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Abstract

In this work we consider the development of a computational methodology to study stability
and nonlinear dynamics of large deformation plate models. The main application will be
the computational modeling of flexible wing designs for Micro Air Vehicles. We develop the
model by using a geometrically nonlinear Green strain-displacement formulation, a materially
linear constitutive stress-strain formulation, and a Hamiltonian energy approach to develop
a governing system of coupled partial differential equations for the axial and transverse
displacements. We develop an appropriate energy norm for a class of boundary conditions
where we prove a stability estimate for a simplified version of the model. The model developed
will be numerically validated for benchmark applications.
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1 Introduction

A Micro Air Vehicle (MAV) is a type of Unmanned Aerial Vehicle (UAV) that has a wingspan of
roughly 15 centimeters, much smaller than the current UAVs in the field today. Recent advances in
sensor and camera miniaturization have made MAVs popular choices as platforms for conducting
surveillance in hostile environments where maneuverability is at a premium. In addition to the
obvious defense applications, MAVs are also used in search-and-resuce, ecological surveys, disas-
ter relief, and climate monitoring. Advances in artificial intelligence research has also made the
organization of MAV swarms, which alter their flight plan and sensor coverage based on received
input from other networked drones, much more practical for the near future. As this limits the
number of needed human operators, MAVs are sure to increase in utility and popularity as time
goes on.

In the past, MAVs have used fixed wing designs, which suffer from a phenomenon called flutter.
Flutter is caused by vibrations from aerodynamic forces interacting with vibrations of the material
of the wing, causing dangerous oscillations that can become strong enough to snap the wing in
two. Flexible wings, inspired by biology, solve this problem and improve on the design in terms
of maneuverability and wind tolerance [4].

Flexible wing design is relatively new, so newer models must be developed to simulate the
aerodynamics of a membrane wing. We use plate theory to understand the structural mechan-
ics of the flexible wing. Older models used classical Newtonian mechanics to derive and analyze
such models [1], however, we use a Hamiltonian approach to derive the model. The Hamiltonian
approach works by describing the energy of the entire system. This makes the model momentum
-invariant, while classical mechanics depend on momentum. In addition to the new approach,
we also incorporate nonlinearities into our model. For example, in traditional models, the axial
displacement was assumed to be zero and the average axial force is assumed constant over the
plate [5]. In nonlinear models, the axial displacement are not trivial [2]. Since physical systems
are for the most part nonlinear, an accurate model of the wing structure must be nonlinear. The
first nonlinearity is called geometric, because it is a result of the nonlinear strain-displacement
relations, when the deformations are large. The material nonlinearity is a result of a nonlinear
stress-strain relation, however, in this paper we use a linear relationship.

The outline of this paper is as follows. First, we present the development of the mathematical
model for the dynamic behavior of a nonlinear plate undergoing deformation both in transverse
and axial directions using a Hamiltonian approach. Section 3 presents a new stability result for the
associated non-linear boundary value problem for axial and transverse displacements by obtain-
ing an energy-estimate for the excited non-linear plate. Note that, we have only considered this
model for simplicity and the analysis presented can be extended to more complex problems as well.

2 Derivation of Mathematical Model

The primary goal of this section is to derive a system of partial differential equations that de-
scribe the total energy of the plate. To do this, we must establish three interrelated quantities:
displacement, stress, and strain. These quantities are then used to define the kinetic and potential
energies of the system. After the formulas for energy are defined, we use Hamilton’s principle to
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derive the final model.

2.1 Displacement

We need functions to represent the total displacement of the plate at any point in our (x1, x2, x3)
plane. We use the Kirchoff-Love theory of plates to define the displacement, which assumed
a three dimensional plate, if thin enough, can be represented by a two-dimensional mid-plane.
The following three kinematic assumptions hold: straight lines normal to the mid-surface remain
straight after deformation, straight lines normal to the mid-surface remain normal to the mid-
surface after deformation, and the thickness of the plate does not change during a deformation.
We use u to denote the in-plane axial deformation of the x1-axis, v denotes the in-plane axial
deformation of the x2-axis, and w denotes the transverse deformation. With this in mind, the
following equations for the total deformation are defined as follows:

u1(x1, x2, t) = u− x3wx1
u2(x1, x2, t) = v − x3wx2
u3(x1, x2, t) = w.

2.2 Strain

Strain is for our purposes a dimensionless quantity that measures the compressing or stretching
of an object based on a given load [3]. We will be using a nonlinear second order Green strain
tensor defined below [1]:

Eij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

+
∂um
∂xi

∂um
∂xj

),

where i,j = 1, 2, or 3 depending on the coordinate direction. Note the final term is the source of
the geometric nonlinearity. Now we simply substitute in the deformation equations. It’s relatively
straightforward to see that all elements of this tensor where i = 3 or j = 3 are zero, so only the
following elements of Ei,j are nontrivial.

E11 =
1

2
(2(ux1 − x3wx1x1) + w2

x1
)

E22 =
1

2
(2(vx2 − x3wx2x2) + w2

x2
)

E12 =
1

2
((ux2 + vx1 − 2x3wx1x2) + wx1wx2)

E21 =
1

2
((ux2 + vx1 − 2x3wx1x2) + wx1wx2).
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2.3 Stress

Stress is a physical quantity measuring the internal forces affecting the physical system. The
stress-strain relationship is materially linear and related to Hooke’s law, where Y is the Young’s
modulus of elasticity and ν is the Poisson ratio. Note that both are determined by the material.

σij =
Y

(1− ν2)
Eij.

We then simply plug in our previous equations. As before, terms in which i = 3 or j = 3 are
trivial.

σ11 =
Y

(1− ν2)
E11

σ22 =
Y

(1− ν2)
E22

σ12 =
1− ν

2

Y

(1− ν2)
E12

σ21 =
1− ν

2

Y

(1− ν2)
E12.

2.4 Kinetic Energy

Kinetic energy, denoted T, is relatively straightforward, using the typical physics formulation.

T =
1

2
m||V ||2.

We must account for all the mass. To do this, we assume a homogeneous plate density ρ so
that T takes the form of an integral over the area. The squared norm of V in this case is identical
to the dot product of V with itself, i.e., the sum of the squared derivatives of our displacement
functions with respect to time.

T =

∫ a

0

∫ a

0

∫ h
2

−h
2

ρ

2
([u1]

2
t + [u2]

2
t + [u3]

2
t ) dx3 dx2 dx1.

We then plug in these derivatives, resulting in the following integral:

T =
ρ

2

∫ a

0

∫ a

0

∫ h
2

−h
2

([u− x3wx1 ]2t + [v − x3wx2 ]2t + [w]2t ) dx3 dx2 dx1.

Expanding this out, we have:
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T =
ρ

2

∫ a

0

∫ a

0

∫ h
2

−h
2

([ut − [x3]twx1 − x3wx1t]2 + [vt − [x3]twx2 − x3wx2t]2 + w2
t ) dx3 dx2 dx1

=
ρ

2

∫ a

0

∫ a

0

∫ h
2

−h
2

((u2t − 2ut[x3]twx1 − 2utx3wx1t + [x3]
2
tw

2
x1

+ 2[x3]twx1x3wx1t + x23w
2
x1t

)

+ (v2t − 2vt[x3]twx2 − 2vtx3wx2t + [x3]
2
tw

2
x2

+ 2[x3]twx2x3wx2t + x23w
2
x2t

) + w2
t ) dx3 dx2 dx1

=
ρ

2

∫ a

0

∫ a

0

[x3(u
2
t + v2t + w2

t ) +
x33
3

(w2
x1t

+ w2
x2t

)]
x3=

h
2

x3=
−h
2

dx2 dx1.

As a result of the symmetrical limits of integration, many terms equal zero when we integrate with
respect to x3. In addition, the inertial term h3

12
(w2

x1t
+ w2

x2t
) is assumed to be zero [7].

