ωjpj(y | θj),

where the m distributions with PDFs pj can be either discrete or continuous.
A simple example is a probability model for the amount of rainfall in a given
period, say a day. It is likely that a nonzero probability should be associated
with zero rainfall, but with no other amount of rainfall. In the model above,
m is 2, ω1 is the probability of no rain, p1 is a degenerate PDF with a value
of 1 at 0, ω2 = 1 − ω1, and p2 is some continuous PDF over IR+, possibly
similar to a distribution in the exponential family.

A mixture family that is useful in robustness studies is the ε-mixture dis-
tribution family, which is characterized by a given family with CDF P that is
referred to as the reference distribution, together with a point xc and a weight
ε. The CDF of a ε-mixture distribution family is

Pxc,ε(x) = (1− ε)P (x) + εI[xc,∞[(x),

where 0 ≤ ε ≤ 1.
Another example of a mixture distribution is a binomial with constant

parameter n, but with a nonconstant parameter π. In many applications, if
an identical binomial distribution is assumed (that is, a constant π), it is often
the case that “over-dispersion” will be observed; that is, the sample variance
exceeds what would be expected given an estimate of some other parameter
that determines the population variance. This situation can occur in a model,
such as the binomial, in which a single parameter determines both the first
and second moments. The mixture model above in which each pj is a binomial
PDF with parameters n and πj may be a better model.

Of course, we can extend this kind of mixing even further. Instead of
ωjpj(y | θj) with ωj ≥ 0 and

∑m
j=1 ωj = 1, we can take ω(θ)p(y | θ) with

ω(θ) ≥ 0 and
∫
ω(θ) dθ = 1, from which we recognize that ω(θ) is a PDF and

θ can be considered to be the realization of a random variable.
Extending the example of the mixture of binomial distributions, we may

choose some reasonable PDF ω(π). An obvious choice is a beta PDF. This
yields the beta-binomial distribution, with PDF

pX,Π(x, π) =

(
n
x

)
Γ(α+ β)

Γ(α)Γ(β)
πx+α−1(1− π)n−x+β−1I{0,1,...,n}×]0,1[(x, π).

This is a standard distribution but I did not include it in the tables below.
This distribution may be useful in situations in which a binomial model is

appropriate, but the probability parameter is changing more-or-less continu-
ously.
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We recognize a basic property of any mixture distribution: It is a joint
distribution factored as a marginal (prior) for a random variable, which is often
not observable, and a conditional distribution for another random variable,
which is usually the observable variable of interest.

In Bayesian analyses, the first two assumptions (a prior distribution for
the parameters and a conditional distribution for the observable) lead immedi-
ately to a mixture distribution. The beta-binomial above arises in a canonical
example of Bayesian analysis.

Some families of distributions are recognized because of their relation-
ship to sampling distributions. These include the t, the chi-squared, and the
Wishart. Other families are recognized because of their use as conjugate pri-
ors. These include the inverted chi-squared and the inverted Wishart.

General References

Evans et al. (2000) give general descriptions of 40 probability distributions.
Balakrishnan and Nevzorov (2003) provide an overview of the important char-
acteristics that distinguish different distributions and then describe the impor-
tant characteristics of many common distributions. Leemis and McQueston
(2008) present an interesting compact graph of the relationships among a
large number of probability distributions. Likewise, Morris and Lock (2009)
give a graph that illustrates various interrelationships among natural expo-
nential families.

The six books by Johnson, Kotz et al. (Johnson et al. (1995a), Kotz et al.
(2000), Johnson et al. (1997), Johnson et al. (1994), Johnson et al. (1995b),
and Johnson et al. (2005)) contain a wealth of information above many fam-
ilies of distributions.

Currently, the most readily accessible summary of common probability
distributions is Wikipedia: http://wikipedia.org/ Search under the name
of the distribution.
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Table A.1. Discrete Distributions (PDFs are wrt counting measure)

discrete uniform PDF 1
m , y = a1, . . . , am

a1, . . . , am ∈ IR mean
P

ai/m

variance
P

(ai − ā)2/m, where ā =
P

ai/m

Bernoulli PDF πy(1− π)1−y , y = 0, 1

π ∈]0,1[ mean π

variance π(1 − π)

binomial (n Bernoullis) PDF

 

n

y

!

πy(1− π)n−y , y = 0, 1, . . . , n

n = 1, 2, . . . ; π ∈]0, 1[ CF (1− π + πeit)n

mean nπ

variance nπ(1 − π)

geometric PDF π(1 − π)y , y=0,1,2,. . .

π ∈]0,1[ mean (1− π)/π

variance (1− π)/π2

negative binomial (n geometrics) PDF

 

y + n − 1

n − 1

!

πn(1 − π)y , y = 0, 1, 2, . . .

n = 1, 2, . . . ; π ∈]0, 1[ CF

„

π

1 − (1 − π)eit

«n

mean n(1− π)/π

variance n(1− π)/π2

multinomial PDF
n!
Q

yi!

d
Y

i=1

πyi
i , yi = 0, 1, . . . , n,

X

yi = n

n = 1, 2, . . ., CF
“

Pd
i=1 πie

iti

”n

for i = 1, . . . , d, πi ∈]0, 1[,
P

πi = 1 means nπi

variances nπi(1 − πi)
covariances −nπiπj

hypergeometric PDF

 

M

y

! 

N − M

n − y

!

 

N

n

! ,

y = max(0, n − N + M), . . . , min(n, M)

N = 2, 3, . . .; mean nM/N

M = 1, . . . , N ; n = 1, . . . , N variance (nM/N)(1− M/N)(N − n)/(N − 1)

continued ...
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Table A.1. Discrete Distributions (continued)

Poisson PDF θye−θ/y!, y = 0, 1, 2, . . .

θ ∈ IR+ CF eθ(eit−1)

mean θ

variance θ

power series PDF
hy

c(θ)
θy, y = 0, 1, 2, . . .

θ ∈ IR+ CF
P

y hy(θeit)y/c(θ)

{hy} positive constants mean θ
d

dθ
(log(c(θ))

c(θ) =
P

y hyθy variance θ
d

dθ
(log(c(θ)) + θ2 d2

dθ2
(log(c(θ))

logarithmic PDF − πy

y log(1 − π)
, y = 1, 2, 3, . . .

π ∈]0,1[ mean −π/((1 − π) log(1− π))

variance −π(π + log(1 − π))/((1 − π)2(log(1− π))2)

Benford’s PDF logb(y + 1) − logb(y), y = 1, . . . , b − 1

b integer ≥ 3 mean b − 1− logb((b − 1)!)
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Table A.2. The Normal Distributions

normal; N(µ, σ2) PDF φ(y|µ, σ2)
def
=

1√
2πσ

e−(y−µ)2/2σ2

µ ∈ IR; σ ∈ IR+ CF eiµt−σ2t2/2

mean µ

variance σ2

multivariate normal; Nd(µ, Σ) PDF
1

(2π)d/2|Σ|1/2
e−(y−µ)TΣ−1(y−µ)/2

µ ∈ IRd; Σ � 0 ∈ IRd×d CF eiµTt−tTΣt/2

mean µ

covariance Σ

matrix normal PDF
1

(2π)nm/2|Ψ |n/2|Σ|m/2
e−tr(Ψ−1(Y −M)TΣ−1(Y −M))/2

M ∈ IRn×m, Ψ � 0 ∈ IRm×m, mean M

Σ � 0 ∈ IRn×n covariance Ψ ⊗ Σ

complex multivariate normal PDF
1

(2π)d/2|Σ|1/2
e−(z−µ)HΣ−1(z−µ)/2

µ ∈ ICd, Σ � 0 ∈ ICd×d mean µ

covariance Σ
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Table A.3. Sampling Distributions from the Normal Distribution

chi-squared; χ2
ν PDF

1

Γ(ν/2)2ν/2
yν/2−1e−y/2 IĪR+

(y)

ν ∈ IR+ mean ν

if ν ∈ ZZ+, variance 2ν

t PDF
Γ((ν + 1)/2)

Γ(ν/2)
√

νπ
(1 + y2/ν)−(ν+1)/2

ν ∈ IR+ mean 0

variance ν/(ν − 2), for ν > 2

F PDF
ν

ν1/2
1 ν

ν2/2
2 Γ(ν1 + ν2)

Γ(ν1/2)Γ(ν2/2)

yν1/2−1

(ν2 + ν1y)(ν1+ν2)/2
IĪR+

(y)

ν1, ν2 ∈ IR+ mean ν2/(ν2 − 2), for ν2 > 2

variance 2ν2
2 (ν1 + ν2 − 2)/(ν1(ν2 − 2)2(ν2 − 4)), for ν2 > 4

Wishart PDF
|W |(ν−d−1)/2

2νd/2|Σ|ν/2Γd(ν/2)
exp

`

−trace(Σ−1W )
´

I{M | M�0∈IRd×d}(W )

d = 1, 2, . . . ; mean νΣ

ν > d − 1 ∈ IR; covariance Cov(Wij , Wkl) = ν(σikσjl + σilσjk), where Σ = (σij)

Σ � 0 ∈ IRd×d

noncentral chi-squared PDF
e−λ/2

2ν/2
yν/2−1e−y/2

∞
X

k=0

(λ/2)k

k!

1

Γ(ν/2 + k)2k
yk IĪR+

(y)

ν, λ ∈ IR+ mean ν + λ

variance 2(ν + 2λ)

noncentral t PDF
νν/2e−λ2/2

Γ(ν/2)π1/2
(ν + y2)−(ν+1)/2 ×

ν ∈ IR+, λ ∈ IR

∞
X

k=0

Γ

„

ν + k + 1

2

«

(λy)k

k!

„

2

ν + y2

«k/2

mean
λ(ν/2)1/2Γ((ν − 1)/2)

Γ(ν/2)
, for ν > 1

variance
ν

ν − 2
(1 + λ2) − ν

2
λ2

„

Γ((ν − 1)/2)

Γ(ν/2)

«2

, for ν > 2

noncentral F PDF

„

ν1

ν2

«ν1/2

e−λ/2yν1/2−1

„

ν2

ν2 + ν1y

«ν1/2+ν2/2

×

ν1, ν2, λ ∈ IR+

∞
X

k=0

(λ/2)kΓ(ν2 + ν1 + k)

Γ(ν2)Γ(ν1 + k)k!

„

ν1

ν2

«k

yk

„

ν2

ν2 + ν1y

«k

IĪR+
(y)

mean ν2(ν1 + λ)/(ν1(ν2 − 2)), for ν2 > 2

variance 2

„

ν2

ν1

«2„
(ν1 + λ)2 + (ν1 + 2λ)(ν2 − 2)

(ν2 − 2)2(ν2 − 4)

«

, for ν2 > 4
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Table A.4. Distributions Useful as Priors for the Normal Parameters

inverted gamma PDF
1

Γ(α)βα

„

1

y

«α+1

e−1/βy IĪR+
(y)

α, β ∈ IR+ mean 1/β(α − 1) for α > 1

variance 1/(β2(α − 1)2(α − 2)) for α > 2

inverted chi-squared PDF
1

Γ(ν/2)2ν/2

„

1

y

«ν/2+1

e−1/2y IĪR+
(y)

ν ∈ IR+ mean 1/(ν − 2) for ν > 2

variance 2/((ν − 2)2(ν − 4)) for ν > 4

inverted Wishart PDF *************************

*************** mean **************

variance ***************

Table A.5. Distributions Derived from the Univariate Normal

lognormal PDF
1√
2πσ

y−1e−(log(y)−µ)2/2σ2

IĪR+
(y)

µ ∈ IR; σ ∈ IR+ mean eµ+σ2/2

variance e2µ+σ2

(eσ2 − 1)

inverse Gaussian PDF

s

λ

2πy3
e−λ(y−µ)2/2µ2y IĪR+

(y)

µ, λ ∈ IR+ mean µ

variance µ3/λ

skew normal PDF
1

πσ
e−(y−µ)2/2σ2

Z λ(y−µ)/σ

−∞

e−t2/2 dt

µ, λ ∈ IR; σ ∈ IR+ mean µ + σ
q

2λ
π(1+λ2)

variance σ2(1− 2λ2/π)
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Table A.6. Other Continuous Distributions (PDFs are wrt Lebesgue measure)

beta PDF
Γ(α + β)

Γ(α)Γ(β)
yα−1(1 − y)β−1 I[0,1](y)

α, β ∈ IR+ mean α/(α + β)

variance
αβ

(α + β)2(α + β + 1)

Dirichlet PDF
Γ(
Pd+1

i=1 αi)
Qd+1

i=1 Γ(αi)

d
Y

i=1

yαi−1
i

 

1−
d
X

i=1

yi

!αd+1−1

I[0,1]d (y)

α ∈ IRd+1
+ mean α/‖α‖1 (αd+1/‖α‖1 is the “mean of Yd+1”.)

