Multiplication Operators on the Lipschitz Space of a Tree

James Cameron

Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030, USA

Presentation of work by Flavia Colonna and Glenn R. Easley

19 March 2013

Given a complex Banach space X consisting of functions defined on a set Ω and a complex valued function ψ defined on Ω , the operator

$$M_{\psi}f = \psi f$$
 for all $f \in X$

is the multiplication operator with symbol ψ .

- Ω is an infinite tree T, which is a metric space with distance counting the number of edges linking two vertices
- X is the space ${\mathcal L}$ of complex valued Lipschitz functions on T
- ${\cal L}$ is a discrete analog of the Banach space of analytic functions on $\mathbb D,$ the Bloch space ${\cal B}$

 $\mathcal{B}(\mathbb{D})$ is the space of analytic functions on \mathbb{D} such that

$$(1-|z|^2)|f'(z)|<\infty$$

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|$$

 $\mathcal{B}_0(\mathbb{D})$ is the set of Bloch functions such that

$$\lim_{|z|\to 1}(1-|z|^2)|f'(z)|=0$$

< ∃ >

Where do Lipschitz functions come in?

 $\forall z, w \in \mathbb{D}, \ f \in \mathcal{B}(\mathbb{D}) \iff \exists C > 0 \mid |f(z) - f(w)| \leq C \rho(z, w)$

 ρ is the Bergman metric

 $\rho(x, y) = \inf(length(\gamma))$, where $\gamma(0) = x$ and $\gamma(1) = y$ and $\gamma \in C^1$

Infinite trees are essentially discretizations of the hyperbolic disk in $\ensuremath{\mathbb{C}}.$

 ${\mathcal L}$ is the space of all complex valued functions f on ${\mathsf T}$ such that

$$|f(v) - f(u)| \leq Cd(v, u)$$

Recall d(v, u) is the number of edges linking u and v.

Harmonic functions in this case mean satisfying the mean value property.

Homogeneous trees are trees with each vertex having the same number of neighbors.

The Lipschitz space of T can be though of as the space \mathcal{L} of the functions f acting on T such that $Df \in L^{\infty}$.

For a Lipschitz function f on T, let $||f||_{\mathcal{L}} = |f(o)| + ||Df||_{\infty}$.

$$Df(v) = |f(v) - f(v^-)|$$
 for $v \neq o$

Theorem 2.1

The correspondence $f \in \mathcal{L} \mapsto ||f||_{\mathcal{L}}$ is a norm which endows \mathcal{L} with a complex Banach space structure.

First, show $||f||_{\mathcal{L}}$ is a norm.

The mapping $f \mapsto ||Df||_{\infty}$ is a semi-norm.

We must show $||f||_{\mathcal{L}} = 0 \iff f = 0$. If $||f||_{\mathcal{L}} = 0$, then $||Df||_{\infty} = 0$ and |f(o)| = 0, so f must vanish. Clearly, $||0||_{\mathcal{L}} = 0$.

Therefore $||f||_{\mathcal{L}}$ is a norm.

Now, show \mathcal{L} is complete, since \mathcal{L} is a complex vector space with a norm.

Let f_n be a Cauchy sequence of functions in \mathcal{L} .

We show f_n converges pointwise to some function f on T.

Then we show f is Lipschitz.

Finally, we show $||f_n - f||_{\mathcal{L}} \to 0$ as $n \to \infty$.

The little Lipschitz space is the subspace \mathcal{L}_0 of \mathcal{L} consisting of all functions f on T such that $\lim_{|v|\to\infty} Df(v) = 0$.

Theorem 2.3

 \mathcal{L}_0 is a closed and separable subspace of $\mathcal L$

Lemma 3.1 For $v \in T$, $\sup_{f \in \mathcal{L}} (|f(v)| : f(o) = 0, ||f||_{\mathcal{L}} \le 1) = |v|$ This is also true for $f \in \mathcal{L}_0$

A Banach space is functional if $\forall w \in \Omega$, $\exists C > 0$ such that $|f(w)| \leq C$, for all $f \in X$ such that ||f|| = 1.

Lemma 3.2

Let X be a functional Banach space on the set Ω and let ψ be a complex valued function on Ω such that $M_{\psi} : X \mapsto X$. Then M_{ψ} is bounded on X and $\forall w \in \Omega$, $|\psi(w)| \leq |M_{\psi}|$. In particular ψ is bounded.

Proposition 3.3

${\mathcal L}$ is a functional Banach space

Let $||f||_{\mathcal{L}} = 1$, and let g(v) = f(v) - f(o). Then g(o) = 0, so we apply Lemma 3.1.

$$|f(v)| \le |f(o)| + |g(v)| \le 1 + |v|$$

Boundedness of Multiplication Operators

Lemma 3.4

For $f \in \mathcal{L}$, $|f(v)| \leq |f(o)| + |v| * ||Df||_{\infty}$

If $||f||_{\mathcal{L}} \leq 1$, then $|f(v)| \leq |v|$.

For
$$f \in \mathcal{L}_0$$
, then $\lim_{|v| \to \infty} \frac{f(v)}{|v|} = 0$.

Define $\sigma_{\psi} = \sup_{v \neq o} (|v| D\psi(v))$. Note that $\sigma_{\psi} < \infty \implies \psi \in \mathcal{L}_0$.

Theorem 3.6

Let T be a tree and ψ a function on T. Then the following are equivalent:

 $egin{aligned} & M_\psi \mbox{ is bounded on } \mathcal{L} \ & M_\psi \mbox{ is bounded on } \mathcal{L}_0 \ & \psi \in L^\infty \mbox{ and } \sigma_\psi < \infty \end{aligned}$

Theorem 4.1

If M_{ψ} is a bounded multiplication operator on \mathcal{L} or \mathcal{L}_0 , then

$$max(||\psi||_{\mathcal{L}}, ||\psi||_{\infty}) \leq ||M_{\psi}|| \leq ||\psi||_{\infty} + \sigma_{\psi}.$$

These estimates are sharp.

[1] Colonna, Flavia and Easley, Glenn R. "Multiplication Operators on the Lipschitz Space of a Tree." Integral Equations and Operator Theory, 68 (2010), 391-411