T =

∫ a

0

∫ a

0

ρh

2
(u2t + v2t + w2

t ) dx2 dx1.

2.5 Potential Energy

The potential energy can be split into two major sources: energy caused by gravity and energy
caused by the bent plate. Due to the method used to construct our coordinate system, the grav-
itational potential energy is assumed to be zero. The energy caused by the bent plate can be
constructed as the energy stored in a bent spring defined as follows:

U =

∫ a

0

∫ a

0

∫ h
2

−h
2

1

2
(σ11E11 + σ22E22 + σ12E12) dx3 dx2 dx1.

Plugging in our terms, we have the following:

U =
1

2

∫ a

0

∫ a

0

∫ h
2

−h
2

(
Y

(1− ν2)
E2

11 +
Y

(1− ν2)
E2

22 +
1− ν

2

Y

(1− ν2)
E2

12 dx3 dx2 dx1

=
1

2

∫ a

0

∫ a

0

∫ h
2

−h
2

(
Y

(1− ν2)
(
1

2
(2(ux1 − x3wx1x1) + w2

x1
)2 +

Y

(1− ν2)
(
1

2
(2(vx2 − x3wx2x2) + w2

x2
)2

+
1− ν

2

Y

(1− ν2)
(
1

2
(ux2 + vx1 − 2x3wx1x2))

2dx3 dx2 dx1.

Integrating with respect to x3, we have the following:
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U =
Y

(1− ν2)

∫ a

0

∫ a

0

h((ux1 +
1

2
w2
x1

)2 + (vx2 +
1

2
w2
x2

)2 +
1− ν

2
(ux2 + vx1 + wx1wx2)

2)

+
h3

12
(wx1w

2
x1

+ wx2wx2 + wx1w
2
x2

) dx2 dx1.

However, we still require the potential energy of the external applied forces. Here, it will be defined
as the negative of the work done by fluid forces acting on the plate. The fxi represent the fluid
forces acting on the place, and K is a damping constant which acts on the first temporal derivative.

A = u(fx1 −Kut) + v(fx2 −Kvt) + w(fx3 −Kwt)

2.6 Hamilton’s Method

According to Hamilton’s principle, the progression of all physical systems minimizes the time
integral of the Lagrangian, which is to say the variation of the Lagrangian will always be zero, [6]
i.e.

δ

∫ t1

t0

[(T − U) + A]dt = 0.

Plugging in the kinetic and potential energies we have the following integral:

0 = δ

∫ t1

t0

∫ a

0

∫ a

0

ρh

2
(u2t + v2t + w2

t )

− Y h

(1− ν2)
((ux1 +

1

2
w2
x1

)2 + (vx2 +
1

2
w2
x2

)2 +
1− ν

2
(ux2 + vx1 + wx1wx2)

2)

+
Y h3

12(1− ν2)
(wx1w

2
x1

+ wx2wx2 + wx1w
2
x2

)

+ u(fx1 −Kut) + v(fx2 −Kvt) + w(fx3 −Kwt) dx2 dx1 dt.

We then continue by calculus of variations, obtaining the following.
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0 =

∫ t1

t0

∫ a

0

∫ a

0

ρh

2
(utδut + vtδvt + wtδwt)

− Y h

(1− ν2)
((ux1 +

1

2
w2
x1

)δ(ux1 +
1

2
w2
x1

) + (vx2 +
1

2
w2
x2

)δ(vx2 +
1

2
w2
x2

)

+
1− ν

2
(ux2 + vx1 + wx1wx2)δ(ux2 + vx1 + wx1wx2))

+
Y h3

12(1− ν2)
(wx1x1δwx1x1 + wx2x2δwx2x2 + wx1x2δwx1x2)

+ δufx1 −Kδutu+ δvfx2 −Kδvtv + δwfx3 −Kδwtw dx2 dx1.

Using integration by parts to handle each term, the variation and the first spacial and temporal
derivatives of the variation are zero at the limits of integration, therefore each boundary term is
cancelled. After collecting all of the terms with contain δu, δv, δw, we can separate the integral
into three parts as follows:

0 =

∫ t1

t0

∫ a

0

∫ a

0

δu

(
− ρhutt +

Y h

(1− ν2)
([ux1 +

1

2
w2
x1

]x1 +
1− ν

2
[ux2 + vx1 + wx1wx2 ]x2)

+ Kut + fx1

)
dx2 dx1 dt

0 =

∫ t1

t0

∫ a

0

∫ a

0

δv

(
− ρhvtt +

Y h

(1− ν2)
([vx2 +

1

2
w2
x2

]x2 +
1− ν

2
[ux2 + vx1 + wx1wx2 ]x1)

+ Kvt + fx2

)
dx2 dx1 dt

0 =

∫ t1

t0

∫ a

0

∫ a

0

δw

(
− ρhwtt +

Y h

(1− ν2)
([wx1(ux1 +

1

2
w2
x1

)]x1 + [wx2(vx2

+
1

2
w2
x2

)]x2 +
1− ν

2
[wx1(ux2 + vx1 + wx1wx2)]x2 + [wx2(ux2 + vx1 + wx1wx2)]x1)

+
Y h3

12(1− ν2)
(wx1x1x1x1 + wx2x2x2x2 + 2wx1x1x2x2) +Kwt + fx3

)
dx2 dx1 dt.

The functions fx1 , fx2 , fx3 can be chosen arbitrarily to make the integral nonnegative, and this can
only be true if the three integrands are identically zero, so the final model looks as follows:

fx1 = utt + Cut −D1[ux1 + 1
2
w2
x1

]x1 −B[ux2 + vx1 + wx1wx2 ]x2 (1)
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fx2 = vtt + Cvt −D1[vx2 + 1
2
w2
x2

]x2 −B[ux2 + vx1 + wx1wx2 ]x1 (2)

fx3 = wtt + Cwt −D1([wx1(ux1 +
1

2
w2
x1

)]x1 + [wx2(vx2 +
1

2
w2
x2

)]x2) (3)

− B[wx1(ux2 + vx1 + wx1wx2)]x2 + [wx2(ux2 + vx1 + wx1wx2)]x1
+ E[wx1x1x1x1 + wx2x2x2x2 + 2wx1x1x2x2 ]

where C = K
ρh

, D1 = (Y )
ρ(1−ν2) , B = Y

2ρ(1+ν)
, and E = Y h2

12(1−ν2)ρ .

3 Stability Result for the Mathematical Model

The above system of coupled partial differential equations (1), (2), and (3) provide the governing
equations of motion for a plate being deformed by some external force with components fx1 , fx2 ,
and fx3 . We will show for any transversal force f3 the energy of the system changes proportionally
to the force. In other words, our choice of initial conditions won’t cause the system to experience
flutter or other disastrous instabilities. To properly analyze the effect of the initial conditions on
the stability of the system, we must simplify the system to an ordinary differential equation. The
ultimate goal is to combine and re-separate the system based on elements containing temporal
derivatives and all other elements. We will proceed using several lemmas, for details refer to the
Appendix section.

3.1 Creating the Ordinary Differential Equation

For the purposes of unit conversion we introduce a constant a∈(0, 1) into the system.