variance
α (‖α‖1 − α)

‖α‖2
1(‖α‖1 + 1)

uniform; U(θ1, θ2) PDF
1

θ2 − θ1
I[θ1,θ2](y)

θ1 < θ2 ∈ IR mean (θ2 + θ1)/2

variance (θ2
2 − 2θ1θ2 + θ2

1)/12

Cauchy PDF
1

πβ

„

1 +
“

y−γ
β

”2
«

γ ∈ IR; β ∈ IR+ mean does not exist

variance does not exist

logistic PDF
e−(y−µ)/β

β(1 + e−(y−µ)/β)2

µ ∈ IR; β ∈ IR+ mean µ

variance β2π2/3

Pareto PDF
αγα

yα+1
I[γ,∞[(y)

α, γ ∈ IR+ mean αγ/(α − 1) for α > 1

variance αγ2/((α − 1)2(α − 2)) for α > 2

power function PDF (y/β)α I[0,β[(y)

α, β ∈ IR+ mean αβ/(α + 1)

variance αβ2/((α + 2)(α + 1)2)

von Mises PDF
1

2πI0(κ)
eκ cos(y−µ) I[µ−π,µ+π](y)

µ ∈ IR; κ ∈ IR+ mean µ

variance 1 − (I1(κ)/I0(κ))2

continued ...
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Table A.6. Other Continuous Distributions (continued)

gamma PDF
1

Γ(α)βα
yα−1e−y/β IĪR+

(y)

α, β ∈ IR+ mean αβ

variance αβ2

three-parameter gamma PDF
1

Γ(α)βα
(y − γ)α−1e−(y−γ)/β I]γ,∞[(y)

α, β ∈ IR+; γ ∈ IR mean αβ + γ

variance αβ2

exponential PDF θ−1e−y/θ IĪR+
(y)

θ ∈ IR+ mean θ

variance θ2

double exponential PDF 1
2θ

e−|y−µ|/θ

µ ∈ IR; θ ∈ IR+ mean µ

(folded exponential) variance 2θ2

Weibull PDF
α

β
yα−1e−yα/β IĪR+

(y)

α, β ∈ IR+ mean β1/αΓ(α−1 + 1)

variance β2/α
`

Γ(2α−1 + 1) − (Γ(α−1 + 1))2
´

extreme value (Type I) PDF
1

β
e−(y−α)/β exp(e−(y−α)/β)

α ∈ IR; β ∈ IR+ mean α − βΓ′(1)

variance β2π2/6
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B

Useful Inequalities in Probability

Inequalities involving functions of events and random variables are important
throughout the field of probability and statistics. Two important uses are for
showing that one procedure is better than another and for showing that some
sequence converges to a given object (a constant, a function, or a set).

In the following, for simplicity, we will assume X ∈ IR.

B.1 Preliminaries

A simple, but surprisingly useful inequality states that if E(X2) < ∞, then
the variance is the minimum expectation of the form E((X − c)2) for any
constant c. In other words, the minimum of E((X − c)2) occurs at c = E(X)).
We see this by writing

E((X − c)2) = E((X − E(X) + E(X) − c)2)
= E((X − E(X))2) + E((E(X) − c)2) +

2E((X − E(X))(E(X) − c))
= E((X − E(X))2) + E((E(X) − c)2)
≥ E((X − E(X))2). (B.1)

We will use various inequalities often, so we collect a number of them in
this appendix, where we have categorized them into five types depending of
the kinds of expressions in the inequalities. These five types involve relations
between

• Pr(X ∈ Ai) and Pr(X ∈ ∪Ai) or Pr(X ∈ ∩Ai), e.g., Bonferroni’s
• Pr(X ∈ A) and E(f(X)), e.g., Chebyshev
• E(f(X)) and f(E(X)), e.g., Jensen’s
• E(f1(X, Y )) and E(f2(X)) and E(f3(Y )), e.g., covariance, Cauchy-Schwarz,

information
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• V(Y ) and V (E(Y |X)), e.g., Rao-Blackwell

Any special case of these involves an appropriate definition of A or f (e.g.,
nonnegative, convex, etc.)

A more general case of the inequalities is to replace distributions, and
hence expected values, by conditioning on a sub-σ-field, A.

For each type of inequality there is an essentially straightforward method
of proof.

Some of these inequalities involve absolute values of the random variable.
To work with these inequalities, it is useful to recall the triangle inequality
for the absolute value of real numbers:

|x+ y| ≤ |x|+ |y|. (B.2)

We can prove this merely by considering all four cases for the signs of x and
y.

This inequality generalizes immediately to |∑xi| ≤
∑ |xi|.

Expectations of absolute values of functions of random variables are func-
tions of norms. (A norm is a function of x that (1) is positive unless x = 0
a.e., that (2) is equivariant to scalar multiplication, and that (3) satisfies the
triangle inequality.) The important form (E(|X|p))1/p for 1 ≤ p is an Lp norm,
‖X‖p. Some of the inequalities given below involving expectations of absolute
values of random variables are essentially triangle inequalities and their truth
establishes the expectation as a norm.

Some of the expectations discussed below are recognizable as familiar
norms over vector spaces. For example, the expectation in Minkowski’s in-
equality is essentially the Lp norm of a vector, which is defined for an n-vector
x in a finite-dimensional vector space as ‖x‖p ≡ (

∑ |xi|p)1/p. Minkowski’s in-
equality in this case is ‖x+ y‖p ≤ ‖x‖p + ‖y‖p. For p = 1, this is the triangle
inequality for absolute values given above.

B.2 Pr(X ∈ Ai) and Pr(X ∈ ∪Ai) or Pr(X ∈ ∩Ai)

These inequalities are often useful in working with order statistics and in tests
of multiple hypotheses. Instead of Pr(X ∈ Ai), we may write Pr(Ai).

Theorem B.1 (Bonferroni’s inequality)
Given events A1, . . . , An, we have

Pr(∩Ai) ≥
∑

Pr(Ai)− n+ 1. (B.3)

Proof. We will use induction. For n = 1, we have Pr(A1) ≥ Pr(A1),
and for n = 2, we have Pr(A1 ∩ A2) = Pr(A1) + Pr(A2) − Pr(A1 ∪ A2) ≥
Pr(A1) + Pr(A2) − 1.

Now assume Pr(∩k
i=1Ai) ≥

∑k
i=1 AiPr(Ai) − k + 1, and consider k̃ =

k + 1. We have (from the n = 2 case) Pr(∩k
i=1Ai ∩ Ak+1) ≥ Pr(∩k

i=1Ai) +
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Pr(Ak+1)− 1, and now simplifying and substituting the induction hypothesis
for Pr(∩k

i=1Ai), we have

Pr(∩k+1
i=1Ai) ≥

k+1∑

i=1

Pr(Ai) − k.

Corollary B.2.0.1
Given a random sample X1, . . . , Xn and fixed constants a1, . . . , an. For the
order statistics, X(1), . . . , X(n), we have

Pr
(
∩{X(i) ≤ ai}

)
≥
∏

Pr(X(i) ≤ ai). (B.4)

Proof. Same.

B.3 Pr(X ∈ A) and E(f(X))

An important class of inequalities bound tail probabilities of a random vari-
able, that is, limit the probability that the random variable will take on a
value beyond some distance from the expected value of the random variable.

The important general form involving Pr(X ∈ A) and E(f(X)) is Markov’s
inequality involving absolute moments. Chebyshev’s inequality, of which there
are two forms, is a special case of it. Useful generalizations of Markov’s inequal-
ity involve sums of sequences of random variables. The Bernstein inequalities,
including the special case of Hoeffding’s inequality, and the Hájek-Rènyi in-
equality, including the special case of Kolmogorov’s inequality, apply to sums
of sequences of independent random variables. There are extensions of these
inequalities for sums of sequences with weak dependence, such as martingales.
Following the basic Markov’s and Chebyshev’s inequalities, we state without
proof some inequalities for sums of independent but not necessarily identi-
cally distributed random variables. In Section 1.6 we consider an extension of
Hoeffding’s inequality to martingales (Azuma’s inequality) and an extension
of Kolmogorov’s inequality to submartingales (Doob’s submartingale inequal-
ity).

Theorem B.3.1 (Markov’s inequality)
For ε > 0, k > 0, and r.v. X 3 E(|X|k) exists,

Pr(|X| ≥ ε) ≤ 1

εk
E
(
|X|k

)
. (B.5)

Proof. For a nonnegative random variable Y ,

E(Y ) ≥
∫

y≥ε

y dP (y) ≥ ε
∫

y≥ε

dP (y) = εPr(Y ≥ ε).

Now let Y = |X|k.
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Corollary B.3.1.1 (Chebyshev’s inequality)
For ε > 0,

Pr(|X − E(X)| ≥ ε) ≤ 1

ε2
V(X) (B.6)

Proof. In Markov’s inequality, let k = 2, and replace X by X − E(X).

Corollary B.3.1.2 (Chebyshev’s inequality (another form))
For f 3 f(x) ≥ 0 and ε > 0,

Pr(f(X) ≥ ε) ≤ 1

ε
E(f(X)) (B.7)

Proof. Same as Markov’s inequality; start with E(f(X)).
Chebyshev’s inequality is often useful for ε =

√
V(X). There are also

versions of Chebyshev’s inequality for specific families of distributions.

• 3σ rule for a unimodal random variable
If X is a random variable with a unimodal absolutely continuous distribu-
tion, and σ =

√
V(X), then

Pr(|X − E(X)| ≥ 3σ) ≤ 4

81
. (B.8)

See Dharmadhikari and Joag-Dev (1988).
• Normal tail probability

If X ∼ N(µ, σ2), then

Pr(|X − µ| ≥ kσ) ≤ 1

3k2
. (B.9)

See DasGupta (2000).

There are a number of inequalities that generalize Chebyshev’s inequal-
ity to finite partial sums of a sequence of independent random variables
X1, X2, . . . over a common probability space such that for each, E(Xi) = 0
and E(X2

i ) < ∞. (The common probability space means that E(·) has the
same meaning for each i, but the Xi do not necessarily have the same dis-
tribution.) These inequalities are often called the The Bernstein inequalities,
but some of them have other names.

Theorem B.3.2 (the Hoeffding inequality)
Let X1, . . . , Xn be independent, E(Xi) = 0, and Pr(|Xi| ≤ c) = 1. Then for
any t > 0,

Pr

(
n∑

i=1

Xi > t

)
≤ exp

(
− t2/2∑n

i=1 E(X2
i ) + ct/3

)
. (B.10)

The Hoeffding inequality is a special case of the Azuma inequality for mar-
tingales (see Section 1.6).
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Theorem B.3.3 (Kolmogorov’s inequality)
For a sequence of independent random variables X1, X2, . . . over a common
probability space such that for each, E(Xi) = 0 and E(X2

i ) < ∞, let Sk =∑k
i=1Xi. Then for any positive integer n and any ε > 0,

Pr

(
max

1≤k≤n
|Sk| ≥ ε

)
≤ 1

ε2
V(Sn). (B.11)

This is a special case of Doob’s submartingale inequality (see page 134 in
Section 1.6). It is also a special case of the Hájek-Rènyi inequality:

Theorem B.3.4 (the Hájek-Rènyi inequality)
Let X1, X2, . . . be a sequence of independent random variables over a common
probability space such that for each E(X2

i ) <∞. Then for any positive integer
n and any ε > 0,

Pr

(
max

1≤k≤n
ck

∣∣∣∣∣
k∑

i=1

(Xi − E(Xi))

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2

n∑

i=1

c2i V(Xi), (B.12)

where c1 ≥ · · · ≥ cn > 0 are constants.

B.4 E(f(X)) and f(E(X))

Theorem B.4.1 (Jensen’s inequality)
For f a convex function over the support of the r.v. X (and all expectations
shown exist),

f(E(X)) ≤ E(f(X)). (B.13)

Proof. By the definition of convexity, f convex over D ⇒ ∃ c 3 ∀ t ∈ D 3
c(x− t) + f(t) ≤ f(x). (Notice that L(x) = c(x − t) + f(t) is a straight line
through the point (t, f(t)). By the definition of convexity, f is convex if its
value at the weighted average of two points does not exceed the weighted
average of the function at those two points.) Now, given this, let t = E(X)
and take expectations of both sides of the inequality.

If f is strictly convex, it is clear

f(E(X)) < E(f(X)) (B.14)

unless f(X) = E(f(X)) with probability 1.
For a concave function, the inequality is reversed. (The negative of a con-

cave function is convex.)
Some simple examples for a nonconstant positive random variable X:

• Monomials of even power: for k = 2, 4, 6, . . .,

E(X)
k ≤ E(Xk).

This inequality implies the familiar fact that E(X) ≥ 0.
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• Reciprocals:
1

E(X)
≤ E

(
1

X

)

• Logs:
E(log(X)) ≤ log(E(X)).