Multiply (1) by ut and aCu respectively. By adding the resulting equations together and us-
ing the fact that,

uttut =
1

2
[ut]

2
t

aC2utu =
a

2
C2
[
u2
]
t
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we are left with,

1

2
[ut]

2
t + Cu2t + aCuttu +

a

2
C2
[
u2
]
t

= D1

[
ux1 +

1

2
(wx1)

2

]
x1

ut + aD1C

[
ux1 +

1

2
(wx1)

2

]
x1

u

+E [ux2 + vx1 + wx1wx2 ]x2 ut

+aEC [ux2 + vx1 + wx1wx2 ]x2 u+ fx1(ut + aCu) (4)

Apply the same method to (2) with vt and aCv respectively. Add the resulting equations together
and we get the following,

1

2
[vt]

2
t + Cv2t + aCvttv +

a

2
C2
[
v2
]
t

= D1

[
vx2 +

1

2
(wx2)

2

]
x2

vt + aD1C

[
vx2 +

1

2
(wx2)

2

]
x2

v

+E [ux2 + vx1 + wx1wx2 ]x1 vt

+aEC [ux2 + vx1 + wx1wx2 ]x1 v + fx2(vt + aCv) (5)

Multiply (3) by wt and 1
2
aKw, respectively. By adding the resulting equations together and using

the fact that,

wttwt =
1

2
[wt]

2
t

aC2

2
wtw =

a

4
C2
[
w2
]
t
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we are left with,

1

2
[wt]

2
t + Cw2

t +
aC

2
wttw +

a

4
C2
[
w2
]
t

= D1

[
wx1

(
ux1 +

1

2
(wx1)

2

)]
x1

wt +D1

[
wx2

(
vx2 +

1

2
(wx2)

2

)]
x2

wt

+
aD1C

2

[
wx1

(
ux1 +

1

2
(wx1)

2

)]
x1

w +
aD1C

2

[
wx2

(
vx2 +

1

2
(wx2)

2

)]
x2

w

+E [(ux2 + vx1 + wx1wx2)wx1 ]x2 wt + E [(ux2 + vx1 + wx1wx2)wx2 ]x1 wt

+
aEC

2
[(ux2 + vx1 + wx1wx2)wx1 ]x2 w +

aEC

2
[(ux2 + vx1 + wx1wx2)wx2 ]x1 w

−D [wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]wt

−aDC
2

[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]w + fx3

(
wt +

aCw

2

)
(6)

Ultimately we will be integrating in each one of the equations and it is therefore in our best interest
to rewrite many of the terms as derivatives allowing us to integrate by parts. We proceed in the
following manner. Rewrite the left hand side of (4) as,

1

2
[ut]

2
t + Cu2t + aCuttu +

a

2
C2
[
u2
]
t

=
a

2

[
(ut + Cu)2

]
t
+

1− a
2

[
u2t
]
t
+ (1− a)Cu2t (7)

rewrite the left hand side of (5) as,

1

2
[vt]

2
t + Cv2t + aCvttv +

a

2
C2
[
v2
]
t

=
a

2

[
(vt + Cv)2

]
t
+

1− a
2

[
v2t
]
t
+ (1− a)Cv2t (8)

and finally rewrite the left hand side of (6) as,

1

2
[wt]

2
t + Cw2

t +
aC

2
wttw +

a

4
C2
[
w2
]
t

=
a

4

[
(wt + Cw)2

]
t
+

(
1

2
− a

4

)[
w2
t

]
t
+
(

1− a

2

)
Cw2

t (9)
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Substituting the results from (7), (8) and (9) in (4), (5) and (6) respectively yields:

a

2

[
(ut + Cu)2

]
t

+
1− a

2

[
u2t
]
t
+ (1− a)Cu2t

− D1

[
ux1 +

1

2
(wx1)

2

]
x1

ut − aD1C

[
ux1 +

1

2
(wx1)

2

]
x1

u

− E [ux2 + vx1 + wx1wx2 ]x2 ut

− aEC [ux2 + vx1 + wx1wx2 ]x2 u = fx1(ut + aCu) (10)

a

2

[
(vt + Cv)2

]
t

+
1− a

2

[
v2t
]
t
+ (1− a)Cv2t

− D1

[
vx2 +

1

2
(wx2)

2

]
x2

vt − aD1C

[
vx2 +

1

2
(wx2)

2

]
x2

v

− E [ux2 + vx1 + wx1wx2 ]x1 vt

− aEC [ux2 + vx1 + wx1wx2 ]x1 v = fx2(vt + aCv) (11)

a

4

[
(wt + Cw)2

]
t
+

(
1

2
− a

4

)[
w2
t

]
t
+
(

1− a

2

)
Cw2

t

− D1

[
wx1

(
ux1 +

1

2
(wx1)

2

)]
x1

wt −D1

[
wx2

(
vx2 +

1

2
(wx2)

2

)]
x2

wt

− aD1C

2

[
wx1

(
ux1 +

1

2
(wx1)

2

)]
x1

w − aD1C

2

[
wx2

(
vx2 +

1

2
(wx2)

2

)]
x2

w

− E [(ux2 + vx1 + wx1wx2)wx1 ]x2 wt − E [(ux2 + vx1 + wx1wx2)wx2 ]x1 wt

− aEC

2
[(ux2 + vx1 + wx1wx2)wx1 ]x2 w −

aEC

2
[(ux2 + vx1 + wx1wx2)wx2 ]x1 w

+ D [wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]wt

+
aDC

2
[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]w = fx3

(
wt +

aCw

2

)
(12)

As mentioned before we are interested in integrating these equations over our domain to get a
measure of energy. To do this we make use of the steps taken in the previous few lines and inte-
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grate many of the terms by parts and then sum each integrated equation yielding,

d

dt

{∫ L

0

∫ L

0

[
a

2
(ut + Cu)2 +

a

2
(vt + Cv)2 +

a

4
(wt + Cw)2 +

1− a
2

u2t +
1− a

2
v2t +

(
1

2
− a

4

)
w2
t

D1

2

(
ux1 +

1

2
(wx1)

2

)2

+
D1

2

(
vx2 +

1

2
(wx2)

2

)2

+
E

2
(ux2 + vx1 + wx1wx2)

2

D

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

}
+

∫ L

0

∫ L

0

[
(1− a)Cu2t + (1− a)Cv2t +

(
1− a

2

)
Cw2

t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1 +

(
vx2 +

1

2
(wx2)

2

)2

+aEC (ux2 + vx1 + wx1wx2)
2 +

aDC

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

=

∫ L

0

∫ L

0

[
fx1(ut + aCu) + fx2(vt + aCv) + fx3

(
wt +

aCw

2

)]
dx1 dx2

And we make the following definitions

M1 =

∫ L

0

∫ L

0

[
a

2
(ut + Cu)2 +

a

2
(vt + Cv)2 +

a

4
(wt + Cw)2 +

1− a
2

u2t +
1− a

2
v2t +

(
1

2
− a

4

)
w2
t

D1

2

(
ux1 +

1

2
(wx1)

2

)2

+
D1

2

(
vx2 +

1

2
(wx2)

2

)2

+
E

2
(ux2 + vx1 + wx1wx2)

2

D

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

M2 =

∫ L

0

∫ L

0

[
(1− a)Cu2t + (1− a)Cv2t +

(
1− a

2

)
Cw2

t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1 +

(
vx2 +

1

2
(wx2)

2

)2

+aEC (ux2 + vx1 + wx1wx2)
2 +

aDC

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

F =

∫ L

0

∫ L

0

[
fx1(ut + aCu) + fx2(vt + aCv) + fx3

(
wt +

aCw

2

)]
dx1 dx2

We then have the following differential equation.

dM1

dt
+M2 = F

Before we continue let us firstly note that the equations for M1 and M2 have fairly similar terms.

12



Both equations share terms share the same form of kinetic energy and take into account the way
the system’s energy is dependent upon the velocities of each direction and how the velocities are
related to the direction. In addition note that the derivation up until the point has done under the
assumption that fx1 , fx2 6= 0. For the purposes of convenience we will now adopt this hypothesis.

From here we will proceed by putting a bound on a defined energy measure which has a form
very similar to M1. We will choose our energy measure in such a way that allows us to apply a
bound to it, but also ensure that the contributions of the energy are not neglected.

As mentioned before for the purpose of convenience we will let,

F =

∫ L

0

∫ L

0

[
fx3

(
wt +

aCw

2

)]
dx1 dx2

and analyze the equation,
dM1

dt
+M2 = F

3.2 Young’s Inequality

We want to apply Young’s Inequality to fx3w and fx3wt
We have by Young’s Inequality that for ε1 > 0,

fx3w =

(
fx3√

2

)(
w
√

2
)
≤ 1

2ε1

(
fx3√

2

)2

+
ε1
2

(
w
√

2
)2

=
f 2
x3

4ε1
+ ε1w

2

and because aC
2
> 0 it follows that,

aC

2
fx3w ≤

aC

2

(
f 2
x3

4ε1
+ ε1w

2

)
Equivalently with fx3wt we have that for any ε2 > 0,

fx3wt =

(
fx3√

2

)(
wt
√

2
)
≤ 1

2ε2

(
fx3√

2

)2

+
ε2
2

(
wt
√

2
)2

=
f 2
x3

4ε2
+ ε2w

2
t

and thus it follows that,

aC

2
fx3w + fx3wt = fx3

(
wt +

aCw

2

)
≤ aC

2

(
f 2
x3

4ε1
+ ε1w

2

)
+
f 2
x3

4ε2
+ ε2w

2
t

leaving us with the following inequality for our original equation,

[M1]t+M2 =

L∫
0

L∫
0

[
fx3

(
wt +

aCw

2

)]
dx1 dx2 ≤

L∫
0

L∫
0

[
aC

2

(
f 2
x3

4ε1
+ ε1w

2

)
+
f 2
x3

4ε2
+ ε2w

2
t

]
dx1 dx2
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3.3 Poincaré Inequality

With the introduction of ε1 and ε2 we are free to equate them to any two positive real numbers
we desire. We will choose them in a fashion that allows us to relate M1 and M2.

Choose ε1 and ε2 accordingly from the Poincaré Inequality:

By rearranging the previous inequality we see that,

[M1]t +M2 − ε1
aC

2
w2 − ε2w2

t ≤
L∫

0

L∫
0

[
aC

2

f 2
x3

4ε1
+
f 2
x3

4ε2

]
dx1 dx2

From which we may replace the equation of M2 yielding,

[M1]t +

L∫
0

L∫
0

(
(1− a)Cu2t + (1− a)Cv2t +

[
(1− a

2
)C − ε2

]
w2
t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1

(
vx2 +

1

2
(wx2)

2

)2

+aEC(ux2 + vx1 + wx1wx2)
2

+
aC

2

[
D(w2

x1x1
+ 2w2

x1x2
+ w2

x2x2
)− ε1w2

])
dx1 dx2

≤
L∫

0

L∫
0

f 2
x3

(
aC

8ε1
+

1

4ε2

)
dx1 dx2 (13)

Note by the special case of the Poincaré Inequality where w vanishes on the boundary, it fol-
lows that there exists K1 so that,

L∫
0

L∫
0

w2 dx1 dx2 ≤ K2
1

L∫
0

L∫
0

w2
x1

+ w2
x2
dx1 dx2 = K2

1

L∫
0

L∫
0

w2
x1
dx1 dx2 +K2

1

L∫
0

L∫
0

w2
x2
dx1 dx2

And by application of the inequality to both individual integrals on the right hand side, we
guarantee the existence of a K2 and K3 so that,

L∫
0

L∫
0

w2 dx1 dx2 ≤ K2
2

L∫
0

L∫
0

(
w2
x1x1

+ w2
x1x2

)
dx1 dx2 +K2

3

L∫
0

L∫
0

(
w2
x2x2

+ w2
x1x2

)
dx1 dx2

If we let K =max{K1, K2} then we receive the following inequality,

L∫
0

L∫
0

w2 dx1 dx2 ≤ K2

L∫
0

L∫
0

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)
dx1 dx2
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It follows that because aCε1
2

> 0 that,

−aCε1
2

K2

L∫
0

L∫
0

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)
dx1 dx2 ≤ −

aCε1
2

L∫
0

L∫
0

w2 dx1 dx2

where we may apply this to (13) to yield,

[M1]t +

L∫
0

L∫
0

(
(1− a)Cu2t + (1− a)Cv2t +

[
(1− a

2
)C − ε2

]
w2
t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1

(
vx2 +

1

2
(wx2)

2

)2

+aEC(ux2 + vx1 + wx1wx2)
2

+
aC

2

(
D − ε1K2

) (
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

))
dx1 dx2

≤
L∫

0

L∫
0

f 2
x3

(
aC

8ε1
+

1

4ε2

)
dx1 dx2

And by letting ε1 = D
2K2 to imitate the form of M1 we see,

[M1]t +

L∫
0

L∫
0

(
(1− a)Cu2t + (1− a)Cv2t +

[
(1− a

2
)C − ε2

]
w2
t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1

(
vx2 +

1

2
(wx2)

2

)2

+aEC(ux2 + vx1 + wx1wx2)
2

aCD

4

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

))
dx1 dx2

≤
L∫

0

L∫
0

f 2
x3

(
aCK2

4D
+

1

4ε2

)
dx1 dx2

To shape M2 into the form of M1 the choice of ε2 is much simpler. Let ε2 =
(1−a

2
)C

2
then,

[M1]t + C

L∫
0

L∫
0

(
(1− a)u2t + (1− a)v2t +

1

2

(
1− a

2

)
w2
t

+aD1

(
ux1 +

1

2
(wx1)

2

)2

+ aD1

(
vx2 +

1

2
(wx2)

2

)2

+aE(ux2 + vx1 + wx1wx2)
2

aD

4

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

))
dx1 dx2
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≤
L∫

0

L∫
0

f 2
x3

(
aCK2

4D
+

1

C (2− a)

)
dx1 dx2

We now define the integral on the left hand side to be M2∗, and if one compares M1 with M∗
2 it

is clear that,
M∗

2 ≤ 2M1

3.4 Bounding the Equation

From here we will apply the inequality we have just found to solve for a bound M∗
2 in terms of

the L2 norm of fx3 as a function of time:

Recall that currently have the following inequality,

[M1]t + CM∗
2 ≤

L∫
0

L∫
0

f 2
x3

(
aCK2

4D
+

1

C (2− a)

)
dx1 dx2

Which we may integrate in time from zero to some time t to yield,

M1(t)−M1(0) + C

∫ t

0

M∗
2 (τ) dτ ≤

(
aCK2

4D
+

1

C (2− a)

)∫ t

0

||fx3 ||2L2
dτ

where || · ||L2 is the L-2 norm. We may apply the fact that M∗
2 ≤ 2M1 and see,

1

2
M∗

2 (t)−M1(0) + C

t∫
0

M∗
2 (τ) dτ ≤

(
aCK2

4D
+

1

C (2− a)

) t∫
0

||fx3||2L2
dτ

and simply rearranging a few terms produces this first order linear differential inequality.

M∗
2 (t) + 2C

t∫
0

M∗
2 (τ) dτ ≤ 2M1(0) +

(
aCK2

2D
+

2

C (2− a)

) t∫
0

||fx3||2L2
dτ

Note we may solve this by means of multiplying by the integrating factor. This method produces,

d

dt

e2Ct t∫
0

M∗
2 (τ) dτ

 ≤ 2M1(0)e2Ct + e2Ct
(
aCK2

2D
+

2

C (2− a)

) t∫
0

||fx3||2L2
dτ

and integrating in time from 0 to some time T gives us,e2Ct t∫
0

M∗
2 (τ) dτ

T
0

≤
[
M1(0)

C
e2Ct

]T
0

+

T∫
0

e2Ct(aCK2

2D
+

2

C (2− a)

) t∫
0

||fx3||2L2
dτ

 dt

16



e2CT
∫ T

0

M∗
2 (τ) dτ ≤ M1(0)

C

[
e2CT − 1

]
+

[
aCK2

2D
+

2

C (2− a)

] T∫
0

e2Ct

 t∫
0

||fx3||2L2
dτ

 dt

where we may solve for
∫ T
0
M∗

2 (τ) dτ to yield,

T∫
0

M∗
2 (τ) dτ ≤ M1(0)

C

[
1− e−2CT

]
+ e−2CT

[
aCK2

2D
+

2

C (2− a)

] T∫
0

e2Ct

 t∫
0

||fx3||2L2
dτ

 dt

and this gives us our theorem.