The canonical picture is that of a quadratic function of a uniform random
variable:

X

f(X)

E(X)

E(f(X))

f(E(X))

Figure B.1. Jensen’s Inequality

There are several other consequences of Jensen’s inequality. The first one
we state applies to Kullback-Leibler information; that is, the entropy distance.

Corollary B.4.1.1 (Nonnegativity of the entropy distance)
If f and g are probability densities, Ef (log(f(X)/g(X))), is the entropy dis-
tance between f and g with respect to g. It is also called the Kullback-Leibler
information or Kullback-Leibler distance. It is nonnegative:

Ef (log(f(X)/g(X))) ≥ 0. (B.15)

Proof.

Ef (log(f(X)/g(X))) = −Ef (log(g(X)/f(X)))

≥ − log(Ef (g(X)/f(X)))

= 0.
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A related fact applies to any nonnegative integrable functions f and g on
a measure space with a σ-finite measure ν , for which

∫
fdν ≥

∫
gdν > 0:

∫
f(log(f/g))dν ≥ 0. (B.16)

This can be proved as above by normalizing the functions, thus forming den-
sities.

Applying Jensen’s inequality to the definition of the entropy distance, we
have

Corollary B.4.1.2
For the PDFs f and g.

Ef(log(f(X))) ≥ Ef(log(g(X))). (B.17)

This inequality, which is important for showing the convergence of the
EM algorithm, is also sometimes called the “information inequality” (but
see (B.25)).

The strict form of Jensen’s inequality (B.14) also applies to the consequent
inequalities, and hence, in the case of equality of the expectations, we can get
equality of the functions. For example,

Corollary B.4.1.3
For the PDFs f and g,

Ef (log(f(X))) = Ef (log(g(X))) ⇔ f(X) = g(X) a.s. (B.18)

Proof.:
⇒
By the equality of Ef (log(f(X))) and Ef(log(g(X))) we have

∫

{f>0}
g(x)dx = 1,

and so for any A,

∫

A

g(x)dx =

∫

A∩{f>0}
g(x)dx

= Ef (g(X)/f(X)|X ∈ A ∩ {f > 0})
= Pr (X ∈ A ∩ {f > 0})

=

∫

A

f(x)dx,

hence f(X) = g(X) a.s.
The proof of ⇐ is similar.
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B.5 E(f(X,Y )) and E(g(X)) and E(h(Y ))

In many of the inequalities in this section, the functions f , g, and h are norms.
The inequalities hold for general Lp norms, and although we will consider the
inequality relationship between expected values, similar inequalities often for
real numbers, vectors, or random variables.

The inequalities are basically of two types:

• Hölder: E(|XY |) ≤
(
E(|X|p)

)1/p(
E(|Y |q)

)1/q

• Minkowski: (E(|X + Y |p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p

Hölder inequality is somewhat more basic; it is used in the proof of Minkowski’s
inequality. Compare inequalities (0.0.30) and (0.0.31) for vectors in IRd, and
see the discussion on page 642.

Note that Minkowski’s inequality has an interesting consequence: it means
that (E(| · |p))1/p is a norm.

Several other inequalities are special cases of these two.
In some inequalities in this section, the functions are second-degree mono-

mials. The basic special inequality of this form is the Cauchy-Schwartz in-
equality, which then leads to one of the most important inequalities in appli-
cations in statistics, the covariance inequality. The covariance inequality, in
turn, leads to fundamental bounds on the variances of estimators.

Theorem B.5.1 (Hölder’s inequality)
For p, q > 1 and 1

p + 1
q = 1 (and if all expectations shown exist),

E(|XY |) ≤
(
E(|X|p)

)1/p(
E(|Y |q)

)1/q

. (B.19)

Note that q = p/(p− 1); p and q as in this inequality are called dual indices.
Proof. If E(|X|p) = 0 or E(|Y |q) = 0, then true because both sides = 0 wp1.
Hence, assume both > 0.
For p and q as in hypothesis, ∀a, b > 0, ∃ s, t 3 a = es/p and b = et/q . Now
ex is convex, so es/p+t/q ≤ 1

pes + 1
q et, or ab ≤ ap/p+ bq/q.

Let

a =

∣∣∣∣∣∣∣
X(ω)

(
E(|X|p)

)1/p

∣∣∣∣∣∣∣
and b =

∣∣∣∣∣∣∣
Y (ω)

(
E(|Y |q)

)1/q

∣∣∣∣∣∣∣
and so

|X(ω)Y (ω)| ≤
(
E(|X|p)

)1/p(
E(|Y |q)

)1/q
( |X(ω)|p

E(|X|p)

1

p
+
|Y (ω)|q
E(|Y |q)

1

q

)
.

Now take expectations. (The notation X(ω) and Y (ω) is meant to emphasize
how to take expectation of XY .)

There are several inequalities that derive from Hölder’s inequality. Some of
these inequalities are given in the following corollaries to Theorem B.5.1.First
is a special case of Jensen’s inequality.
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Corollary B.5.1.1 (special case of Jensen’s inequality)

E(|X|) ≤
(
E(|X|p)

)1/p

,

Proof. Set Y ≡ 1 in Hölder’s inequality.
Note that with p = 2, Corollary B.5.1.1 is a special case of the Cauchy-

Schwarz inequality,

E(|X|) ≤
(
E(X2)

)1/2

,

in Corollary B.5.1.3 below.

Corollary B.5.1.2 (Lyapunov’s inequality)
For 1 ≤ r ≤ s (and if all expectations shown exist),

(E(|X|r))1/r ≤ (E(|X|s))1/s. (B.20)

Proof. First, we observe this is true for r = s, and for r = 1 (in which it is
a form of Jensen’s inequality). If 1 < r < s, replace |X| in the special case
of Hölder’s inequality above with |X|r, and let s = pr for 1 < p. This yields
(E(|X|r))1/r ≤ (E(|X|s))1/s.

Corollary B.5.1.3 (Schwarz inequality, or Cauchy-Schwarz inequality)

E(|XY |) ≤
(
E(X2)E(Y 2)

)1/2

. (B.21)

Proof. Let p = q = 2 in Hölder’s inequality.
Another proof: For nonnegative r.v. X and Y and all t (real), E((tX+Y )2) =
t2E(X2) + 2tE(XY ) + E(Y 2) ≥ 0. Hence the discriminant of the quadratic
formula ≤ 0. Now, for any r.v., take absolute value.

Corollary B.5.1.4 (covariance inequality) (see page 37)
If the second moments of X and Y are finite, then

(
E
(
(X − E(X))(Y − E(Y )

))2

≤ E
(
(X − E(X))2

)
E
(
(Y − E(Y ))2

)
(B.22)

or (
Cov(X, Y )

)2 ≤ V(X)V(Y ). (B.23)

Proof. The covariance inequality is essentially the same as the Cauchy-
Schwarz inequality.

The covariance inequality leads to useful lower bounds on the variances
of estimators. These are of two types. One type includes the Hammersley-
Chapman-Robbins inequality and its extension, the Kshirsagar inequality. The
other type, which is based on Fisher information, requires some “regularity
conditions”.
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Corollary B.5.1.5 (Hammersley-Chapman-Robbins inequality)
Let X be a random variable in IRd with PDF p(x; θ) and let Eθ(T (X) = g(θ).
Let µ be a fixed measure on X ⊆ IRd such that p(x; θ) � µ. Now define S(θ)
such that

p(x; θ) > 0 a.e. x ∈ S(θ)
p(x; θ) = 0 a.e. x /∈ S(θ).

Then

V(T (X)) ≥ sup
t3S(θ)⊇S(θ+t)

(g(θ + t)− g(θ))2

Eθ

((
p(X;θ+t)
p(X;θ)

)2
) . (B.24)

Proof. This inequality follows from the covariance inequality, by first consid-
ering the case for an arbitrary t such that g(θ + t) 6= g(θ).

Corollary B.5.1.6 (Kshirsagar inequality)

Corollary B.5.1.7 (information inequality)
Subject to some “regularity conditions” (see Section 2.3), if X has PDF
p(x; θ), then

V(T (X)) ≥

(
∂E(T (X))

∂θ

)2

Eθ

((
∂ log p(X;θ)

∂θ

)2
) (B.25)

The denominator of the quantity on the right side of the inequality is
called the Fisher information, or just the information. Notice the similarity
of this inequality to the Hammersley-Chapman-Robbins inequality, although
the information inequality requires more conditions.

Under the regularity conditions, which basically allow the interchange of
integration and differentiation, the information inequality follows immediately
from the covariance inequality.

We consider the multivariate form of this inequality to Section 3.1.3. Our
main interest will be in its application in unbiased estimation, in Section 5.1.
If T (X) is an unbiased estimator of a differentiable function g(θ), the right
side of the inequality together with derivatives of g(θ) forms the Cramér-Rao
lower bound, inequality (3.39), and the Bhattacharyya lower bound, inequal-
ity (5.29).

Theorem B.5.2 (Minkowski’s inequality)
For 1 ≤ p,

(E(|X + Y |p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p (B.26)

This is a triangle inequality for Lp norms and related functions.
Proof. First, observe the truth for p = 1 using the triangle inequality for

the absolute value, |x+ y| ≤ |x|+ |y|, giving E(|X + Y |) ≤ E(|X|) + E(|Y |).
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Now assume p > 1. Now,

E(|X + Y |p) = E(|X + Y ||X + Y |p−1)

≤ E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1),

where the inequality comes from the triangle inequality for absolute values.
From Hölder’s inequality on the terms above with q = p/(p− 1), we have

E(|X+Y |p) ≤ (E(|X|p))1/p(E(|X +Y |p))1/q + E(|Y |p))1/p(E(|X+ Y |p))1/q.

Now, if E(|X + Y |p) = 0, Minkowski’s inequality holds. On the other hand,
if E(|X + Y |p) 6= 0, it is positive, and so divide through by (E(|X + Y |p))1/q,
recalling again that q = p/(p− 1).

Minkowski’s inequality is a special case of two slightly tighter inequalities;
one for p ∈ [1, 2] due to Esseen and von Bahr (1965), and one for p ≥ 2 due
to Marcinkiewicz and Zygmund (1937).

An inequality that derives from Minkowski’s inequality, but which applies
directly to real numbers or random variables, is the following.

• For 0 ≤ p,
|X + Y |p ≤ 2p(|X|p + |Y |p) (B.27)

This is true because ∀ω ∈ Ω, ‖X(ω) + Y (ω)‖ ≤ 2 max{‖X(ω)‖, ‖Y (ω)‖},
and so

‖X(ω) + Y (ω)‖p ≤ max{2p‖X(ω)‖p, 2p‖Y (ω)‖p}
≤ 2p‖X(ω)‖p + 2p‖Y (ω)‖p.

B.6 V(Y ) and V
(
E(Y |X)

)

• Rao-Blackwell inequality

V
(
E(Y |X)

)
≤ V(Y ) (B.28)

This follows from the equality V(Y ) = V
(
E(Y |X)

)
+ E

(
V(Y |X)

)
.

B.7 Multivariate Extensions

There are multivariate extensions of most of these inequalities. In some cases,
the multivariate extensions apply to the minimum or maximum element of a
vector.

Some inequalities involving simple inequalities are extended by conditions
on vector norms, and the ones involving variances are usually extended by pos-
itive (or semi-positive) definiteness of the difference of two variance-covariance
matrices.
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Notes and Further Reading

Chebyshev’s inequality, Corollary B.3.1.1, in its various forms is one of the
most useful inequalities in probability theory. DasGupta (2000) discusses var-
ious forms of this basic inequality.

Another useful general-purpose relationship is the Cauchy-Schwarz in-
equality, Corollary B.5.1.3. Steele (2004) discusses origins, various forms, and
various proofs of this inequality, and in so doing illustrates interesting rela-
tionships among diverse mathematical inequalities.

Inequalities are very useful in developing asymptotic results and in prov-
ing limit theorems. DasGupta (2008) on asymptotic theory contains a very
extensive compendium of inequalities on pages 633 to 687. None are proved
there, but each is accompanied by a reference to a proof. Petrov (1995) begins
with a survey of inequalities in probability theory, including proofs, and then
gives a number of limit theorem theorems the proofs of which often rely on
the inequalities.
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Notation and Definitions

All notation used in this work is “standard”. I have opted for simple nota-
tion, which, of course, results in a one-to-many map of notation to object
classes. Within a given context, however, the overloaded notation is generally
unambiguous. I have endeavored to use notation consistently.

This appendix is not intended to be a comprehensive listing of definitions.

C.1 General Notation

There are some standard phrases widely used in mathematical statistics, and
so for these we adopt special symbols. These phrases are sometime omitted
because the property or condition is implicitly assumed. I try to be explicit
about my assumptions. If we agree on simple character strings to represent
these properties and conditions, I am more likely to state them explicitly when
they are relevant.

wrt “with respect to”.

wlog “without loss of generality”.

iid or
iid∼ “independent and identically distributed (as)”.