3.5 Theorem

We have shown that for any transversal force, fx3 , the defined energy measure of our system satifies
the following inequality for any given time T ,

T∫
0

M∗
2 (τ) dτ ≤ M1(0)

C

[
1− e−2CT

]
+ e−2CT

[
aCK2

2D
+

2

C (2− a)

] T∫
0

e2Ct

 t∫
0

||fx3||2L2
dτ

 dt

where M∗
2 (t) is defined as,

M∗
2 (t) =

L∫
0

L∫
0

(
(1−a)u2t+(1−a)v2t+

1

2

(
1− a

2

)
w2
t+aD1

(
ux1 +

1

2
(wx1)

2

)2

+aD1

(
vx2 +

1

2
(wx2)

2

)2

+aE(ux2 + vx1 + wx1wx2)
2aD

4

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

))
dx1 dx2

This guarantees the stability of our system and accounts for many of the contributions of our
system including most importantly the kinetic energies of all the separate components. With some
conditioning on the force being applied we may immediately deduce two corollaries.

3.6 Corollary 1

If ||fx3||L2 is bounded in time by a constant, F , then for all time T we have that,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
− F 2

4C2

[
aCK2

4D
+

1

C (2− a)

])
+
F 2

2C

[
aCK2

4D
+

1

C (2− a)

]
T

By hypothesis we have that for all time ||fx3||L2 is bounded is bounded by F and thus,

t∫
0

||fx3||2L2
dτ ≤

t∫
0

F 2 dτ = tF 2
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And multiplying the above inequality by e2Ct we see that for any time t,

e2Ct
t∫

0

||fx3||2L2
dτ ≤ tF 2e2Ct

Applying the same method as in the first step of the corollary we see that for all T ,

T∫
0

e2Ct

 t∫
0

||fx3||2L2
dτ

 dt ≤
T∫

0

tF 2e2Ct dt =
F 2

4C2

(
e2CT (2CT − 1) + 1

)
We may now apply the theorem and receive that,

T∫
0

M∗
2 (τ) dτ ≤ M1(0)

C

[
1− e−2CT

]
+ e−2CT

[
aCK2

2D
+

2

C (2− a)

]
F 2

4C2

(
e2CT (2CT − 1) + 1

)
And by rearranging a few term we find that,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
− F 2

4C2

[
aCK2

2D
+

2

C (2− a)

]) (
1− e−2CT

)
+
F 2

2C

[
aCK2

4D
+

1

C (2− a)

]
T

In addition we have (1− e−2CT ) ≤ 1 for all T ≥ 0 and therefore,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
− F 2

4C2

[
aCK2

4D
+

1

C (2− a)

])
+
F 2

2C

[
aCK2

4D
+

1

C (2− a)

]
T

3.7 Corollary 2

If
∞∫
0

||fx3||2L2
dt = F then,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
+

F

2C

[
aCK2

4D
+

1

C (2− a)

])

By applying the equality hypothesis to the theorem we have that,

T∫
0

M∗
2 (τ) dτ ≤ M1(0)

C

[
1− e−2CT

]
+ e−2CT

[
aCK2

4D
+

1

C (2− a)

] T∫
0

Fe2Ct dt

18



And by integrating we find that,

T∫
0

M∗
2 (τ) dτ ≤ M1(0)

C

[
1− e−2CT

]
+ e−2CT

[
aCK2

4D
+

1

C (2− a)

]
F

2C

(
e2CT − 1

)
By rearranging the terms we find,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
+

F

2C

[
aCK2

4D
+

1

C (2− a)

]) (
1− e−2CT

)
Therefore it follows that,

T∫
0

M∗
2 (τ) dτ ≤

(
M1(0)

C
+

F

2C

[
aCK2

4D
+

1

C (2− a)

])
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4 Appendix

This section is dedicated to many of the steps that were omitted in the previous sections for the
purpose of clarity. The proofs follow in order of appearance throughout the derivation. Due to the
symmetry of equations (1) and (2) we will omit the steps taken on (2) due to the similarity and
symmetry that equations (1) and (2) share. In addition for the first two lemmas we have isolated
the left hand sides to the terms including the force and the coefficient only for the purposes of
avoiding Step 5 as it is no more than simple substitution and rearrangement.

4.1 Lemma 1

Multiply (1) by ut and aCu respectively. This yields the following two equations.

aCufx1 = aCuutt + aC2uut − aCD1u[ux1 +
1

2
(wx1)

2]x1 − aCEu[ux2 + vx1 + wx1wx2 ]x2

utfx1 = ututt + Cu2t −D1ut[ux1 +
1

2
(wx1)

2]x1 − Eut[ux2 + vx1 + wx1wx2 ]x2

From here we may add the equations together and simplify.

aCufx1 + utfx1 = aCuutt + ututt + aC2uut + Cu2t

−aCD1u[ux1 +
1

2
(wx1)

2]x1 −D1ut[ux1 +
1

2
(wx1)

2]x1

−aCEu[ux2 + vx1 + wx1wx2 ]x2 − Eut[ux2 + vx1 + wx1wx2 ]x2

fx1(aCu+ ut) = aCuutt +
1

2
[u2t ]t +

a

2
C2[u2]t + Cu2t

−aCD1u[ux1 +
1

2
(wx1)

2]x1 −D1ut[ux1 +
1

2
(wx1)

2]x1

−aCEu[ux2 + vx1 + wx1wx2 ]x2 − Eut[ux2 + vx1 + wx1wx2 ]x2
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4.2 Lemma 2

Multiply (3) by wt and 1
2
aKw, respectively. This yields the following two equations.

1

2
aCwfx3 =

1

2
aCwwtt +

1

2
aC2wwt +

1

2
aCDw[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

−1

2
aCD1w[wx1(ux1 +

1

2
(wx1)

2)]x1 −
1

2
aCD1w[wx2(vx2 +

1

2
(wx2)

2)]x2

−1

2
aCEw[wx1(ux2 + vx1 + wx1wx2)]x2 −

1

2
aCEw[wx2(ux2 + vx1 + wx1wx2)]x1

wtfx3 = wtwtt + Cw2
t +Dwt[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

−D1wt[wx1(ux1 +
1

2
(wx1)

2)]x1 −D1wt[wx2(vx2 +
1

2
(wx2)

2)]x2

−Ewt[wx1(ux2 + vx1 + wx1wx2)]x2 − Ewt[wx2(ux2 + vx1 + wx1wx2)]x1

From here we may add the equations together and simplify.

1

2
aCwfx3 + wtfx3 =

1

2
aCwwtt + wtwtt +

1

2
aC2wwt + Cw2

t

+
1

2
aCDw[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

+Dwt[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

−1

2
aCD1w[wx1(ux1 +

1

2
(wx1)

2)]x1 −
1

2
aCD1w[wx2(vx2 +

1

2
(wx2)

2)]x2

−D1wt[wx1(ux1 +
1

2
(wx1)

2)]x1 −D1wt[wx2(vx2 +
1

2
(wx2)

2)]x2

−1

2
aCEw[wx1(ux2 + vx1 + wx1wx2)]x2 −

1

2
aCEw[wx2(ux2 + vx1 + wx1wx2)]x1

−Ewt[wx1(ux2 + vx1 + wx1wx2)]x2 − Ewt[wx2(ux2 + vx1 + wx1wx2)]x1

fx3

(
1

2
aCw + wt

)
=

1

2
aCwwtt +

1

2
[w2

t ]t +
1

4
aC2[w2]t + Cw2

t

+
1

2
aCDw[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

+Dwt[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]

−1

2
aCD1w[wx1(ux1 +

1

2
(wx1)

2)]x1 −
1

2
aCD1w[wx2(vx2 +

1

2
(wx2)

2)]x2

−D1wt[wx1(ux1 +
1

2
(wx1)

2)]x1 −D1wt[wx2(vx2 +
1

2
(wx2)