Uppercase italic Latin and Greek letters, such as A, B, E, Λ, etc., are
generally used to represent sets, random variables, and matrices. Realizations
of random variables and placeholders in functions associated with random
variables are usually represented by lowercase letters corresponding to the
uppercase letters; thus, ε may represent a realization of the random variable
E.

Parameters in models (that is, unobservables in the models) are generally
represented by Greek letters. Uppercase Latin and Greek letters are also used
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to represent cumulative distribution functions. Symbols whose meaning is
context-independent are usually written in an upright font, whereas symbols
representing variables are written in a slant or italic font; for example, Γ is
used to represent the gamma function, while Γ may be used to represent a
variable or a parameter. An upright font is also used to represent a special
object, such as a sample space or a parameter space.

The Greek Alphabet

alpha A α nu N ν
beta B β xi Ξ ξ
gamma Γ γ omicron O o
delta ∆ δ pi Π π, $
epsilon E ε, ε rho P ρ, %
zeta Z ζ sigma Σ σ, ς
eta H η tau T τ
theta Θ θ, ϑ upsilon Υ υ
iota I ι phi Φ φ, ϕ
kappa K κ, κ chi X χ
lambda Λ λ psi Ψ ψ
mu M µ omega Ω ω

Symbols for Structures or Elements within a Structure

Lowercase Latin and Greek letters are used to represent ordinary scalar or
vector variables and functions. No distinction in the notation is made
between scalars and vectors; thus, β may represent a vector and βi may
represent the ith element of the vector β. In another context, however, β may
represent a scalar. All vectors are considered to be column vectors, although
we may write a vector as x = (x1, x2, . . . , xn). Transposition of a vector or a
matrix is denoted by the superscript “T”.

Uppercase calligraphic Latin letters, such as D, V, and W, are generally
used to represent special collections of sets, vector spaces, or transforms (func-
tionals).

A single symbol in an italic font is used to represent a single variable. A
Roman font or a special font is often used to represent a standard operator
or a standard mathematical structure. Sometimes a string of symbols in a
Roman font is used to represent an operator (or a standard function); for
example, exp(·) represents the exponential function. But a string of symbols
in an italic font on the same baseline should be interpreted as representing
a composition (probably by multiplication) of separate objects; for example,
exp represents the product of e, x, and p. Likewise a string of symbols in
a Roman font (usually a single symbol) is used to represent a fundamental
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constant; for example, e represents the base of the natural logarithm, while e
represents a variable.

Subscripts generally represent indexes to a larger structure; for example,
xij may represent the (i, j)th element of a matrix, X. A subscript in paren-
theses represents an order statistic. A superscript in parentheses represents

an iteration; for example, x
(k)
i may represent the value of xi at the kth step

of an iterative process.

xi The ith element of a structure (including a sample,
which, if the labels are ignored, is a multiset).

x(i) or x(i:n) The ith order statistic in a sample of size n.

x(i) The value of x at the ith iteration.

Symbols for Fixed Mathematical Structures

Some important mathematical structures and other objects are:

IR The field of reals or the set over which that field is de-
fined.

IR+ The set of positive reals.

IR The “extended reals”; IR = IR ∪ {−∞,∞}.

ĪR+ The nonnegative reals; ĪR+ = IR+ ∪ {0}.

IR+ The extended nonnegative reals; IR+ = IR+ ∪ {0,∞}.

IRd The usual d-dimensional vector space over the reals or
the set of all d-tuples with elements in IR.

IRn×m The vector space of real n×m matrices.

ZZ The ring of integers or the set over which that ring is
defined.

ZZ+ The set of positive integers.

IC The field of complex numbers or the set over which that
field is defined. The notation ICd and ICn×m have mean-
ings analogous to the corresponding real spaces.
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e The base of the natural logarithm. This is a constant;
the symbol “e” may be used to represent a variable.
(Note the difference in the font.)

i The imaginary unit,
√
−1. This is a constant; the sym-

bol “i” may be used to represent a variable. (Note the
difference in the font.)

C.2 General Mathematical Functions and Operators

Functions such as sin, max, span, and so on that are commonly associated
with strings of Latin letters are generally represented by those letters in a
Roman font.

Operators such as d (the differential operator) that are commonly associ-
ated with a Latin letter are generally represented by that letter in a Roman
font.

Note that some symbols, such as | · |, are overloaded.

|x| The modulus of the real or complex number x; if x is
real, |x| is the absolute value of x.

dxe The ceiling function evaluated at the real number x: dxe
is the smallest integer greater than or equal to x.
For any x, bxc ≤ x ≤ dxe.

bxc The floor function evaluated at the real number x: bxc
is the largest integer less than or equal to x.

x! The factorial of x. If x = 0

x! = 0! = 1;

if x is a positive integer,

x! = x(x− 1) · · ·2 · 1;

otherwise, for all x except nonpositive integers,

x! = Γ(x+ 1).

If x = −1,−2, . . ., x! is undefined.

00 For convenience, we define 00 as limx→0 x
0 = 1.
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x[r] The rth factorial of x. If x is a positive integer,

x[r] = x(x− 1) · · · (x− (r − 1)).

Cn
k

or
(
n
k

) The binomial coefficient, n!/(k!(n−k)!). If n is a positive
integer, and k is a nonnegative integer no greater than
n, then this is the number of ways k items can be chosen
from a set of n items.

Π(A)
or Π(n)

For the set A with finite cardinality n, Π(A) is an n-
tuple consisting of the elements of A, each occurring
once. For the positive integer n, Π(n) an n-tuple con-
sisting of the elements 1, . . . , n. There are n! possible
values of either Π(A) or Π(n).

d The differential operator.

∆ A perturbation operator; ∆x represents a perturbation
of x and not a multiplication of x by ∆, even if x is a
type of object for which a multiplication is defined.

∆(·, ·) A real-valued difference function; ∆(x, y) is a mea-
sure of the difference of x and y. For simple objects,
∆(x, y) = |x− y|. For more complicated objects, a sub-
traction operator may not be defined, and ∆ is a gener-
alized difference.

x̃ A perturbation of the object x; ∆(x, x̃) = ∆x.

x̃ An average of a sample of objects generically denoted
by x.

x̄ The mean of a sample of objects generically denoted by
x.
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O(f(n)) The order class big O with respect to f(n).

g(n) ∈ O(f(n))

means there exists some fixed c such that ‖g(n)‖ ≤
c‖f(n)‖ ∀n. In particular, g(n) ∈ O(1) means g(n) is
bounded.
In one special case, we will use O(f(n)) to represent
some unspecified scalar or vector x ∈ O(f(n)). This is
the case of a convergent series. An example is

s = f1(n) + · · ·+ fk(n) + O(f(n)),

where f1(n), . . . , fk(n) are finite constants.
We may also express the order class defined by conver-
gence as x→ a as O(f(x))x→a (where amay be infinite).
Hence, g ∈ O(f(x))x→a iff

lim sup
x→a

‖g(n)‖/‖f(n)‖ <∞.

o(f(n)) Little o; g(n) ∈ o(f(n)) means for all c > 0 there exists
some fixed N such that 0 ≤ g(n) < cf(n) ∀n ≥ N .
(The functions f and g and the constant c could all also
be negative, with a reversal of the inequalities.) Hence,
g(n) = o(f(n)) means ‖g(n)‖/‖f(n)‖ → 0 as n→∞.
In particular, g(n) ∈ o(1) means g(n)→ 0.
We also use o(f(n)) to represent some unspecified scalar
or vector x ∈ o(f(n)) in special case of a convergent
series, as above:

s = f1(n) + · · ·+ fk(n) + o(f(n)).

We may also express this kind of convergence in the form
g ∈ o(f(x))x→a as x→ a (where a may be infinite).

Spaces of Functions

Ck For an integer k ≥ 0, the class of functions whose deriva-
tives up to the kth derivative exist and are continuous.

Lp For a real number p ≥ 1, the class of functions f on
a measure space (Ω,F , ν) with a metric ‖ · ‖ such that∫
‖f‖pdν <∞.
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Functions of Convenience

IS(·) The indicator function:

IS(x) = 1, if x ∈ S,
= 0, otherwise.

(C.1)

If x is a scalar, the set S is often taken as the interval
]−∞, y[, and in this case, the indicator function is the
Heaviside function, H, evaluated at the difference of the
argument and the upper bound on the interval:

I]−∞,y[(x) = H(y − x).

(An alternative definition of the Heaviside function is
the same as this except that H(0) = 1

2
.) It is interesting

to note that
I]−∞,y[(x) = I]x,∞[(y).

In higher dimensions, the set S is often taken as the
product set,

Ad = ]−∞, y1[×]−∞, y2[× · · ·×]−∞, yd[

= A1 ×A2 × · · · × Ad,

and in this case,

IAd(x) = IA1(x1)IA2(x2) · · · IAd(xd),

where x = (x1, x2, . . . , xd).
The derivative of the indicator function is the Dirac
delta function, δ(·).
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δ(·) The Dirac delta “function”, defined by

δ(x) = 0, for x 6= 0,

and ∫ ∞

−∞
δ(t) dt = 1.

The Dirac delta function is not a function in the usual
sense. We do, however, refer to it as a function, and
treat it in many ways as a function. For any continuous
function f , we have the useful fact

∫ ∞

−∞
f(y) dI]−∞,y[(x) =

∫ ∞

−∞
f(y) δ(y − x) dy

= f(x).

Special Functions

Various common mathematical functions are referred to collectively as “spe-
cial functions”. These include the trigonometric functions, both circular and
hyperbolic, the various orthogonal polynomial systems, and solutions to spe-
cial differential equations, such as Bessel functions.

I list only a few below. The functions are often written without paren-
theses enclosing the arguments, for example log x, but I usually enclose the
arguments in parentheses.

Good general references on special functions in mathematics are Olver et al.
(2010) and Thompson (1997).

log(x) The natural logarithm evaluated at x.

sin(x) The sine evaluated at x (in radians) and similarly for
other trigonometric functions.
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Γ(α) The complete gamma function:

Γ(α) =

∫ ∞

0

tα−1e−tdt. (C.2)

(This is called Euler’s integral.) Integration by parts im-
mediately gives the replication formula

Γ(α+ 1) = αΓ(α),

and so if α is a positive integer, Γ(α + 1) = α!. More
generally, Γ(α+ 1) can be taken as the definition of α!.
This does not exist for negative integers, but does for
all other real α.
Direct evaluation of the integral yields Γ(1/2) =

√
π.

Using this and the replication formula, with some ma-
nipulation we get for the positive integer j

Γ(j + 1/2) =
1 · 2 · · · (2j − 1)

2j

√
π.

The notation Γd(α) denotes the multivariate gamma
function, where α is a d-vector. (In other literature this
notation denotes the incomplete univariate gamma func-
tion, for which I use γ(α, d); see below.)

Associated with the gamma function are some other useful functions:

ψ(α) The psi function or the digamma function:

ψ(α) = d log(Γ(α))/dα. (C.3)

ψ′(α) The trigamma function,

ψ′(α) = dψ(α)/dα. (C.4)

More general are the polygamma functions, for n =
1, 2, . . ., ψ(n)(α) = d(n)ψ(α)/(dα)(n), which for a fixed
n, is called the (n+ 2)-gamma function.

γ(α, x) The incomplete gamma function,

γ(α, x) =

∫ x

0

tα−1e−tdt. (C.5)

This is also often denoted as Γx(α).
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P (α, x) The regularized incomplete gamma function, which is
the CDF of the standard gamma distribution,

P (α, x) =
γ(α, x)

Γ(α)
. (C.6)

B(α, β) The beta function,

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(C.7)

=

∫ 1

0

tα−1(1− t)β−1dt (C.8)

=

∫ ∞

0

tα−1

(1 + t)α+β
. (C.9)

The integral in equation (C.8) is called Euler’s beta in-
tegral.

Ix(α, β) The regularized incomplete beta function, which is the
CDF of the beta distribution,

Ix(α, β) =
1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt. (C.10)

C.3 Sets, Measure, and Probability

The notation listed below does not always represent the things associated
with it here, but for these objects, I generally use either this notation or other
symbols in the same font.

Ω Sample space; the universal set in a given space or prob-
ability distribution.

#A The cardinality of the set A.

Ac The complement of the set A; Ac = Ω −A.

A1 ∪A2 The union of the sets A1 and A2; x ∈ A1∪A2 iff x ∈ A1

or x ∈ A2.
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A1 ∩A2 The intersection of the sets A1 and A2; x ∈ A1 ∩A2 iff
x ∈ A1 and x ∈ A2.

A1 − A2 The set A1 minus the set A2; x ∈ A1 − A2 iff x ∈ A1

and x /∈ A2.

A1∆A2 The symmetric difference of the sets A1 and A2;
A1∆A2 = (A1 −A2) ∪ (A2 − A1).

A1 × A2 Cartesian (or cross) product of the sets A1 and A2;
(a1, a2) ∈ A1 ×A2 iff a1 ∈ A1 and a2 ∈ A2.

The following objects require a notion of “open sets”, either as the collection
of sets that define a topology (Section 0.0.2) or as defined in a metric space
(Sections 0.0.2 and 0.0.5).

A◦ The set of interior points of the set A.

A The set of closure points of the set A.

∂A The set of boundary points of the set A: ∂A = A− A◦.

F A σ-field.

B(Ω) The Borel σ-field generated by a collection of open sets
defining a topology in Ω. This requires definition of a col-
lection, so we may also use the notation B(Ω, T ), where
T is a collection of sets defining a topology.

B The Borel σ-field B(IR).

Bd The Borel σ-field B(IRd).

BI The Borel σ-field restricted to the interval I; that is,
the σ-field generated by all open intervals contained in
I and Ω = I.

(Ω,F) A measurable space: the sample space Ω and the σ-field
F .

(Ω,F , ν) A measure space: the sample space Ω, the σ-field F , and
the measure ν defined over the sets in F .
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λ� ν The measure ν dominates the measure λ; that is, λ is
absolutely continuous with respect to ν:

ν(A) = 0 ⇒ λ(A) = 0,

for any set A in the domain of both λ and ν.

λ ⊥ ν The measures ν and λ on a common measurable space
(Ω,F) are singular with respect to each other; that is,
there exists two disjoint sets A and B in F such that
A∪B = Ω and for any measurable set A1 ⊆ A, ν(A1) =
0, while for any measurable set B1 ⊆ B, µ(B1) = 0.

(Ω,F , P ) The “probability triple”: the sample space Ω, the σ-field
F , and the probability measure P .

P A family of probability distributions.

Θ Parameter space.

X The range of a random variable.

OP (f(n)) Bounded convergence in probability; X(n) ∈ OP (f(n))
means that for any positive ε, there is a constant Cε

such that supn Pr(‖X(n)‖ ≥ Cε‖f(n)‖) < ε.

oP (f(n)) Convergent in probability; X(n) ∈ oP (f(n)) means that
for any positive ε, Pr(‖X(n)−f(n)‖ > ε)→ 0 as n→∞.

C.4 Linear Spaces and Matrices

V(G) For the set of vectors (all of the same order) G, the
vector space generated by that set.

V(X) For the matrix X, the vector space generated by the
columns of X.

dim(V) The dimension of the vector space V; that is, the maxi-
mum number of linearly independent vectors in the vec-
tor space.

span(Y ) For Y either a set of vectors or a matrix, the vector
space V(Y )

.
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tr(A) The trace of the square matrix A, that is, the sum of
the diagonal elements.

rank(A) The rank of the matrixA, that is, the maximum number
of independent rows (or columns) of A.

ρ(A) The spectral radius of the matrix A (the maximum ab-
solute value of its eigenvalues).

A > 0
A ≥ 0

If A is a matrix, this notation means, respectively, that
each element of A is positive or nonnegative. These may
also be written as 0 < A or 0 ≤ A.

A � 0
A � 0

This notation means that A is a symmetric matrix and
that it is, respectively, positive definite or nonnegative
definite. These may also be written as 0 ≺ A or 0 � A.

A � B
A � B

This notation means that A and B are symmetric ma-
trices and that A − B is, respectively, positive definite
or nonnegative definite. These may also be written as
B ≺ A or B � A.

AT For the matrix A, its transpose (also used for a vector
to represent the corresponding row vector).

AH The conjugate transpose, also called the adjoint, of the
matrix A; AH = ĀT = AT.

A−1 The inverse of the square, nonsingular matrix A.

A−T The inverse of the transpose of the square, nonsingular
matrix A.

A+ The m × n g4 inverse, the Moore-Penrose inverse, or
the pseudoinverse of the n×m matrix A; that is, A+ a
matrix such that AA+A = A; A+AA+ = A+; A+A is
symmetric; and AA+ is symmetric.

A− An m×n g1 inverse, or generalized inverse of the matrix
n×m A; that is, A− a matrix such that AA−A = A.

A
1
2 The square root of a nonnegative definite or positive

definite matrix A; (A
1
2 )2 = A.

A− 1
2 The square root of the inverse of a positive definite ma-

trix A; (A− 1
2 )2 = A−1.
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Norms and Inner Products

Lp For real p ≥ 1, a norm formed by accumulating the pth

powers of the moduli of individual elements in an object
and then taking the (1/p)th power of the result.

‖ · ‖ In general, the norm of the object ·.

‖ · ‖p In general, the Lp norm of the object ·.

‖x‖p For the vector x, the Lp norm

‖x‖p =
(∑

|xi|p
) 1

p

.

‖X‖p For the matrix X, the Lp norm

‖X‖p = max
‖v‖p=1

‖Xv‖p.

‖X‖F For the matrix X, the Frobenius norm

‖X‖F =

√∑

i,j

x2
ij.

〈x, y〉 The inner product or dot product of x and y.

κp(A) The Lp condition number of the nonsingular square ma-
trix A with respect to inversion.

Notation Relating to Matrix Determinants

|A| The determinant of the square matrix A, |A| = det(A).

det(A) The determinant of the square matrix A, det(A) = |A|.

|A(i1,...,ik)| A principal minor of a square matrix A; in this case, it is
the minor corresponding to the matrix formed from rows
i1, . . . , ik and columns i1, . . . , ik from a given matrix A.

|A−(i)(j)| The minor associated with the (i, j)th element of a
square matrix A.
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a(ij) The cofactor associated with the (i, j)th element of a
square matrix A; that is, a(ij) = (−1)i+j |A−(i)(j)|.

adj(A) The adjugate, also called the classical adjoint, of the
square matrix A: adj(A) = (a(ji)); that is, the matrix
of the same size as A formed from the cofactors of the
elements of AT.

Matrix-Vector Differentiation

dt The differential operator on the scalar, vector, or matrix
t. This is an operator; d may be used to represent a
variable. (Note the difference in the font.)

gf

or ∇f
For the scalar-valued function f of a vector variable, the
vector whose ith element is ∂f/∂xi. This is the gradient,
also often denoted as gf .

∇f For the vector-valued function f of a vector variable, the
matrix whose element in position (i, j) is

∂fj(x)

∂xi
.

This is also written as ∂fT/∂x or just as ∂f/∂x. This
is the transpose of the Jacobian of f .

Jf For the vector-valued function f of a vector variable, the
Jacobian of f denoted as Jf . The element in position
(i, j) is

∂fi(x)

∂xj
.

This is the transpose of (∇f): Jf = (∇f)T.

Hf

or ∇∇f
The Hessian of the scalar-valued function f of a vector
variable. The Hessian is the transpose of the Jacobian
of the gradient. Except in pathological cases, it is sym-
metric. The element in position (i, j) is

∂2f(x)

∂xi∂xj
.

The symbol ∇2f is also sometimes used to denote the
Hessian of f , but I prefer not to use that notation.
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∇2f For the vector-valued function f of a vector variable, the
trace of the Hessian. This is also called the Laplacian.
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bootstrap principle, 249
Borel function, 9, 719
Borel measure, 717
Borel set, 714
Borel σ-field, 697, 714–716
Borel-Cantelli lemma, 74, 75
boundary, 623, 645
bounded completeness, 162
bounded convergence theorem, 734
bounded in probability, 84
bounded variation, 658
Bowley coefficient, 54
branching process, 130
Breslow’s estimator (proportional

hazards), 578
Brownian bridge, 131
Brownian motion, 131, 766–773
Burr distribution, 197

Ck class of functions, 862
Ck class of functions, 740
cadlag, 127, 144
canonical exponential form, 173, 231
Cantor function, 15, 146, 722
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Cantor set, 714, 717, 723
measure, 717

Carathéodory extension theorem, 712
cardinality, 616
Carleman criteria, 35
cartesian product, 617, 700
cartesian product measurable space,

701
Cauchy criterion, 78, 648, 690
Cauchy sequence, 639, 648, 690
Cauchy-Schwarz inequality, 637, 853
causal inference, 216
CDF (cumulative distribution function),

14
inverse, 16
notation, 138
relation to uniform distribution, 16
tail, 15, 166

CDF-skewing, 195
censored data, 452, 471
censoring, 193
central limit theorem

iid sequence, 88
independent sequence, 105–109
martingale, 135
multivariate, 108

central moment, 31
CF (characteristic function), 46–52

empirical (ECF), 251
change of variables, 734
change of variables method, 57
characteristic exponent, 63
characteristic function (CF), 46–52

empirical (ECF), 251
characteristic of a field, 634
Chebyshev norm, 745
Chebyshev’s inequality, 848
Chernoff consistency, 528
chi-squared discrepancy measure, 253,

748
Cholesky factorization, 794
Christoffel-Darboux formula, 752
CIR (Cox-Ingersoll-Ross) process, 774
clopen set, 623, 626, 640
closed set, 623, 626
closure, 623, 645

random variable space, 36
cluster point, 624, 648
Cochran’s theorem, 188, 430–432

cocountable, 697
cofactor, 871
coherency, 140
collection of sets, 619, 692
commutative group, 630
compact set, 624, 645
complement of a set, 617
complete

measure, 707
measure space, 709
metric space, 639, 648, 741
probability space, 4

complete class of decision rules, 265,
353

complete family of distributions, 162
complete statistic, 225
complete sufficiency, 225, 226
completing the square, 685
completion

of a measure space, 712
of a metric space, 640

complex numbers, IC, 660–664
composite hypothesis, 291
computational complexity, 303, 414
computational inference, 235, 295, 301
concave function, 658
concentrated likelihood, 242, 499
conditional

entropy, 122
expectation, 111–119, 236
independence, 121
probability, 120
probability distribution, 120

conditional likelihood, 242, 500
conditionality principle, 318
confidence coefficient, 297, 542

limiting, 315
confidence interval, 297

equal-tail, 543
confidence set, 296–301, 507–560

Bayes credible set, 372
simultaneous, 557–558
unbiased, 547
uniformly most accurate unbiased

(UMAU), 547
conjugate prior, 270, 327, 337, 346
connected space, 624, 646
consistency, 76, 307–310, 571–572

an, 308
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and asymptotic efficiency, 421
Chernoff, 528
in mean, 308
in mean squared error, 308, 313
Lr, 308
of estimators, 307, 571
of positive definite matrices, 310
of tests, 315, 527
strong, 307
weak, 307

consistent estimator, 307, 571
continuity theorem, 88
continuous function, 626, 720–724, 803

absolutely continuous, 722
Hölder-continuous, 723
Lipschitz-continuous, 723
Lipschitz-continuous PDF, 584

continuous random variable, 19
contradiction (method of proof), 675
contrast, 435, 557
convergence, 76–103

almost sure, 77, 726
in Lr, 77
in absolute mean, 78
in distribution, 79
in law, 79
in mean, 78
in mean square, 78, 571
in probability, 78
in quadratic mean, 571
in second moment, 78
of function estimators, 571–572,

574–575
of probability density functions, 83
pointwise, 725
uniform, 725
weak, 79, 81
with probability 1, 77
wp1, 77

convergence of a sequence of sets, 627
convergence of powers of a matrix, 820
convergence-determining class, 80
convex function, 658, 849
convex loss, 261, 264, 267, 269
convex set, 658
convexity, 658
convolution, 58, 742
convolution theorem, 759
copula, 40–41, 121

Cor(·, ·), 38
correctness of confidence sets, 546
correlation, 37, 41
correlation of functions, 742
correlation theorem, 759
countable, 617
counting measure, 708
Cov(·, ·), 37
covariance, 37, 40
covariance inequality, 399, 853
covariance of functions, 742
cover (by a collection of sets), 621
coverage probability, 297
Cox proportional hazards model, 579
Cox-Ingersoll-Ross (CIR) process, 774
Cramér von Mises test, 536
Cramér-Rao lower bound, 235, 399, 421
Cramér-Wold device, 92
credible set, 372–376
Cressie-Read divergence measure, 254
critical region, 292
CRLB (information inequality), 235,

399, 421
cumulant, 35
cumulant-generating function, 51
cumulative distribution function (CDF),

14
inverse, 16
notation, 138
relation to uniform distribution, 16
tail, 15, 166

curved exponential families, 175

Darmois theorem, 189
data-generating process, 205, 237
de Finetti’s representation theorem, 75,