2)]x2

−1

2
aCEw[wx1(ux2 + vx1 + wx1wx2)]x2 −

1

2
aCEw[wx2(ux2 + vx1 + wx1wx2)]x1

−Ewt[wx1(ux2 + vx1 + wx1wx2)]x2 − Ewt[wx2(ux2 + vx1 + wx1wx2)]x1
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4.3 Lemma 3

Rewrite the left hand side of (4).

aCuutt +
1

2

[
u2t
]
t
+
a

2
C2
[
u2
]
t
+ Cu2t = aCuutt + ututt + aC2uut + Cu2t

= (utt + Cut)(aCu+ ut)

= (utt + Cut)(aut + aCu+ ut − aut)
= a(ut + Cu)(utt + Cut) + (1− a)ut(utt + Cut)

= a(ut + Cu)(utt + Cut) + (1− a)(ututt + Cu2t )

= a(ut + Cu)(utt + Cut) + (1− a)ututt +

(1− a)Cu2t
= a(ut + Cu) [ut + Cu]t + (1− a)ut[ut]t +

(1− a)Cu2t

=
a

2

[
(ut + Cu)2

]
t
+

1− a
2

[
u2t
]
t
+ (1− a)Cu2t

4.4 Lemma 4

Rewrite the left hand side of (6).

1

2
aCwwtt +

1

2
[w2

t ]t +
1

4
aC2[w2]t + Cw2

t =
1

2
aCwwtt + wtwtt +

1

2
aC2wwt + Cw2

t

= (wtt + Cwt)(
1

2
aCw + wt)

= (wtt + Cwt)(
1

2
awt +

1

2
aCw + wt −

1

2
awt)

=
a

2
(wt + Cw)(wtt + Cwt) +

(
1− a

2

)
wt(wtt + Cwt)

=
a

2
(wt + Cw)(wtt + Cwt) +

(
1− a

2

)
wtwtt

+
(

1− a

2

)
Cw2

t

=
a

4

[
(wt + Cw)2

]
t
+

1

2

(
1− a

2

)
[w2

t ]t +
(

1− a

2

)
Cw2

t

The integration will be done and applied to each equation separately, then summed together.
Consider firstly (10).

4.5 Lemma 5∫ L

0

∫ L

0

−aCD1[ux1 +
1

2
(wx1)

2]x1u dx1 dx2

= −
∫ L

0

(∫ L

0

aCD1[ux1 +
1

2
(wx1)

2]x1udx1

)
dx2
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= −
∫ L

0

([
aCD1

[
ux1 +

1

2
(wx1)

2

]
u

]L
0

−
∫ L

0

aCD1

[
ux1 +

1

2
(wx1)

2

]
ux1dx1

)
dx2

= −
∫ L

0

(
−
∫ L

0

aCD1

[
ux1 +

1

2
(wx1)

2

]
ux1dx1

)
dx2

=

∫ L

0

∫ L

0

aCD1

[
ux1 +

1

2
(wx1)

2

]
ux1 dx1 dx2

4.6 Lemma 6∫ L

0

∫ L

0

−D1[ux1 +
1

2
(wx1)

2]x1ut dx1 dx2

= −
∫ L

0

∫ L

0

D1[ux1 +
1

2
(wx1)

2]x1ut dx1 dx2

= −
∫ L

0

([
D1

[
ux1 +

1

2
(wx1)

2

]
ut

]L
0

−
∫ L

0

D1

[
ux1 +

1

2
(wx1)

2

]
[ut]x1

)
dx1 dx2

= −
∫ L

0

(
−
∫ L

0

D1

[
ux1 +

1

2
(wx1)

2

]
[ut]x1 dx1

)
dx2

=

∫ L

0

∫ L

0

D1

[
ux1 +

1

2
(wx1)

2

]
[ut]x1 dx1 dx2

4.7 Lemma 7∫ L

0

∫ L

0

−aCE[ux2 + vx1 + wx1wx2 ]x2u dx1 dx2

= −
∫ L

0

∫ L

0

aCE[ux2 + vx1 + wx1wx2 ]x2u dx2 dx1

= −
∫ L

0

(
[aCE [ux2 + vx1 + wx1wx2 ]u]L0 −

∫ L

0

aCE [ux2 + vx1 + wx1wx2 ]ux1

)
dx2 dx1

= −
∫ L

0

(
−
∫ L

0

aCE [ux2 + vx1 + wx1wx2 ]ux2dx2

)
dx1

=

∫ L

0

∫ L

0

aCE [ux2 + vx1 + wx1wx2 ]ux2 dx2 dx1

=

∫ L

0

∫ L

0

aCE [ux2 + vx1 + wx1wx2 ]ux2 dx1 dx2

4.8 Lemma 8∫ L

0

∫ L

0

−E[ux2 + vx1 + wx1wx2 ]x2ut dx1 dx2

= −
∫ L

0

(∫ L

0

E[ux2 + vx1 + wx1wx2 ]x2utdx2

)
dx1

= −
∫ L

0

(
[E [ux2 + vx1 + wx1wx2 ]ut]

L
0 −

∫ L

0

E [ux2 + vx1 + wx1wx2 ] [ut]x2

)
dx2 dx1
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= −
∫ L

0

(
−
∫ L

0

E [ux2 + vx1 + wx1wx2 ] [ut]x2 dx2

)
dx1

=

∫ L

0

∫ L

0

E [ux2 + vx1 + wx1wx2 ] [ut]x2 dx2 dx1

=

∫ L

0

∫ L

0

E [ux2 + vx1 + wx1wx2 ] [ut]x2 dx1 dx2

4.9 Lemma 9

By taking the integral of (2) we get,∫ L

0

∫ L

0

fx1(aCu+ ut) dx1 dx2 =∫ L

0

∫ L

0

(
a

2

[
(ut + Cu)2

]
t
+

1− a
2

[
u2t
]
t
+ (1− a)Cu2t

−aCD1[ux1 +
1

2
(wx1)

2]x1u−D1[ux1 +
1

2
(wx1)

2]x1ut

−aCE[ux2 + vx1 + wx1wx2 ]x2u− E[ux2 + vx1 + wx1wx2 ]x2ut

)
dx1 dx2

and by the previous lemmas this is equal to,∫ L

0

∫ L

0

fx1(aCu+ ut) dx1 dx2 =∫ L

0

∫ L

0

(
a

2

[
(ut + Cu)2

]
t
+

1− a
2

[
u2t
]
t
+ (1− a)Cu2t

+aCD1

[
ux1 +

1

2
(wx1)

2

]
ux1 +D1

[
ux1 +

1

2
(wx1)

2

]
[ut]x1

aCE [ux2 + vx1 + wx1wx2 ]ux2 + E [ux2 + vx1 + wx1wx2 ] [ut]x2

)
dx1 dx2

4.10 Lemma 10

Noticing that the equations (10) and (11) are the same with the exception of u and v this leads
us to the conclusion that,∫ L

0

∫ L

0

fx2(aCv + vt) dx1 dx2 =

=

∫ L

0

∫ L

0

(
a

2

[
(vt + Cv)2

]
t
+

1− a
2

[
v2t
]
t
+ (1− a)Cv2t

aCD1

[
vx2 +

1

2
(wx2)

2

]
vx2 +D1

[
vx2 +

1

2
(wx2)