115, 333
de Moivre Laplace central limit

theorem, 106
de Moivre’s formula, 679
de Moivre’s martingale, 153
De Morgan’s law, 617
decision rule, 260

randomized, 260
decision theory, 259–276, 278–289
decomposable matrix, 818
decomposition of a function, 568
Dedekind completeness, 645
degenerate random variable, 10
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degree of statistical function, 392, 405

delete d jackknife, 302

δ-field, 694

delta method, 95, 316, 481, 557

second order, 95, 481

dense set, 623, 641

density function, 19

derivative, 739

derivative of a functional, 760–761

derivative with respect to a vector or
matrix, 801

det(·), 783

determinant of a square matrix, 783

determining class, 3, 80

deviance, 245, 494

DF see CDF, 14

DFT (discrete Fourier transform), 687

diag(·), 799

difference equation, 687

differential, 805

differential equation, 687

differential scaling, 195

differentiation of vectors and matrices,
801

diffusion process, 765

digamma function, 466, 865

dimensionality, 198

problems in higher dimensions, 199,
203

Dirac delta function, 738, 864

Dirac measure, 708

direct product, 617, 793

Dirichlet function, 721

discrete Fourier transform (DFT), 687

discrete random variable, 19

disjoint sets, 619

disjointification, 620

distance, 625

and divergence, 747

between functions, 746

Euclidean, 643

Hellinger, 747

Kolmogorov, 746

Matusita, 747

Minkowski, 643

distribution family

Benford’s, 839

Bernoulli, 95, 237, 269, 281, 333, 340,
390, 394, 396, 398, 447, 452, 459,
481, 482, 518, 520, 539, 541, 838

beta, 64, 170, 232, 337, 355, 357, 360,
374, 383, 385, 843

binomial, 59, 167, 170, 179, 237, 276,
337, 340, 355, 360, 365, 374, 383,
385, 390, 447, 459, 531, 838

Cauchy, 26, 44, 66, 150, 171, 174, 181,
461, 843

chi-squared, 57, 60, 61, 187, 841
complex multivariate normal, 187,

840
conditional, 112, 120
Dirichlet, 170, 843
discrete uniform, 838
double exponential, 167, 170, 171,

181, 313, 844
doubly noncentral F, 188
elliptical, 198
ε-mixture distribution, 157, 194, 461,

601–605, 754
exponential, 20, 56, 64, 99, 100, 130,

167, 170, 171, 181, 228, 382, 397,
450, 451, 456, 471, 483, 510, 512,
521, 529, 844

spacings, 65, 130
exponential class, 169–177

attainment of CRLB, 400
conjugate priors, 337, 382

extreme value, 100, 844
F, 60, 188, 841
families, 155–199, 835–844
gamma, 59, 100, 170, 181, 231, 384,

387, 455, 466, 467, 844
geometric, 838
hypergeometric, 159, 384, 468, 838
infinitely divisible, 183
inverse Gaussian, 59, 170, 181, 842
inverted chi-squared, 170, 342, 842
inverted gamma, 382, 842
inverted Wishart, 842
location-scale, 179
logarithmic, 839
logistic, 170, 181, 843
lognormal, 44, 148, 170, 842
multinomial, 170, 470, 838
multivariate matrix normal, 186, 840
multivariate normal, 186, 272, 840
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negative binomial, 59, 170, 237, 340,
357, 384, 390, 443, 447, 459, 838

noncentral chi-squared, 188, 841
noncentral F, 188, 841
noncentral t, 841
normal, 57, 59, 61, 97, 167, 170, 181,

185–191, 227, 230, 242, 289, 298,
312, 341, 342, 359, 366, 371, 396,
400, 473, 670, 840

Pareto, 164, 170, 171, 843
Poisson, 58, 167, 170, 378, 384, 387,

401, 443, 839
positive Poisson, 192, 203
power function, 164, 843
power law, 164
power series, 170, 175, 839
regular, 168–169
skew normal, 196, 842
skewed distributions, 195

by CDF, 195
spherical, 198
stable, 183
t, 188, 841
two-piece distribution, 196
uniform, 64, 65, 82, 99, 100, 167, 171,

181, 226, 227, 397, 454, 462, 838,
843

von Mises, 667, 843
Weibull, 170, 171, 844
Wishart, 841
zeta, 164
Zipf, 164

distribution function space, 194,
754–755

distribution function see cumulative

distribution function, 14
distribution vector, 128
divergence, 747

f , 747
Kullback-Leibler, 748
φ, 747

divisibility, 61–62, 755
DKW inequality, 136, 145
domain of attraction, 110
dominated convergence theorem, 90,

734
conditional, 113

dominating measure, 22, 711, 868
dominating statistical rule, 264

Donsker’s theorem, 138

Doob’s martingale inequality, 134

dot product, 637, 743
double integral, 735

Dvoretzky/Kiefer/Wolfowitz inequality,
145, 562

Dvoretzky/Kiefer/Wolfowitz/Massart
inequality, 136, 248

Dynkin system, 694

Dynkin’s π-λ theorem, 698

E(·), 26, 28, 817

ECDF (empirical cumulative distri-
bution function), 26, 135–138,
246–250, 602

Edgeworth series, 69, 753

efficiency, 256, 313, 457

estimating function, 257
Godambe, 257

efficient estimating function, 257

efficient estimator, 256, 399

Egoroff’s theorem, 726
eigenfunction, 750

eigenvalue, 750, 784

eigenvector, 784

eigenvector, left, 789
element, 622

elliptical family, 198

EM method, 469–480
empirical Bayes, 352, 357

empirical characteristic function (ECF),
251

empirical cumulative distribution
function (ECDF), 26, 135–138,
246–250, 602

empirical likelihood, 250, 499
empirical likelihood ratio test, 536

empirical process, 134–138

empty set, 616
entropy, 41–43, 122, 157

conditional, 122

Shannon, 42

ε-mixture distribution, 157, 194, 461,
601–605, 754

equal-tail confidence interval, 543

equivariance, 220, 266, 267, 279–289
equivariance principle, 279

equivariant function, 756
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equivariant statistical procedures, 267,
279–289

equivariant confidence sets, 549–550
equivariant estimation, 285–289, 357,

458
invariant tests, 525–527

Esseen-von-Bahr inequality, 855
essential infimum, 745
essential supremum, 745
essentially complete, 265
estimability, 390, 426
estimating equation, 243, 254
estimating function, 254–258, 463

martingale, 257
estimator

Bayes, 330, 352–361
equivariant, 285–289, 458
maximum likelihood, 242–244,

449–465
method of moments (MME), 247,

272, 416
order statistics, 252
plug-in, 247, 416, 418
randomized, 276, 420
uniformly minimum variance

unbiased, 392–403
Euclidean distance, 643, 782
Euclidean norm, 782
Euler’s formula, 46, 662, 679
Euler’s integral, 865
event, 3, 709
evidence, statistical, 318, 541
exact inference, 235
exchangeability, 7, 24, 75, 333
expectation functional, 404, 416
expected value, 26–31

conditional expectation, 111
of a Borel function of random

variable, 28
of a random variable, 26

expected weight of evidence, 253
experimental support, 245
exponential class of families, 169–177

attainment of CRLB, 400
canonical exponential form, 173
conjugate priors, 337, 382
curved, 175
full rank, 162, 175
mean-value parameter, 172

natural parameter, 173
one-parameter, 173, 271

exponential criterion, 226
exponential tail, 564
extended real numbers, IR, 640
extension of a measure, 712
extension theorem

Carathéodory, 712
Kolmogorov, 126

extreme value distribution, 100, 109–110
extreme value index, 110

f -divergence, 253, 747
factorial moment, 35, 46
factorial-moment-generating function,

46
factorization criterion, 222
false discovery rate (FDR), 537
false nondiscovery rate (FNR), 537
family of probability distributions, 13,

155–199, 835–844
family wise error rate (FWER), 537
Fatou’s lemma, 90, 733

conditional, 113
FDR (false discovery rate), 537
Feller process, 774
Feller’s condition, 108, 774, 778
FI regularity conditions, 168, 229, 399,

457
field, 632, 648

characteristic of, 634
order of, 634
ordered, 634

field of sets (algebra), 693
filter, 568
filtered probability space, 127
filtration, 126
finite measure, 707
finite population sampling, 305, 382,

438–442
first limit theorem, 88
first passage time, 124
first-order ancillarity, 223
Fisher efficiency, 420
Fisher efficient, 256, 313, 400, 419, 457
Fisher information, 229–235, 399, 815

regularity conditions, 168, 229, 399,
457

Fisher scoring, 466
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fixed-effects AOV model, 434, 435, 488,
489

FNR (false nondiscovery rate), 537
forward martingale, 132
Fourier coefficient, 686, 750, 789
Fourier expansion, 789
Fourier transform, 757, 758
Fréchet derivative, 761
Freeman-Tukey statistic, 254
frequency polygon, 589
frequency-generating function, 45
frequentist risk, 328
Frobenius norm, 782, 795
Fubini’s theorem, 735
full rank exponential families, 162, 175
function, 618, 655

linear, 658
real, 655–660

function estimation, 565–576
function space, 740–754

of random variables, 36
functional, 52–55, 247, 759–761

expectation, 404, 416
FWER (family wise error rate), 537

Galois field, 633
Galton-Watson process, 130
gambler’s ruin, 91
game theory, 320
gamma function, 865
gamma integral, 682
gamma-minimax Bayes action, 347
Gâteaux derivative, 606, 760
Gauss-Markov theorem, 427
Gaussian copula, 41
GEE (generalized estimating equation),

254, 486
generalized Bayes action, 345
generalized estimating equation (GEE),

254, 486
generalized inverse, 784, 799
generalized lambda family of distribu-

tions, 197
generalized linear model, 492–498
generating function, 43–52
geometric Brownian motion, 773
geometric series, 683
Gibbs lemma, 42
Gibbs method, 670

Gini’s mean difference, 407

Glivenko-Cantelli theorem, 136, 248,
562

Godambe efficiency, 257

goodness of fit test, 536
gradient of a function, 807, 808, 871

Gram-Charlier series, 69, 753

Gram-Schmidt transformation, 686
Gramian matrix, 799

group, 630

transformation, 630, 755
group family, 178–183

Gumbel distribution, 100

Haar invariance, 729

Haar invariant measure, 708, 729
Hadamard derivative, 760

Hájek-Rènyi inequality, 134, 849

Hamburger moment problem, 143
Hammersley-Chapman-Robbins

inequality, 854

Hausdorff moment problem, 143
Hausdorff space, 624, 626

hazard function, 577

Heaviside function, 738, 863
heavy-tailed family, 165

Heine-Borel theorem, 645
Heine-Cantor theorem, 722

Hellinger distance, 747

Helly-Bray theorem, 91
Helmert matrix, 433

Helmert transformation, 188

Hermite polynomial, 69, 753
Hessian, 450, 659, 809, 871

hierarchical Bayes, 351

hierarchical Bayesian model, 357, 378
higher dimensions, 199, 203

highest posterior density credible set,
373

Hilbert space, 639, 648, 745

histospline, 589
Hodges’ superefficient estimator, 422

Hoeffding inequality, 848

Hölder norm, 643, 745
Hölder’s inequality, 642, 852

Hölder-continuous function, 723

homogeneous process, 123
homomorphism, 631
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Horowitz’s estimator (proportional
hazards), 578

Horvitz-Thompson estimator, 441

HPD (highest posterior density)
credible set, 373

hypergeometric series, 683

hyperparameter, 330, 335

hypothesis testing, 290–296, 362–372,
507–560

alternative hypothesis, 291

asymptotic significance, 527
Bayesian testing, 362–372

composite hypothesis, 291

consistency, 315, 527
invariant tests, 525–527

Lagrange multiplier test, 530

likelihood ratio test, 528–530

multiple tests, 536–538
Neyman-Pearson Lemma, 517

nonparametric tests, 535–536

nonrandomized test, 293, 509
null hypothesis, 291

observed significance level, 292

p-value, 292
randomized test, 293, 509, 513

Rao test, 530

score test, 530, 533
sequential tests, 538–539

significance level, 292

simple hypothesis, 291
size of test, 292, 295, 510

SPRT, 539

test statistic, 292
test with random component, 513

unbiased test, 296, 523

uniform consistency, 315, 527
Wald test, 530

i.o. (infinitely often), 72

convergence, 77

IAE (integrated absolute error), 572,
575

ideal bootstrap, 304

idempotent matrix, 795
identifiability, 13, 22

identity matrix, 784

iid (“independent and identically
distributed”), 25, 857

IMAE (integrated mean absolute error),
574

image of a function, 618, 701
importance sampling, 684
improper integral, 738
improper prior, 330, 345
IMSE (integrated mean squared error),

573
inclusion-exclusion formula (“disjointifi-

cation”), 620, 706
incomplete beta function, 866
incomplete gamma function, 866
independence, 5, 23, 75, 111, 121
independence of normal random

variables, 185
index of stability, 63
indicator function, 719, 863
induced likelihood, 458
induced measure, 5, 712
induction (method of proof), 675
inductive probability, 139
inequalities, 845
infimum, 644

essential, 745
infinite divisibility, 62
infinitely divisible family, 183
infinitely often, 72

convergence, 77
influence function, 606–607
information, 41, 43, 229–235, 399, 850
information inequality, 234, 399, 421,

851, 854
information theory, 253
inner product, 636, 743, 744, 781
inner product space, 637
integrable function, 729
integrable random variable, 26
integral, 727–738

double, 735
iterated, 735

integrated expectation
integrated absolute bias, 573
integrated absolute error (IAE), 572,

575
integrated bias, 573
integrated mean absolute error

(IMAE), 574
integrated mean squared error

(IMSE), 573
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integrated squared bias, 573
integrated squared error (ISE), 572
integrated variance, 573

integration, 726–738
integration by parts, 735
interior, 623, 645
interior point, 645
interquantile range, 54
interquartile range, 54
intersection of sets, 616
invariance, 220, 266, 279–289

Haar, 729
invariant family, 182
invariant function, 281, 755
invariant tests, 525–527
inverse CDF, 16
inverse CDF method, 664
inverse cumulative distribution function,

16
inverse function, 618
inverse image, 618, 702
inverse of a matrix, 784, 797
inverse of a partitioned matrix, 799
inverse probability, 211, 317, 380
inversion theorem, 49
IRLS (iteratively reweighted least

squares), 496
irreducible Markov chain, 130
irreducible matrix, 818
ISE (integrated squared error), 572
isomorphism, 631
iterated integral, 735
iterated logarithm, law of, 105
iteratively reweighted least squares

(IRLS), 496
Ito’s formula, 778

jackknife, 301
bias reduction, 414
delete d, 302
higher order, 415
variance estimation, 301–303

Jacobian, 57, 808
James-Stein estimator, 272
Jeffreys’s noninformative prior, 350, 357
Jensen’s inequality, 849, 853
joint entropy, 43
jump process, 765
jump-diffusion process, 774

kernel (function), 591
kernel (in a convolution), 742
kernel density estimation, 590
kernel in a PDF, 20, 164
kernel method, 568
kernel of U-statistic, 406
Kolmogorov distance, 536, 572, 574,

598, 746
Kolmogorov’s extension theorem, 126
Kolmogorov’s inequality, 134, 849
Kolmogorov’s zero-one law, 73
Kolmogorov-Smirnov test, 536
Kronecker multiplication, 792
Kronecker’s lemma, 655
KS test (Kolmogorov-Smirnov), 536
Kshirsagar inequality, 854
Kullback-Leibler information, 850
Kullback-Leibler measure, 253, 748
Kumaraswamy distribution, 235

L1 consistency, 575
L2 consistency, 574
L2 norm, 744
L2 space, 744
Lp metric, 643, 746
Lp norm, 642, 744, 782

of a vector, 642, 782, 803
Lp space, 862
Lp space, 36, 741, 745
LJ functional, 54
L-invariance, 266, 281
L-unbiasedness, 265, 523, 524
Lagrange multiplier test, 530
lambda family of distributions, 197
λ-system, 693
Landau distribution, 185
Laplacian, 660
Laplacian operator, 872
LAV (least absolute values) estimation,

259
law of large numbers, 103
law of the iterated logarithm, 105
Le Cam regularity conditions, 169, 481
least absolute values (LAV) estimation,

259
least favorable prior distribution, 372
least squares, 116, 424–438
least squares (LS) estimation, 259, 424
Lebesgue integral, 727–735
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Lebesgue measure, 717
Lebesgue monotone convergence

theorem, 733
Lebesgue σ-field, 717
Lebesgue’s dominated convergence

theorem, 734
left eigenvector, 789
Legendre polynomial, 753
Lehmann-Scheffé theorem, 393
level of significance, 295
Lévy-Cramér theorem, 88
Lévy distance, 599
Lévy process, 130–131
lexicographic ordering of combinations,

408
likelihood, 241–245, 445–505

induced, 458
likelihood equation, 243, 450, 463

roots, 450, 481–482
likelihood function, 158, 241, 445, 815

equivalence class, 241, 448
likelihood principle, 238, 245, 318, 341,

445, 447, 448, 459, 539
likelihood ratio, 158, 167, 244, 517, 528
likelihood ratio martingale, 133
likelihood ratio test, 528–530
lim inf, 71, 73, 626–629, 650–651, 725

sequence of functions, 725
sequence of points, 650–651
sequence of probabilities, 71
sequence of random variables, 73
sequence of sets, 626–629

lim sup, 71, 73, 626–629, 650–651, 725
sequence of functions, 725
sequence of points, 650–651
sequence of probabilities, 71
sequence of random variables, 73
sequence of sets, 626–629

limit point, 624, 648
limiting Bayes action, 346
limiting bias, 311

and consistency, 312
limiting confidence coefficient, 315
limiting expectation, 101, 310
limiting mean squared error, 313
limiting size of test, 314, 527
limiting variance, 313
Lindeberg’s central limit theorem, 108
Lindeberg’s condition, 107, 108

Lindley-Jeffrey paradox, 371
linear algebra, 781–821
linear combination, 636
linear independence, 636, 783

affine independence, 636
linear manifold, 635, 636
linear model, 213, 423–438, 531
linear ordering, 621
linear space, 635–640, 740–754, 781
linear transform, 687, 756
linearity, 27, 658
linex loss function, 262
link function, 492
Lipschitz constant, 723
Lipschitz-continuous function, 584, 723
little o, 84, 652
little o in probability, 84
Littlewood’s principles, 761
LMVUE (locally minimum variance

unbiased estimator), 393
local absolute continuity, 722
local uniform convergence, 726
locally minimum variance unbiased

estimator (LMVUE), 393
location equivariance, 285
location-scale equivariance, 289
location-scale family, 179, 280, 289
log-likelihood function, 241, 815
logconcave family, 165
loss function, 260–263

absolute-error, 262
α0-α1 (weighted 0-1), 263, 365
convex, 261, 264, 267, 269
linex, 262
randomized decision rule, 261
squared-error, 262, 269, 270, 287, 357,

393, 523
Stein’s loss, 288
0-1, 262, 365
0-1-γ loss, 262, 364

lower confidence bound, 298
lower confidence interval, 298
LS (least squares) estimation, 259, 424
LSE, 424
Lyapunov’s condition, 107
Lyapunov’s inequality, 853

Mρ functional, 54
MAE (mean absolute error), 571
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Mallows distance, 599
manifold

linear, 635, 636
Mann-Whitney statistic, 411
MAP estimator, 345
mapping, 618
Marcinkiewicz-Zygmund inequality, 855
Markov chain, 127–130, 666
Markov chain Monte Carlo (MCMC),

377–380
Markov property, 123
Markov’s inequality, 847
martingale, 131–135

de Moivre, 153
martingale estimating function, 257
martingale transform, 153
mathematical induction, 675
matrix, 782–811
matrix derivative, 801
matrix gradient, 808
matrix norm, 795
Matusita distance, 747
maximal invariant, 756
maximum a posterior probability

(MAP) estimator, 345
maximum absolute error (SAE), 572
maximum entropy, 254
maximum entropy principle, 351
maximum likelihood estimation,

242–244, 448–502
maximum likelihood method, 445–505,

580
MCMC (Markov chain Monte Carlo),

377–380
mean, 32

sample, 25, 86, 187, 190
mean absolute error (MAE), 571
mean functional, 52
mean integrated absolute error (MIAE),

574, 575
mean integrated squared error (MISE),

574
mean square consistent, 574
mean squared error (MSE), 218, 570,

573
mean squared error, of series expansion,

750
mean squared prediction error, 236
mean sup absolute error (MSAE), 574

mean-value parameter, in exponential
class, 172

mean-value theorem, 681
measurable function, 703
measurable set, 709
measurable space, 700
measure, 704

Borel, 717
complete, 707
counting, 708
Dirac, 708
dominating, 22, 711
Haar invariant, 708, 729
induced, 712
Lebesgue, 717
probability, 3, 707
pushforward, 712
Radon, 708
singular, 711, 868

measure space, 709
complete, 709

measure theory, 692–762
median-unbiasedness, 218, 259
method of moments, 247, 272, 416
metric, 625, 642, 781

in IRd, 642
in a function space, 746

metric space, 625
Metropolis algorithm, 667
Metropolis-Hastings algorithm, 668
MGF (moment-generating function), 44
MIAE (mean integrated absolute error),

574, 575
minimal complete, 265
minimal sufficiency, 224, 226
minimaxity, 268, 274–276, 353, 398

Bayes rule, 353
minimum risk equivariance (MRE), 267
minimum risk equivariant estimation

(MREE), 285–289
Minkowski distance, 643
Minkowski norm, 642, 745
Minkowski’s inequality, 642, 854
MISE (mean integrated squared error),

574
mixture distribution, 22–23, 194,

601–605, 754, 836
MLE (maximum likelihood estimator),

242–244, 448–502
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MME, 247, 272, 416
mode, 19, 165
model

algorithm, 214
equation, 213

moment, 26, 31, 53
uniqueness of, 33

moment problem, 143
moment-equivalent distribution, 34
moment-generating function (MGF), 44
moment-indeterminant distribution, 34
moments, method of, 247, 272, 416
monotone convergence theorem, 90,

649, 733
conditional, 113

monotone likelihood ratio, 165, 167,
245, 520

exponential class, 177
Monte Carlo, 377–380
Moore-Penrose inverse, 425, 429, 784,

801
morphism, 631
MRE (minimum risk equivariance), 267
MREE (minimum risk equivariant

estimation), 285–289
MRIE (minimum risk invariant

estimation), 285
MSAE (mean sup absolute error), 574
MSE (mean squared error), 218, 570,

573
MSPE (mean squared prediction error),

236
multiple tests, 536–538
multivariate central limit theorem, 108

n-divisibility, 61
natural exponential family, 173, 175,

200
natural parameter space, 173
negligible set, 710, 711
neighborhood, 624, 625
Newton’s method, 812, 825
Neyman structure, 520, 525
Neyman-Pearson Lemma, 517
Neyman-Scott problem, 490
no-data problem, 205, 330
nondegenerate random variable, 10
nonexistence of optimal statistical

methods, 277

noninformative prior, 350
nonnegative definite matrix, 784, 790
nonparametric family, 13, 159
nonparametric inference, 215, 246,

499–502, 561–563
function estimation, 565–597
likelihood methods, 499
test, 535–536

nonparametric probability density
estimation, 579–597

nonparametric test, 535–536
nonrandomized test, 293, 509
norm, 637, 642, 781, 782, 846

Euclidean, 643, 782
Frobenius, 782, 795
Hölder, 643
in IRd, 642
Lp, 782
Minkowski, 642
of a function, 744
of a matrix, 782, 795
of a vector, 642

normal distribution, characterizations
of, 189

normal equations, 251, 256, 438
normal function, 746
normal integral, 682
normal vector, 686, 781
nuisance parameter, 223
null hypothesis, 291

O(·), 84, 652
o(·), 84, 652
OP(·), 84
oP(·), 84
objective prior, 350–351
observed significance level, 292
octile skewness, 54
one-parameter exponential family, 173,

271
one-sided confidence interval, 298
one-step MLE, 467
one-to-one function, 618
one-way AOV model, 434–436, 488–490
open cover, 624
open set, 623, 626, 713
operator, 618

linear, 658
optimization, 687, 688, 822–832
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optimization of vector/matrix functions,
811

orbit, 755
order of a field, 634
order of kernel or U statistic, 404
order statistic, 63–66, 97–100, 109–110,

222, 252, 409, 563–564
asymptotic distribution, 97–100

ordered field, 634
ordered set, 621, 644
ordering, 621

linear, 621
total, 621
well, 622

Ornstein-Ulenbeck process, 774
orthogonal matrix, 784
orthogonal polynomials, 568, 751–754
orthogonality, 637
orthogonalizing vectors, 686
orthogonally diagonalizable, 786
orthogonally similar, 786
orthonormal vectors, 686, 781
outer measure, 705
outlier-generating distribution, 166
over-dispersion, 498

Pp distribution function space, 754
p-value, 292, 512
parameter space, 13, 159, 168

natural, 173
parametric family, 13, 159, 235
parametric inference, 215
parametric-support family, 177, 228,

499
Pareto tail, 564
Pareto-type distribution, 184
Parseval’s theorem, 759
partial correlation, 119
partial likelihood, 501, 578
partition function in a PDF, 20, 172,

337
partition of a set, 619
PCER (per comparison error rate), 537
PDF (probability density function), 18

estimation of, 579–597
PDF decomposition, 568, 684
Pearson chi-squared discrepancy

measure, 253, 748
Pearson family of distributions, 197

penalized maximum likelihood method,
581

per comparison error rate (PCER), 537
permutation test, 535
Perron root, 819
Perron vector, 129, 819
Perron-Frobenius theorem, 819
φ-divergence, 253, 747
π-λ theorem, 697
π-system, 693
Pitman admissible, 274
Pitman closeness, 219, 221, 274, 381
Pitman estimator, 287, 288
pivotal function, 297, 544

asymptotic, 551
plug-in estimator, 246, 416, 418, 602
point estimation, 217, 285–289, 389–444,