2

]
[vt]x2

+aCE [ux2 + vx1 + wx1wx2 ] vx1 + E [ux2 + vx1 + wx1wx2 ] [vt]x1

)
dx1 dx2
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4.11 Lemma 11

This integration will be done and applied to equation (12).∫ L

0

∫ L

0

1

2
aCD[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]w dx1 dx2

=
1

2
aCD

∫ L

0

∫ L

0

[wx1x1x1 ]x1 w dx1 dx2 + 2D

∫ L

0

∫ L

0

[wx1x1x2 ]x2 w dx2 dx1

+D

∫ L

0

∫ L

0

[wx2x2x2 ]w2
w dx2 dx1

=
1

2
aCD

∫ L

0

(
[[wx1x1x1 ]w]L0 −

∫ L

0

[wx1x1x1 ] [w]x1 dx1

)
dx2

+aCD

∫ L

0

(
[[wx1x1x2 ]w]L0 −

∫ L

0

[wx1x1x2 ] [w]x2 dx2

)
dx1

+
1

2
aCD

∫ L

0

(
[[wx2x2x2 ]w]L0 −

∫ L

0

[wx2x2x2 ] [w]x2 dx2

)
dx1

= −1

2
aCD

∫ L

0

∫ L

0

[wx1x1 ]x1 [w]x1 dx1 dx2 − aCD
∫ L

0

∫ L

0

[wx1x2 ]x1 [w]x2 dx1 dx2

−1

2
aCD

∫ L

0

∫ L

0

[wx2x2 ]x2 [w]x2 dx2 dx1

= −1

2
aCD

∫ L

0

(
[wx1x1 ] [wx1 ]

L
0 −

∫ L

0

[wx1x1 ] [wx1x1 ] dx1

)
dx2

−aCD
∫ L

0

(
[wx1x2 ] [wx2 ]

L
0 −

∫ L

0

[wx1x2 ] [wx1x2 ] dx1

)
dx2

−1

2
aCD

∫ L

0

(
[wx2x2 ] [wx2 ]

L
0 −

∫ L

0

[wx2x2 ] [wx2x2 ] dx2

)
dx1

=
1

2
aCD

∫ L

0

∫ L

0

[wx1x1 ] [wx1x1 ] dx1 dx2 + aCD

∫ L

0

∫ L

0

[wx1x2 ] [wx1x2 ] dx1 dx2

+
1

2
aCD

∫ L

0

∫ L

0

[wx2x2 ] [wx2x2 ] dx1 dx2

= aCD

∫ L

0

∫ L

0

(
1

2

[
w2
x1x1

]
+
[
w2
x1x2

]
+

1

2

[
w2
x2x2

])
dx1 dx2

=

∫ L

0

∫ L

0

1

2
aCD

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
dx1 dx2
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4.12 Lemma 12∫ L

0

∫ L

0

D[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]wt dx1 dx2

= D

∫ L

0

∫ L

0

[wx1x1x1 ]x1 wt dx1 dx2+2D

∫ L

0

∫ L

0

[wx1x1x2 ]x2 wt dx2 dx1+D

∫ L

0

∫ L

0

[wx2x2x2 ]w2
wt dx2 dx1

= D

∫ L

0

(
[[wx1x1x1 ]wt]

L
0 −

∫ L

0

[wx1x1x1 ] [wt]x1 dx1

)
dx2

+2D

∫ L

0

(
[[wx1x1x2 ]wt]

L
0 −

∫ L

0

[wx1x1x2 ] [wt]x2 dx2

)
dx1

+D

∫ L

0

(
[[wx2x2x2 ]wt]

L
0 −

∫ L

0

[wx2x2x2 ] [wt]x2 dx2

)
dx1

= −D
∫ L

0

∫ L

0

[wx1x1 ]x1 [wt]x1 dx1 dx2

−2D

∫ L

0

∫ L

0

[wx1x2 ]x1 [wt]x2 dx1 dx2

−D
∫ L

0

∫ L

0

[wx2x2 ]x2 [wt]x2 dx2 dx1

= −D
∫ L

0

(
[wx1x1 ] [wtx1 ]

L
0 −

∫ L

0

[wx1x1 ] [wtx1x1 ] dx1

)
dx2

−2D

∫ L

0

(
[wx1x2 ] [wtx2 ]

L
0 −

∫ L

0

[wx1x2 ] [wtx1x2 ] dx1

)
dx2

−D
∫ L

0

(
[wx2x2 ] [wtx2 ]

L
0 −

∫ L

0

[wx2x2 ] [wtx2x2 ] dx2

)
dx1

= D

∫ L

0

∫ L

0

[wx1x1 ] [wx1x1 ]t dx1 dx2

+2D

∫ L

0

∫ L

0

[wx1x2 ] [wx1x2 ]t dx1 dx2

+D

∫ L

0

∫ L

0

[wx2x2 ] [wx2x2 ]t dx1 dx2

= D

∫ L

0

∫ L

0

(
1

2

[
w2
x1x1

]
t
+
[
w2
x1x2

]
t
+

1

2

[
w2
x2x2

]
t

)
dx1 dx2

=

∫ L

0

∫ L

0

D

2

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
t
dx1 dx2
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4.13 Lemma 13∫ L

0

∫ L

0

−1

2
aCD1[wx1(ux1 +

1

2
(wx1)

2)]x1w dx1 dx2

= −
∫ L

0

(∫ L

0

1

2
aCD1[wx1(ux1 +

1

2
(wx1)

2)]x1wdx1

)
dx2

= −
∫ L

0

([
1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
w

]L
0

−
∫ L

0

1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[w]x1 dx1

)
dx2

= −
∫ L

0

(
−
∫ L

0

1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[w]x1 dx1

)
dx2

=

∫ L

0

∫ L

0

1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[w]x1 dx1 dx2

4.14 Lemma 14∫ L

0

∫ L

0

−1

2
aCD1[wx2(vx2 +

1

2
(wx2)

2)]x2w dx1 dx2

= −
∫ L

0

(∫ L

0

1

2
aCD1[wx2(vx2 +

1

2
(wx2)

2)]x2wdx2

)
dx1

= −
∫ L

0

([
1

2
aCD1

[
wx2(vx2 +

1

2
(wx2)

2)

]
w

]L
0

−
∫ L

0

1

2
aCD1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[w]x2 dx2

)
dx1

= −
∫ L

0

(
−
∫ L

0

1

2
aCD1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[w]x2 dx2

)
dx1

=

∫ L

0

∫ L

0

1

2
aCD1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[w]x2 dx2 dx1

=

∫ L

0

∫ L

0

1

2
aCD1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[w]x2 dx1 dx2

4.15 Lemma 15∫ L

0

∫ L

0

−D1[wx1(ux1 +
1

2
(wx1)

2)]x1wt dx1 dx2

= −
∫ L

0

(∫ L

0

D1[wx1(ux1 +
1

2
(wx1)

2)]x1wtdx1

)
dx2

= −
∫ L

0

([
D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
wt

]L
0

−
∫ L

0

D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wt]x1 dx1

)
dx2

= −
∫ L

0

(
−
∫ L

0

D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wt]x1 dx1

)
dx2

=

∫ L

0

∫ L

0

D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wt]x1 dx1 dx2
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4.16 Lemma 16∫ L

0

∫ L

0

−D1[wx2(vx2 +
1

2
(wx2)

2)]x2wt dx1 dx2

= −
∫ L

0

(∫ L

0

D1[wx2(vx2 +
1

2
(wx2)

2)]x2wtdx2

)
dx1

= −
∫ L

0

([
D1

[
wx2(vx2 +

1

2
(wx2)

2)

]
wt

]L
0

−
∫ L

0

D1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[wt]x2 dx2

)
dx1

= −
∫ L

0

(
−
∫ L

0

D1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[wt]x2 dx2

)
dx1

=

∫ L

0

∫ L

0

D1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[wt]x2 dx2 dx1

=

∫ L

0

∫ L

0

D1

[
wx2(vx2 +

1

2
(wx2)

2)