448–487
pointwise convergence, 571–572, 725
pointwise properties, 569
Poisson process, 130, 765
Poisson series, 683
polar coordinates, 680
Polya’s theorem, 86
Polya’s urn process, 25, 132
polygamma function, 865
polynomial tail, 564
“portmanteau” theorem, 87
poset, 621
positive definite matrix, 784, 790–792
positive stable, 791
posterior distribution, 330, 336
posterior Pitman closeness, 381
posterior predictive distribution, 336
power divergence measure, 254
power function, 294, 314, 513
power law, 164
power of test, 294, 513
power series expansion, 68
power set, 619, 696, 715
prediction, 116–119, 216, 236
prediction set, 300, 543
predictive distribution

posterior, 336
prior, 336

preimage, 618, 702
primitive matrix, 820
principal minor, 870
principle, 239, 318
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bootstrap, 249
conditionality, 318
equivariance, 279
likelihood, 238, 245, 318, 341, 447
maximum entropy, 351
substitution, 247
sufficiency, 223, 318

prior distribution, 330, 335
conjugate prior, 327, 337, 346
elicitation, 347
empirical, 351
hierarchical, 351
improper prior, 330, 345
Jeffreys’s noninformative prior, 350
least favorable, 372
noninformative prior, 350
objective prior, 350–351
reference prior, 351

prior predictive distribution, 336
probability, 1–204

alternative ways of developing the
measure, 139

inductive, 139
statistical, 139
subjective, 139

probability density function (PDF), 18
estimation of, 579–597

probability function, 19
probability mass function, 19
probability measure, 3, 707
probability of an event, 5, 729
probability space, 3, 709
probability-generating function, 45
probit model, 492
product measure, 713
product set, 617
profile likelihood, 242, 499
projection matrix, 438, 795
projection of a random variable,

116–119, 438
U-statistic, 413

projection of a vector onto a linear
space, 637

proper difference, 617
proper subset, 622
proportional hazards, 578
pseudoinverse, 429, 784, 801
pseudometric, 639, 746
pseudonorm, 638

pseudovalue, 302
psi function, 865
pushforward measure, 712
“Pythagorean Theorem” of statistics,

685

quadratic form, 430–432, 784
quadratic mean differentiable family,

169
quantile, 11, 53, 65, 97

confidence interval, 544
estimation, 418
functional, 404, 605
in forming confidence sets, 298

quantile function, 16, 29, 53
quartile skewness, 54
quasi-likelihood, 498, 499
quasi-Newton method, 814, 827

Radon measure, 708
Radon-Nikodym derivative, 739
Radon-Nikodym theorem, 739
random sample, 25, 333

simple, 25
random variable, 9–26

space, 36
random-effects AOV model, 436, 490
randomized decision rule, 260

confidence set, 544, 545
loss function, 261
point estimator, 276, 420
test, 293, 509, 513

rank of a matrix, 783
rank statistic, 536, 609
rank test, 536
Rao test, 530
Rao-Blackwell inequality, 855
Rao-Blackwell theorem, 264, 267
Rao-Blackwellization, 267
rational numbers, 633, 635, 641, 648

Dirichlet function, 721
measure, 717
Thomae function, 721

raw moment, 31
Rayleigh quotient, 788
real numbers, IR, 640–660

extended reals, IR, 640
recursion formula for orthogonal

polynomials, 751
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reducibility, 818
reference noninformative prior, 351
regression, 538
regression model, 213
regular family, 168
regularity conditions, 168

Fisher information, 168, 229, 399, 457
Le Cam, 169, 481
Walker, 334

regularization of fits, 252, 428
regularized incomplete beta function,

866
regularized incomplete gamma function,

866
rejection region, 292
relation, 618
relative efficiency, 313, 419
REML, 489
resampling, 248, 249
resampling vector, 249
residual, 259
restricted Bayes, 268
restricted maximum likelihood method,

580
restricted measure, 709
ρ-Fréchet derivative, 761
ρ-Hadamard derivative, 760
ridge regression, 428
Riemann integral, 735
Riemann-Stieltjes integral, 736
Riesz-Fischer theorem, 741
right direct product, 793
right stochastic matrix, 818
ring, 632
ring of sets, 693
risk

Bayes, 328
frequentist, 328

risk function, 263
RLE (root of likelihood equation, which

also see), 450
robust statistics, 602–609

Bayesian robustness, 348
Rolle’s theorem, 681
root of likelihood equation, 450, 481–482
roughness of a function, 576, 586

SAE (sup absolute error), 572
sample continuous, 127

sample covariance
as U-statistic, 407

sample mean, 25, 86, 187, 190
sample quantile, 65, 98, 258
sample space, 3, 692
sample variance, 25, 187, 190, 243, 248,

460
as U-statistic, 407
relation to V-statistic, 417

sampling design, 441
sampling from finite populations, 305,

382
sandwich estimator, 304, 316
scale equivariance, 287
Scheffé’s method for simultaneous

confidence intervals, 558
Schur complement, 799
Schwarz inequality, 853
score function, 244, 255, 463–464, 481,

530
score test, 530, 533
scoring, 244
SDE (stochastic differential equation),

765
second characteristic function, 51
second order delta method, 95, 481
self-information, 41
seminorm, 638
semiparametric inference, 499–502
separable set, 624, 641
sequences of real numbers, 648–655
sequential probability ratio test (SPRT),

539
sequential test, 538–539
series, 654

convergence, 678
series estimator, 568
series expansion, 66–70, 680, 750, 805
set, 622
Severini-Egorov theorem, 726
Shannon entropy, 42
Shannon information, 229
shrinkage of estimators, 220, 273, 319,

597
Sierpinski system, 694
Sierpinski’s π-λ theorem, 698
σ-algebra, 694
σ-field, 694

filtration, 126
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generated by a collection of sets, 695
generated by a measurable function,

704
generated by a random variable, 11

σ-finite measure, 707
σ-lattice, 695
σ-ring, 694
sign test, 536
signal to noise ratio, 214
signed measure, 704
significance level, 292

asymptotic, 314, 315, 527
significance test, 292
similar region, 519
similar test, 524, 525
simple function, 719, 720
simple hypothesis, 291
simple random sample, 25
simple random variable, 10
simulated annealing, 378, 829
simultaneous confidence sets, 557–558
singular distribution, 176
singular measure, 711, 718, 868
singular value factorization, 794
size of test, 292, 295, 510

limiting, 314, 527
skewed distribution

CDF-skewing, 195
differential scaling, 195

skewness coefficient, 32
Sklar’s theorem, 40
Skorokhod space and metric, 145
Skorokhod’s theorem, 87, 88, 90
SLLN (strong law of large numbers),

104
slowly varing function, 166
Slutsky’s theorem, 92
smallest subset, 617
Smith-Volterra-Cantor set, 715, 718

measure, 718
smoothing matrix, 591
space, 622
spectral decomposition, 787, 795
spectral projector, 787
spectrum of a measure, 710
spherical family, 198
SPRT (sequential probability ratio

test), 539
square root matrix, 791

squared-error loss, 262, 269, 270, 287,
357, 393, 523

stable family, 183
stable random variable, 62
standard deviation, 32
standard normal distribution, 835
state space, 123
stationary point of vector/matrix

functions, 812
stationary process, 125
statistic, 212
statistical function, 52–55, 217, 246,

389, 602
degree, 392, 405
estimable, 390

statistical probability, 139
steepest descent, 812, 814
Stein shrinkage, 273
Stein’s loss function, 288
Stieltjes moment problem, 143
stochastic differential, 766, 771, 775
stochastic differential equation (SDE),

765
stochastic integration, 765–780
stochastic matrix, 818
stochastic process, 122–138, 765–772
stochastic vector, 128
stopping time, 123, 539
strictly stationary process, 125
strong law of large numbers, 104, 105
strongly unimodal family, 165
sub measurable space, 700, 709
sub measure space, 709
sub-σ-field, 699
subexponential family, 166
subharmonic function, 659
subjective inference, 207, 210, 317, 327
subjective probability, 139, 207, 317
submartingale, 131
subset, 622
substitution principle, 246, 247
sufficiency, 222

factorization criterion, 222
in Bayesian inference, 343
sufficiency principle, 223, 318
sufficient statistic, 222

sup absolute error (SAE), 572
superefficiency, 421
supermartingale, 131
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superpopulation model, 306
support of a distribution, 12, 168
support of a measure, 710
support of an hypothesis, 245
supremum, 644

essential, 745
surjective function, 701
survey sampling, 305, 438–442
symmetric difference, 617
symmetric family, 164
symmetric matrix, 785–792
symmetric statistic, 212
symmetric storage mode, 792

tail σ-field, 73
tail CDF, 15, 166
tail event, 73
tail index, 564
Taylor series, 656, 680, 741, 805
Taylor’s theorem, 656
tensor product, 754
tessellation, 589
test statistic, 292, 510
testing hypotheses, 290–296, 362–372,

507–560
alternative hypothesis, 291
asymptotic significance, 527
Bayesian testing, 362–372
composite hypothesis, 291
consistency, 315, 527
invariant tests, 525–527
Lagrange multiplier test, 530
likelihood ratio test, 528–530
multiple tests, 536–538
Neyman-Pearson Lemma, 517
nonparametric tests, 535–536
nonrandomized test, 509
null hypothesis, 291
observed significance level, 292
p-value, 292
randomized test, 509, 513
Rao test, 530
score test, 530, 533
sequential tests, 538–539
significance level, 292
simple hypothesis, 291
size of test, 292, 295, 510
SPRT, 539
test statistic, 292

unbiased test, 296, 523
uniform consistency, 315, 527
Wald test, 530

Thomae function, 721
tightness, 89
tolerance set, 300, 543
topological space, 623
topological support of a measure, 710
topology, 623
total ordering, 621
total variation, 745
totally positive family, 168
tr(·), 785
trace of a matrix, 785
trajectory, 126
transform, 618, 687, 756–759

discrete, 687
linear, 658

transformation group, 630, 755
transition matrix, 128, 818–821
transitive transformation group, 756
triangle inequality, 637, 854
triangular array, 62, 108
trigamma function, 466, 865
truncated distribution, 192, 203
Tukey’s method for simultaneous

confidence intervals, 558
two-sample Wilcoxon statistic, 411
type I error, 294

U-estimability, 390, 426
U-statistic, 404–414
UMAU (uniformly most accurate

unbiased) confidence set, 547
UMVUE (uniformly minimum variance

unbiased estimation), 392–403
unbiased confidence set, 300
unbiased estimating function, 255
unbiased estimator, 218
unbiased point estimation, 389–444
unbiased test, 296, 523
unbiasedness, 218, 255, 265, 267, 296,

390, 523
and squared-error loss; UMVU, 393
estimability, 426
estimating function, 255
L-unbiasedness, 265, 523, 524
median-unbiasedness, 218, 259
test, 296, 523
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unbiasedness of confidence set, 547
uniform consistency

of tests, 315, 527
uniform convergence, 725
uniform norm, 745
uniform property, 221, 266, 296, 300
uniformly continuous function, 721
uniformly minimum variance unbiased

estimation (UMVUE), 392–403
uniformly most accurate unbiased

(UMAU) confidence set, 547
uniformly most powerful test, 520
unimodal family, 165
union of sets, 616
universal set, 617
upper confidence bound, 298
upper confidence interval, 298
urn process, 1, 8, 25, 132
utility, 259

V(·), 32, 817
V-statistic, 417–418
variable metric method, 814
variable selection, 538
variance, 32, 40

asymptotic, 313
bound, 235, 399, 421
estimation, 301–304, 310, 317, 460

bootstrap, 304
jackknife, 301–303

limiting, 313
sample, 25, 187, 190, 460

variance bound, 235, 399, 421
variance stabilizing transformation, 96
variance-covariance matrix

of a random matrix, 39
of a random vector, 38

Vasicek process, 774

vec(·), 792
vech(·), 792
vecsy(·), 792

vector, 635, 782–811
vector derivative, 801
vector measure, 704

vector space, 635
Vitali set, 718

Wald test, 530
Walker regularity conditions, 334

Wasserstein-Mallows distance, 599
weak convergence, 79
weak convergence in mean square, 571

weak convergence in quadratic mean,
571

weak law of large numbers, 104
weakly stationary process, 125
Weierstrass function, 724

well-ordered set, 622, 644
well-ordering, 622

white noise, 124
Wiener-Khinchin theorem, 759
Wilcoxon statistic, 411, 563

window size, 591
WLLN (weak law of large numbers),

104
wlog (“without loss of generality”), 857
Woodruff’s interval, 551

wrt (“with respect to”), 857

00, 860
0-1 loss, 262, 365
0-1-γ loss, 262, 364

zero-one law, Kolmogorov’s, 73
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