]
[wt]x2 dx1 dx2

4.17 Lemma 17∫ L

0

∫ L

0

−1

2
aCE[wx1(ux2 + vx1 + wx1wx2)]x2w dx1 dx2

= −
∫ L

0

(∫ L

0

1

2
aCE[wx1(ux2 + vx1 + wx1wx2)]x2wdx2

)
dx1

= −
∫ L

0

([
1

2
aCE [wx1(ux2 + vx1 + wx1wx2)]w

]L
0

−
∫ L

0

1

2
aCE [wx1(ux2 + vx1 + wx1wx2)] [w]x2 dx2

)
dx1

= −
∫ L

0

(
−
∫ L

0

1

2
aCE [wx1(ux2 + vx1 + wx1wx2)] [w]x2 dx2

)
dx1

=

∫ L

0

∫ L

0

1

2
aCE [wx1(ux2 + vx1 + wx1wx2)] [w]x2 dx2 dx1

=

∫ L

0

∫ L

0

1

2
aCE [wx1(ux2 + vx1 + wx1wx2)] [w]x2 dx1 dx2

4.18 Lemma 18∫ L

0

∫ L

0

−1

2
aCE[wx2(ux2 + vx1 + wx1wx2)]x1w dx1 dx2

= −
∫ L

0

(∫ L

0

1

2
aCE[wx2(ux2 + vx1 + wx1wx2)]x1wdx1

)
dx2

= −
∫ L

0

([
1

2
aCE [wx2(ux2 + vx1 + wx1wx2)]w

]L
0

−
∫ L

0

1

2
aCE [wx2(ux2 + vx1 + wx1wx2)] [w]x1 dx1

)
dx2

= −
∫ L

0

(
−
∫ L

0

1

2
aCE [wx2(ux2 + vx1 + wx1wx2)] [w]x1 dx1

)
dx2
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=

∫ L

0

∫ L

0

1

2
aCE [wx2(ux2 + vx1 + wx1wx2)] [w]x1 dx1 dx2

4.19 Lemma 19∫ L

0

∫ L

0

−E[wx1(ux2 + vx1 + wx1wx2)]x2wt dx1 dx2

= −
∫ L

0

(∫ L

0

E[wx1(ux2 + vx1 + wx1wx2)]x2wtdx2

)
dx1

= −
∫ L

0

(
[E [wx1(ux2 + vx1 + wx1wx2)]wt]

L
0 −

∫ L

0

E [wx1(ux2 + vx1 + wx1wx2)] [wt]x2 dx2

)
dx1

= −
∫ L

0

(
−
∫ L

0

E [wx1(ux2 + vx1 + wx1wx2)] [wt]x2 dx2

)
dx1

=

∫ L

0

∫ L

0

E [wx1(ux2 + vx1 + wx1wx2)] [wt]x2 dx2 dx1

=

∫ L

0

∫ L

0

E [wx1(ux2 + vx1 + wx1wx2)] [wt]x2 dx1 dx2

4.20 Lemma 20∫ L

0

∫ L

0

−E[wx2(ux2 + vx1 + wx1wx2)]x1wt dx1 dx2

= −
∫ L

0

(∫ L

0

E[wx2(ux2 + vx1 + wx1wx2)]x1wtdx1

)
dx2

= −
∫ L

0

(
[E [wx2(ux2 + vx1 + wx1wx2)]wt]

L
0 −

∫ L

0

E [wx2(ux2 + vx1 + wx1wx2)] [wt]x1 dx1

)
dx2

= −
∫ L

0

(
−
∫ L

0

E [wx2(ux2 + vx1 + wx1wx2)] [wt]x1 dx1

)
dx2

=

∫ L

0

∫ L

0

E [wx2(ux2 + vx1 + wx1wx2)] [wt]x1 dx1 dx2
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4.21 Lemma 21

By taking the integral of (3) we get,∫ L

0

∫ L

0

fx3

(
1

2
aCw + wt

)
dx1 dx2 =∫ L

0

∫ L

0

(
a

4

[
(wt + Cw)2

]
t
+

1

2

(
1− a

2

)
[w2

t ]t +
(

1− a

2

)
Cw2

t

+
1

2
aCD[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]w +D[wx1x1x1x1 + 2wx1x1x2x2 + wx2x2x2x2 ]wt

−1

2
aCD1[wx1(ux1 +

1

2
(wx1)

2)]x1w −
1

2
aCD1[wx2(vx2 +

1

2
(wx2)

2)]x2w

−D1[wx1(ux1 +
1

2
(wx1)

2)]x1wt −D1[wx2(vx2 +
1

2
(wx2)

2)]x2wt

−1

2
aCE[wx1(ux2 +vx1 +wx1wx2)]x2w−

1

2
aCE[wx2(ux2 +vx1 +wx1wx2)]x1w

−E[wx1(ux2+vx1+wx1wx2)]x2wt−E[wx2(ux2+vx1+wx1wx2)]x1wt

)
dx1 dx2

and by the previous lemmas this is equal to,∫ L

0

∫ L

0

fx3

(
1

2
aCw + wt

)
dx1 dx2 =∫ L

0

∫ L

0

(
a

4

[
(wt + Cw)2

]
t
+

1

2

(
1− a

2

)
[w2

t ]t +
(

1− a

2

)
Cw2

t dx1 dx2

+
1

2
aCD

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
+
D

2

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
t

+
1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wx1 + wx2 ]+D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wx1 + wx2 ]t

+aCE(ux2+vx1+wx1wx2) [wx1wx2 ]+E(ux2+vx1+wx1wx2) [wx1wx2 ]t

)
dx1 dx2
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4.22 Lemma 22

Applying lemmas (9),(10), and (21) and adding the equations together factoring out the time
derivative we see that,∫ L

0

∫ L

0

fx1(aCu+ ut) + fx2(aCv + vt) + fx3

(
1

2
aCw + wt

)
dx1 dx2 =∫ L

0

∫ L

0

(
d

dt

[
a

2
(ut + Cu)2 +

1− a
2

u2t +
a

2
(vt + Cv)2 +

1− a
2

v2t +
a

4
(wt + Cw)2 +

1

2

(
1− a

2

)
w2
t

]
(1− a)Cu2t + (1− a)Cv2t +

(
1− a

2

)
Cw2

t +
1

2
aCD

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
+
D

2

[
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

]
t

+aCD1

[
ux1 +

1

2
(wx1)

2

]
ux1+aCD1

[
vx2 +

1

2
(wx2)

2

]
vx2+

1

2
aCD1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wx1 + wx2 ]

+D1

[
ux1 +

1

2
(wx1)

2

]
[ut]x1+D1

[
vx2 +

1

2
(wx2)

2

]
[vt]x2+D1

[
wx1(ux1 +

1

2
(wx1)

2)

]
[wx1 + wx2 ]t

+aCE [ux2 + vx1 + wx1wx2 ]ux2+aCE [ux2 + vx1 + wx1wx2 ] vx1+aCE(ux2+vx1+wx1wx2) [wx1wx2 ]

+E [ux2 + vx1 + wx1wx2 ] [ut]x2+E [ux2 + vx1 + wx1wx2 ] [vt]x1+E(ux2+vx1+wx1wx2) [wx1wx2 ]t

)
dx1 dx2

After factoring and applying the reverse chain rule we are ultimately left with,

d

dt

{∫ L

0

∫ L

0

[
a

2
(ut + Cu)2 +

a

2
(vt + Cv)2 +

a

4
(wt + Cw)2 +

1− a
2

u2t +
1− a

2
v2t +

(
1

2
− a

4

)
w2
t

D1

2

(
ux1 +

1

2
(wx1)

2

)2

+
D1

2

(
vx2 +

1

2
(wx2)

2

)2

+
E

2
(ux2 + vx1 + wx1wx2)

2

D

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

}
+

∫ L

0

∫ L

0

[
(1− a)Cu2t + (1− a)Cv2t +

(
1− a

2

)
Cw2

t

+aCD1

(
ux1 +

1

2
(wx1)

2

)2

+ aCD1 +

(
vx2 +

1

2
(wx2)

2

)2

+aEC (ux2 + vx1 + wx1wx2)
2 +

aDC

2

(
w2
x1x1

+ 2w2
x1x2

+ w2
x2x2

)]
dx1 dx2

=

∫ L

0

∫ L

0

[
fx1(ut + aCu) + fx2(vt + aCv) + fx3

(
wt +

aCw

2

)]
dx1 dx2
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